

AEM10920 Evaluation Kit User Guide

Description

The AEM10920 evaluation kit (EVK) is a printed circuit board (PCB) featuring all the required components to operate the AEM10920 integrated circuit (IC) in QFN 24-pin package.

The AEM10920 evaluation kit allows users to test e-peas IC and analyze its performances in a laboratory-like setting or in product mock-ups.

It allows easy connections to an energy harvester, an optional 5 V power source, a storage element and an application circuit. Thanks to headers and resistors, it also provides all configuration options to set the device in any of the modes described in the datasheet. A status signal is available on a standard pin header.

The AEM10920 EVK is an easy-to-use, intuitive and efficient tool to optimize AEM10920 configuration, allowing users to design a highly efficient subsystem for the desired target application. Component replacement and operating mode switching is convenient and easy.

Detailed information about AEM10920 features can be found in the datasheet.

Applications

Smart home	Industrial sensor
Smart building	Retail
Edge IoT	PC accessories

Features and Benefits

Very high conversion efficiency

- Average 93 % from source to storage element.
- Average 92 % from storage element to application.

Two-way screw terminals

- DC source of energy (SRC).
- Energy storage element (STO).
- Application circuit (LOAD).
- 5 V DC power input (5V_IN).

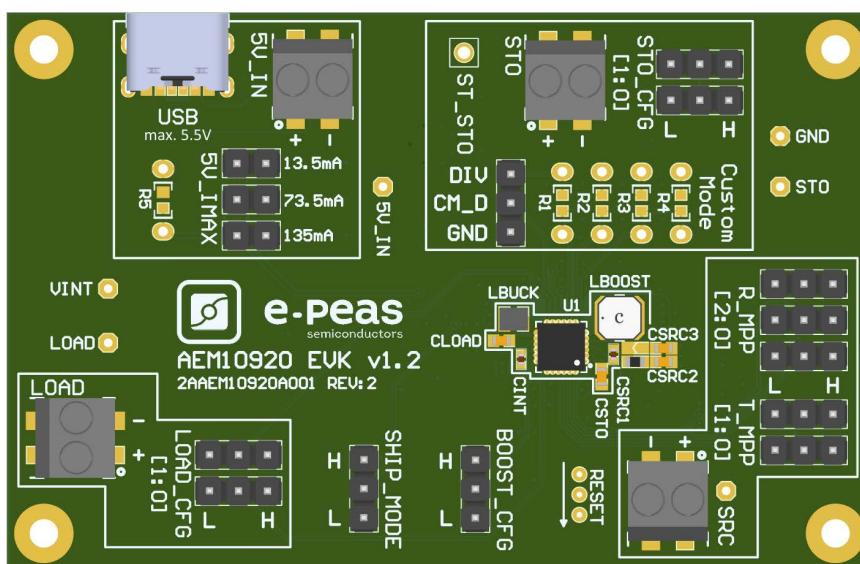
3-pin headers

- Source MPPT ratio and timings configuration.
- Storage element protection thresholds configuration.
- Load regulation voltage configuration.
- Shipping mode configuration.
- Boost timings configuration.
- Custom mode configuration.

2-pin headers

- 5 V power input max current presets.

USB connector


- 5 V DC power input (max. 5.5 V peak).

Evaluation Kit Information

Part number	Dimensions
2AAEM10920A001 REV:2	76 mm x 49 mm

Device Information

Part Number	Package	Body size
10AEM10920A0001	QFN 24-pin	4 x 4 mm

1. EVK Connection Diagram

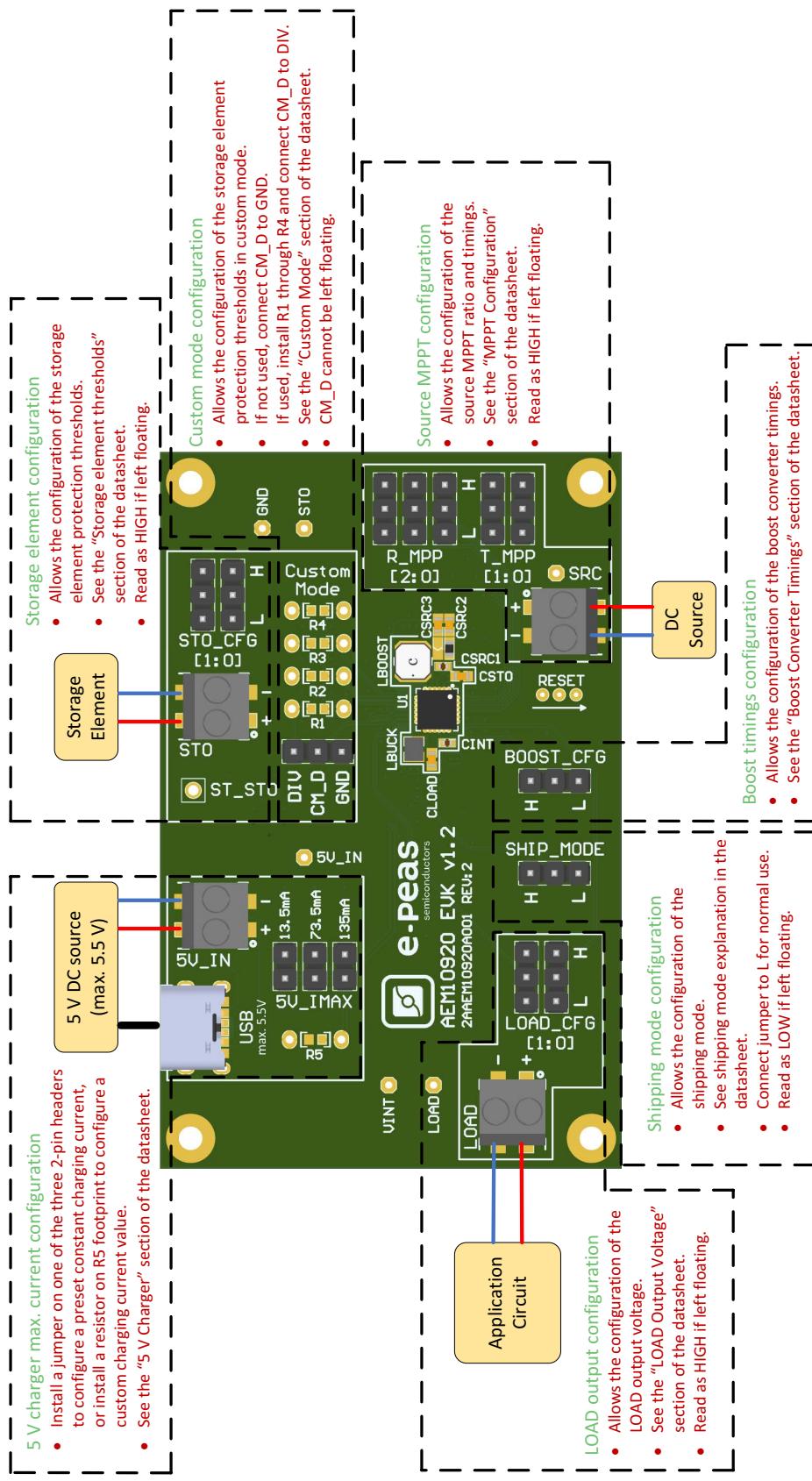


Figure 1: AEM10920 EVK connection diagram

2. Pin Configuration and Functions

NAME	FUNCTION	CONNECTION	
		If used	If not used
Power Pins			
SRC	Connection to the energy source harvested by the boost converter.	Connect the source element.	Can be left floating or connected to GND.
STO	Connection to the energy storage element (rechargeable battery or LiC).	Connect the storage element.	Leave floating. If left floating, storage element is on-board capacitor C_{STO} , which may be too small for most applications.
LOAD	Output voltage of the buck converter to supply an application circuit.	Connect the application circuit.	Disable buck converter through $LOAD_{CFG}[1:0]$ pins and leave the LOAD pin floating.
5V_IN	Input of the 5 V DC power supply .	Connect a 5 V DC power source.	Leave floating.
Control Pin			
SHIP_MODE	When HIGH: - Minimum consumption from the storage element. - Storage element charge is disabled (boost converter is disabled). - Buck (LOAD) is disabled. - Only VINT is charged if energy is available on SRC .	Connect jumper to H.	Read as LOW if left floating.
Configuration Pins			
R_MPP[2:0]	Used for the configuration of SRC Maximum Power Point Tracking (MPPT) ratio $R_{MPPT} = V_{MPP} / V_{OC}$.	Connect jumpers.	Read as HIGH if left floating.
T_MPP[1:0]	Used for the configuration of SRC Maximum Power Point Tracking (MPPT) period $T_{MPPT,PERIOD}$ and sampling duration $T_{MPPT,SAMPLING}$.	Connect jumpers.	Read as HIGH if left floating.
STO_CFG[1:0]	Used to configure the storage element protection thresholds.	Connect jumpers.	Read as HIGH if left floating.
LOAD_CFG[1:0]	Used to configure the LOAD output regulation voltage.	Connect jumpers.	Read as HIGH if left floating.
BOOST_CFG	Used to configure the boost converter timings.	- Connect jumper to L for timings x1. - Connect jumper to H for timings x3.	Read as HIGH if left floating.
CM_D	Used to enable the custom mode.	Mount R1, R2, R3 and R4 resistors and place a jumper to connect CM_D to DIV.	Place a jumper to connect CM_D to GND.
5V_IMAX	Connection to an external resistor to set the charging current from the 5V_IN supply to STO .	Connect a jumper on one of the three 2-pin headers or connect a resistor on R5.	Leave floating if 5V_IN is not used.
Status Pin			
ST_STO	Logic output. - HIGH when in SUPPLY STATE or in SLEEP STATE . - LOW otherwise.	Connect to the application circuit. HIGH level is STO .	Leave floating.

Table 1: Signals description

3. General Considerations

3.1. Safety Information

Always perform the following steps in the correct order:

1. Reset the board by temporally connecting the “RESET” pads to GND, from top to bottom (as shown on PCB silkscreen).
2. Completely configure the PCB (jumpers/resistors):
 - Source MPPT ratio and timings (R_MPP[2:0] and T_MPP[1:0]).
 - Storage element protection thresholds (STO_CFG[1:0]) or custom mode (CM_D and R1 through R4) if used.
 - Load output regulation voltage (LOAD_CFG[1:0]).
 - Boost converter timings (BOOST_CFG).
 - 5 V charger maximum current.
4. Connect the storage element to the STO screw connector.
5. Connect the application circuit to the LOAD screw connector.
6. Connect the harvester to the SRC screw connector or a 5 V power supply to the 5V_IN input.

3.2. AEM10920 Reset

The following procedure must be followed to properly reset the AEM10920:

- Connect a wire to GND.
- Use this wire to short the “Reset” pads to GND from top to bottom, as indicated on the EVK silkscreen.

3.3. Configurations

3.3.1. Source MPPT Configuration

Configuration pins		Period [s]	Sampling duration [ms]
T_MPP[1:0]		T _{MPPT,PERIOD}	T _{MPPT,SAMPLING}
L	L	15	250
L	H	15	500
H	L	25	250
H	H	25	500

Configuration pins			MPPT Ratio [%]
R_MPP[2:0]			R _{MPPT}
L	L	L	35%
L	L	H	50%
L	H	L	65%
L	H	H	70%
H	L	L	75%
H	L	H	80%
H	H	L	85%
H	H	H	90%

Table 2: MPPT ratio and timings configuration with R_MPP[2:0] and T_MPP[1:0]

3.3.2. Source Capacitance Configuration

The total capacitance connected at the source of the AEM10920 should be selected based on the characteristics of the energy harvester (PV cell) connected to the evaluation board and the available power. The source capacitors charging time, during the Maximum Power Point (MPP) evaluations, must remain shorter than the configured T_{MPPT,SAMPLING}. This will ensure an accurate measurement of the open-circuit voltage and thus, an accurate source voltage regulation.

A higher capacitance improves voltage stability but increases the time required to charge the source capacitors, which may prevent certain PV cells at low power from reaching their open-circuit voltage during the MPP evaluation. In such cases, lowering the capacitance will reduce the time needed to reach the PV cell's open-circuit voltage, at the expense of decoupling performance.

To allow this flexibility, the AEM10920 evaluation board includes three configurable capacitors:

- CSRC1 is always mounted and connected.
- CSRC2 is mounted and connected by default through a 0 Ω resistor, which can be removed to disconnect it.
- CSRC3 is mounted and not connected by default. It can be enabled by adding a 0 Ω resistor or a solder bridge.

The default configuration (CSRC1 and CSRC2 connected, CSRC3 disconnected) is suitable for most PV cells and use cases.

See Figure 9 for capacitor values and placement.

The two following figures show the impact of source capacitance sizing on the AEM10920's behavior during MPP evaluation.

- Left figure: When the source capacitance is too large, the PV cell cannot reach its open-circuit voltage within T_{MPPT,SAMPLING}. As a result, the measured V_{OC} is inaccurate and V_{MPP} is regulated below the expected voltage.
- Right figure: With a properly sized source capacitance, the source voltage reaches the open-circuit voltage before the end of T_{MPPT,SAMPLING}. This allows for accurate V_{OC} measurement and V_{MPP} regulation.

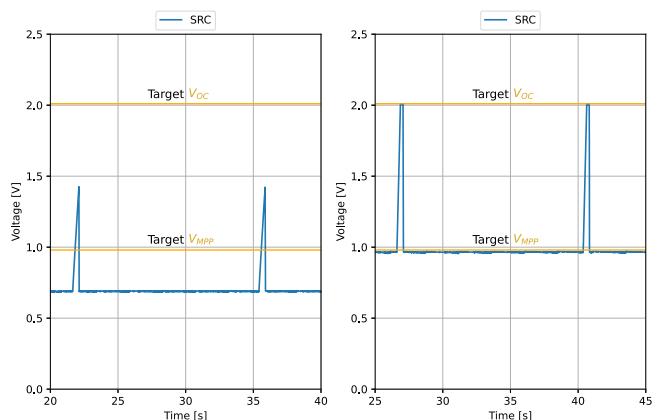


Figure 2: Impact of source capacitance on open-circuit voltage evaluation

3.3.3. Storage Element Protection Thresholds Configuration

Configuration pins		Overdischarge voltage [V]	Charge ready voltage [V]	Overcharge voltage [V]	Storage element type
STO_CFG[1:0]		V_{OVDIS}	V_{CHRDY}	V_{OVCH}	
L	L	2.51	2.55	3.79	Lithium-ion Super Capacitor (LiC)
L	H	3.00	3.21	4.12	Lithium-ion
H	L	3.00	3.21	4.35	Lithium Polymer (LiPo)
H	H	3.51	3.56	3.90	Lithium-ion (ultra-long life)

Table 3: Storage element configuration with STO_CFG[1:0]

3.3.4. Custom Mode

When CM_D is connected to DIV, the custom mode is selected regardless of STO_CFG[1:0] pins.

V_{OVDIS} , V_{CHRDY} and V_{OVCH} defined through R1, R2, R3, and R4 are calculated as follows:

- $R_T = R_1 + R_2 + R_3 + R_4 + 800$
- $100k\Omega \leq R_T \leq 400k\Omega$
- $R_1 = R_T \cdot \frac{0.5V}{V_{OVCH}} - 800$
- $R_2 = R_T \cdot \left(\frac{0.5V}{V_{CHRDY}} - \frac{0.5V}{V_{OVCH}} \right)$
- $R_3 = R_T \cdot \left(\frac{0.5V}{V_{OVDIS}} - \frac{0.5V}{V_{CHRDY}} \right)$
- $R_4 = R_T - (R_1 + R_2 + R_3 + 800)$

The following constraints must be met to ensure the functionality of the chip:

- $2.40V \leq V_{OVDIS} \leq 3.58V$
- $2.50V \leq V_{CHRDY} \leq 3.64V$
- $2.70V \leq V_{OVCH} \leq 4.59V$
- $V_{OVCH} > V_{CHRDY} + 100mV$
- $V_{CHRDY} > V_{OVDIS} + 100mV$
- $V_{OVDIS} > V_{LOAD} + 100mV$

If the custom mode is not used, please make sure to place a jumper connecting CM_D to GND.

3.3.5. Load Output Voltage Configuration

Configuration pins	LOAD voltage [V]	
LOAD_CFG[1:0]	V _{LOAD}	
L	L	Buck disabled ¹
L	H	2.2
H	L	2.5 ²
H	H	2.8 ³

Table 4: Configuration of LOAD voltage with LOAD_CFG[1:0]

1. If the 5 V charger is in use, do not disable the buck converter, even if it is not used.
2. This configuration is only available if $V_{OVDIS} > 2.5V$.
3. This configuration is only available if $V_{OVDIS} > 2.8V$.

3.3.6. 5 V Charger Configuration

Resistor [Ω]	Maximum Charging Current [mA]
R _{5V_IMAX} (labeled R5)	I _{5V,CC}
370	135.0
680	73.5
1500 ¹	33.3
3700	13.5

Table 5: Typical resistor values for setting 5 V charger max. current

1. Can be obtained by installing a 1.5 kΩ resistor on R5 and leaving all 3 headers without jumpers.

Three 2-pin headers corresponding to three current presets are available on the EVK. Install a jumper on the corresponding header to enable a preset.

Furthermore, R5 allows users for an easy installation of a custom resistor, either in through-hole or in SMD 0603 package. In that case, do not install any jumper on the three preset headers and install a resistor on R5 footprint.

3.3.7. Shipping Mode Configuration

The shipping mode feature allows for forcing the AEM10920 in **RESET STATE** (see datasheet), thus disabling all AEM10920 functionalities including the boost converter, the buck converter and the 5 V charger. Only **VINT** is charged from **SRC** if energy is available from it. The storage element is no longer charged or discharged.

Shipping mode is enabled by installing a jumper to HIGH on the EVK dedicated header. To disable it, connect a jumper to LOW or leave it floating.

4. Functional Tests

This section presents a few simple tests that allow users to understand the functional behavior of the AEM10920. To avoid damaging the board, follow the procedure found in Section 3.1. If a test has to be restarted, make sure to properly reset the system to obtain reproducible results.

Users can adapt the setup to match the use case system as long as the source limitations are respected, as well as the minimum storage voltage and cold-start constraints (see “Typical Electrical Characteristics at 25 °C” Section of AEM10920 datasheet).

4.1. Start up

4.1.1. Description

The following example allows users to observe the start-up behavior of the AEM10920.

4.1.2. Setup

- Oscilloscope:
 - Channel 1: **STO**.
 - Channel 2: **VINT** (may be probed on H pin on **STO_CFG[1]** header for example).
- **SRC** (2 alternatives, initially disconnected):
 - 1 V / 10 mA power supply with a 100 Ω resistor in series ($I_{SRC} = 2.5$ mA with $R_{MPPT} = 75\%$).
 - SMU set as 2.5 mA current source with 1 V compliance.
- **R_MPP[2:0] = HLL**
 - $R_{MPPT} = 75\%$.
 - $I_{SRC} = \frac{1V - 75\% \cdot 1V}{100\Omega} = 2.5\text{mA}$ (PSU).
 - $I_{SRC} = 2.5\text{mA}$ (SMU).
- **T_MPP[1:0] = HH.**
 - $T_{MPPT,PERIOD} = 25$ s.
 - $T_{MPPT,SAMPLING} = 500$ ms.
- 1000 μF capacitor connected to **STO** as storage element.
- 3 V power supply or SMU connected to **STO** beforehand.
- **STO_CFG[1:0] = LH.**
 - $V_{OVDIS} = 3.00$ V.
 - $V_{CHRDY} = 3.21$ V.
 - $V_{OVCH} = 4.12$ V.
- **LOAD** is left floating.
- **LOAD_CFG[1:0] = LL.**
 - **LOAD** disabled.
- **5V_IN** is left floating.

In the following sections, when a “power supply” is required, it can be either a standard one quadrant positive voltage / positive current laboratory power supply with regulated voltage, or an SMU set as voltage source with current compliance.

4.1.3. Measurements

- Reset the AEM10920 as described in Section 3.2.
- Start with:
 - 3 V power supply connected to **STO** so that C_{STO} is charged to 3.0 V beforehand.
 - No source connected to **SRC**.
- Disconnect the power supply from **STO**.
- Connect the 1 V / 100 Ω PSU or the 2.5 mA current source SMU to **SRC**.

- Observe V_{INT} rise up to 2.3 V and be regulated around 2.25 V.
- Energy is transferred from **SRC** to **STO**: V_{STO} rises from its initial 3.0 V voltage to V_{OVCH} (4.12 V).
- V_{STO} is regulated to V_{OVCH} (4.12 V) as the AEM10920 prevents the storage element to be charged any further.

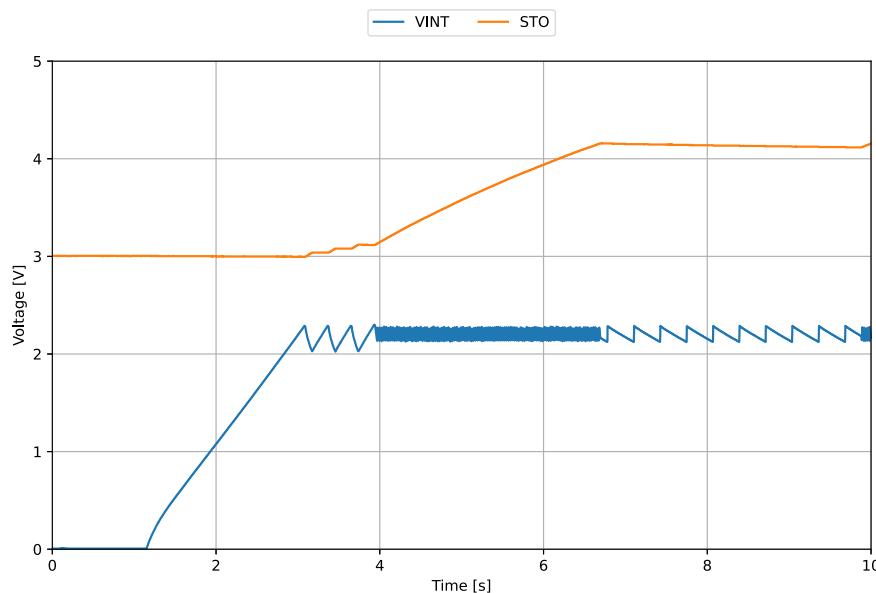


Figure 3: AEM10920 start-up behavior

4.2. Cold-Start

4.2.1. Description

The following example allows users to observe the cold-start behavior of the AEM10920.

4.2.2. Setup

- Oscilloscope:
 - Channel 1: **SRC**.
 - Channel 2: **VINT** (may be probed on H pin on **STO_CFG[1]** header for example).
 - For the cold-start test to be successful and to ensure accurate minimum cold-start power measurements, use an oscilloscope with a 10 MΩ input impedance to avoid significant loading effects from the probes.
- **SRC** (2 alternatives, initially disconnected):
 - 1 V / 10 mA power supply with a 68 kΩ resistor in series ($I_{SRC} = 10 \mu A$ with source voltage clamped to 0.3 V during cold start). Please note that using a standard power supply allows for validating the minimum cold-start voltage but does not allow for validating the minimum cold-start power.
 - SMU set as 10 μA current source with 1 V compliance. Using an SMU allows for validating the minimum cold-start power as well as the minimum cold-start voltage.
- **R_MPP[2:0] = HLL**.
- $R_{MPPT} = 75\%$.
- $I_{SRC} = \frac{1V - 0.3V}{68k\Omega} = 10\mu A$ (PSU).
- $I_{SRC} = 10\mu A$ (SMU).
- **T_MPP[1:0] = LH**.
- $T_{MPPT,PERIOD} = 15 s$
- $T_{MPPT,SAMPLING} = 500 ms$.
- 1000 μF capacitor connected to **STO** as storage element.
- 3 V power supply connected to **STO** beforehand.
- **STO_CFG[1:0] = LH**.
- $V_{OVDIS} = 3.00 V$.
- $V_{CHRDY} = 3.21 V$.
- $V_{OVCH} = 4.12 V$.
- **LOAD** is left floating.
- **LOAD_CFG[1:0] = LL**.
- **LOAD** disabled.
- **5V_IN** is left floating.

4.2.3. Measurements

- Reset the AEM10920 as described in Section 3.2.
- Start with:
 - 3 V power supply connected to **STO** so that C_{STO} is charged to 3.0 V beforehand.
 - No source connected to **SRC**.
- Disconnect the power supply from **STO**.
- Connect the power supply or SMU to **SRC**.
- Cold-start phase:
 - Observe V_{SRC} clamped to 0.3 V.
 - Observe V_{INT} rise up to 2.3 V and be regulated around 2.25 V.
- Once V_{INT} has reached its regulation voltage, the AEM10920 performs a first V_{OC} evaluation on **SRC** and starts extracting energy from it.
- Note that during the first V_{OC} evaluation, the source current is insufficient to charge CSRC up to the V_{OC} within $T_{MPPT,SAMPLING}$, resulting in a lower V_{MPP} compared to the target. However, the following evaluations allow a correct measurement of V_{OC} and thus, an accurate source voltage regulation. This behavior is explained in Section 3.3.2.
- V_{OC} is re-evaluated every 15 s.

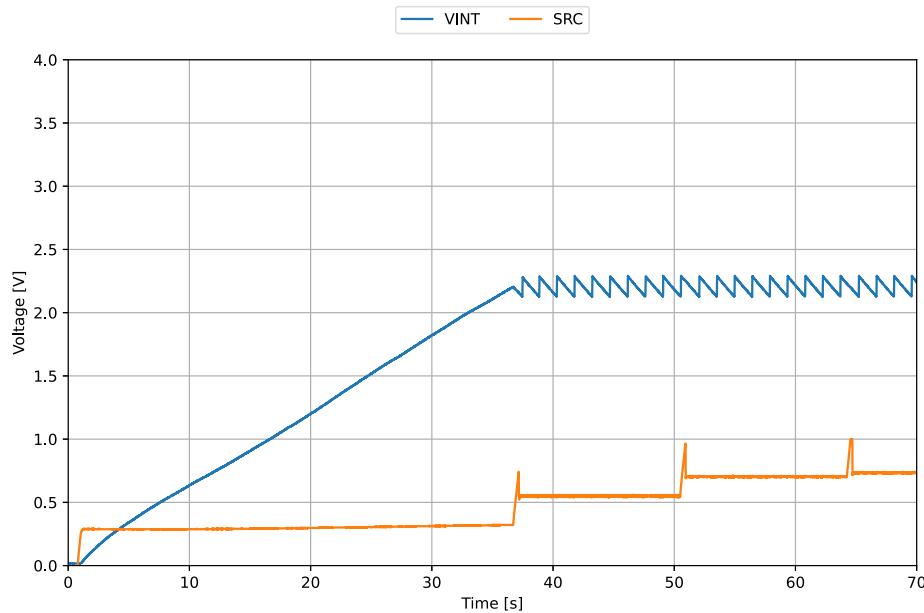


Figure 4: AEM10920 cold-start behavior

4.3. Load

4.3.1. Description

The following example allows users to observe how the AEM10920 switches ON and OFF the buck converter supplying the **LOAD** pin.

4.3.2. Setup

- Oscilloscope:
 - Channel 1: **STO**.
 - Channel 2: **LOAD**.
- **SRC** (2 alternatives, initially disconnected):
 - 1 V / 10 mA power supply with a 100 Ω resistor in series ($I_{SRC} = 2.5$ mA with $R_{MPPT} = 75\%$).
 - SMU set as 2.5 mA current source with 1.0 V compliance.
- **R_MPP[2:0] = HLL**.
 - $R_{MPPT} = 75\%$.
 - $$I_{SRCx} = \frac{1V - 75\% \cdot 1V}{100\Omega} = 2.5\text{mA (PSU)}$$
 - $I_{SRC} = 2.5\text{mA (SMU)}$.
- **T_MPP[1:0] = HH**.
 - $T_{MPPT,PERIOD} = 25$ s
 - $T_{MPPT,SAMPLING} = 500$ ms.
- 1000 μF capacitor connected to **STO** as storage element.
- 2.8 V power supply connected to **STO** beforehand.
- **STO_CFG[1:0] = LH**.
 - $V_{OVDIS} = 3.00$ V.
 - $V_{CHRDY} = 3.21$ V.
 - $V_{OVCH} = 4.12$ V.
- **LOAD_CFG[1:0] = LH**.
 - **LOAD** is regulated at 2.2 V.
 - **LOAD**: 8.2 k Ω resistor connected between **LOAD** and **GND**.
 - $I_{LOAD} = 268$ μA .
- **5V_IN** is left floating.

4.3.3. Measurements

- Reset the AEM10920 as described in Section 3.2.
- Start with:
 - 2.8 V power supply connected to **STO** so that C_{STO} is charged to 2.8 V beforehand.
 - No source connected to **SRC**.
- Disconnect the power supply from **STO**.
- Connect the power supply or SMU to **SRC**.
- After cold start, observe the storage element charging.
- When $V_{STO} > V_{CHRDY}$:
 - **LOAD** starts being regulated to 2.2 V, thus providing current to the resistor connected between **LOAD** and **GND**.
 - There is more energy harvested than consumed (positive power budget), so the storage element keeps being charged.
- Disconnect the power supply from **SRC** (done at about 3 s on Figure 5).
- The current drawn by the load is now discharging the storage element, as no more energy is harvested from the **SRC**.
- When V_{STO} falls below V_{OVDIS} , the AEM10920 waits for T_{CRIT} (2.5 s) and then switches OFF the buck converter. **LOAD** is no longer regulated and drops down to 0 V.

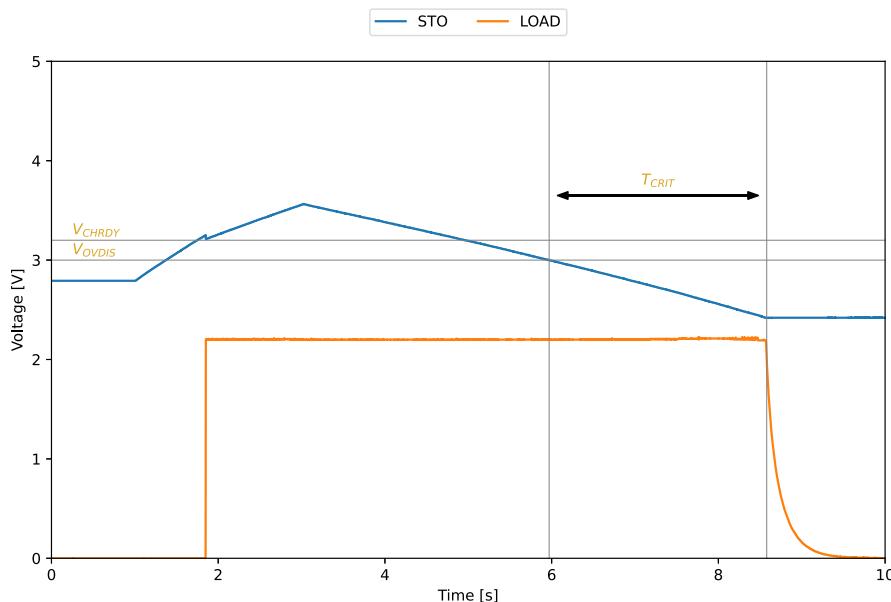


Figure 5: AEM10920 LOAD output behavior

NOTE: in a real application, the storage element would be a battery or a supercapacitor, with much higher stored energy, so that V_{STO} would not drop as low as on Figure 5 during T_{CRIT} .

4.4. 5 V Charger

4.4.1. Description

The following example allows users to observe how the AEM10920 coldstarts and charges the storage element from the 5 V charger.

4.4.2. Setup

- Oscilloscope:
 - Channel 1: **STO**.
 - Channel 2: **5V_IN**.
- **SRC** is left floating.
- **5V_IN**: 5.0 V / 200 mA power supply or SMU (initially disconnected).
- **5V_IN** constant current set to 13.5 mA by installing a jumper on the corresponding header.
- 10 mF capacitor connected to **STO** as storage element (1000 μ F will also work but **STO** charging slope will be even steeper).
- 2.8 V power supply connected to **STO** beforehand.
- **STO_CFG[1:0]** = LH.
- V_{OVDIS} = 3.00 V.
- V_{CHRDY} = 3.21 V.
- V_{OVCH} = 4.12 V.
- **LOAD_CFG[1:0]** = LH.
- **LOAD** is regulated at 2.2 V.
- **LOAD** is left floating.

4.4.3. Measurements

- Reset the AEM10920 as described in Section 3.2.
- Start with:
 - 2.8 V power supply connected to **STO** so that C_{STO} is charged to 2.8 V beforehand.
 - No source connected to **5V_IN**.
- Disconnect the power supply from **STO**.
- Connect the power supply or SMU to **5V_IN**.
- After cold start, observe the storage element charging up to V_{OVCH} (4.12 V).

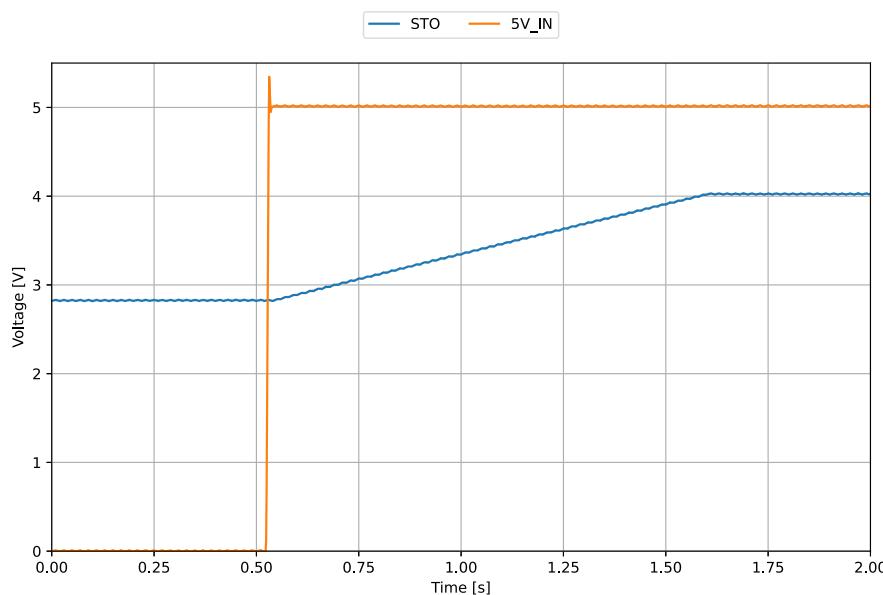


Figure 6: AEM10920 cold start and storage element charge from 5V_IN

5. Performance Tests

This section presents the tests to reproduce the performance graphs found in the AEM10920 datasheet. To be able to reproduce those tests, you will need the following:

- 2 source measure units (SMU, typically Keithley 2450). Those must be set with longest integration time.
- 1 voltage source (only for coldstarting the AEM10920 when performing buck efficiency measurement).

To avoid damaging the board, follow the procedure found in Section 3.1 “Safety information”. If a test has to be restarted, make sure to properly reset the system to obtain reproducible results, as shown in Section 3.2.

5.1. Boost Converter Efficiency

5.1.1. Description

The boost converter efficiency is determined for a fixed set point of the AEM10920:

- Fixed **SRC** voltage V_{SRC} .
- Fixed **SRC** current I_{SRC} .
- Fixed **STO** voltage V_{STO} .
- Fixed inductor value L_{BOOST} . Please note that the inductor model has a subsequent influence on the efficiency.

Boost efficiency measurement is about measuring the current provided to **STO** with all other parameters fixed.

Please note that to avoid any leakage that would affect the measurement, no probe or voltmeter must be connected to the AEM10920 pins while measuring the boost efficiency.

5.1.2. Setup

- **R_MPP[2:0]** set accordingly to the desired R_{MPPT} ratio (see Table 2).
- **SRC**: SMU set as current source.
 - Current set to the desired I_{SRC} .
 - Voltage compliance set to V_{MPP}/R_{MPPT}
- **STO**: SMU set as voltage source:
 - Voltage set to the desired V_{STO} set point.
 - Current compliance set so that the power on **STO** ($V_{STO} \times I_{STO}$) is at least higher than the power of the SMU connected to **SRC** ($V_{SRC} \times I_{SRC}$). Do not lower the current compliance lower than 100 μ A.

5.1.3. Measurements

Cold start and initialization

This part must only be done for the first efficiency data point measurement. To avoid having to do it between two subsequent set points, users must make sure that V_{STO} does not drop below V_{OVDIS} between measurements.

- Start with both SMU switched OFF.
- Reset the AEM10920.
- **STO** SMU: set the voltage to 5.0 V and switch ON, to make sure that V_{STO} is above V_{OVCH} .
- **SRC** SMU: set the voltage source to 1.0 V with 1 mA current compliance to trigger the AEM10920 cold start.
- Wait for V_{INT} to rise to its regulation voltage of 2.25 V.
- The AEM10920 is now ready to perform an efficiency measurement. Do not lower V_{STO} below V_{OVDIS} from that point to avoid the AEM10920 going to **OVDIS STATE**. Keep **STO** SMU current compliance at least 100 μ A.

Efficiency measurement

The following needs to be done for all desired set points:

- Set **SRC** SMU to the desired voltage and current set point.
- Set **STO** SMU to the desired voltage and current set point.
- Clear both SMU buffers.
- Wait for the number of measures of both SMU to be sufficient (the lower the current the higher the necessary number of measures).
- Determine the average currents and voltages from both SMU buffers.
- Determine the boost efficiency with the following formula:

$$\eta[\%] = \frac{V_{STO} \cdot I_{STO}}{V_{SRC} \cdot I_{SRC}} \cdot 100$$

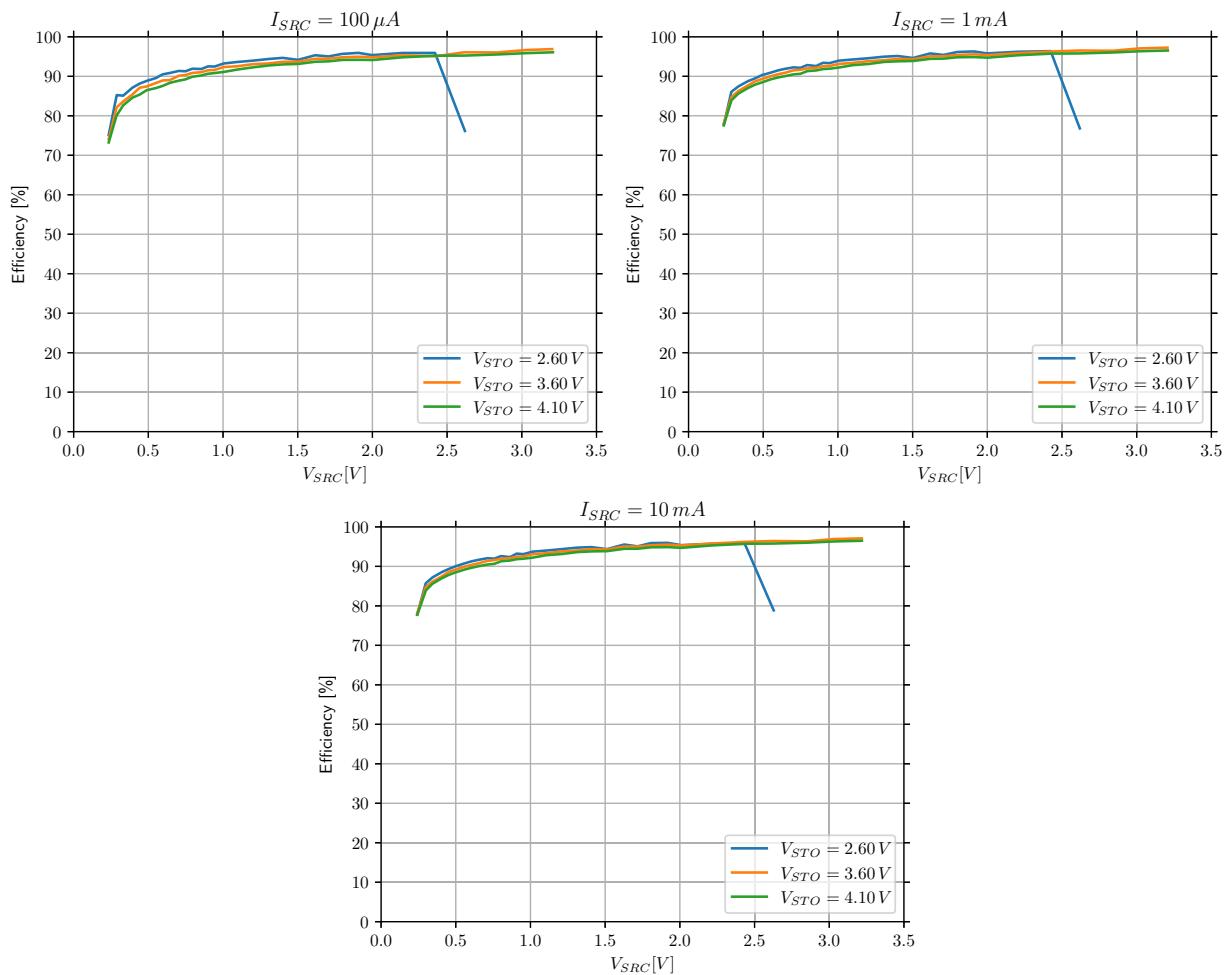


Figure 7: Boost converter efficiency with $L_{BOOST} = 33 \mu H$ (Coilcraft LPS4018-333MRB) and timings x3

5.2. Buck Converter Efficiency

5.2.1. Description

The buck converter efficiency is determined on a fixed set point of the AEM10920:

- Fixed **STO** voltage V_{STO} .
- Fixed **LOAD** voltage V_{LOAD} .
- Fixed **LOAD** current I_{LOAD} .
- Fixed inductor value L_{BUCK} . Please note that the inductor model has a subsequent influence on the efficiency.

Buck efficiency measurement is about measuring the current that needs to be pulled from **STO** at a given V_{STO} , to provide a given current/voltage on **LOAD**, with all other parameters fixed.

Please note that, to avoid any leakage that would affect the measurement, no probe or voltmeter must be connected to the AEM10920 pins while measuring the buck efficiency.

5.2.2. Setup

- **STO**: SMU set as voltage source:
 - Voltage set to the desired V_{STO} set point.
 - Current compliance set so that the power on **STO** ($V_{STO} \times I_{STO}$) is at least higher than the power of the SMU connected to **LOAD** ($V_{LOAD} \times I_{LOAD}$).
- **LOAD**: SMU set as voltage source.
 - Voltage set to 0.5 V below the desired V_{LOAD} set point, forcing the SMU to pull the compliance current when the buck converter is regulating its output voltage.
 - Current compliance set to the desired I_{LOAD} .

5.2.3. Measurements

Cold start and initialization

This part must only be done for the first efficiency data point measurement. To avoid having to do it between two subsequent set points, users must make sure that **STO** voltage doesn't drop below V_{OVDIS} between measurements, with at least 100 μ A current compliance.

- Start with both SMU switched OFF.
- Reset the AEM10920.
- **STO** SMU: set the voltage to 5.0 V and switch ON, to make sure that the V_{STO} is above V_{OVCH} .
- Switch ON **SRC** power supply.
- Wait for V_{INT} to be regulated at 2.25 V.
- Switch OFF **SRC** power supply.
- The AEM10920 is now ready to perform an efficiency measurement. Do not lower V_{STO} below V_{OVDIS} from that point to avoid the AEM10920 going to **OVDIS STATE**. Keep the **STO** SMU current compliance at least 100 μ A.

Efficiency measurement

The following needs to be done for all desired set points:

- Set **STO** SMU to the desired voltage and current set point.
- Set **LOAD** SMU to the desired voltage and current set point.
- Clear both SMU buffers.
- Wait for the number of measures of both SMU to be sufficient (the lower the current the higher the necessary number of measures).
- Determine the average currents and voltages from both SMU buffers.
- Determine the buck efficiency with the following formula:

$$\eta[\%] = \frac{V_{LOAD} \cdot I_{LOAD}}{V_{STO} \cdot I_{STO}} \cdot 100$$

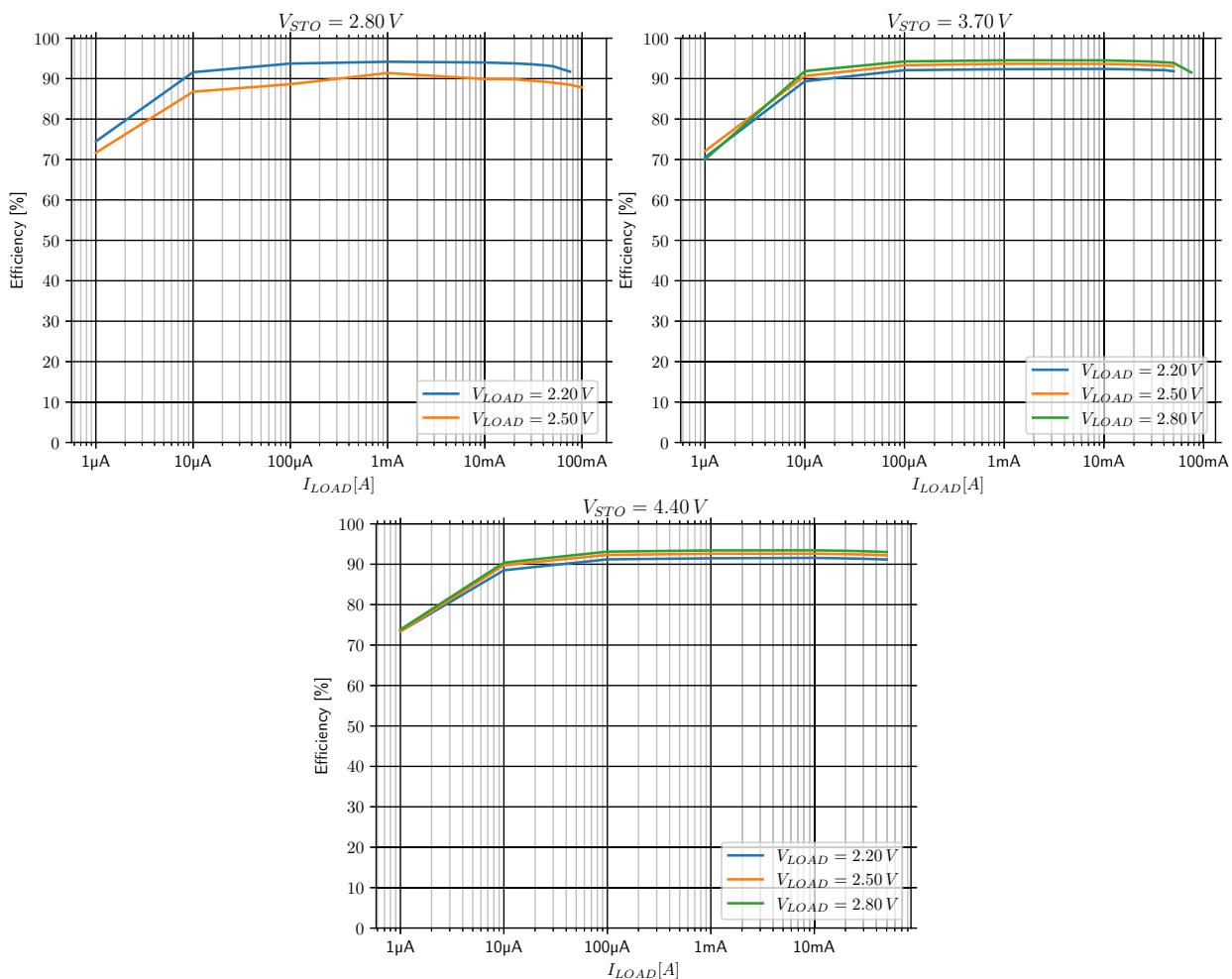


Figure 8: Buck (LOAD) converter efficiency with $L_{BUCK} = 10 \mu$ H (TDK VLS252012CX-100M-1)

6. EVK Schematic

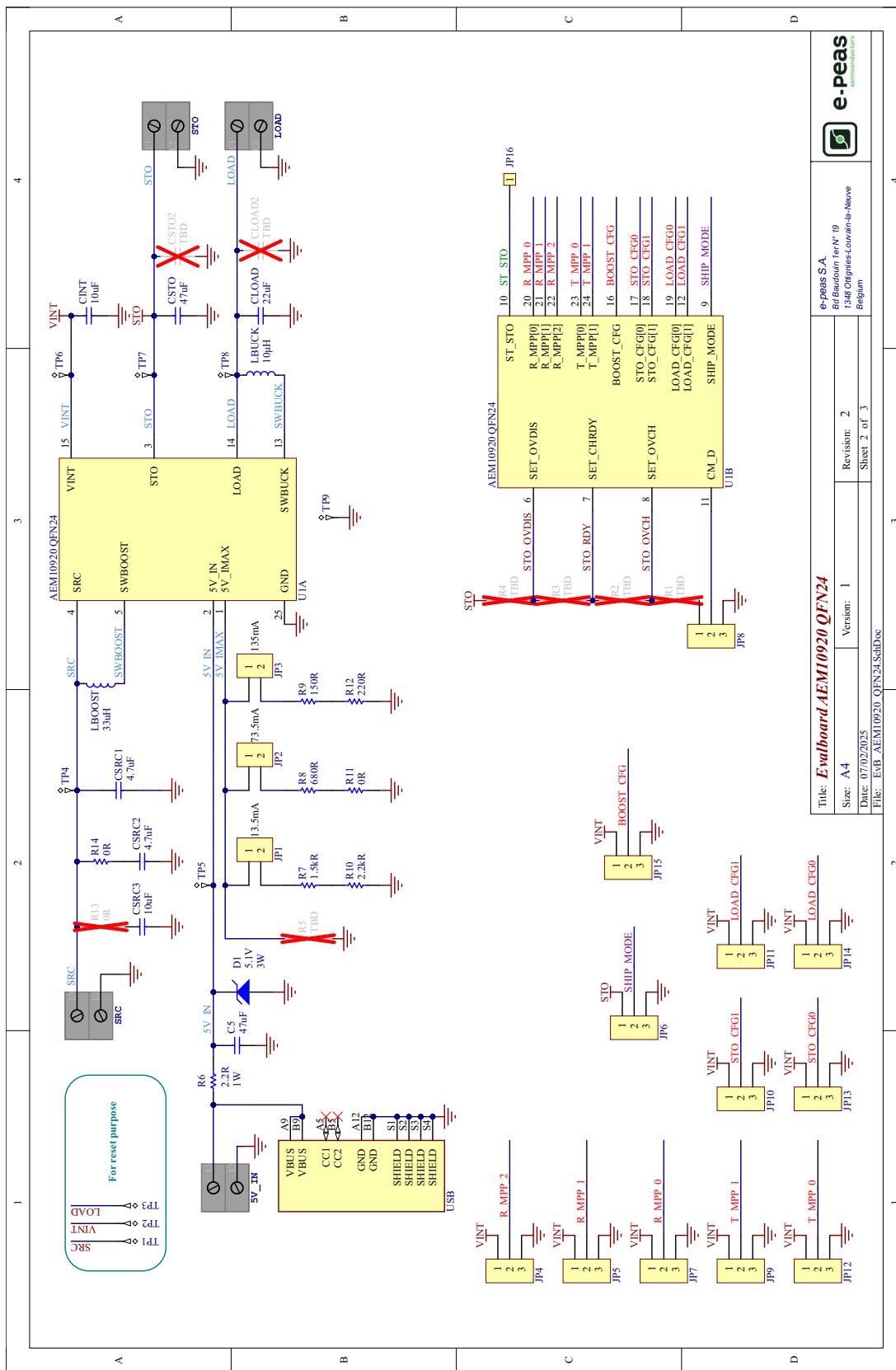


Figure 9: EVK schematic

7. Revision History

EVK Version	User Guide Revision	Date	Description
1.0	1.0	March, 2024	Creation of the document
1.1	1.0	June, 2024	Added average efficiency values on first page.
1.2	1.0	April, 2025	<ul style="list-style-type: none">- Updated to EVK v1.2.- Updated the AEM10920 part number on first page.- Added the custom mode feature.- Added Source Capacitance Configuration section.- Modified Cold-Start and Load functional test setups and behavior figures.- Updated L_{BUCK} part number in the Buck Converter Efficiency test.- Minor edits throughout the document (grammatical corrections, error fixes, and sentence improvements).

Table 6: Revision history