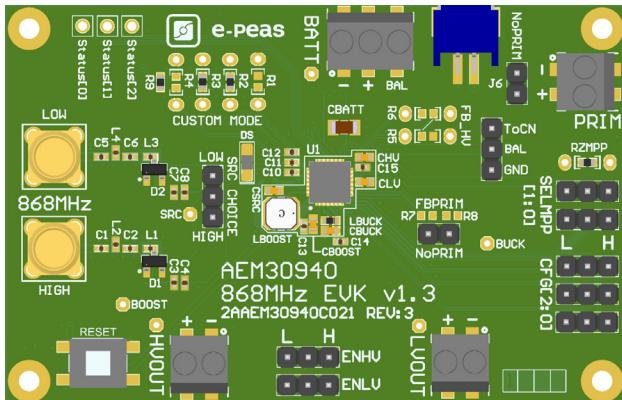


AEM30940 868 MHz Evaluation Board User Guide

Description

The AEM30940 evaluation board is a printed circuit board (PCB) featuring all the needed components to operate the AEM30940 integrated circuit (IC). Please refer to the datasheet for all the useful details about the AEM30940 (Document DS-AEM30940).


The AEM30940 evaluation board allows users to test the e-peas IC and analyze its performances in a laboratory-like setting.

It allows easy connections to the RF energy harvester, the storage element, the low-voltage and the high-voltage loads. This evaluation board includes two matching networks and rectifiers for a $50\ \Omega$ single-ended antenna. It also provides all the configuration access to set the device in any one of the modes described in the datasheet. The control and status signals are available on standard pin headers, allowing users to configure for any usage scenario and evaluate the relevant performance.

The AEM30940 evaluation board is a plug and play, intuitive and efficient tool for making the appropriate decisions (component selection, operating modes...) for the design of a highly efficient subsystem powered by radio frequency energy harvesting in your target application.

There are three designs of the AEM30940 evaluation board for RF harvesting. One is for the 868MHz band, one is for the 915MHz and another for the 2.4GHz band.

Appearance

1. Connections Diagram

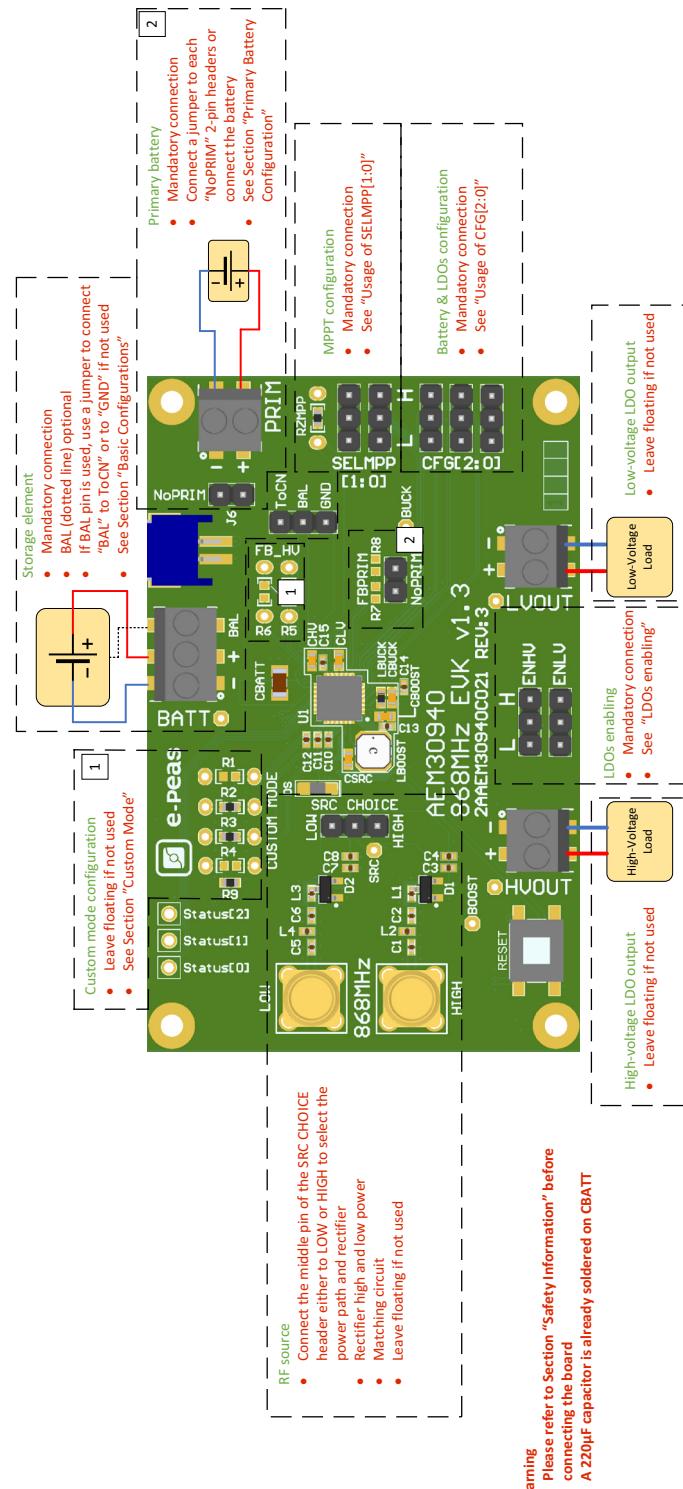


Figure 1: Connection diagram

NOTE: if $R1, R2, R3, R4$ and $R9$ are not mounted (and thus, SET_OVDIS , SET_OVCH and SET_CHRDY are floating), make sure that no power source is connected to SRC or to $PRIM$ when $CFG[2:0]$ is LLL (custom mode) or floating. This would lead to damaging the AEM30940. Having SET_OVDIS , SET_OVCH and SET_CHRDY tied to $BUCK$ by installing $0\ \Omega$ on $R2$, $R3$ and $R9$ prevents this behavior.

1.1. Signals Description

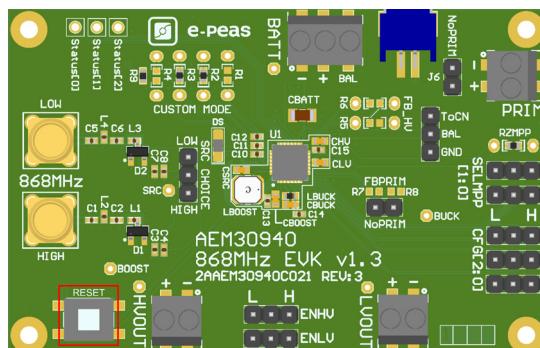
NAME	FUNCTION	If used	If not used
Power signals			
SRC	Connection to the harvested energy source.	Connect the source element.	Leave floating.
BATT	Connection to the energy storage element.	Connect the storage element in addition to CBATT ¹ (min 150 μ F).	Do not remove CBATT.
BAL	Connection to mid-point of a dual-cell supercapacitor.	Connect mid-point of supercapacitor and a jumper from "BAL" to "ToCN".	Use a jumper to connect "BAL" to "GND".
PRIM	Connection to the primary battery.	Connect primary battery and remove the "NoPRIM" jumpers.	Connect a jumper to each "NoPRIM" 2-pin.
LVOUT	Output of the low-voltage LDO regulator.	Connect a load.	Leave floating.
HVOUT	Output of the high-voltage LDO regulator.	Connect a load.	Leave floating.
Debug signals			
VBOOST	Output of the boost converter.		
VBUCK	Output of the buck converter.		
BUFSRC	Connection to an external capacitor buffering the boost converter input.		
Configuration signals			
CFG[2:0]	Configuration of the threshold voltages for the energy storage element.	Connect jumpers (see Table 2).	Cannot be left floating (see Table 2).
SELMPP[1:0]	Configuration of the MPP ratio.	Connect jumpers (see Table 4).	Cannot be left floating (see Table 4).
FB_PRIM_D FB_PRIM_U	Configuration of the primary battery.	Use resistors R7-R8 (see Section 2.3.3).	Connect a jumper to each "NoPRIM" 2-pin.
FB_HV	Configuration of the high-voltage LDO in the custom mode.	Use resistor R5-R6 (see Section 2.3.1).	Leave floating.
RZMPP	Configuration of the constant impedance ZMPP.	Use resistor RZMPP (see Section 2.3.2).	Leave floating.
Control signals			
ENHV	Enabling pin for the high-voltage LDO.	Connect jumper (see Table 3).	Cannot be left floating.
ENLV	Enabling pin for the low-voltage LDO.	Connect jumper (see Table 3).	Cannot be left floating.
Status signals			
STATUS[2]	Logic output. Asserted when the AEM performs a MPP evaluation.		
STATUS[1]	Logic output. Asserted if the battery voltage falls under Vovdis or if the AEM is taking energy from the primary battery.		
STATUS[0]	Logic output. Asserted when the LDOs can be enabled.		

Table 1: Pin description

1. CBATT capacity on the EvK may vary depending on suppliers availability, with a minimum value of 150 μ F (see CBATT value on Figure 12).

2. General Considerations

2.1. Safety Information


Always perform the following steps in the correct order:

1. Reset the board - see "How to reset the AEM30940 evaluation board" on Figure 2.
2. Completely configure the PCB (jumpers/resistors):
 - MPP configuration (SELMPP[1:0], RZMPP) - see Table 4.
 - Battery and LDOs configuration (CFG[2:0]) - see Table 2.
 - Primary battery configuration ("NoPRIM" or R7-R8) - see Section 2.3.3.
 - LDOs enabling (ENHV and ENLV) - see Table 3.
 - Balancing circuit connection (BAL) - see Section 2.3.4.
3. Connect the storage elements on BATT and optionally the primary battery on PRIM.
4. Connect the high and/or low voltage loads on HVOUT/LVOUT (optional).
5. Connect the source .

To avoid damage to the board, users are urged to follow this procedure.

How to reset the AEM30940 evaluation board:

To reset the board, disconnect the source, the storage element and the optional primary battery and press the reset button in order to discharge the internal nodes of the system.

2.2. Basic Configurations

Configuration pins			Storage element threshold voltages			LDOs output voltages		Typical use
CFG[2]	CFG[1]	CFG[0]	V_{OVCH}	V_{CHRDY}	V_{OVDIS}	V_{HV}	V_{LV}	
H	H	H	4.12 V	3.67 V	3.60 V	3.3 V	1.8 V	Li-ion battery
H	H	L	4.12 V	4.04 V	3.60 V	3.3 V	1.8 V	Solid state battery
H	L	H	4.12 V	3.67 V	3.01 V	2.5 V	1.8 V	Li-ion/NiMH battery
H	L	L	2.70 V	2.30 V	2.20 V	1.8 V	1.2 V	Single-cell (super) capacitor
L	H	H	4.50 V	3.67 V	2.80 V	2.5 V	1.8 V	Dual-cell supercapacitor
L	H	L	4.50 V	3.92 V	3.60 V	3.3 V	1.8 V	Dual-cell supercapacitor
L	L	H	3.63 V	3.10 V	2.80 V	2.5 V	1.8 V	LiFePO4 battery
L	L	L	Custom mode - see Section 2.3.1.				1.8 V	

Table 2: Usage of CFG[2:0]

ENLV	LVOUT
L	Disabled
H	Enabled

ENHV	HVOUT
L	Disabled
H	Enabled

Table 3: LDOs enabling

SELMPP[1]	SELMPP[0]	V_{MPP} / V_{OC}
L	L	50% ¹
L	H	65%
H	L	80%
H	H	ZMPP

Table 4: Usage of SELMPP[1:0]

1. The recommended MPPT ratio, for optimal efficiency with the implemented matching network, is 50%.

2.3. Advanced Configurations

A complete description of the system constraints and configurations is available in the AEM30940 datasheet “System configuration” Section.

A reminder on how to calculate the configuration resistors value is provided below. Calculation can be made with the help of the spreadsheet found on e-peas website.

2.3.1. Custom Mode

In addition to the pre-defined storage element protection levels, the custom mode allows users to define their own levels via resistors R1 to R4 and to tune the output of the high voltage LDO **HVOUT** via resistors R5-R6.

Here is how to determine the values of R1-R4 to set the desired storage element protection levels:

- $R_T = R1 + R2 + R3 + R4$
- $1M\Omega \leq R_T \leq 100M\Omega$
- $R1 = R_T \cdot \frac{1V}{V_{OVCH}}$
- $R2 = R_T \cdot \left(\frac{1V}{V_{CHRDY}} - \frac{1V}{V_{OVCH}} \right)$
- $R3 = R_T \cdot \left(\frac{1V}{V_{OVDIS}} - \frac{1V}{V_{CHRDY}} \right)$
- $R4 = R_T \cdot \left(1 - \frac{1V}{V_{OVDIS}} \right)$

Here is how to determine the values of R5-R6 to set the desired **HVOUT** voltages:

- $R_V = R5 + R6$
- $1M\Omega \leq R_V \leq 40M\Omega$
- $R5 = R_V \cdot \frac{1V}{V_{HV}}$
- $R6 = R_V \cdot \left(1 - \frac{1V}{V_{HV}} \right)$

Make sure the protection levels satisfy the following conditions:

- $V_{CHRDY} + 0.05V \leq V_{OVCH} \leq 4.5V$
- $V_{OVDIS} + 0.05V \leq V_{CHRDY} \leq V_{OVCH} - 0.05V$
- $2.2V \leq V_{OVDIS}$
- $V_{HV} \leq V_{OVDIS} - 0.3V$

If custom mode used:

- Remove R2, R3 and R9 zero ohm resistors.
- Set resistors R1 to R6 to configure the custom mode.

If custom mode unused:

- Leave the resistor footprints of R1, R4, R5 and R6 empty.
- Place 0 ohm resistors on R2, R3 and R9.
- Do not set **CFG[2:0]** to LLL.

2.3.2. ZMPP Configuration

If this configuration is chosen (see Table 4), the AEM30940 regulates **V_{SRC}** at a voltage equals to the product of **R_{ZMPP}** times the current available at the source.

If unused, leave the resistor footprint **R_{ZMPP}** empty.

2.3.3. Primary Battery Configuration

If a primary storage is used, it is mandatory to determine **V_{PRIM,MIN}**, the voltage at which the primary battery is considered fully depleted. To do so, use resistors R7 - R8.

These resistors are calculated as follows:

- $R_p = R7 + R8$
- $100k\Omega \leq R_p \leq 500k\Omega$
- $R8 = R_p - R7$
- $R7 = \frac{V_{PRIM_MIN}}{4} \cdot R_p \cdot \frac{1}{2.2V}$

If unused, use a jumper to short each “NoPRIM” 2-pin headers.

2.3.4. Balancing Circuit Configuration

When using a dual-cell supercapacitor (that does not already include a balancing circuit), enable the balancing circuit configuration to ensure equal voltage on both cells. To do so:

- Connect the node between the two supercapacitor cells to **BAL** (on **BATT** connector).
- Use a jumper to connect “**BAL**” to “**ToCN**”.

If unused, use a jumper to connect “**BAL**” to “**GND**”.

3. Functional Tests

Warning regarding measurements

Any item connected to the PCB (load, probe, storage device, etc.) involves a leakage current. This can negatively impact the measurements. Whenever possible, disconnect unused items to limit this effect.

This section presents a few simple tests that allow the user to understand the functional behavior of the AEM30940. To avoid damaging the board, follow the procedure found in Section 2.1 “Safety Information”. If a test has to be restarted make sure to properly reset the system to obtain reproducible results.

Those functional tests were made using the following setup:

- Configurations:
 - **SELMPP[1:0]** = LL
 - **CFG[2:0]** = HLL
 - **ENHV** = H
 - **ENLV** = H.

- Storage element: capacitor (4.7 mF + **CBATT**).
- 10 kΩ between **HVOUT** and **GND**.
- **LVOUT** left floating.
- **SRC**: current source (1 mA or 100 µA) with voltage compliance (5 V) applied on the middle pin of the source element selection header named **SRC_choice**.

Feel free to adapt the setup to match your system as long as the input and cold-start constraints are respected (see the AEM30940 datasheet “Introduction” Section).

3.1. Start-up

The following example allows users to observe the behavior of the AEM30940 in wake-up mode.

Setup

- Place the probes on the nodes to be observed.
- Referring to Figure 1, follow steps 1 to 5 explained in Section 2.1 “Safety Information”.

Observations and Measurements

- **BATT**: voltage rises as the power provided by the source is transferred to the storage element (see Figure 3).
- **SRC**: regulated at V_{MPP} , which is a voltage equal to the open-circuit voltage (V_{OC}) multiplied by the MPP ratio defined in Table 4. During the MPP evaluation, the AEM30940 stops pulling current from **SRC** and thus, V_{SRC} rises to V_{OC} (see Figure 4). Note that V_{SRC} must be higher than 380 mV to allow the AEM30940 to coldstart.
- **HVOUT/LVOUT**: regulated when voltage on **BATT** first rises above V_{CHRDY} (see Figure 3).
- **STATUS[0]**: asserted when the LDOs are ready to be enabled (refer to the AEM30940 datasheet “Normal Mode” section) (see Figure 3).
- **STATUS[2]**: asserted each time the AEM30940 performs a MPP evaluation (See Figure 4).

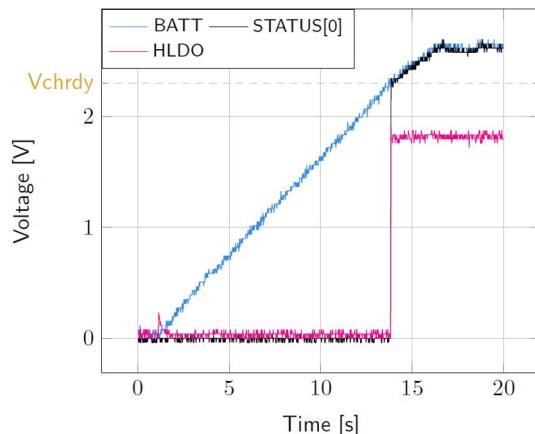


Figure 3: **STATUS[0]** and **HVOUT** evolution with **BATT**

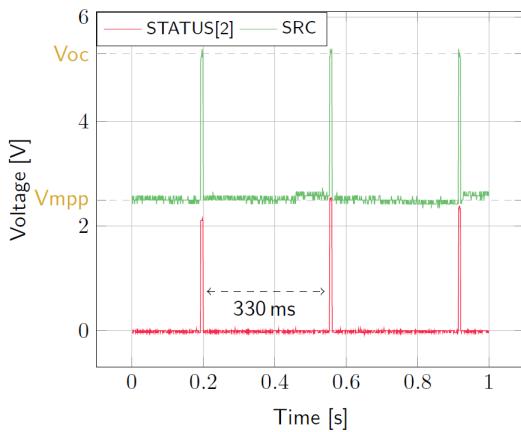


Figure 4: **SRC** and **STATUS[2]** while energy is extracted from **SRC** (BATT under V_{OVCH})

3.2. Shutdown

This test allows users to observe the behavior of the AEM30940 when the system is running out of energy.

Setup

- Place the probes on the nodes to be observed.
- Referring to Figure 1, follow steps 1 to 5 explained in Section 2.1 “Safety Information”. Configure the board in the desired state and start the system (see Section 3.1). Do not use a primary battery.
- Let the system reach a steady state (i.e. voltage on **BATT** between V_{CHRDY} and V_{OVCH} , and **STATUS[0]** asserted).
- Remove the source and let the system discharge through quiescent current and any load(s) connected to **HVOUT/LVOUT**.

Observations and Measurements

- **BATT**: voltage decreases as the system consumes the power accumulated in the storage element. The voltage remains stable after crossing V_{OVDIS} (see Figure 5).
- **STATUS[0]**: de-asserted when the LDOs are no longer available as the storage element is running out of energy. This happens 600 ms after **STATUS[1]** assertion (see Figure 5).
- **STATUS[1]**: asserted for 600ms when the storage element voltage (**BATT**) falls below V_{OVDIS} (see Figure 5).

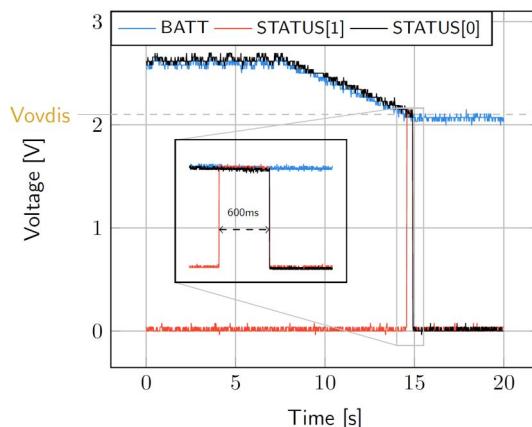


Figure 5: LDOs disabled around 600 ms after **BATT** reaches V_{OVDIS}

3.3. Switching to Primary Battery

This example allows users to observe switching from the main storage element to the primary battery when the system is running out of energy.

Setup

- Place the probes on the nodes to be observed.
- Referring to Figure 1, follow steps 1 to 5 explained in Section 2.1 “Safety Information”. Configure the board in the desired state and start the system (see Section 3.1). Connect a primary battery (example: 3.1 V coin cell with protection level at 2.4 V, $R7 = 68 \text{ k}\Omega$ and $R8 = 180 \text{ k}\Omega$).
- Let the system reach a steady state (i.e. voltage on **BATT** between V_{CHRDY} and V_{OVDIS} , and **STATUS[0]** asserted).
- Remove the source and let the system discharge through quiescent current and any load(s) connected to **HVOUT/LVOUT**.

Observations and Measurements

- **BATT**: voltage decreases as the system consumes the power accumulated in the storage element. The voltage reaches V_{OVDIS} and then rises again to V_{CHRDY} as it is recharged from the primary battery (see Figure 6).
- **STATUS[0]**: never de-asserted as the LDOs are still functional (see Figure 6).
- **HVOUT**: stable and not affected by switching on the primary battery (see Figure 6).

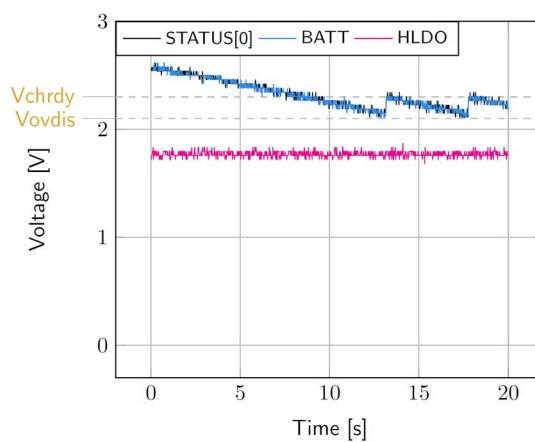


Figure 6: Switching from **SRC** to the primary battery

3.4. Cold Start

The following test allows the user to observe the minimum voltage required to coldstart the AEM30940. To prevent leakage current induced by the probe, the user should avoid probing any unnecessary node. Make sure to properly reset the board to observe the cold-start behavior.

Setup

- Place the probes on the nodes to be observed.
- Referring Figure 1, follow steps 1 and 2 explained in Section 2.1. Configure the board in the desired state. Do not plug any storage element in addition to CBATT.
- **SRC**: connect your source element on one SMA connector and place a jumper on the SRC choice header.

Observations and Measurements

- **SRC**: equal to the cold-start voltage during the cold-start phase. Regulated at the selected MPPT percentage of V_{OC} when cold start is over (see Figure 7). Be careful that the cold-start phase time will shorten with the input power. Limit it to ease the observation.
- **BATT**: starts to charge when the cold-start phase is over (see Figure 7).

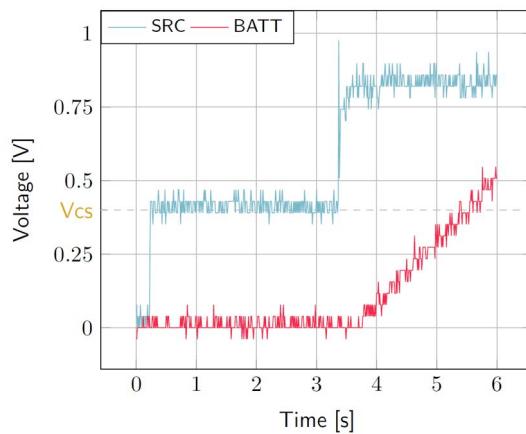


Figure 7: AEM30940 behavior during cold start

3.5. Dual-cell Supercapacitor Balancing Circuit

The following test allows the user to observe the balancing circuit behavior that balances the voltage on both side of the **BAL** pin.

Setup

- Following steps 1 and 2 explained in Section 2.1 and referring to Figure 1, configure the board in the desired state. Plug the jumper linking “**BAL**” to “**ToCN**”.
- **BATT**: plug a capacitor **C1** between the positive (+) pin and **BAL** pin, and a capacitor **C2** between **BAL** pin and the negative (-) pin.
 - $C1 \& C2 > 1 \text{ mF}$.

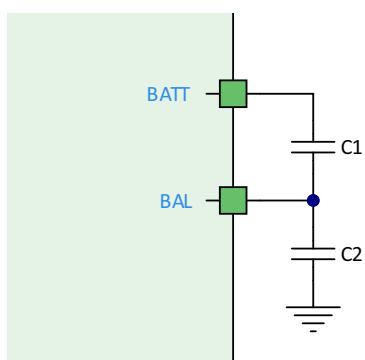


Figure 8: Capacitors connection for balancing

- For the balancing circuit to work, the voltage on **BAL** must be equal to or higher than 0.9 V.
- In order to make sure the balancing circuit is functional when exiting **WAKE-UP MODE** (see AEM30940 “Operating Modes” section in datasheet), **C1** and **C2** can be calculated following the formula:

$$\frac{C_1}{C_1 + C_2} \cdot V_{\text{CHRDY}} \geq 0.9V$$

- **SRC**: Plug your source element on one SMA connector and a jumper on the SRC choice header to power up the system.

Observations and Measurements

- **BAL** voltage equals half of **BATT** voltage.

4. Performance Tests

This section presents the tests to reproduce the performance graphs found in the AEM30940 datasheet and to understand the functionalities of the AEM30940. To be able to reproduce those tests, the following equipment is required:

- 1 voltage source.
- 2 source measure units (SMUs).
- 1 oscilloscope.

4.1. LDOs

The following example instructs users on how to measure the output voltage stability of the LDOs (Low-voltage and High-voltage LDO regulation Sections of the AEM30940 datasheet).

Setup

- Referring to Figure 1, follow steps 1 and 2 explained in the Section 2.1. Configure the board in the desired state and connect your storage element(s).
- **BATT**: connect SMU1. Configure it as a voltage source with a current compliance of 200 mA.
- **SRC** (middle point of the SRC choice header): either connect a power supply or a SMU:
 - Power supply configured for 1 V / 10 mA with a $100\ \Omega$ resistor in series ($I_{SRC} = 2.5\ \text{mA}$ with $SELMPP[1:0] = LL\ (50\%)$).
 - SMU configured as 2.5 mA current source with 1.0 V voltage compliance.
- **HVOUT / LVOUT**: connect SMU2 to the LDO you want to measure. Configure it as a voltage source, with a lower voltage than the configured V_{HV}/V_{LV} , and with a current limit.

To avoid damaging the board, follow the procedure in Section 2.1 “Safety Information”. If a test has to be restarted, make sure to properly reset the system to obtain reproducible results (see “How to reset the AEM30940 evaluation board” in Section 2.1).

Manipulations

- Impose a voltage between V_{OVCH} and 5 V on SMU1 prior to cold start.
- Connect the power supply or SMU on **SRC** to coldstart the AEM30940.
- Sweep voltage on SMU1 from $V_{OVDIS} + 50\ \text{mV}$ to 4.5 V.
- Repeat with different current limits on SMU2 (from 10 μA to 80 mA for **HVOUT** and from 10 μA to 20 mA for **LVOUT**).

Measurements

- **HVOUT/LVOUT**: measure the voltage (results shown on Figure 9 and Figure 10).

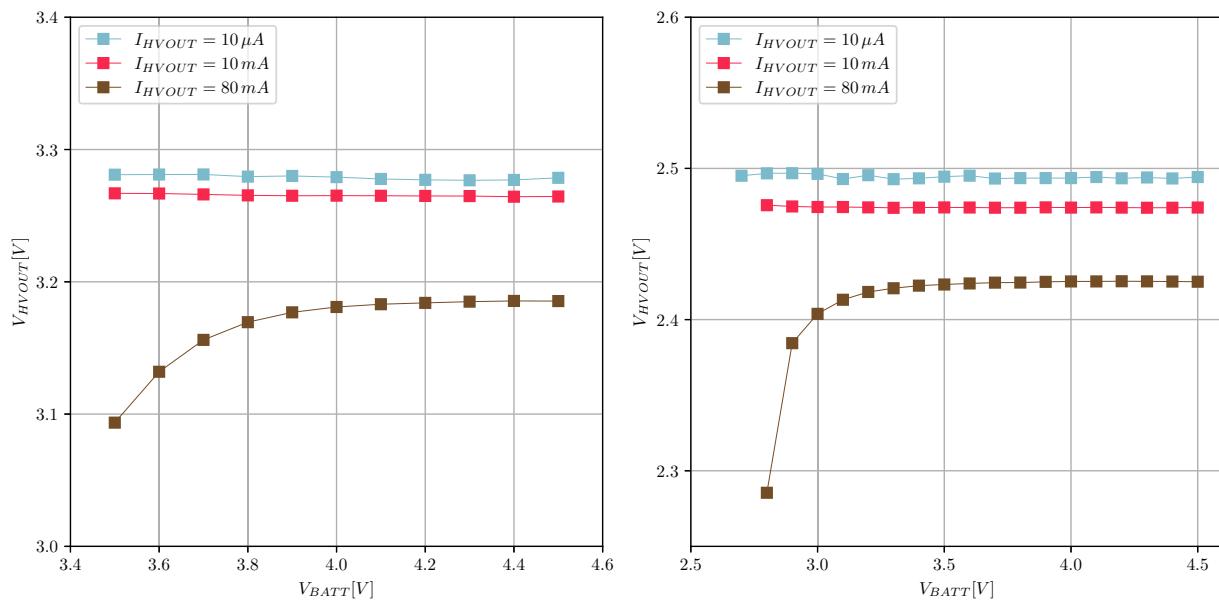


Figure 9: **HVOUT** at 3.3 V and 2.5 V

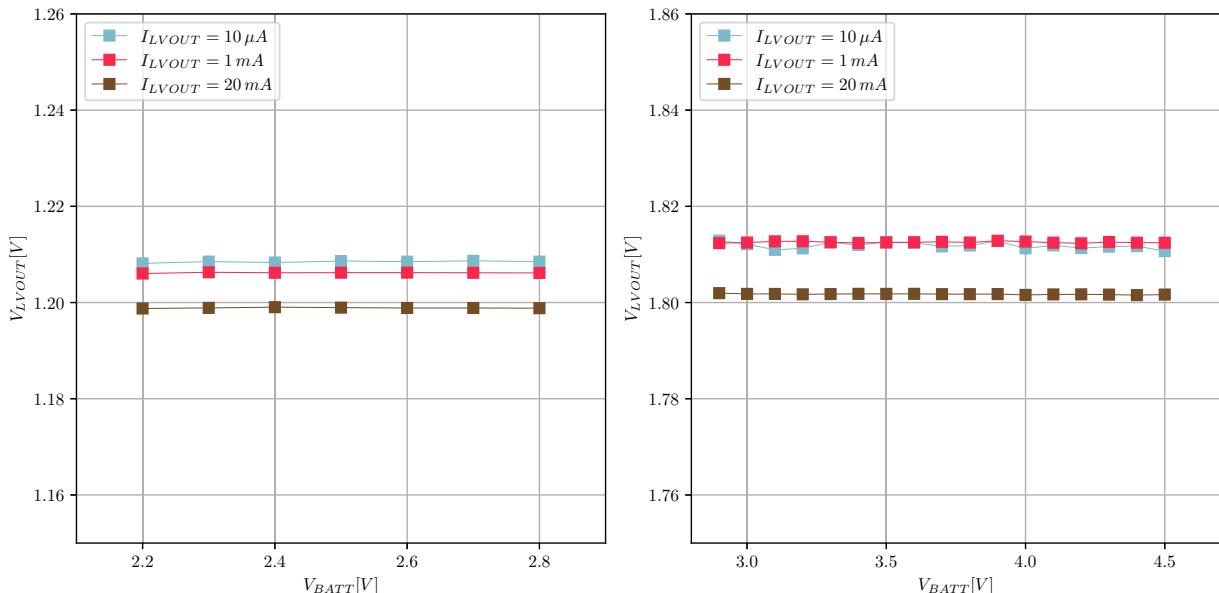


Figure 10: **LVOUT** at 1.2 V and 1.8 V

4.2. Boost Converter Efficiency

This test allows users to reproduce the efficiency graphs of the AEM30940 boost converter ("Boost Conversion Efficiency" Sections of the AEM30940 datasheet).

Setup

- Following steps 1 and 2 explained in the Section 2.1 and referring to Figure 1, configure the board in the desired state.
- **VBOOST**: connect SMU2 and configure it as voltage source. Set the current compliance high enough to prevent limiting the SMU and ensure valid measurement, but not too high to preserve accuracy.
- **SRC** (middle point of the SRC choice header): connect SMU1. Configure it as 1 mA current source with a voltage compliance of 1 V.

Manipulations

- Impose a voltage between V_{OVCH} and 5 V on SMU2 and switch SMU1 on to coldstart the AEM. When done, impose a voltage on SMU2 between $V_{OVDIS} + 50$ mV and V_{OVCH} .
- Sweep voltage compliance on SMU1 from $V_{SRC,MIN}$ to 4.5 V.
- Repeat with different current levels on SMU1 (from 100 μ A to 100 mA) and with different voltage levels on SMU2 (from $V_{OVDIS} + 50$ mV to V_{OVCH}).

Measurements

- **SRC**: measure the current and the voltage.
- **VBOOST**: measure the current and the voltage. Repeat the measurement a copious number of times to be sure to capture the current peaks. Figure 11 has been obtained by averaging over 400 measurements configured with a 800 ms integration time.
- Deduce input power P_{IN} , output power P_{OUT} and efficiency η as follows:

$$\begin{aligned} - P_{IN} &= V_{IN} \cdot I_{IN} \\ - P_{OUT} &= V_{OUT} \cdot I_{OUT} \\ - \eta &= \frac{P_{OUT}}{P_{IN}} \end{aligned}$$

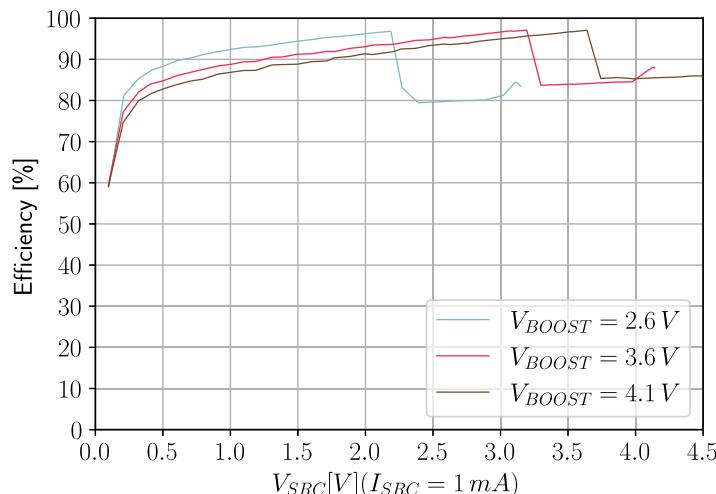


Figure 11: Boost efficiency for $I_{SRC} = 1$ mA ($L_{BOOST} = 22$ μ H)

4.3. Custom Mode Configuration

This test allows users to measure the custom protection levels of the storage element set by resistors R1 to R6.

Setup

- Referring to Section 1, follow steps 1 and 2 explained in Section 2.1.
- To select custom mode:
 - Set **CFG[2:0]** = LLL.
 - Remove R2, R3 and R9.
 - Choose R1 to R6 to configure the battery protection levels and **HVOUT** output voltage.
- Place the probes on the nodes to be observed.
- **SRC**: connect your source element on one SMA connector and place a jumper on the SRC choice header to power up the system.

Manipulations

- Remove the source element after the voltage on **BATT** has reached steady state (between V_{CHRDY} and V_{OVCH}).

Measurements

Measure the following nodes to ensure the correct behavior of the AEM30940 with respect to the custom configuration:

- **STATUS[0]**: asserted when the LDOs can be enabled (i.e. when **BATT** first rises above V_{CHRDY}).
- **STATUS[1]**: asserted when **BATT** falls below V_{OVDIS} .
- **BATT**: rise up and oscillate around V_{OVCH} as long as the source element has not been removed.
- **HVOUT**: equal to the value set by R5-R6.

5. Schematic

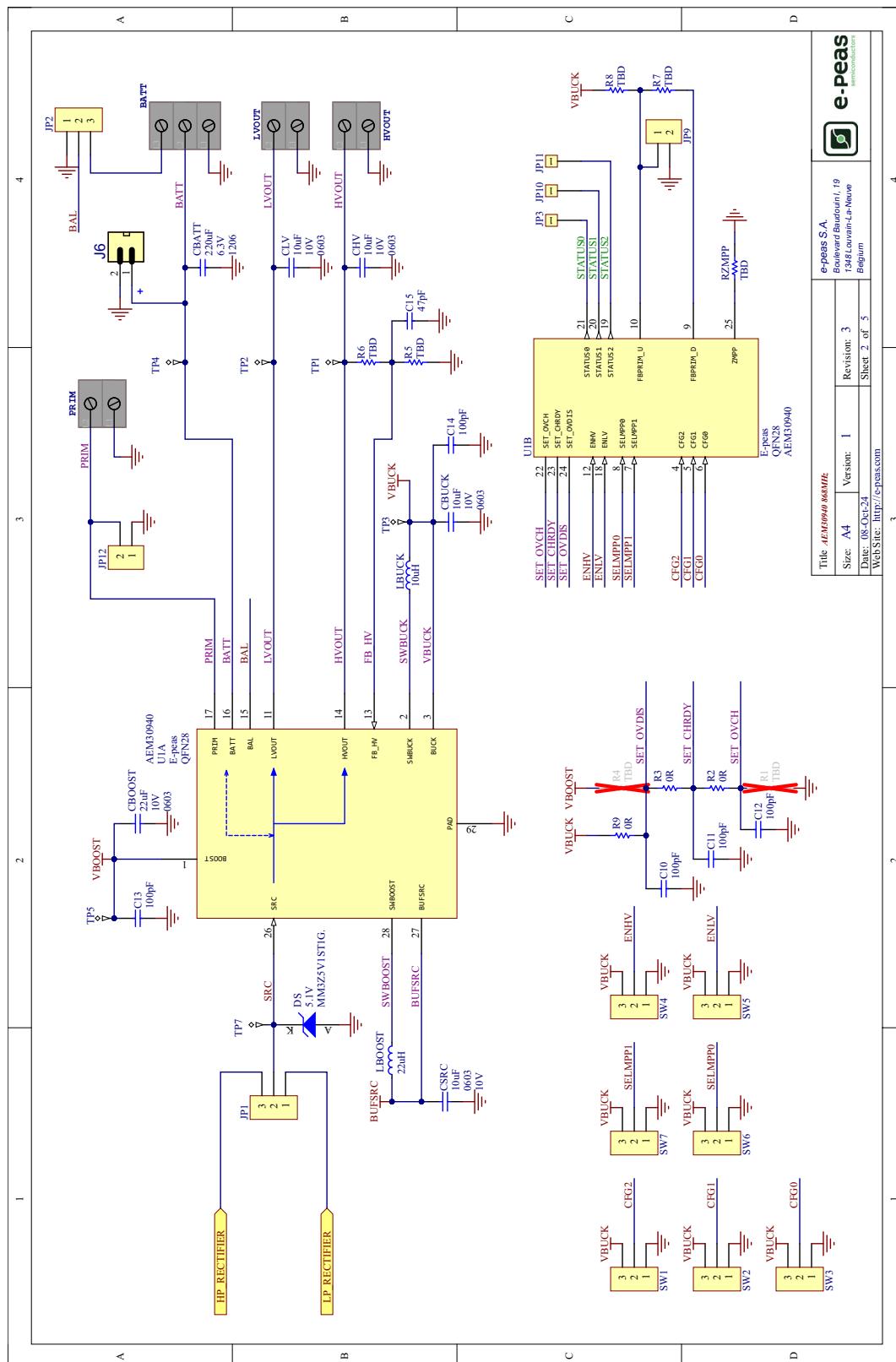


Figure 12: AEM30940 868 MHz evaluation board schematic

6. Revision History

EVK Version	User Guide Revision	Date	Description
1.0	2.0	September, 2019	Creation of the document
868: 1.2 915: 1.3 2.45: 1.3	2.1	August, 2023	<ul style="list-style-type: none">- Aesthetic modifications- Information and figure added for the 2450 MHz EvK- Functional Tests and Performance Tests sections added- AEM30940 RF EVKs schematics added
1.2	1.0	October, 2023	Separate UG for each RF EVK of the AEM30940
1.2	1.1	March, 2024	<ul style="list-style-type: none">- Minor aesthetic improvements.- Reset procedure: remove source as well as storage element and primary battery.
1.3	1.0	March, 2025	<ul style="list-style-type: none">- Updated the functional tests and performance tests setups.- Updated boost efficiency figure.- Corrected C1 and C2 formula in "Dual-cell Supercapacitor Balancing Circuit" section.- Updated to EVK v1.3.

Table 5: Revision history