

Compact PMIC with Maximum Power Point Tracking for PV Cells

Features and Benefits

Maximum Power Point Tracking

- Matches various PV cells;
- Configurable MPPT ratios of 35%, 50% and from 60% to 90% by 5% steps;
- Constant impedance matching ;
- Configurable MPPT sensing timing and period;
- MPPT voltage operation range from 120 mV to 2.73 V.

Cold start from 250 mV input voltage and ultra-low input power

- Fast start-up from source;
- AEM10900: 2.47 μ W cold-start power (typical);
- AEM10901: 3.99 μ W cold-start power (typical).

Selectable overdischarge and overcharge protection

- Supports various types of rechargeable batteries (LiC, Li-ion, LiPo, Li-ceramic pouch, etc.).

Thermal monitoring

- Battery protection against over-temperature and under-temperature during charging.

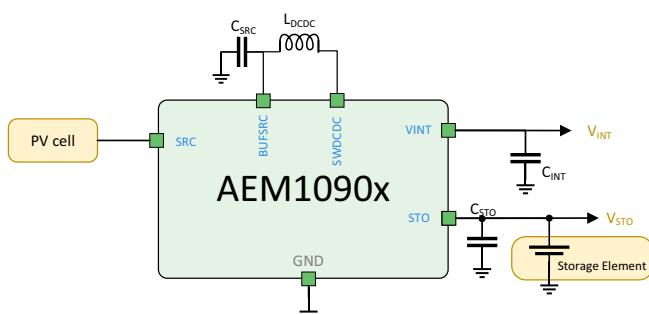
Average power monitoring

- Easy estimation of the charging power.

Shipping and shelf mode

- Prevents energy drain from battery when no source available (**KEEP_ALIVE** pin);
- Disables storage element charging (**DIS_STO_CH** pin).

Configuration by GPIO or I²C


- Easy setup;
- Basic settings at start-up with configuration pins;
- Advanced configuration with I²C (Fast Mode Plus).

Ultra-low power idle mode

- Stored energy is preserved when no source available.

Applications

Smart Home	Industrial Sensor
Smart Building	Retail
Edge IoT	PC Accessories

Description

The AEM1090x is a compact, fully integrated battery charger that harvests DC power to store energy in rechargeable batteries. It extends battery lifetime and removes the need for primary energy storage in a large range of applications.

Thanks to a Maximum Power Point Tracker and an ultra-low power boost converter, the AEM1090x harvests the maximum available power from a source to charge a storage element, such as a Li-ion battery or a LiC. The boost converter operates with input voltages ranging from 120 mV to 2.73 V.

The AEM1090x has a unique cold-start circuit capable of operation with input voltages as low as 250 mV and a few micro Watts. The output voltages ranges from 2.5 V to 4.8 V, with configurable protection levels to prevent overcharging and overdischarging of the storage element. No external components are necessary to set these protection levels. Additionally, thermal monitoring safeguards the storage element, while an Average Power Monitoring system offers insights into the energy transferred to the storage element.

Thanks to the keep-alive feature, the AEM1090x internal circuit can stay powered by the storage element even in absence of a harvesting source. When keep-alive is disabled and no harvesting source is present, the AEM1090x turns off, preserving the energy of the storage element.

A shelf-mode can be obtained by disabling the keep-alive feature, thus, preventing the battery to be drained during device storage. Furthermore, enabling the **DIS_STO_CH** feature creates a shipping mode by preventing battery charging.

The AEM10900 application schematic is featuring small PCB size (51 mm²) and a global lower bill of material. The AEM10901 application schematic allows higher performance with a PCB area penalty as low as 6 mm², enabling small size and low cost implementation for single/dual element PV or pulsed sources versus other DCDC based solutions.

Device Information

Part Number	Package	Body size
10AEM10900C0002	QFN 28-pin	4x4mm
10AEM10901C0002		

Evaluation Board

Part number
2AAEM10900C002
2AAEM10901C002

Table of Contents

1. Introduction	8
2. Pin Configuration and Functions	9
3. Specifications	11
3.1. Absolute Maximum Ratings	11
3.2. ESD Ratings	11
3.3. Thermal Resistance	11
3.4. Electrical Characteristics at 25 °C	12
3.5. Recommended Operation Conditions	13
3.6. Typical Characteristics	14
3.6.1. Boost Converter Efficiency	14
3.6.2. Quiescent Current	16
4. Functional Block Diagram	17
5. Theory of Operation	18
5.1. Boost Converter	18
5.2. Maximum Power Point Tracking	18
5.3. Thermal Monitoring	19
5.4. Average Power Monitoring	19
5.5. Automatic High-power Mode	20
5.6. Keep-alive	20
5.7. IRQ Pin	20
5.8. State Description	21
5.8.1. Reset State	21
5.8.2. Sense SRC State	21
5.8.3. Sense STO State	21
5.8.4. Supply State	21
5.8.5. Sleep State	21
5.8.6. Shutdown State	21
5.8.7. Overdischarge State	22
6. System Configuration	23
6.1. Configuration Pins and I ² C	23
6.1.1. Configuration Pins	23
6.1.2. Configuration by I ² C	23
6.2. MPPT Configuration	23
6.3. ZMPP Configuration	23
6.4. Storage Element Thresholds Configuration	24
6.5. Disable Storage Element Charging	24
6.6. External Components	25
6.6.1. Storage Element	25
6.6.2. External Inductor Information	25
6.6.3. External Capacitors Information	25
6.6.4. Optional External Components for Thermal Monitoring	25
6.6.5. Optional Pull-up Resistors for the I ² C Interface	25
7. I²C Serial Interface Protocol	26
8. Registers Map	28

9. Registers Configurations	30
9.1. Version Register (VERSION)	30
9.2. MPPT Register (MPPTCFG)	31
Table 14:	31
9.3. Overdischarge Voltage (VOVDIS)	32
9.4. Overcharge Voltage (VOVCH)	33
9.5. Temperature Register (TEMPCOLD, TEMPHOT)	34
9.5.1. TEMPCOLD	35
9.5.2. TEMPHOT	35
9.6. Power Register (PWR)	36
9.7. Sleep Register (SLEEP)	37
9.8. Average Power Monitoring Control Register (APM)	38
9.9. IRQ Enable Register (IRQEN)	39
9.10. I ² C Control (CTRL)	40
9.11. IRQ Flag Register (IRQFLG)	41
9.12. Status Register (STATUS)	42
9.13. Average Power Monitoring Data Registers (APM)	43
9.14. Temperature Data Register (TEMP)	44
9.15. Battery Voltage Register (STO)	45
9.16. Source Voltage Register (SRC)	46
9.17. Part Number Registers (PN)	47
10. Typical Application Circuits	48
10.1. Example Circuit 1	48
10.2. Example Circuit 2	49
11. Circuit Behavior	50
11.1. Start-up and Supply	50
11.1.1. Configuration	50
11.1.2. Observations	50
11.2. Supply and Overcharge	51
11.2.1. Configuration	51
11.2.2. Observations	51
11.3. Overdischarge	52
11.3.1. Configuration	52
11.3.2. Observations	52
11.4. Keep-alive	53
11.4.1. Configuration	53
11.4.2. Observations	53
11.5. Temperature Monitoring	55
11.5.1. Configuration	55
11.5.2. Observations	55
12. Minimum BOM	56
13. Layout	57
14. Package Information	59
14.1. Moisture Sensitivity Level	59
14.2. RoHS Compliance	59
14.3. REACH Compliance	59

14.4. Tape and Reel Dimensions	59
14.5. Package Dimensions	60
14.6. Board Layout	60
15. Glossary	61
15.1. SRC Acronyms	61
15.2. STO Acronyms	61
15.3. VINT Acronyms	61
15.4. I ² C Acronyms	61
15.5. Various Acronyms	61
16. Revision History	62

List of Figures

Figure 1: Simplified schematic view	8
Figure 2: Pinout diagram QFN28	9
Figure 3: AEM10900 DCDC conversion efficiency (L_{DCDC} : TDK VLS252012HBX-6R8M-1)	14
Figure 4: AEM10901 DCDC conversion efficiency (L_{DCDC} : Coilcraft LPS4018-333MRB)	15
Figure 5: Quiescent current	16
Figure 6: Functional block diagram	17
Figure 7: Simplified schematic view of the AEM1090x	18
Figure 8: TH_REF and TH_MON connections	19
Figure 9: APM in the power chain	19
Figure 10: Average Power Monitoring behavior	19
Figure 11: Diagram of the AEM1090x state machine	21
Figure 12: R_{ZMPP} connection	23
Figure 13: I ² C transmission frame	26
Figure 14: Read and write transmission	27
Figure 15: Typical application circuit 1	48
Figure 16: Typical application circuit 2	49
Figure 17: start-up and overcharge behavior	50
Figure 18: Supply and overcharge behavior	51
Figure 19: Overdischarge behavior	52
Figure 20: KEEP_ALIVE HIGH behavior	53
Figure 21: KEEP_ALIVE LOW behavior	54
Figure 22: Temperature monitoring behavior	55
Figure 23: AEM1090x schematic	56
Figure 24: AEM10900 QFN28 layout example	57
Figure 25: AEM10901 QFN28 layout example	58
Figure 26: Tape and reel dimensions	59
Figure 27: QFN28 4x4 mm drawing (all dimensions in mm)	60
Figure 28: Recommended board layout for QFN28 package (all dimensions in mm)	60

List of Tables

Table 1: Pins description	9
Table 2: Absolute maximum ratings	11
Table 3: ESD ratings	11
Table 4: Thermal data	11
Table 5: Electrical characteristics	12
Table 6: Recommended operating conditions	13
Table 7: Configuration of MPPT ratio	23
Table 8: Configuration of MPPT timings	23
Table 9: Usage of STO_CFG[2:0]	24
Table 10: Register summary	28
Table 11: VERSION register	30
Table 12: MPPTCFG register	31
Table 13: MPPTCFG.TIMING configuration	31
Table 14: MPPTCFG.RATIO configuration	31
Table 15: VOVDIS register	32
Table 16: Storage element V_{OVDIS} configuration by VOVDIS register	32
Table 17: VOVCH register	33
Table 18: V_{OVCH} configuration by VOVCH register	33
Table 19: TEMPcold register	35
Table 20: TEMPHot register	35
Table 21: PWR register	36
Table 22: SLEEP register	37
Table 23: Configuration of the sleep threshold	37
Table 24: APM register	38
Table 25: Configuration of APM computation windows	38
Table 26: IRQEN register	39
Table 27: CTRL register	40
Table 28: IRQFLG register	41
Table 29: Status register	42
Table 30: Summary of APMx registers fields	43
Table 31: TEMP register	44
Table 32: STO register	45

Table 33: Source voltage V_{SRC} from SRC.DATA register value (formula)	46
Table 34: Source voltage V_{SRC} from SRC.DATA register value (lookup table)	46
Table 35: PNO register	47
Table 36: PN1 register	47
Table 37: PN2 register	47
Table 38: PN3 register	47
Table 39: PN4 register	47
Table 40: Typical application circuit 2 register settings	49
Table 41: AEM1090x bill of material	56
Table 42: Moisture sensitivity level	59
Table 43: Revision history	62

Figure 1: Simplified schematic view

1. Introduction

The AEM1090x is a full-featured energy efficient battery charger able to charge a storage element (connected to **STO**) from an energy source (connected to **SRC**).

The core of the AEM1090x is a regulated switching converter (boost) with high-power conversion efficiency.

At first start-up, as soon as a required cold-start voltage of 250 mV and a few micro Watts are available at the source ($V_{STO} > 2.5$ V), the AEM1090x coldstarts. After the cold start, the AEM extracts the power available from the source if the input voltage is higher than 120 mV.

The AEM1090x can be fully configured through I²C or partially by configuration pins. I²C configuration is not mandatory, as the default configuration is made to fit the most common needs, along with the configuration pins for the most common settings.

Through I²C communication or through the configuration pins, the user can select a specific operating mode from a variety of modes that cover most application requirements without any dedicated external component. The battery protection thresholds (V_{OVCH} and V_{OVDIS}) can be configured with the help of the **STO_CFG[2:0]** pins. They can also be configured in 60 mV steps using the I²C bus.

The **ST_STO** status pin provides information about the voltage level of the storage element, and thus about its readiness to supply an application. It can also be used to powergate an application circuit when sufficient energy is stored.

The Maximum Power Point Tracker (MPPT) ratio is configurable by the configuration pins **R_MPP[2:0]** or by the I²C interface. It ensures an optimum biasing of the harvester to maximize power extraction. The user can select a specific MPPT ratio from eight values, set by the configuration pins. With the I²C interface, the user can select a ratio amongst 8 different values.

Depending on the harvester, it is possible to adapt the timing between two MPP evaluations and the open circuit duration with the I²C communication but also with the configuration pins **T_MPP[1:0]**. There is a range of eight timing pairs.

The AEM1090x features an optional temperature protection. It can be set through the I²C interface and allows to define a temperature range so that, when the ambient temperature is outside that range, battery charging is disabled. One additional resistor and one additional thermistor are needed for this feature.

The **KEEP_ALIVE** functionality sets the source from which the AEM1090x supplies its internal circuitry **VINT**. It can be supplied either from the harvester connected on **SRC** or from the battery connected to **STO**.

When **KEEP_ALIVE** is disabled, the AEM1090x internal circuitry is running as long as enough energy is available on **SRC**. If no energy is available on **SRC**, the internal voltage drops down to reset voltage and the AEM needs to go through a cold start before being able to charge the battery again. This is useful for applications with long periods without energy on **SRC** and when the I²C is not used. If the I²C communication is used, the AEM will need to be reconfigured after the cold-start. With this setting, only a few nA of quiescent current is taken from the storage element.

When **KEEP_ALIVE** is enabled, the AEM1090x is supplied by **STO**, the circuit stays in **SUPPLY STATE** or **SLEEP STATE** as long as the battery connected to **STO** is above the overdischarge threshold. It prevents losing the I²C configuration when energy harvesting is not occurring and offers faster reactivity as the AEM is not reset depending on the available energy on **SRC**.

2. Pin Configuration and Functions

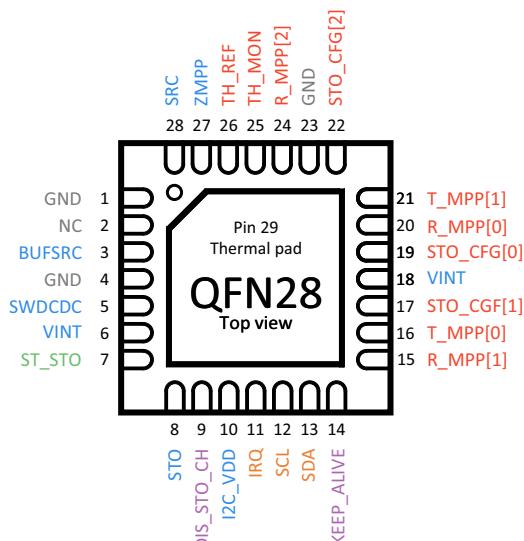


Figure 2: Pinout diagram QFN28

NAME	PIN NUMBER	Function
Power Pins		
SRC	28	Connection to the harvested energy source.
BUFSRC	3	Connection to an external capacitor buffering the boost converter input.
SWDCDC	5	Switching node of the boost converter.
VINT	6, 18	Internal supply voltage.
STO	8	Connection to the energy storage element (rechargeable only). Cannot be left floating, voltage must always be above 2.5 V.
I2C_VDD	10	Connection to supply the I ² C interface. <ul style="list-style-type: none"> Connect to a 1.5 V to 5.0 V power supply if I²C is used. Connect to GND if I²C is not used.
ZMPP	27	Connection for R _{ZMPP} (Must be left floating or grounded when not used)
Configuration Pins		
STO_CFG[0]	19	Used for the configuration of the threshold voltages for the energy storage element. Read as HIGH if left floating.
STO_CFG[1]	17	
STO_CFG[2]	22	Used for the configuration of the MPPT timings. Read as HIGH if left floating.
T_MPP[0]	16	
T_MPP[1]	21	Used for the configuration of the MPPT ratio. Read as HIGH if left floating.
R_MPP[0]	20	
R_MPP[1]	15	
R_MPP[2]	24	
TH_REF	26	Reference voltage for thermal monitoring. Leave floating if not used.
TH_MON	25	Pin for temperature monitoring. Connect to VINT if not used.
Control Pins		
DIS_STO_CH	9	When HIGH, the AEM stops charging the battery. Read as LOW if left floating.
KEEP_ALIVE	14	When HIGH, the internal circuitry is supplied from STO. When LOW, the internal circuitry is supplied from SRC. Read as HIGH if left floating.

Table 1: Pins description

NAME	PIN NUMBER	Function
I²C Pins		
SDA	13	Bidirectional data line. Connect to I²C_VDD if not used.
SCL	12	Unidirectional serial clock for I ² C. Connect to I²C_VDD if not used.
IRQ	11	Output Interrupt request. Leave floating if not used.
Status Pin		
ST_STO	7	Logic output. - Rises when V_{STO} is above $V_{OVDIS} + 100$ mV. - Falls after V_{STO} is held under V_{OVDIS} for 2.5 s. - Logic HIGH is V_{STO} . Leave floating if not used.
Other pins		
GND	1, 4, 23, 29 (thermal pad)	Ground connection, each terminal should be strongly tied to the PCB ground plane, pin 29 (thermal pad) being the main GND connection of the AEM1090x.
NC	2	Not connected pin, leave floating.

Table 1: Pins description

3. Specifications

3.1. Absolute Maximum Ratings

Parameter	Value
Voltage on SWDCDC, STO, I2C_VDD, SDA, SCL, IRQ, ST_STO, DIS_STO_CH	5.5 V
Voltage on SRC, BUFSRC, ZMPP	3 V
Voltage on VINT, KEEP_ALIVE STO_CFG[2:0], R_MPP[2:0], T_MPP[1:0], TH_REF, TH_MON	2.75 V
Operating junction temperature	-40°C to 85°C
Storage temperature	-40°C to 150°C
ESD HBM voltage JEDEC JS-001-2023	2000 V ± 5 % Class-2
ESD CDM voltage JEDEC JS-002-2022	1000 V ± 5 % C2b

Table 2: Absolute maximum ratings

3.2. ESD Ratings

Parameter		Value	Unit
Electrostatic discharge V_{ESD}	Human-Body Model (HBM) ¹	± 2000	V
	Charged-Device Model (CDM) ²	± 1000	V

Table 3: ESD ratings

1. ESD Human-Body Model (HBM) value tested according to JEDEC standard JS-001-2023.
2. ESD Charged-Device Model (CDM) value tested according to JEDEC standard JS-002-2022.

ESD CAUTION	
	ESD (ELECTROSTATIC DISCHARGE) SENSITIVE DEVICE These devices have limited built-in ESD protection and damage may thus occur on devices subjected to high-energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality

3.3. Thermal Resistance

Package	θ_{JA}	θ_{JC}	Unit
QFN-28	47	4.5	°C/W

Table 4: Thermal data

3.4. Electrical Characteristics at 25 °C

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Power Conversion						
$P_{SRC,CS}$	Minimum source power required for cold start ¹	During cold start: AEM10900		2.47		μW
		During cold start: AEM10901		3.99		μW
$V_{SRC,CS}$	Minimum source voltage required for cold start		0.25			V
V_{MPP}	Target regulation voltage on SRC when extracting power.	0.12		2.73		V
V_{OC}	Open-circuit voltage of the source			3.0		V
Timing						
T_{VOC}	Open-circuit duration for the MPP evaluations		See Table 8		ms	
T_{MPPT}	Time between two MPP evaluations		See Table 8		s	
$T_{STO,SUPPLY}$	Time between two V_{STO} evaluations in SUPPLY STATE		0.12			s
$T_{STO,SLEEP}$	Time between two V_{STO} evaluations in SLEEP STATE		0.96			s
$T_{GPIO,MON}$	Time between two GPIO state evaluations		1.92			s
$T_{DIS_STO_CH,MON}$	Time between two DIS_STO_CH IO state evaluations		1.00			s
$T_{TEMP,MON}$	Time between two temperature evaluations		7.67			s
T_{CRIT}	Time spent in SHUTDOWN STATE with V_{STO} below V_{OVDIS} before switching to OVDIS STATE		2.50			s
Storage Element						
V_{STO}	Voltage on the storage element	2.5		4.8		V
V_{OVCH}	Voltage above which the storage element is considered fully charged and must not be charged any further.	2.7	See section 6.4	4.8		V
V_{OVDIS}	Voltage below which the storage element is considered fully depleted, and must not be discharged any further.	2.5		4.05		V
Internal supply & Quiescent Current						
V_{INT}	Internal supply voltage	Auto-regulated, outside of reset and coldstart conditions.		2.2		V
$V_{INT,CS}$	Internal supply cold-start voltage	Minimum voltage on VINT to allow the AEM1090x to switch from RESET STATE to SENSE STO STATE .		2.3		V
$V_{INT,RESET}$	Internal supply reset voltage	Minimum voltage on VINT before switching to RESET STATE (from any other state).		2.0		V
$I_{QSUPPLY}$	Quiescent current on STO in SUPPLY STATE	$V_{STO} = 3.7$ V		242		nA
I_{QSLEEP}	Quiescent current on STO in SLEEP STATE	$V_{STO} = 3.7$ V		162		nA
I_{QSTO}	Quiescent current on STO when Keep-alive functionality is disabled			7.4		nA
I²C interface						
Bus frequency			400	1000		kHz
V_{I2C_VDD}	I²C interface supply pin voltage	1.5		5.0		V
SCL	I²C interface communication pins	Pull-up to I²C_VDD with resistors				
SDA						

Table 5: Electrical characteristics

1. These values are valid with the recommended BOM components (see Section 12)

3.5. Recommended Operation Conditions

Symbol	Parameter	Min	Typ	Max	Unit
External Components					
L_{DCDC}	Inductor of the boost converter	AEM10900	3.3	6.8	μH
		AEM10901	6.8	33	
C_{SRC}	Capacitor decoupling the BUFSRC terminal	10			μF
C_{INT}	Capacitor decoupling V_{INT}	3.3			μF
C_{STO}	Capacitor decoupling the STO terminal ¹	5	22		μF
R_{ZMPP}	Optional - Resistor for the ZMPPT configuration (see Section 6.3)	33		200 k	Ω
R_{DIV}	Optional - pull-up resistor for the thermal monitoring	5k	22k	33k	Ω
R_{TH}	Optional - NTC thermistor for the thermal monitoring	R_0	10k		Ω
		Beta	3380		K
R_{SCL}	Optional - pull-up resistors for the I ² C interface		1k		Ω
R_{SDA}					
Logic input Pins					
$R_{MPP[2:0]}$	Configuration pins for the MPP ratio	Logic HIGH	Connect to VINT		
		Logic LOW	Connect to GND		
$T_{MPP[1:0]}$	Configuration pins for the MPP timings	Logic HIGH	Connect to VINT		
		Logic LOW	Connect to GND		
$STO_{CFG[2:0]}$	Configuration pins for the storage element thresholds	Logic HIGH	Connect to VINT		
		Logic LOW	Connect to GND		
$KEEP_ALIVE$	Configuration for the “keep-alive” functionality	Logic HIGH	Connect to VINT		
		Logic LOW	Connect to GND		
DIS_{STO_CH}	Configuration for disabling the charging of the battery	Logic HIGH	Connect to STO		
		Logic LOW	Connect to GND		

Table 6: Recommended operating conditions

1. Decoupling capacitor of at least $5\mu\text{F}$ is required to avoid damaging the AEM. The decoupling capacitor is to be sized according to the storage element internal resistance (ESR) to ensure optimal efficiency of the DCDC converter. It is recommended to use a capacitor of at least $22\mu\text{F}$ when measuring the AEM1090x efficiency with laboratory equipment such as source measurement units (SMU).

3.6. Typical Characteristics

3.6.1. Boost Converter Efficiency

Figure 3: AEM10900 DCDC conversion efficiency (L_{DCDC} : TDK VLS252012HBX-6R8M-1)

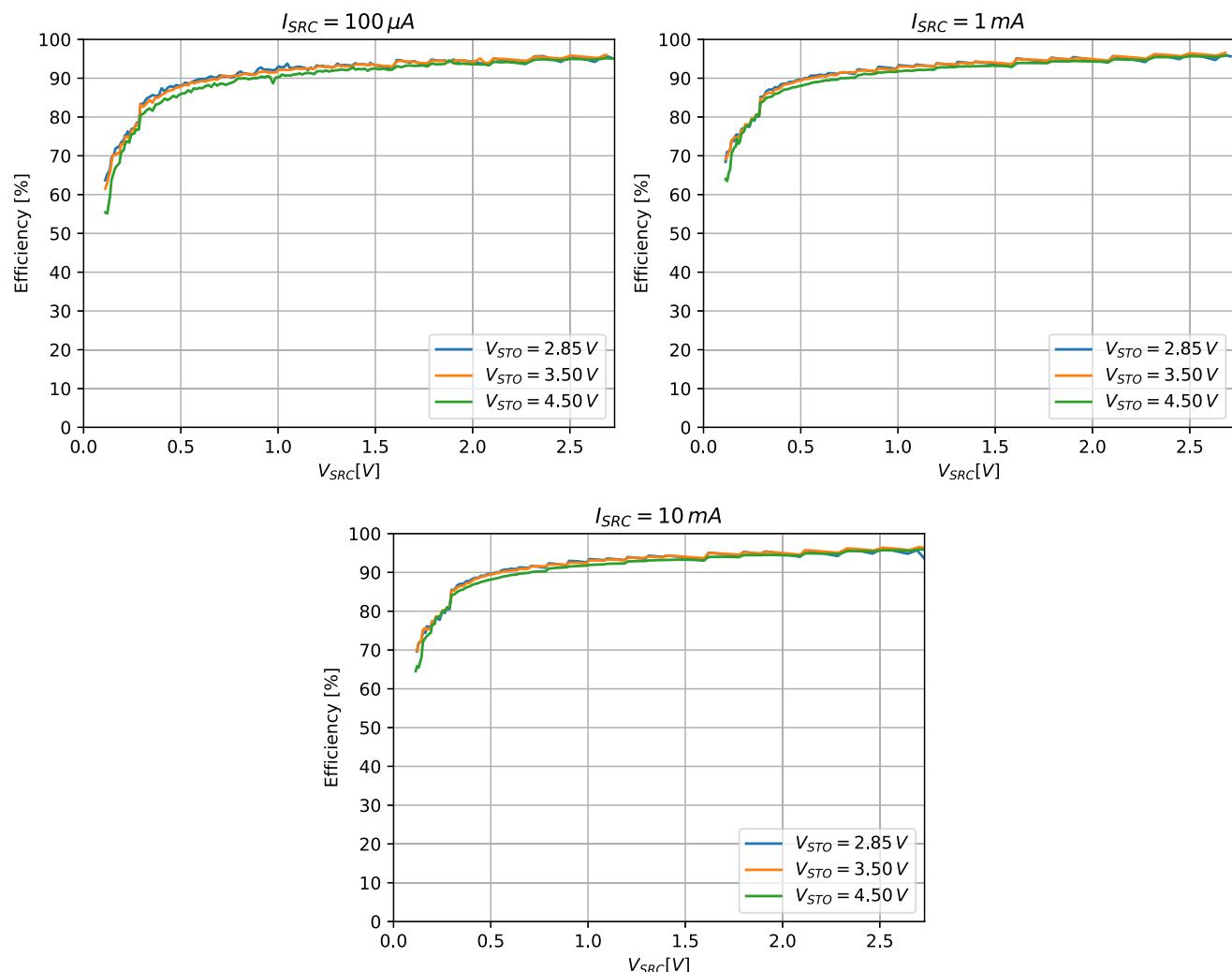


Figure 4: AEM10901 DCDC conversion efficiency (L_{DCDC} : Coilcraft LPS4018-333MRB)

3.6.2. Quiescent Current

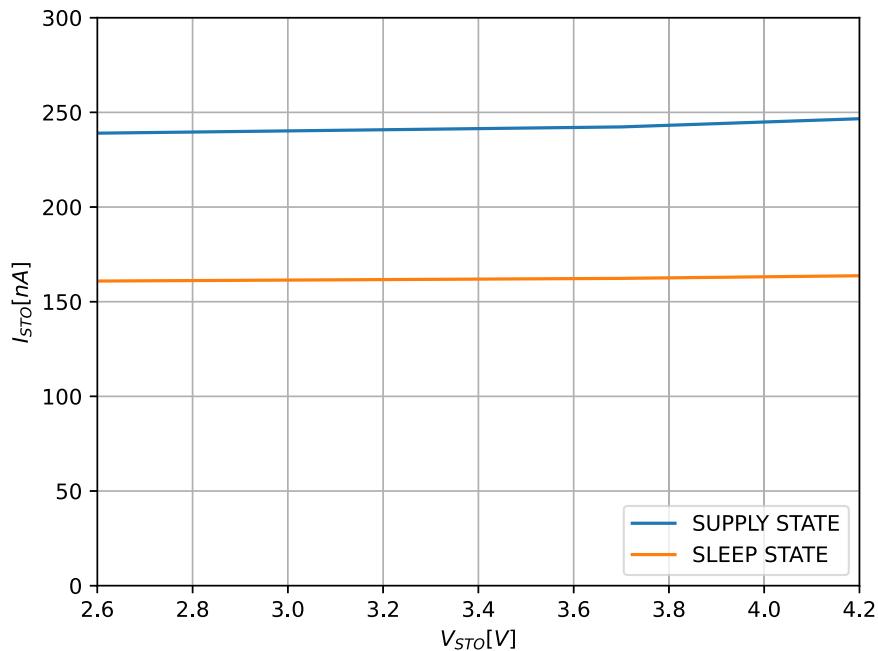


Figure 5: Quiescent current

4. Functional Block Diagram

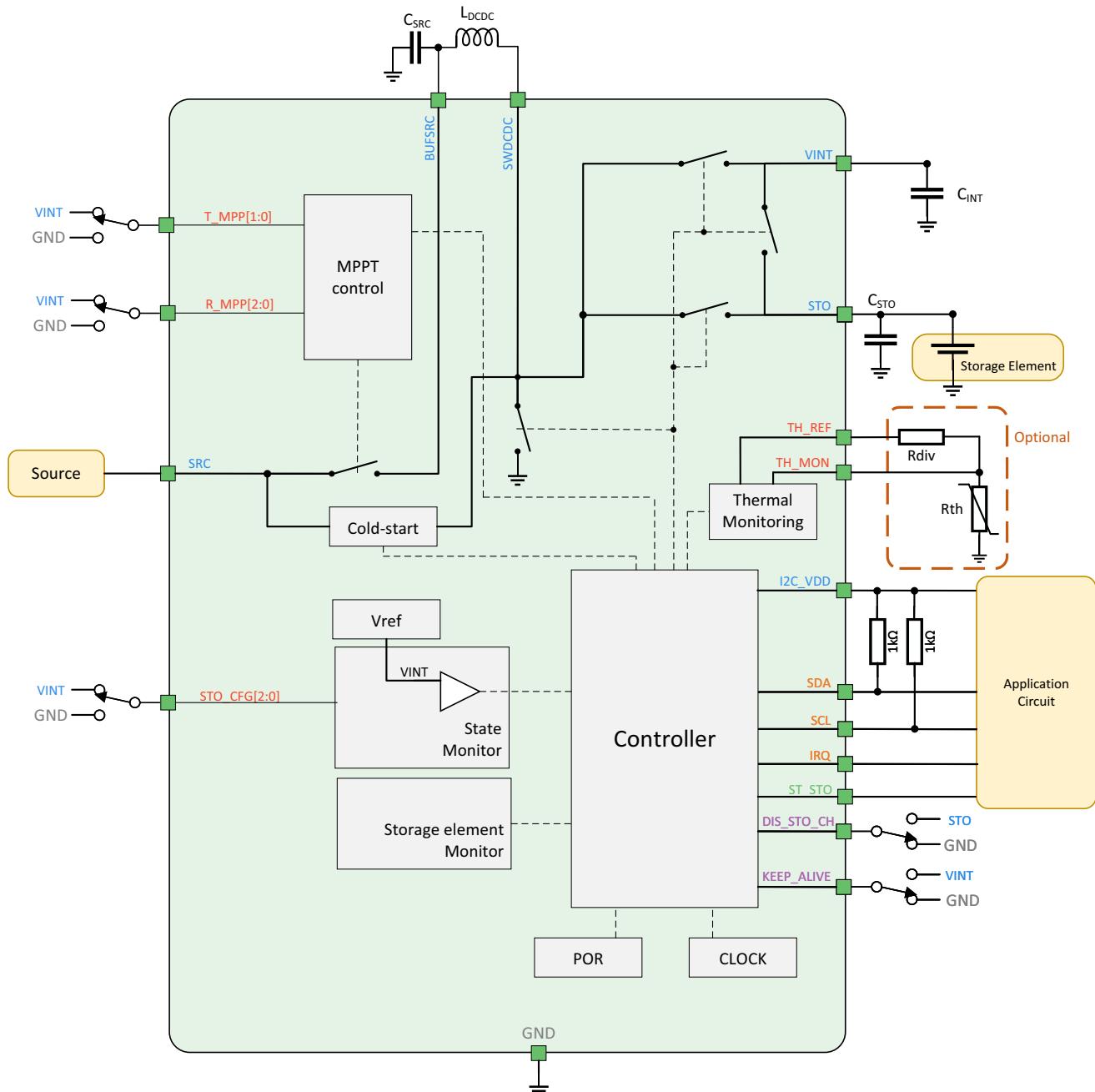


Figure 6: Functional block diagram

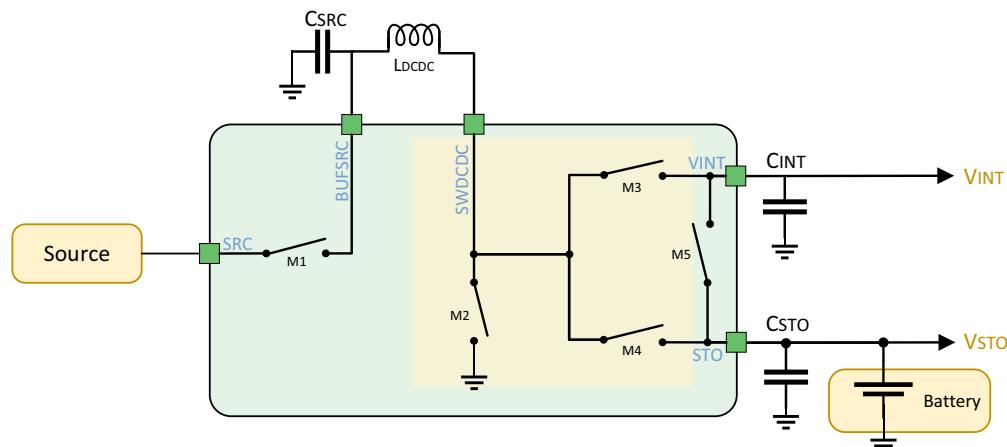


Figure 7: Simplified schematic view of the AEM1090x

5. Theory of Operation

5.1. Boost Converter

The boost (step-up) converter raises the voltage available at **BUFSRC** to a level suitable for charging the storage element, in the range of 2.5 V to 4.8 V, according to the system configuration. The switching transistors of the boost converter are M2, M3 and M4. The reactive power component of this converter is the external inductor L_{DCDC} .

Periodically, the MPPT control circuit disconnects **SRC** and **BUFSRC** pins (transistor M1) in order to measure the open-circuit voltage of the harvester and evaluate the input target voltage. **BUFSRC** is decoupled by the capacitor C_{SRC} , which smoothes the voltage against the current pulses induced by the boost converter.

The storage element is connected to **STO** pin, whose voltage is V_{STO} . This node is linked to the output of one of the high-side transistors (M4) of the boost converter. When energy harvesting is occurring, the boost converter charges the battery. If V_{INT} drops below its regulation value and if the Keep-alive functionality is disabled, the AEM uses M3 instead of M4 as the high-side transistor of the boost converter until V_{INT} reaches its target plus a small hysteresis. If the Keep-alive functionality is enabled, V_{INT} is instead supplied from **STO** by modulating the gate of M5. In that case M3 is never used.

5.2. Maximum Power Point Tracking

The AEM1090x has a Maximum Power Point Tracking (MPPT) module, that relies on the fact that, for several models of harvesters (typ. solar cells), the ratio between the maximum power point voltage (V_{MPP}) and the open circuit voltage (V_{OC}) is constant for a wide range of harvesting conditions. For a solar cell, that means that V_{MPP} / V_{OC} is constant for any lighting conditions, even though both voltages increase when luminosity increases.

The MPP ratio (V_{MPP} / V_{OC}) differs from one harvester model to the other. User must set the MPPT ratio to match the specifications of the harvester model used and thus, maximize power extraction. This ratio is set by the I²C interface or with the configuration pins **R_MPP[2:0]** according to Table 7.

The MPPT module evaluates the open circuit voltage V_{OC} periodically to ensure optimal power extraction at any time. The sampling period T_{MPPT} and sampling duration T_{VOC} are set according to Table 8 by configuring the TIMING field in the MPPTCFG register or with the configuration pins $T_MPP[1:0]$. Every T_{MPPT} , the DCDC stops extracting power from the source, waits during T_{VOC} for the source to rise to its open circuit voltage, and measures V_{OC} . The AEM1090x supports multiple V_{MPP} levels in the range from 0.12 V to 2.73 V. It offers a choice of up to nine values for the V_{MPP} / V_{OC} ratio.

The MPPT module is always active except in **RESET STATE**.

5.3. Thermal Monitoring

Thermal monitoring allows to protect the storage element by disabling the charge of the storage element and setting the STATUS.TEMP register when the temperature is outside of the defined temperature range. Enabling this functionality requires the use of a resistor (R_{DIV}) and a thermistor (R_{TH}). See Figure 8 for external components connections. The **TH_REF** terminal allows a reference voltage to be applied to the resistive divider while **TH_MON** is the measuring point. An ADC is measuring the voltage on **TH_MON** between 0 and 1 V. The temperature evaluation is done periodically ($T_{TEMP,MON}$) to spare power. Information for the thermal monitoring is described in Section 9.5. Thermal monitoring is optional, if not used connect **TH_MON** to **VINT** and leave **TH_REF** floating.

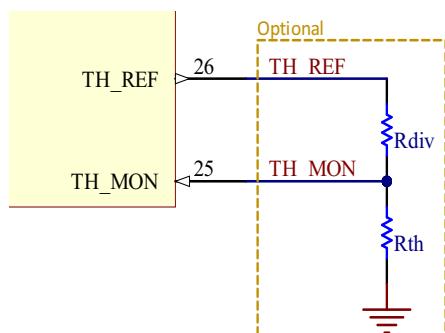


Figure 8: **TH_REF** and **TH_MON** connections

5.4. Average Power Monitoring

The Average Power Monitoring (APM) allows to evaluate the energy transfer from **SRC** to **STO**. The APM is evaluated on the storage element side, so it takes into account the efficiency of the boost converter.

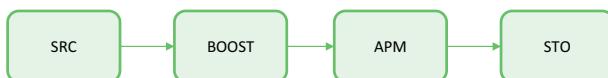


Figure 9: APM in the power chain

The APM is able to determine the transferred energy by counting the number of current pulses transferred to **STO** by the boost converter over a configurable time window, and thus, evaluate the corresponding energy.

Two modes are available: Pulse Counter Mode and Power Meter Mode.

The APM behavior is described in Figure 10:

- Phase A:
 - Pulse Counter Mode: APM counts the number of DCDC pulses happening during T_A
 - Power Meter Mode: APM integrates the energy transferred from **SRC** to **STO** during T_A
- Phase B: APM waits during $T_B = T_A$
- IRQ: a rising edge is triggered on the **IRQ** pin, if **IRQEN.APMDONE** field is set to 1 (see Section 9.9 and Section 9.11). A rising edge on **IRQ** along with the **IRQFLAG.APMDONE** field set to 1 indicates to the user that a new value is available and ready to be read in the APM Data Register (Section 9.13).

Refer to Sections 9.8. and 9.13 for further details about how to set modes, how to convert registers value to Joule and how to set T_A .

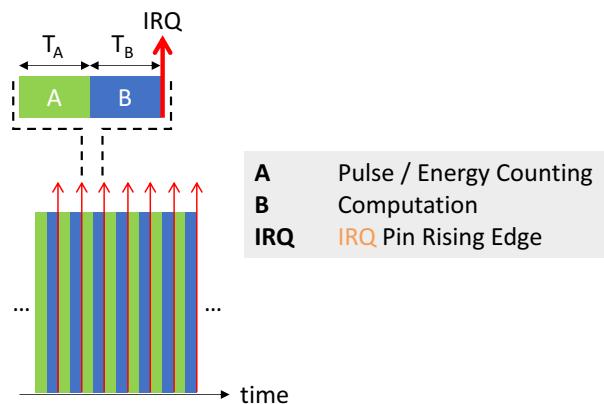


Figure 10: Average Power Monitoring behavior

5.5. Automatic High-power Mode

When the AEM detects that the energy available on **SRC** is high enough, the boost converter automatically switches to high-power mode, increasing the harvesting current capability at the price of a slight efficiency degradation.

Preventing the AEM to switch to high-power mode may allow to use an inductor with half peak current rating for **I_{DCDC}** (see Section 6.6.2). On the other hand, allowing the AEM to switch to high-power mode increases the maximum current that the AEM can harvest from **SRC** to **STO**.

Automatic high-power mode is enabled by default and can be disabled by setting the **PWR.HPEN** to 0 through the I²C interface.

5.6. Keep-alive

The internal circuitry connected to **VINT** can be supplied either by **SRC** through the boost converter (keep-alive disabled), or by the battery **STO** (keep-alive enabled).

When the keep-alive feature is disabled, the AEM1090x is supplied from **SRC**. The AEM will switch to **RESET STATE** if the energy on **SRC** is not sufficient.

When the keep-alive feature is enabled, the AEM1090x is supplied from **STO**. **V_{INT}** is regulated as long as **V_{STO} > V_{OVDIS}**. The keep-alive feature allows to maintain the I²C registers configuration and therefore preventing the loss of volatile memory. Referring to Table 5, the quiescent current is then **I_{QSUPPLY}** or **I_{QSLEEP}**, depending on whether the AEM1090x is in **SUPPLY STATE** or in **SLEEP STATE**.

5.7. IRQ Pin

The **IRQ** pin allows user to get notified when various events happen (rising edge on **IRQ** pin). At start-up, the only flag that is enabled is **I2CRDY**, allowing the user to know when the AEM1090x has finished to coldstart and thus, is out of **RESET STATE** and is ready to be programmed through I²C. Other flags can be enabled by writing the **IRQEN** register (Section 9.9). When the **IRQ** pin shows a rising edge, the flags can be determined by reading the **IRQFLG** register (Section 9.11). Reading the **IRQFLG** register will reset the **IRQ** pin and clear the **IRQFLG** register.

5.8. State Description

NOTE: Unless stated otherwise, all values given in this section are typical.

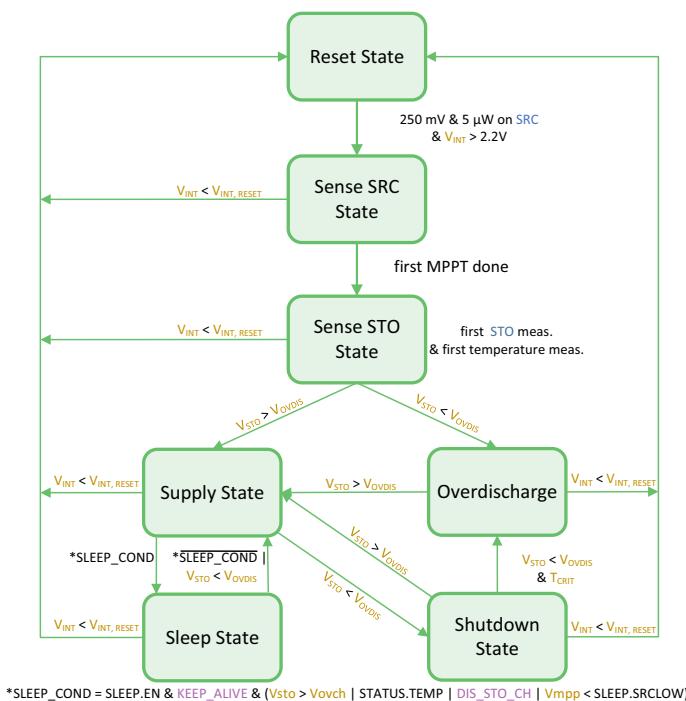


Figure 11: Diagram of the AEM1090x state machine

5.8.1. Reset State

In **RESET STATE** all nodes are deeply discharged and there is no available energy to be harvested, **ST_STO** is LOW. The AEM stays in this state until the source connected to **SRC** meets the cold start requirements long enough to make **V_{INT}** rise up to 2.3 V.

When **V_{INT}** has reached 2.3 V, the AEM1090x reads the configuration pins and switches to **SENSE SRC STATE**. **ST_STO** stays LOW.

5.8.2. Sense SRC State

In **SENSE SRC STATE**, the AEM1090x does a first MPPT to evaluate the power available at **SRC** in order to determine as soon as possible the target regulation point. The MPPT is described in Section 5.2.

The next step is therefore to determine whether the battery can be charged. This mode is called **SENSE STO STATE**.

5.8.3. Sense STO State

In **SENSE STO STATE** the AEM1090x does the following measurements in order to know if the charging condition of the battery are met:

- Battery voltage on **STO**;
- Temperature through pins **TH_MON** and **TH_REF** (see Section 5.3. and 9.5.).

In this state, **ST_STO** is LOW. Once the measurements are done, if **V_{STO} > V_{OVDIS}**, the AEM1090x switches to **SUPPLY STATE**. Else, it switches to **OVDIS STATE**.

5.8.4. Supply State

In **SUPPLY STATE**, the AEM transfers charges directly from **SRC** to **STO** while maintaining **V_{INT}**. When coming from **SENSE STO STATE** with **V_{STO} > V_{OVDIS}**, **ST_STO** is LOW until **V_{STO}** is above **V_{OVDIS} + 100 mV**. Then **ST_STO** stays HIGH as long as the AEM does not go into **OVDIS STATE**.

If **V_{INT}** drops below **V_{INT_RESET}** and the energy available on **SRC** is not sufficient to make **V_{INT}** rise again, there are two possible behaviors, depending on the keep-alive feature:

- If keep-alive is enabled, **V_{INT}** is supplied by the battery through M5, so the AEM1090x stays in **SUPPLY STATE** while energy is available on the battery;
- If keep-alive is disabled, **V_{INT}** will no longer be maintained and the AEM switches to **RESET STATE**.

5.8.5. Sleep State

In **SLEEP STATE**, the AEM power consumption is reduced since the power available on the input is presumably low (**V_{MPP}** below the threshold voltage defined by the **SLEEP.SRCLOW** field). If the source voltage rises again above the threshold, or if the **SLEEP.EN** field is set to 0, the AEM1090x switches back to **SUPPLY STATE**.

SLEEP STATE is enabled by default with **SLEEP.SRCLOW** at 0.112 V. **STATUS.SRCLOW** is asserted when **V_{MPP}** is set below this value.

5.8.6. Shutdown State

The AEM goes in **SHUTDOWN STATE** whenever **V_{STO} < V_{OVDIS}**. If **V_{STO} < V_{OVDIS}** for more than **T_{CRIT}**, the AEM goes in **OVDIS STATE**. If **V_{STO}** rises again above **V_{OVDIS}** before **T_{CRIT}** passed, the AEM goes back in **SUPPLY STATE**. **ST_STO** remains HIGH while in **SHUTDOWN STATE**.

The **SHUTDOWN STATE** is used to prevent the AEM from going in **OVDIS STATE** if there is a sudden current draw on the battery coming from the application circuit, causing the battery voltage to drop momentarily.

5.8.7. Overdischarge State

In **OVDIS STATE**, the AEM transfers charges directly from **SRC** to **STO** while maintaining **V_{INT}** from **SRC**. The AEM is no longer supplied from the storage element. In this state, **ST_STO** is LOW. If the source no longer provides energy to the AEM, it will go into **RESET STATE**.

6. System Configuration

6.1. Configuration Pins and I²C

6.1.1. Configuration Pins

After a cold start, the AEM1090x reads the configuration GPIOs. Those are then read periodically every $T_{GPIO,MON}$, with the exception of the **DIS_STO_CH** pin that is read every $T_{DIS_STO_CH,MON}$. The configuration pins can be changed on-the-fly and the corresponding configuration will be updated at the next IO reading. The floating configuration pins are read as HIGH, except **DIS_STO_CH** which is read as LOW.

6.1.2. Configuration by I²C

To configure the AEM1090x through the I²C interface after a cold start, the user must wait for the **IRQ** pin to rise, showing that the AEM1090x is out of **RESET STATE** and is ready to communicate with I²C. The interrupt is reset by reading its **IRQFLG** register. Please note that the **IRQ** pin is always low during **RESET STATE**. See Section 9.11 for further informations about the **IRQ** pin.

Once **IRQ** goes HIGH, the user can then write to the desired registers and validate the configuration by setting the **CTRL.UPDATE** register field. All configuration pins are then ignored (with the exception of **DIS_STO_CH**, see Section 9.6) and all the configurations are set by the register values. All registers have a reset value, that can be found in Table 10. It is possible to go back to the GPIO configuration by resetting the **CTRL.UPDATE** bit. To apply any modification to the configuration, simply change the wanted registers value and set the **CTRL.UPDATE** bit again.

Registers are stored in a volatile memory, so their value are lost when **V_{INT}** drops below the reset voltage (**V_{INT,RESET}**), making the AEM1090x switch to **RESET STATE**. Thus, when using the I²C configuration, it is highly recommended to enable the keep-alive (see section 5.6.). If keep-alive functionality is disabled, register configuration is lost every time the energy available on **SRC** is not sufficient to maintain **V_{INT}** above the reset voltage (**V_{INT,RESET}**).

6.2. MPPT Configuration

Two parameters are necessary to configure the Maximum Power Point Tracking. The first parameter is the MPP tracking ratio, which is selected according to the characteristics of the input power source. This parameter is set on bits [3:0] of the **MPPTCFG** (0x01) register (see section 9.2), or by the configuration pins **R_MPP[2:0]**. The second parameter allows configuring the duration of the evaluation of **V_{oc}** (**T_{VOC}**) and the time between two MPP evaluations (**T_{MPPT}**). The configuration is set on bits [6:4] of the **MPPTCFG** (0x01) register (see section 9.2), or by the configuration pins **T_MPP[1:0]**.

Configuration			MPPT ratio
R_MPP[2:0]			V _{mpp/Voc}
L	L	L	ZMPP
L	L	H	90%
L	H	L	65%
L	H	H	60%
H	L	L	85%
H	L	H	75%
H	H	L	70%
H	H	H	80%

Table 7: Configuration of MPPT ratio

Configuration		Sampling duration [ms]	Sampling period [ms]
T_MPP[1:0]		T _{VOC}	T _{MPPT}
L	L	4	256
L	H	2	128
H	L	4	512
H	H	2	256

Table 8: Configuration of MPPT timings

6.3. ZMPP Configuration

Instead of working at a ratio of the open-circuit voltage, the AEM1090x can regulate the input resistance of the boost converter so that it matches a constant resistance connected to the **ZMPP** pin (**R_{ZMPP}**). In this case, the AEM1090x regulates **V_{SRC}** at a voltage equal to the product of the **ZMPP** resistance and the current available at the **SRC** input.

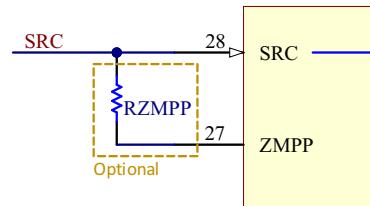


Figure 12: **R_{ZMPP}** connection

6.4. Storage Element Thresholds Configuration

The user must set the voltage thresholds for which the storage element is considered to be discharged (V_{OVDIS}) and fully charged (V_{OVCH}). Note that the STO_STO pin is asserted when V_{STO} gets 100 mV above the V_{OVDIS} level.

V_{OVDIS} is configured on the VOVDIS (0x02) register and encoded on 6 bits. The value to be written to the register is determined using the following equation:

$$THRESH = \frac{V_{OVDIS} - 0.50625}{0.05625}$$

THRESH is the integer value to be written in the register. The minimum value for V_{OVDIS} is 2.5 V. If the register value corresponds to $V_{OVDIS} < 2.5$ V, the threshold voltage is forced to 2.5 V.

V_{OVCH} is configured on the VOVCH (0x03) register and encoded on 6 bits. The value to be written to the register is determined using the following equation:

$$THRESH = \frac{V_{OVCH} - 1.2375}{0.05625}$$

THRESH is the integer value to be written in the register. The minimum value for V_{OVCH} is 2.7 V. If the register value corresponds to $V_{OVCH} < 2.7$ V, the threshold voltage is forced to 2.7 V.

It is also possible to configure V_{OVDIS} and V_{OVCH} with configuration pins $STO_CFG[2:0]$ as shown in Table 9.

Configuration			Storage element threshold	Storage element type
STO_CFG[2:0]			V_{OVCH}	V_{OVDIS}
L	L	L	4.50 V	3.30 V
L	L	H	4.00 V	2.80 V
L	H	L	3.63 V	2.80 V
L	H	H	3.90 V	2.80 V
H	L	L	3.80 V	2.50 V
H	L	H	3.90 V	3.01 V
H	H	L	4.35 V	3.01 V
H	H	H	4.12 V	3.01 V

Table 9: Usage of $STO_CFG[2:0]$

DISCLAIMER: the provided storage element thresholds in the table above are indicative to support a wide range of storage element variants. They are provided as is to the best knowledge of e-peas's application laboratory. They should not replace the actual values provided in the storage element manufacturer's specifications and datasheet.

6.5. Disable Storage Element Charging

Pulling up DIS_STO_CH to V_{STO} disables the charging of the storage element connected to STO . The storage element charging can also be disabled via I²C by setting the PWR.STOCHDIS register. Pulling up DIS_STO_CH overtakes the PWR.STOCHDIS register configuration.

Please note that, if the keep-alive feature is enabled by pulling up $KEEP_ALIVE$ to V_{INT} , V_{INT} is supplied by STO regardless of the setting of DIS_STO_CH . To make sure that the storage element is neither charged nor used to supply V_{INT} , user must tie both DIS_STO_CH to STO and $KEEP_ALIVE$ to GND.

6.6. External Components

6.6.1. Storage Element

The storage element of the AEM1090x must be a rechargeable battery, which size should be chosen so that its voltage does not fall below V_{OVDIS} for longer than 2.5 s during current draw from the battery to the load connected on it. To keep the chip functionality, minimum voltage on STO pin shall remain above 2.5V.

The monitoring of the storage element is done periodically. It is therefore possible that the storage element may be overloaded if it is incorrectly sized.

It is mandatory to buffer the battery with a capacitor C_{STO} if the internal resistance of the battery is high, to ensure that the current pulled from the battery by the application circuit does not ever make the battery voltage fall below 2.5 V.

If a disconnection of the battery is expected (e.g. because of a user removable connector), the PCB must include a decoupling capacitor to avoid over-voltage and under-voltage during that battery disconnection. The minimum effective value of this capacitor is 5 μ F.

A minimal decoupling capacitor of 22 μ F is recommended to obtain optimal DCDC converter efficiency when using high ESR battery, or when measuring efficiency using laboratory equipments such as source measurement units (SMU).

6.6.2. External Inductor Information

L_{DCDC}

The AEM1090x operates with one standard miniature inductor. L_{DCDC} must comply to the following:

- Peak current rating must be at least 1 A for a 3.3 μ H inductor in high-power mode and 500 mA if high-power mode is disabled. Current rating decreases linearly when inductor value increases.
- Switching frequency must be at least 10 MHz.
- ESR as low as possible as it has a strong influence on DCDC efficiency.
- The recommended values for optimal efficiency is:
 - 6.8 μ H for AEM10900
 - 33 μ H for AEM10901

6.6.3. External Capacitors Information

C_{SRC}

This capacitor acts as an energy buffer at the input of the boost converter. It prevents large voltage variations when the buck-boost converter is active. The recommended value is 22 μ F.

C_{INT}

This capacitor acts as an energy buffer for the internal voltage supply. The minimum effective value is 3.3 μ F. 22 μ F is recommended.

C_{STO}

This capacitor allows for buffering the current peaks of the boost converter output. While it is mandatory to connect a capacitor of minimum 5 μ F to avoid damaging the AEM, it is recommended to use a capacitor with at least 22 μ F (real value, including derating, tolerance, etc.) to ensure best efficiency from the boost converter if the storage element has high internal series resistance (ESR).

6.6.4. Optional External Components for Thermal Monitoring

The following components are required for the thermal monitoring:

- One resistor, typ. 22 k Ω
- One NTC thermistor, typ. $R_0 = 10\text{ k}\Omega \pm 5\%$ and Beta = $3380\text{ K} \pm 3\%$ (NCP15XH103J03RC)

6.6.5. Optional Pull-up Resistors for the I²C Interface

SDA and SCL must be pulled up by resistors (1 k Ω typical) if the I²C interface is used. The value must be determined according to the I²C mode used.

7. I²C Serial Interface Protocol

The AEM1090x uses I²C communication for configuration as well as to provide information about system status and measurement data. Communication requires a serial data line (**SDA**) and a serial clock line (**SCL**). A device sending data is defined as a transmitter and a device receiving data as a receiver. The device that controls the communication is called a master and the device it controls is defined as the slave.

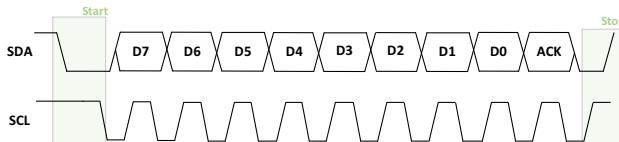


Figure 13: I²C transmission frame

The master is in charge of generating the clock, managing bus accesses and generating the start and stop bits. The AEM1090x is a slave that will receive configuration data or send the informations requested by the master.

The AEM1090x supports I²C Standard-mode (100 kHz maximum clock rate), Fast-mode (400 kHz maximum clock rate), and Fast-mode Plus (1 MHz maximum clock rate) device. Data are sent with the most significant bit first.

Here are some typical I²C interface states:

- When the communication is idle, both transmission lines are pulled up (**SDA** and **SCL** are open drain outputs);
- Start bit (S): to initiate the transmission, the master switches the **SDA** line low while keeping **SCL** high. This is called the start bit;
- Stop bit (P): to end the transmission, the master switches the **SDA** line from low to high while keeping **SCL** high. This is called a stop bit;
- Repeated Start bit (Sr): it is used as a back-to-back start and stop bit. It is similar to a start condition, but when the bus is not on idle;
- ACK: to acknowledge a transmission, the device receiving the data (master in case of a read mode transmission, slave in case of a write mode transmission) switches **SDA** low;
- NACK: when the device receiving data keeps **SDA** high after the transmission of a byte. When reading a byte, this can mean that the master is done reading bytes from the slave.

To initiate the communication, the master sends a byte with the following informations:

- Bits [7:1] is the slave address, which is 0x41;

- Bit [0] is the communication mode: 1 for 'read mode' (used when the master reads informations from the slave) and 0 for 'write mode' (when the master writes informations to the slave);
- Slave replies with an ACK to acknowledge that the address has been successfully transmitted.

Here is the procedure for the master to write a slave register:

- Master sends the address of the slave in 'write' mode;
- Slave sends an ACK;
- Master sends the address of the register to be written. For example, for the TEMPcold register, the master sends the value 0x04;
- Slave sends an ACK;
- Master sends the data to write to the register;
- Slave sends an ACK;
- If the master wants to write a register at the next address (TEMPHOT in our example), it sends next value to write, without having to specify the address again. This can be done several times in a row for writing several consecutive registers;
- Else the master sends a stop bit (P).

Here is the procedure for the master to read a slave register:

- Master sends the address of the slave in 'write' mode;
- Slave sends an ACK;
- Master sends the address of the register to be read. For example, for the MPPTCFG register, the master sends the value 0x01;
- Slave sends an ACK;
- Master sends a repeated start bit (Sr);
- Master sends the address of the slave in 'read' mode;
- Slave sends an ACK;
- Master provides the clock on SCL to allow the slave to shift the data of the read register on SDA;
- If the master wants to read register at the next address (VOVDIS in our example), it sends an ACK and provides the clock for the slave to shift its following 8 bits of data. This can be done several times in a row for reading several registers;
- If the master wants to end the transmission, it sends a NACK to notify the slave that the transmission is over, and then sends a stop bit (P).

Both communications are described in the Figure 14. Refer to Table 10 for all register addresses.

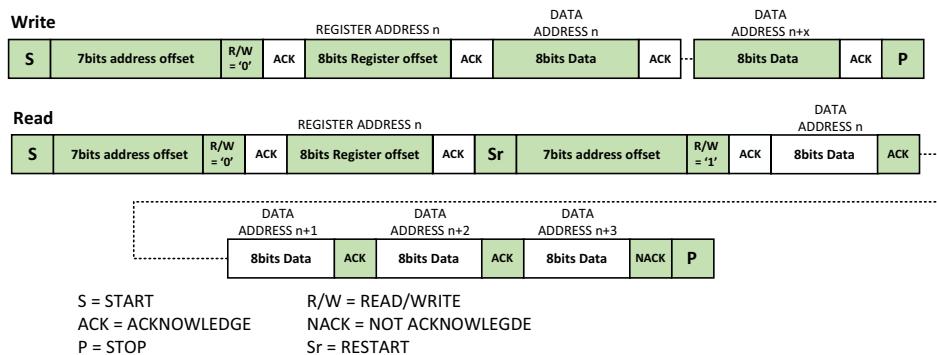


Figure 14: Read and write transmission

8. Registers Map

Address	Name	Bit	Field Name	Access	Reset	Description
0x00	VERSION	[7:0]	VERSION	R	-	Version number.
0x01	MPPTCFG	[3:0]	RATIO	R/W	0x07 (80%)	MPPT ratio.
		[6:4]	TIMING	R/W	0x07 (2ms/256ms)	MPPT timings.
		[5:0]	THRESH	R/W	0x2D (3.04V)	Storage element overdischarge threshold.
0x02	VOVDIS	[5:0]	THRESH	R/W	0x33 (4.1V)	Storage element overcharge threshold.
0x03	VOVCH	[5:0]	THRESH	R/W	0x8F (0°C)	Cold temperature level threshold.
0x04	TEMPCOLD	[7:0]	THRESH	R/W	0x2F (45°C)	Hot temperature level threshold.
0x05	TEMPHOT	[7:0]	THRESH	R/W	-	
0x06	PWR	[0:0]	KEEPALEN	R/W	0x01	Keep-alive enable.
		[1:1]	HPEN	R/W	0x01	High-power mode enable.
		[2:2]	TMONEN	R/W	0x01	Temperature monitoring enable.
		[3:3]	CHARGEDIS	R/W	0x00	Storage element charging disable.
0x07	SLEEP	[0:0]	EN	R/W	0x01	Sleep mode enable.
		[3:1]	SRCLOW	R/W	0x00	SRC LOW threshold.
0x08	RSVD	[7:0]	-	R/W	-	This register can be written in but it will have no effect.
0x09	APM	[0:0]	EN	R/W	0x00	APM enable.
		[1:1]	MODE	R/W	0x00	APM mode
		[3:2]	WINDOW	R/W	0x00	APM computation window
0x0A	IRQEN	[0:0]	I2CRDY	R/W	0x01	IRQ serial interface ready enable.
		[1:1]	VOVDIS	R/W	0x00	IRQ STO OVDIS enable.
		[2:2]	VOVCH	R/W	0x00	IRQ STO OVCH enable.
		[3:3]	SRCLOW	R/W	0x00	IRQ SRC LOW enable.
		[4:4]	TEMP	R/W	0x00	IRQ temperature enable.
		[5:5]	APMDONE	R/W	0x00	IRQ APM done enable.
		[6:6]	APMERR	R/W	0x00	IRQ APM error enable.
0x0B	CTRL	[0:0]	UPDATE	R/W	0x00	Load I ² C registers configuration.
		[1:1]	-	R	0x00	Reserved.
		[2:2]	SYNCBUSY	R	0x00	Synchronization busy flag.
0x0C	IRQFLG	[0:0]	I2CRDY	R	0x00	IRQ serial interface ready flag.
		[1:1]	VOVDIS	R	0x00	IRQ STO OVDIS flag.
		[2:2]	VOVCH	R	0x00	IRQ STO OVCH flag.
		[3:3]	SRCLOW	R	0x00	IRQ SRC LOW flag.
		[4:4]	TEMP	R	0x00	IRQ temperature flag.
		[5:5]	APMDONE	R	0x00	IRQ APM done flag.
		[6:6]	APMERR	R	0x00	IRQ APM error flag.
0x0D	STATUS	[1:1]	VOVDIS	R	0x00	Status STO OVDIS.
		[2:2]	VOVCH	R	0x00	Status STO OVCH.
		[3:3]	SRCLOW	R	0x00	Status SRC LOW.
		[4:4]	TEMP	R	0x00	Status temperature.
		[6:6]	CHARGING	R	0x00	Status STO CHARGE.
		[7:7]	CHARGEDIS	R	0x00	Status GPIO DIS_STO_CH .
0x0E	APMO	[7:0]	DATA	R	0x00	APM data 0.

Table 10: Register summary

Address	Name	Bit	Field Name	Access	Reset	Description
0x0F	APM1	[7:0]	DATA	R	0x00	APM data 1.
0x10	APM2	[7:0]	DATA	R	0x00	APM data 2.
0x11	TEMP	[7:0]	DATA	R	0x00	Temperature data.
0x12	STO	[7:0]	DATA	R	0x00	Storage element voltage.
0x13	SRC	[7:0]	DATA	R	0x00	SRC ADC value.
0xE0	PNO	[7:0]	DATA	R	0X30 - 0x31	Part number 0 data.
0xE1	PN1	[7:0]	DATA	R	0X30	Part number 1 data.
0xE2	PN2	[7:0]	DATA	R	0X39	Part number 2 data.
0xE3	PN3	[7:0]	DATA	R	0X30	Part number 3 data.
0xE4	PN4	[7:0]	DATA	R	0X31	Part number 4 data.

Table 10: Register summary

9. Registers Configurations

9.1. Version Register (VERSION)

The VERSION register holds the version of the chip.

VERSION Register	0x00	R
	Bit [7:0]	
	VERSION	
	-	

Table 11: VERSION register

9.2. MPPT Register (MPPTCFG)

The MPPT register MPPTCFG (0x01) is composed of 2 parts. The first part is reserved for the MPP ratio. This parameter is set on bits [3:0] of the register. The second part allows configuring the duration of the evaluation of V_{OC} and the time between two MPP evaluations (T_{MPPT}). The configuration is set on bits [6:4] of the register. All the information about the MPPT are available on section 5.2.

MPPTCFG Register		0x0B	R/W
Bit [7]	Bit [7:4]	Bit [3:0]	
RESERVED	TIMING	RATIO	
0	0x07	0x07	

Table 12: MPPTCFG register

MPPTCFG.TIMING	T_{VOC} [ms]	T_{MPPT} [ms]
0x00	2	64
0x01	256	16384
0x02	64	4096
0x03	8	1024
0x04	4	256
0x05	2	128
0x06	4	512
0x07	2	256

Table 13: MPPTCFG.TIMING configuration

MPPTCFG.RATIO	R_MPP
0x00	ZMPP
0x01	90 %
0x02	65 %
0x03	60 %
0x04	85 %
0x05	75 %
0x06	70 %
0x07	80 %
0x08	35 %
0x09	50 %

Table 14: MPPTCFG.RATIO configuration

9.3. Overdischarge Voltage (VOVDIS)

The VOVDIS register allows for configuring V_{OVDIS} , as shown in Table 16. The following formula can also be used:

$$V_{OVDIS} = 0.50625 + \text{DEC}(\text{THRESH}) \cdot 0.05625$$

All values of V_{OVDIS} selected below 2.51 V will be set at 2.51 V

VOVDIS Register		0x02	R/W
Bit [7:6]		Bit [5:0]	
RESERVED		THRESH	
0x00		0x2D	

Table 15: VOVDIS register

VOVDIS [5:0]	V_{OVDIS} [V]
0x00	2.51
...	2.51
0x23	2.51
0x24	2.53
0x25	2.59
0x26	2.64
0x27	2.70
0x28	2.76
0x29	2.81
0x2A	2.87
0x2B	2.93
0x2C	2.98
0x2D	3.04
0x2E	3.09
0x2F	3.15
0x30	3.21
0x31	3.26
0x32	3.32
0x33	3.38
0x34	3.43
0x35	3.49
0x36	3.54
0x37	3.60
0x38	3.66
0x39	3.71
0x3A	3.77
0x3B	3.83
0x3C	3.88
0x3D	3.94
0x3E	3.99
0x3F	4.05

Table 16: Storage element V_{OVDIS} configuration by VOVDIS register

9.4. Overcharge Voltage (VOVCH)

The VOVCH register allows for the configuration of V_{OVCH} , as shown in Table 18. The following formula can also be used:

$$V_{OVCH} = 1.2375 + \text{DEC}(\text{THRESH}) \cdot 0.05625$$

All values of V_{OVCH} selected below 2.70 V will be set at 2.70 V

VOVCH Register		0x03	R/W
Bit [7:6]		Bit [5:0]	
RESERVED		THRESH	
0x00		0x33	

Table 17: VOVCH register

VOVCH [5:0]	V_{OVCH} [V]
0x00	2.70
...	2.70
0x1A	2.70
0x1B	2.76
0x1C	2.81
0x2D	2.87
0x1E	2.93
0x1F	2.98
0x20	3.04
0x21	3.09
0x22	3.15
0x23	3.21
0x24	3.26
0x25	3.32
0x26	3.38
0x27	3.43
0x28	3.49
0x29	3.54
0x2A	3.60
0x2B	3.66
0x2C	3.71
0x2D	3.77
0x2E	3.83
0x2F	3.88
0x30	3.94
0x31	3.99
0x32	4.05
0x33	4.11
0x34	4.16
0x35	4.22
0x36	4.28
0x37	4.33
0x38	4.39
0x39	4.44
0x3A	4.50
0x3B	4.56
0x3C	4.61
0x3D	4.67
0x3E	4.73
0x3F	4.78

Table 18: V_{OVCH} configuration by VOVCH register

9.5. Temperature Register (TEMPCOLD, TEMPHOT)

The configuration of the temperature thresholds is done by setting two registers through I²C communication:

- The low temperature threshold is configured in register TEMP COLD (0x04);
- The high temperature threshold is configured in register TEMP HOT (0x05).

The temperature protection uses a voltage divider consisting of the resistor R_{DIV} and the thermistor $R_{TH}(T)$. Considering the specifications of the thermistor used, it is possible to determine the relationship between the temperature and the resistance of the thermistor. The following equation must therefore be applied to determine the value to be written to the register:

$$THRESH = 256 \cdot \frac{R_{TH}(T)}{R_{TH}(T) + R_{DIV}}$$

The equation is the same for both the high and the low thresholds. THRESH is the value to be written to the registers, $R_{TH}(T)$ is the resistance of the thermistor at the threshold temperature and R_{DIV} is the resistance that creates a resistive divider with $R_{TH}(T)$, as shown on Figure 8. The AEM1090x determines if the ambient temperature is within the range previously set by measuring the voltage on pin TH_MON.

The following equations are useful to determine the temperature from the THRESH register field value:

$$R_{TH}(T) = R_0 \cdot e^{B \cdot \left(\frac{1}{T} - \frac{1}{T_0} \right)}$$
$$T = \frac{B}{\ln\left(\frac{R_{TH}(T)}{R_0}\right) + \frac{B}{T_0}}$$

- THRESH is the unsigned 8-bit value to be written in the registers to set the temperature threshold to the temperature T [K].
- R_0 [Ω] is the resistance of the NTC thermistor at ambient temperature $T_0 = 298.15$ K (25 °C).
- $R_{TH}(T)$ [Ω] is the resistance of the thermistor at temperature T [K].
- T_0 [K] = 298.15 K (25 °C)
- T [K] is the current ambient temperature of the circuit.
- B is the characteristic constant of the thermistor, allowing to determine the resistance of the thermistor for a given temperature.

For example with a Murata NCP15XH103J03RC the default thresholds are 0°C and 45°C (see Table 10), which matches the specifications of most Li-Ion batteries.

9.5.1. TEMPcold

Minimum temperature (cold) for storage element charging register.

TEMPcold Register	0x04	R/W
Bit [7:0]		
THRESH		
	0x8F	

Table 19: TEMPcold register

Bit [7:0]: THRESH (TEMPcold.THRESH).

This fields is used to configure the minimum temperature (cold) threshold.

9.5.2. TempHot

Maximum temperature (hot) for storage element charging register.

TempHot Register	0x05	R/W
Bit [7:0]		
THRESH		
	0x2F	

Table 20: TempHot register

Bit [7:0]: THRESH (TempHot.THRESH).

This fields is used to configure the maximum temperature (hot) threshold.

9.6. Power Register (PWR)

The PWR (0x06) register is dedicated to the power settings of the AEM1090x and is constituted of 4 bits:

PWR Register		0x06			R/W
Bit [7:4]	Bit [3]	Bit [2]	Bit [1]	Bit [0]	
RESERVED	CHARGEDIS	TMONEN	HPEN	KEEPALEN	
0x00	0	1	1	1	

Table 21: PWR register

Bit [3]: Battery charging disable (PWR.CHARGEDIS).

Prevent charging the battery.

- 0: DIS - allow the charging of the battery
- 1: EN - disable the charging of the battery.

The charging of the battery is disabled if either PWR.CHARGEDIS is set or if the [DIS_STO_CH](#) pin is HIGH. The state of the [DIS_STO_CH](#) pin is not ignored when the AEM1090x switches to the I²C register configuration (see Section 6.1), as it would for all other configuration pins.

Bit [2]: Temperature monitoring enable (PWR.TMONEN).

The temperature monitoring enable bit enables the monitoring of the ambient temperature.

- 0: DIS - Disable the temperature monitoring.
- 1: EN - Enable the temperature monitoring.

Bit [1]: High-power mode enable (PWR.HPEN).

Allow the AEM to automatically enter high-power mode if needed, allowing for more power to be harvested from [SRC](#) (see section 5.5.).

- 0: DIS - Disable automatic high-power mode.
- 1: EN - Enable automatic high-power mode.

Bit [0]: Keep-alive enable (PWR.KEEPALEN).

Define the energy source from which the AEM1090x supplies [VINT](#) (internal circuitry).

- 0: DIS - [VINT](#) is supplied by [SRC](#) through the boost converter.
- 1: EN - [VINT](#) is supplied by [STO](#).

Refer to section 5.6. for more information.

NOTE: disabling the keep-alive feature is not recommended when configuring the AEM1090x with I²C registers, see Section 5.6.

9.7. Sleep Register (SLEEP)

The Sleep register SLEEP (0x07) enables the sleep mode and sets the conditions for entering the sleep mode.

SLEEP Register		0x07	R/W
Bit [7:4]	Bit [3:1]	Bit [0]	
RESERVED	SRCLOW	EN	
0x00	0x00	1	

Table 22: SLEEP register

Bit [3:1]: Sleep threshold (SLEEP.SRCLOW)

This field sets the voltage threshold below which the AEM1090x enters **SLEEP STATE**. Table 23 shows the available settings.

For example, if the SLEEP.SRCLOW field is set to 0x02, the AEM will switch to **SLEEP STATE** if the source voltage drops below 0.255 V at the MPP ratio (V_{MPP}).

The SRC threshold is set by default at 0.112 mV.

SLEEP.SRCLOW	
Configuration	SRC threshold
0x00	0.112 V
0x01	0.202 V
0x02	0.255 V
0x03	0.300 V
0x04	0.360 V
0x05	0.405 V
0x06	0.510 V
0x07	0.600 V

Table 23: Configuration of the sleep threshold

Bit [0]: Sleep mode enable (SLEEP.EN)

This field controls the **SLEEP STATE** behavior of the AEM1090x.

- 0: DIS - The AEM1090x will never switch to **SLEEP STATE**.
- 1: EN - Enable the AEM1090x to switch to **SLEEP STATE** if conditions are met (see below).

The AEM1090x can only go in **SLEEP STATE** if the following conditions are met:

SLEEP_STATE = SLEEP.EN & **KEEP_ALIVE** & ($V_{sto} < V_{ovch}$ | STATUS.TEMP | **DIS_STO_CH** | $V_{mpp} < SLEEP.SRCLOW$) & ($V_{sto} > V_{ovdis}$)

9.8. Average Power Monitoring Control Register (APM)

Average Power Monitoring (APM; register address 0x09) allows for estimating the energy transferred from the source to the battery.

APM Register		0x09		R/W	
Bit [7:4]	Bit [3:2]	Bit [1]	Bit [0]		
RESERVED	WINDOW	MODE	EN		
0x00	0x00	0	0		

Table 24: APM register

Bit [3:2]: APM Computation Window (APM.WINDOW)

This field is used to select the APM computation window (noted T_A in Section 5.4). The energy transferred is integrated over this configurable time window.

APM.WINDOW		
Configuration	Configuration window	APM register refresh rate
0x00	128 ms	256 ms
0x01	64 ms	128 ms
0x02	32 ms	64 ms

Table 25: Configuration of APM computation windows

Please note that, as described in Section 5.4, measurement period is twice the computation window, meaning that a new measurement is available every $2 \times T_A$.

Bit [1]: APM mode (APM.MODE)

The APM implements two modes, according to the APM.MODE register field value:

- 0: COUNTER - Pulse counter mode: the AEM0090x counts the number of current pulses drawn by the boost converter. This mode is enabled by setting the APM mode bit to 0.
- 1: POWER - Power meter mode: the number of pulses during a period is multiplied by a value to obtain the energy that has been transferred taking into account the efficiency of the AEM0090x. This mode is enabled by setting the APM mode bit to 1.

Bit [0]: APM enable (APM.EN)

This field enables the APM feature.

- 0: DIS - APM feature disabled.
- 1: EN - APM feature enabled.

9.9. IRQ Enable Register (IRQEN)

IRQ enable register (0x0A): configures on which event the IRQ pin is set HIGH.

IRQEN Register		0x0A				R/W	
Bit [7]	Bit [6]	Bit [5]	Bit [4]	Bit [3]	Bit [2]	Bit [1]	Bit [0]
RESERVED	APMERR	APMDONE	TEMP	SRCLOW	VOVCH	VOVDIS	I2CRDY
0	0	0	0	0	0	0	1

Table 26: IRQEN register

Bit [6]: IRQ APM error enable (IRQEN.APMERR)

Enable the IRQ pin to be asserted (HIGH) when an APM error occurs

- 0: DIS - Disable.
- 1: EN - Enable.

Bit [5]: IRQ APM done enable (IRQEN.APMDONE)

Enable the IRQ pin to be asserted (HIGH) when new APM data is available.

- 0: DIS - Disable.
- 1: EN - Enable.

Bit [4]: IRQ temperature enable (IRQEN.TEMP)

Enable the IRQ pin to be asserted (HIGH) when the temperature crosses the minimum or maximum temperature allowed to charge the battery (see section 9.5.).

- 0: DIS - Disable.
- 1: EN - Enable.

Bit [3]: IRQ source low enable (IRQEN.SRCLOW)

Enable the IRQ pin to be asserted (HIGH) when V_{MPP} crosses the SRC LOW threshold.

- 0: DIS - Disable.
- 1: EN - Enable.

Bit [2]: IRQ storage overcharge enable (IRQEN.VOVCH)

Enable the IRQ pin to be asserted (HIGH) when the battery voltage crosses the V_{OVCH} threshold.

- 0: DIS - Disable.
- 1: EN - Enable.

Bit [1]: IRQ storage overdischarge enable (IRQEN.VOVDIS)

Enable the IRQ pin to be asserted (HIGH) when the storage element voltage crosses the V_{OVDIS} threshold.

- 0: DIS - Disable.
- 1: EN - Enable.

Bit [0]: IRQ serial interface ready enable (IRQEN.I2CRDY)

This bit is set at 1 by default.

When the AEM1090x has coldstarted and is ready to communicate through I²C. The IRQ pin is asserted (HIGH).

- 0: DIS - Disable.
- 1: EN - Enable.

9.10. I²C Control (CTRL)

Control register (0x0B).

CTRL Register	0x0B		
Bit [7:3]	Bit [2]	Bit [1]	Bit [0]
RESERVED	SYNCBUSY	RESERVED	UPDATE
0x00	0	0	0

Table 27: CTRL register

Bit [2]: SYNCBUSY (CTRL.SYNCBUSY).

This field indicates whether the synchronization from the I²C registers to the system registers is ongoing or not. While ongoing, it is not possible to write in the registers.

- 0: NSYNC - R: CTRL register not synchronizing.
- 1: SYNC - R: CTRL register synchronizing.

Bit [0]: UPDATE (CTRL.UPDATE).

This field is used to control the source of the AEM1090x configuration (GPIO or I²C).

Furthermore, this field is used to update the AEM1090x configuration with the current configuration from the I²C registers.

- 0: GPIO
 - W: load configurations from the GPIO.
 - R: configurations from the GPIO is currently used if read as 0.
- 1: I²C
 - W: load configurations from the I²C registers.
 - R: configurations from the I²C is currently used if read as 1.

NOTE: writing any register does not have any effect until 1 is written to the CTRL.UPDATE field, leading to the AEM1090x to read the new register values and apply them.

NOTE: when using I²C register configuration, user can switch back to GPIO configuration by writing 0 to the CTRL.UPDATE field. In that case, the settings previously written to the IRQEN registers are still valid even when using GPIO configuration, as well as the data in IRQFLG register.

9.11. IRQ Flag Register (IRQFLG)

The IRQFLG (0x0C) register contains all interrupt flags, corresponding to those enabled in the IRQEN register.

This register is reset when read.

IRQFLG Register		0x0C		R			
Bit [7]	Bit [6]	Bit [5]	Bit [4]	Bit [3]	Bit [2]	Bit [1]	Bit [0]
RESERVED	APMERR	APMDONE	TEMP	SRCLOW	VOVCH	VOVDIS	I2CRDY
0	0	0	0	0	0	0	1

Table 28: IRQFLG register

Bit [6]: IRQ APM error Flag (IRQFLG.APMERR)

This interrupt flag is set when an APM error occurred.

- 0: NFLG - No interrupt flag raised.
- 1: FLG - Interrupt flag raised.

Bit [5]: IRQ APM done Flag (IRQFLG.APMDONE)

This interrupt flag is set when APM data is available.

- 0: NFLG - No interrupt flag raised.
- 1: FLG - Interrupt flag raised.

Bit [4]: IRQ temperature Flag (IRQFLG.TEMP)

This interrupt flag is set when the temperature crosses the minimum or maximum temperature (selected through the TEMPcold and TEMPHot registers).

- 0: NFLG - No interrupt flag raised.
- 1: FLG - Interrupt flag raised.

Bit [3]: IRQ source low Flag (IRQFLG.SRCLOW)

This interrupt flag is set when V_{MPP} crosses the SRC LOW voltage (selected through the SLEEP register).

- 0: NFLG - No interrupt flag raised.
- 1: FLG - Interrupt flag raised.

Bit [2]: IRQ storage overcharge Flag (IRQFLG.VOVCH)

This interrupt flag is set when the battery crosses the overcharge voltage (selected through the VOVCH register).

- 0: NFLG - No interrupt flag raised.
- 1: FLG - Interrupt flag raised.

Bit [1]: IRQ storage overdischarge Flag (IRQFLG.VOVDIS)

This interrupt flag is set when the battery crosses the overdischarge voltage (selected through the VOVDIS register).

- 0: NFLG - No interrupt flag raised.
- 1: FLG - Interrupt flag raised.

Bit [0]: IRQ serial interface ready Flag (IRQFLG.I2CRDY)

This interrupt flag is set when the AEM1090x has coldstarted and is ready to communicate through I²C (the corresponding interrupt source is enabled by default).

- 0: NFLG - No interrupt flag raised. The AEM1090x is not ready to communicate through the I²C bus.
- 1: FLG - Interrupt flag raised. The AEM1090x is ready to communicate through the I²C bus.

9.12. Status Register (STATUS)

The STATUS (0x0D) register contains informations about the status of the AEM1090x.

STATUS Register		0x0D				R	
Bit [7]	Bit [6]	Bit [5]	Bit [4]	Bit [3]	Bit [2]	Bit [1]	Bit [0]
CHARGEDIS	CHARGING	RESERVED	TEMP	SRCLOW	VOVCH	VOVDIS	RESERVED
0	0	0	0	0	0	0	0

Table 29: Status register

Bit [7]: CHARGEDIS Status (STATUS.CHARGEDIS)

This status indicates whether the storage charging is enabled or not via the GPIO ([DIS_STO_CH](#)).

- 0: LOW - [DIS_STO_CH](#) is LOW.
- 1: HIGH - [DIS_STO_CH](#) is HIGH.

Bit [6]: CHARGE Status (STATUS.CHARGING)

This status indicates whether the AEM is currently able to charge the battery or not.

- 0: LOW - Charging is disabled.
- 1: HIGH - Charging is enabled.

Set condition:

$(V_{STO} < V_{OVCH}) \& \overline{\text{STATUS.TEMP}} \& \overline{\text{STATUS.CHARGEDIS}}$

$\& (\text{OVDIS STATE} \mid \text{SUPPLY STATE} \mid \text{SHUTDOWN STATE})$

Bit [4]: Temperature Status (STATUS.TEMP)

This bit is set if the temperature is outside the range defined in TEMP_COLD and TEMP_HOT registers.

- 0: LOW - Temperature is in range.
- 1: HIGH - Temperature is outside of the range.

Bit [3]: Source Low Status (STATUS.SRCLOW)

This status indicates whether the source voltage is higher or lower than the sleep level threshold.

- 0: LOW - Source target voltage is above the sleep level threshold.
- 1: HIGH - Source target voltage is below the sleep level threshold.

Bit [2]: Storage Overcharge Status (STATUS.VOVCH)

This status indicates whether the battery voltage is higher or lower than the overcharge level threshold.

- 0: LOW - $V_{STO} < V_{OVCH}$.
- 1: HIGH - $V_{STO} \geq V_{OVCH}$.

Bit [1]: Storage Overdischarge Status (STATUS.VOVDIS)

This status indicates whether the battery is higher or lower than the overdischarge level threshold.

- 0: LOW - $V_{STO} > V_{OVDIS}$.
- 1: HIGH - $V_{STO} \leq V_{OVDIS}$.

9.13. Average Power Monitoring Data Registers (APM)

- Pulse Counter Mode: in that mode, the value in the APM data registers is the number of pulses drawn by the DCDC converter during the computation window (see Section 5.4). This value can be accessed directly in the COUNTER fields as shown in Table 30.
- Power Meter mode: in that mode, the value in the APM data registers is the energy value E_{APM} in nano-Joule. It can be read by left bit-shifting (OFFSET bits) the value in the POWER field and multiplying the result by the corresponding α parameter and by the inductance of the DCDC converter L_{DCDC} .

$$E_{APM} = \frac{(POWER \ll OFFSET) \cdot \alpha}{L_{DCDC}}$$

NOTE: the α parameter varies according to application specific parameters. Please contact e-peas support for information about how to determine the α parameter in a specific application

APM2								APM1								APM0								
Register Field	Bit [7]	Bit [6]	Bit [5]	Bit [4]	Bit [3]	Bit [2]	Bit [1]	Bit [0]	Bit [7]	Bit [6]	Bit [5]	Bit [4]	Bit [3]	Bit [2]	Bit [1]	Bit [0]	Bit [7]	Bit [6]	Bit [5]	Bit [4]	Bit [3]	Bit [2]	Bit [1]	Bit [0]
Register Field	APM2SRC.DATA[22:16]								APM1SRC.DATA[15:8]								APM0SRC.DATA[7:0]							
Global APM Field																								
Pulse Counter Mode	COUNTER [21:16]								COUNTER [15:8]								COUNTER [7:0]							
Power Meter Mode	OFFSET [22:19]				POWER [18:16]				POWER [15:8]								POWER [7:0]							

Table 30: Summary of APMx registers fields

9.14. Temperature Data Register (TEMP)

This field contains the result of the ADC acquisition for the temperature monitoring. The voltage at the terminals of the voltage divider can be derived by applying the following equation, with $V_{REF} = 1$ V:

$$V_{TH} = \frac{V_{REF} \cdot \text{DATA}}{256}$$

Or, in order to make a comparison with the Table in the thermistor datasheet, it is possible to find the impedance of the thermistor:

$$R_{TH} = R_{DIV} \cdot \frac{\text{DATA}}{256 - \text{DATA}}$$

TEMP Register	0x11	R
Bit [7:0]		
DATA		
0x00		

Table 31: TEMP register

9.15. Battery Voltage Register (STO)

The STO (0x12) contains the 8-bit result from the ADC acquisition of the battery voltage. To convert the result to Volts, the following equation is applied.

$$V_{STO} = \frac{4.8 \cdot \text{DEC}(\text{DATA})}{256}$$

STO Register	0x12	R
	Bit [7:0]	
	DATA	
	0x00	

Table 32: STO register

9.16. Source Voltage Register (SRC)

The SRC (0x13) register contains data reflecting the voltage level at which the input of the AEM1090x is regulated, resulting from the MPPT evaluation. To convert this value in Volts refer to Table 20.

To convert the data from the registers in volts, the formulas in Table 33 can also be used.

SRC.DATA Range	Formula [V]
0x00 - 0x06	0.112
0x07 - 0x12	$0.09 + (2 \cdot \text{DATA} - 9) \cdot 0.0075$
0x13 - 0x39	$0.3 + (2 \cdot \text{DATA} - 37) \cdot 0.015$
0x68 - 0x79	$\frac{0.3 + (2 \cdot \text{DATA} - 165) \cdot 0.015}{0.67}$
0x9F - 0xA6	$\frac{0.3 + (2 \cdot \text{DATA} - 293) \cdot 0.015}{0.33}$

Table 33: Source voltage V_{SRC} from SRC.DATA register value (formula)

SRC.DATA [7:0]	VSRC [V]						
0x00	0.112	0x18	0.465	0x2C	1.065	0x6E	1.679
...	...	0x19	0.495	0x2D	1.095	0x6F	1.724
0x06	0.112	0x1A	0.525	0x2E	1.125	0x70	1.769
0x07	0.128	0x1B	0.555	0x2F	1.155	0x71	1.813
0x08	0.143	0x1C	0.585	0x30	1.185	0x72	1.858
0x09	0.158	0x1D	0.615	0x31	1.215	0x73	1.903
0x0A	0.173	0x1E	0.645	0x32	1.245	0x74	1.948
0x0B	0.188	0x1F	0.675	0x33	1.275	0x75	1.993
0x0C	0.203	0x20	0.705	0x34	1.305	0x76	2.037
0x0D	0.218	0x21	0.735	0x35	1.335	0x77	2.082
0x0E	0.233	0x22	0.765	0x36	1.365	0x78	2.127
0x0F	0.248	0x23	0.795	0x37	1.395	0x79	2.172
0x10	0.263	0x24	0.825	0x38	1.425	0x9F	2.045
0x11	0.278	0x25	0.855	0x39	1.455	0xA0	2.136
0x12	0.293	0x26	0.885	0x68	1.410	0xA1	2.227
0x13	0.315	0x27	0.915	0x69	1.455	0xA2	2.318
0x14	0.345	0x28	0.945	0x6A	1.500	0xA3	2.409
0x15	0.375	0x29	0.975	0x6B	1.545	0xA4	2.500
0x16	0.405	0x2A	1.005	0x6C	1.590	0xA5	2.591
0x17	0.435	0x2B	1.035	0x6D	1.634	0xA6	2.682

Table 34: Source voltage V_{SRC} from SRC.DATA register value (lookup table)

9.17. Part Number Registers (PN)

PN0 Register	0xE0	R
	Bit [7:0]	
		DATA
AEM10900: 0x30		AEM10901: 0x31

Table 35: PN0 register

PN1 Register	0xE1	R
	Bit [7:0]	
		DATA
	0x30	

Table 36: PN1 register

PN2 Register	0xE2	R
	Bit [7:0]	
		DATA
	0x39	

Table 37: PN2 register

PN3 Register	0xE3	R
	Bit [7:0]	
		DATA
	0x30	

Table 38: PN3 register

PN4 Register	0xE4	R
	Bit [7:0]	
		DATA
	0X31	

Table 39: PN4 register

10. Typical Application Circuits

10.1. Example Circuit 1

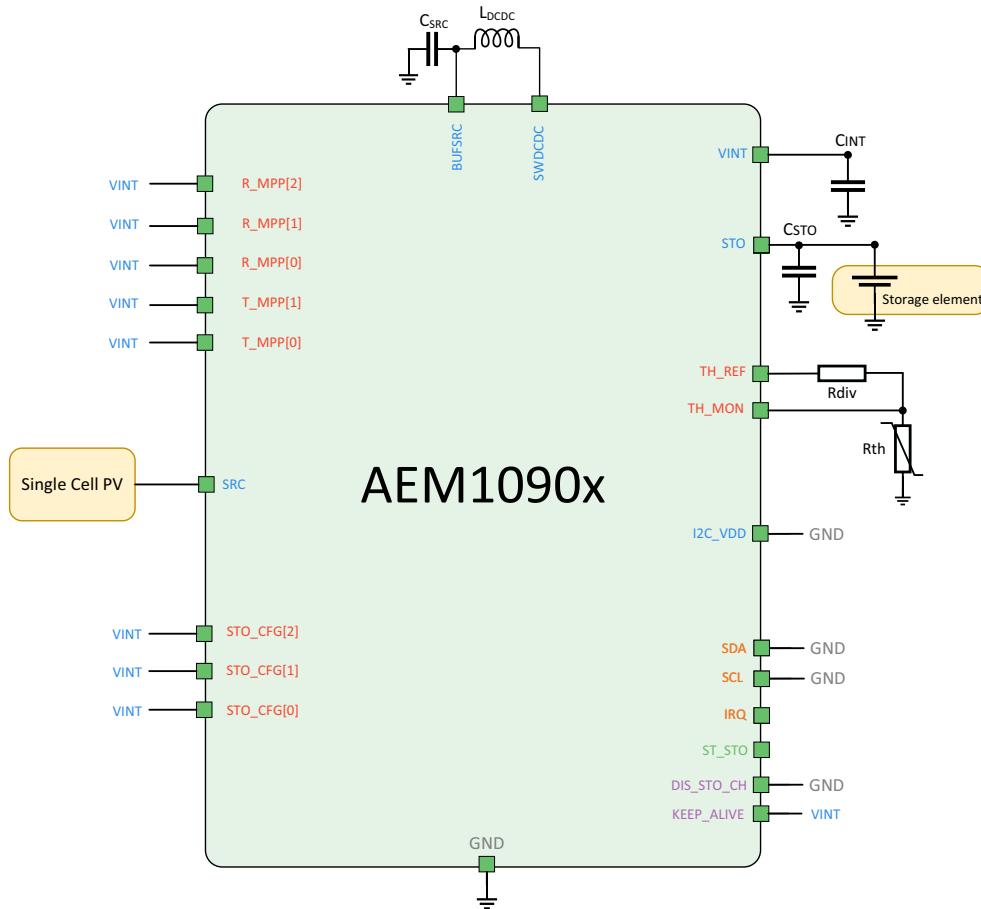


Figure 15: Typical application circuit 1

The circuit is an example of a system with solar energy harvesting with the AEM1090x. It uses a Li-ion rechargeable battery as energy storage.

- Energy source: PV cell.
- **R_MPP[2:0]** = HHH: The MPPT ratio is set to 80 %
- **T_MPP[1:0]** = HH: The MPPT timing is set to 2/256 ms
- **STO_CFG[2:0]** = HHH: The storage element is a Li-ion battery.

- **V_{OVCH}** = 4.12 V
- **V_{OVDIS}** = 3.01 V
- The thermal monitoring is used with a default threshold value (TEMPCOLD = 0°C, TEMPHOT = 45°C) with **R_{DIV}** = 22 kΩ and **R_{TH}**: NCP15XH103J03RC.
- The I²C communication is not used.
- **DIS_STO_CH** is connected to **GND**: The charging of the storage element on **STO** is enabled.
- **KEEP_ALIVE** is connected to **V_{INT}**: The AEM is being powered from the storage element.

10.2. Example Circuit 2

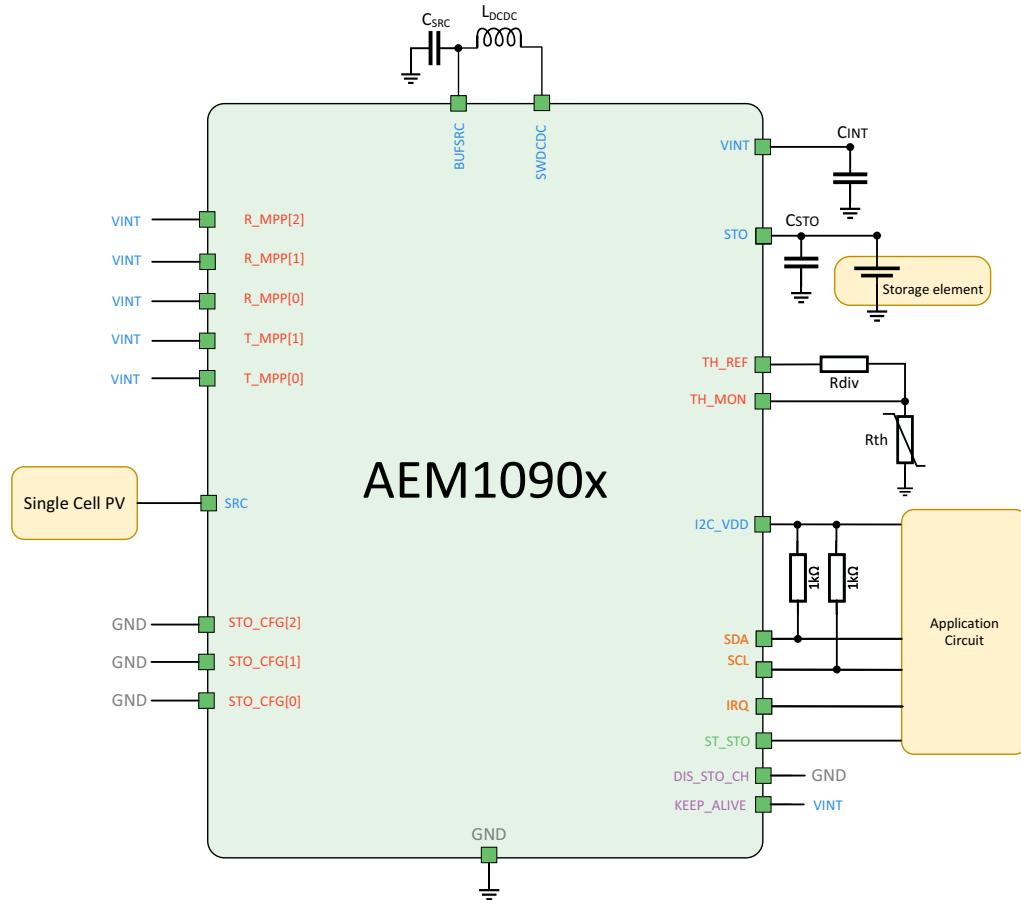


Figure 16: Typical application circuit 2

The circuit is an example of a system with solar energy harvesting with the AEM1090x (QFN28 package). It uses a NiCd 3 cells battery as storage element.

- Energy source: PV cell
- **R_MPP[2:0]**: Configured through the I²C communication (MPP ratio = 90%)
- **T_MPP[1:0]**: Configured through the I²C communication (MPP timing = 2ms/128ms)
- **STO_CFG[2:0]**: Configured through the I²C communication
 - $V_{OVCH} = 4.11\text{ V}$
 - $V_{OVDIS} = 3.32\text{ V}$
- The thermal monitoring is used and the thresholds are configured through the I²C communication (Cold threshold = 10°C, Hot threshold = 60°C with $R_{DIV} = 22\text{ k}\Omega$ and $R_{TH} = \text{NCP15XH103J03RC}$).

- **DIS_STO_CH** is connected to GND: The charging of the storage element on **STO** is enabled.
- **KEEP_ALIVE** is connected to **V_{INT}**: The AEM is being powered from the storage element.

Register Address	Register Name	Value
0x01	MPPTCFG	0x51
0x02	VOVDIS	0x32
0x03	VOVCH	0x33
0x04	TEMPCOLD	0x74
0x05	TEMPHOT	0x1F

Table 40: Typical application circuit 2 register settings

NOTE: a configuration tool is available on e-peas website. It helps the user to read and write registers.

11. Circuit Behavior

11.1. Start-up and Supply

11.1.1. Configuration

- SRC is supplied by a 1.0 V voltage source with 5 mA current compliance.
 - V_{OC} = 1.0 V
 - I_{SRC} = 5 mA
- $R_{MPP}[2:0]$ = HHL
 - R_{MPP} = 70 %
- $T_{MPP}[1:0]$ = HL
 - T_{MPPT} = 512 ms
 - T_{VOC} = 4 ms
- $STO_CFG[2:0]$ = HHL
 - V_{OVDIS} = 3.01 V
 - V_{OVCH} = 4.35 V
- Temperature monitoring disabled.
- DIS_STO_CH = L
 - Storage element charge is enabled.
- $KEEP_ALIVE$ = H
 - Keep-alive functionality is enabled.

11.1.2. Observations

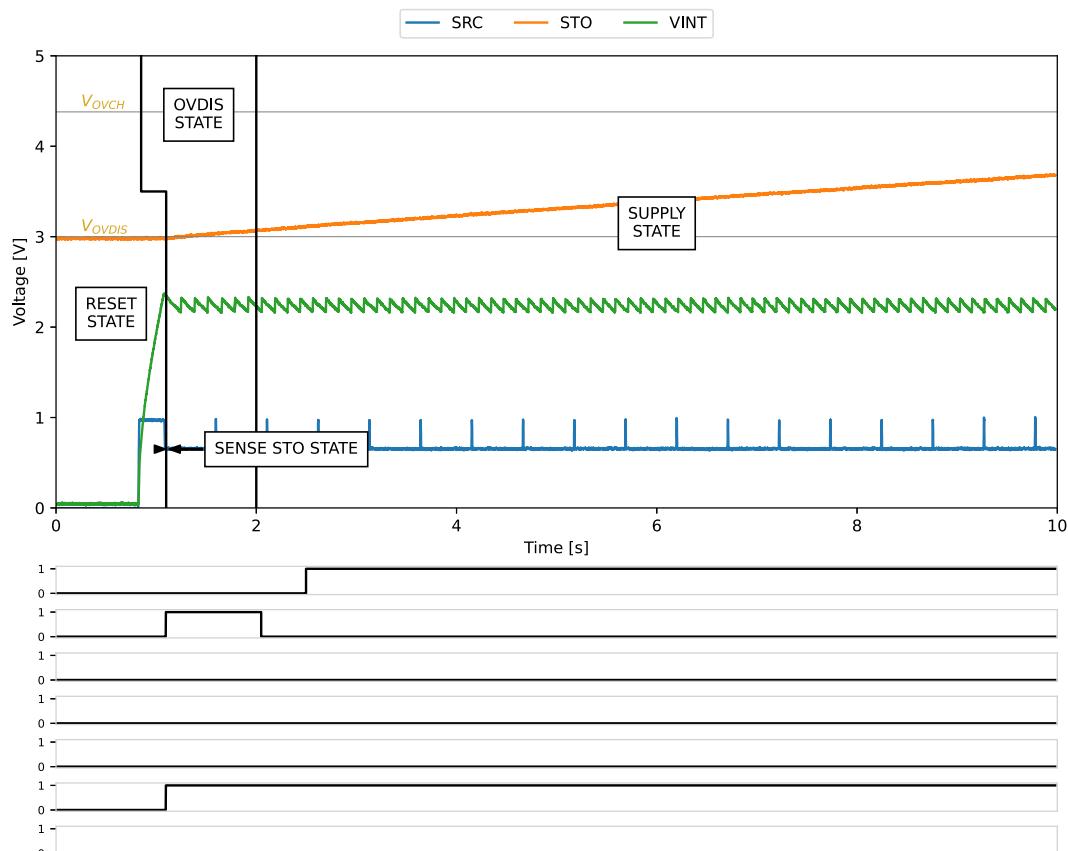
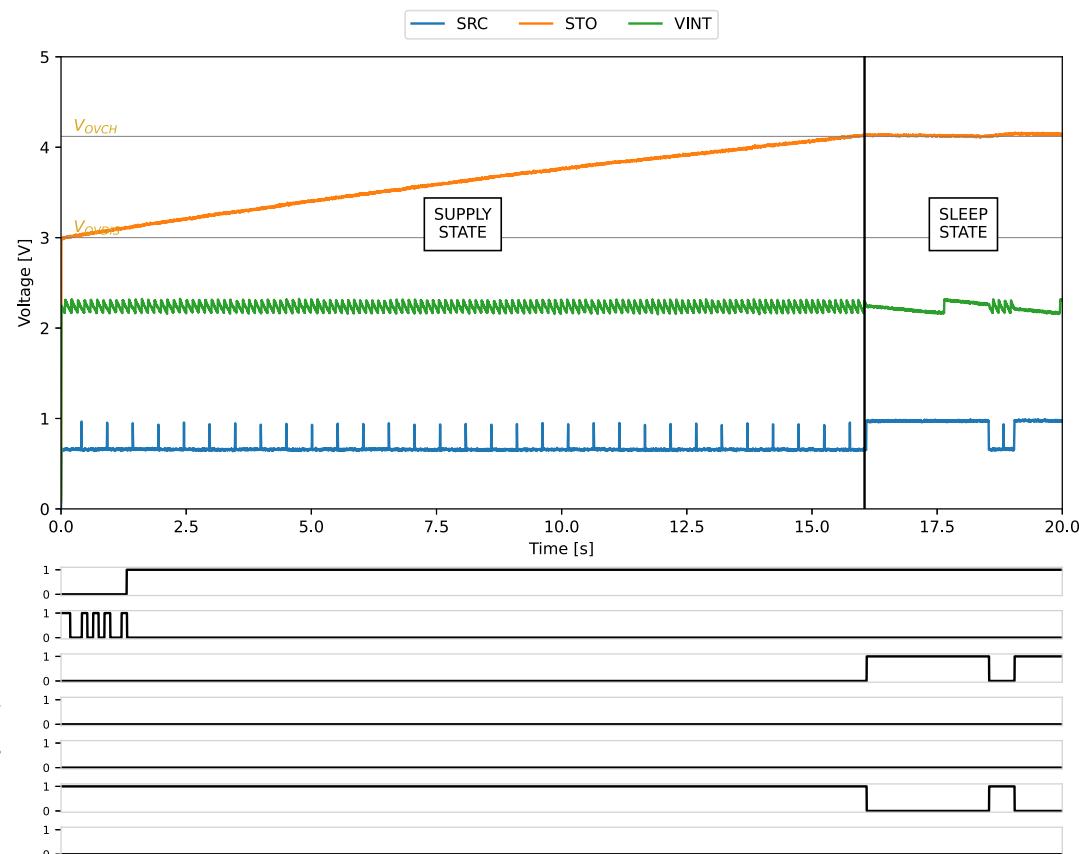


Figure 17: start-up and overcharge behavior

- The AEM1090x is initially in **RESET STATE**.
- Once the supply connected on SRC is switched on, the AEM1090x coldstarts. V_{STO} is charged until V_{INT} reaches $V_{INT,CS}$. Then, the AEM1090x switches to **SENSE STO STATE**.
- In **SENSE STO STATE**, the AEM1090x measures V_{STO} , which is slightly below V_{OVDIS} . The AEM1090x goes into **OVDIS STATE**.
- In **OVDIS STATE**, the AEM1090x charges the storage element on STO by harvesting the energy from SRC. V_{SRC} is regulated at 0.7 V. V_{INT} is supplied by SRC. Once V_{STO} reaches V_{OVDIS} , the AEM1090x switches to **SUPPLY STATE**.
- In **SUPPLY STATE**, the AEM1090x charges the storage element.
 - Once V_{STO} reaches $V_{OVDIS} + 100$ mV, the ST_STO toggles from LOW to HIGH.



11.2. Supply and Overcharge

11.2.1. Configuration

- SRC is supplied by a 1.0 V voltage source with 5 mA current compliance.
 - V_{OC} = 1.0 V
 - I_{SRC} = 5 mA
- R_MPP[2:0] = HHL
 - R_MPP = 70 %
- T_MPP[1:0] = HL
 - T_{MPPT} = 512 ms
 - T_{VOC} = 4 ms
- STO_CFG[2:0] = HHL
 - V_{OVDIS} = 3.01 V
 - V_{OVCH} = 4.35 V
- Temperature monitoring disabled.
- DIS_STO_CH = L
 - Storage element charge is enabled.
- KEEP_ALIVE = H
 - Keep-alive functionality is enabled.

11.2.2. Observations

- In SUPPLY STATE, the AEM1090x charges the storage element.
- Once V_{STO} reaches V_{OVCH} , the AEM1090x switches to SLEEP STATE.
- Once V_{STO} reaches $V_{OVDIS} + 100 \text{ mV}$, the ST_STO toggles from LOW to HIGH.
- When the SLEEP condition is satisfied, the AEM switches to SLEEP STATE.
- In SLEEP STATE, STO and VINT are fully charged. The AEM1090x stops harvesting energy from SRC. Please note that around 19 s, the AEM1090x recharges VINT from STO, thus briefly switching to SUPPLY STATE because V_{STO} goes below V_{OVCH} .

11.3. Overdischarge

11.3.1. Configuration

- SRC is supplied by a 1.0 V voltage source with 5 mA current compliance.
 - V_{OC} = 1.0 V
 - I_{SRC} = 5 mA
- $R_{MPP}[2:0]$ = HHL
 - R_{MPP} = 70 %
- $T_{MPP}[1:0]$ = HL
 - T_{MPPT} = 512 ms
 - T_{VOC} = 4 ms
- $STO_CFG[2:0]$ = HHL
 - V_{OVDIS} = 3.01 V
 - V_{OVCH} = 4.35 V
- Temperature monitoring disabled.
- DIS_STO_CH = L
 - Storage element charge is enabled.
- $KEEP_ALIVE$ = H
 - Keep-alive functionality is enabled.

11.3.2. Observations

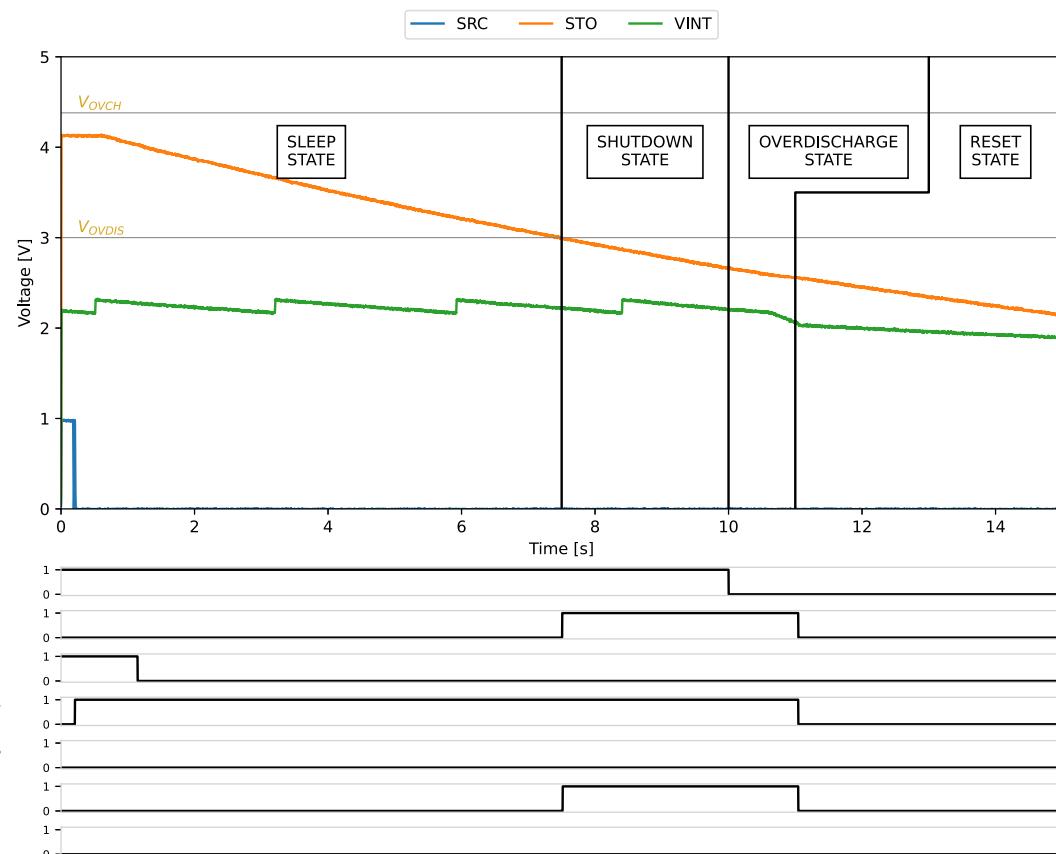


Figure 19: Overdischarge behavior

- The AEM1090x is initially in **SLEEP STATE** since the sleep condition is satisfied: $SLEEP.EN \& KEEP_ALIVE \& (V_{STO} > V_{OVCH} \mid STATUS.TEMP \mid DIS_STO_CH \mid V_{MPP} < SLEEP.SRCLOW)$.
- After the source is cut off, V_{STO} decreases while maintaining V_{INT} until it reaches V_{OVDIS} , the AEM1090x briefly enters **SUPPLY STATE** and goes to **SHUTDOWN STATE**.
- After T_{CRIT} in **SHUTDOWN STATE**, the AEM1090x goes in **OVDIS STATE** and **ST_STO** toggles from HIGH to LOW. V_{INT} is no longer supplied and C_{INT} starts to discharge.
- Once V_{INT} falls below $V_{INT,RESET}$, the AEM1090x goes in **RESET STATE**. All STATUS signals are set to LOW.

11.4. Keep-alive

11.4.1. Configuration

- SRC is supplied by a 1.0 V voltage source with 5 mA current compliance.
 - $V_{OC} = 1.0$ V
 - $I_{SRC} = 5$ mA
- $R_{MPP}[2:0] = HHL$
 - $R_{MPP} = 70$ %
- $T_{MPP}[1:0] = HL$
 - $T_{MPPT} = 512$ ms
 - $T_{VOC} = 4$ ms
- $STO_CFG[2:0] = HHL$
 - $V_{OVDIS} = 3.01$ V
 - $V_{OVCH} = 4.35$ V
- Temperature monitoring disabled.
- $DIS_STO_CH = L$
 - Storage element charge is enabled.
- **KEEP_ALIVE:** is enabled on Figure 20 and disabled on Figure 21.

11.4.2. Observations

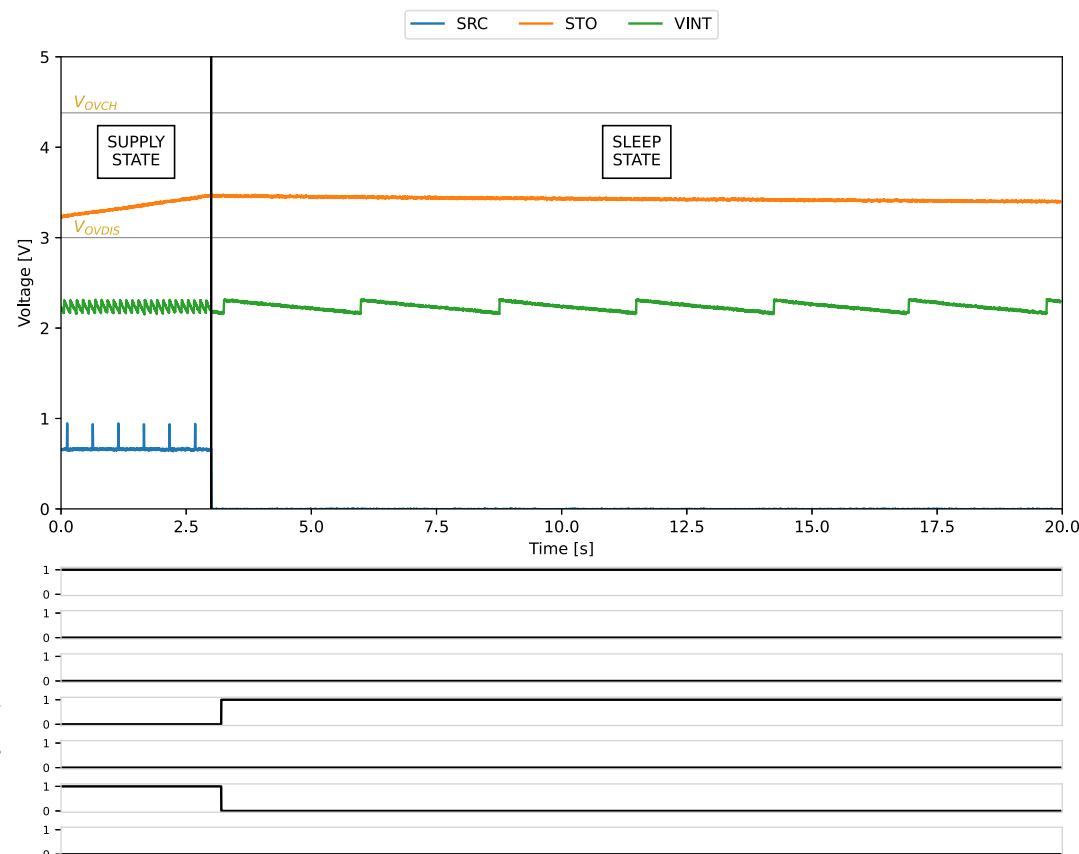


Figure 20: **KEEP_ALIVE HIGH behavior**

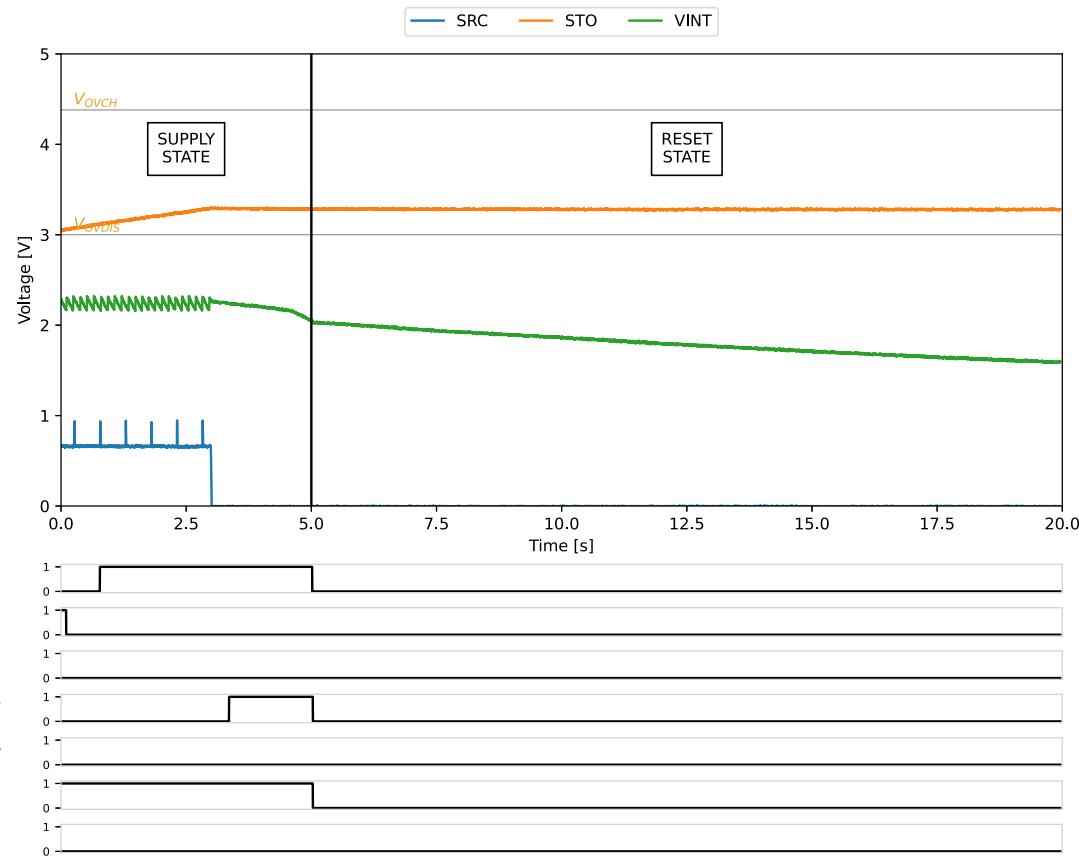


Figure 21: **KEEP_ALIVE** LOW behavior

In both cases, the AEM1090x is first in **SUPPLY STATE**. The storage element connected to **STO** is charged by extracting power from **SRC**.

At 3 s, the energy source connected to the **SRC** pin is switched off in both cases. The behavior after that depends on whether the keep-alive functionality is enabled or not:

- **KEEP_ALIVE** = H (Keep-alive enabled, Figure 20): the AEM1090x switches to **SLEEP STATE**, **VINT** keeps being supplied from the storage element connected to **STO**. The AEM1090x will be able to harvest again as soon as power is restored to the **SRC** pin. On the other hand, a small current is pulled from the storage element ($I_{Q\text{SLEEP}}$, see Table 5).

- **KEEP_ALIVE** = L (Keep-alive disabled, Figure 21): **VINT** can only be supplied from the energy available on **SRC**, so as soon as the power source is switched off, **VINT** stops being supplied. Once **VINT** falls below $V_{\text{INT,RESET}}$, the AEM1090x switches to **RESET STATE**, so that no current is pulled from the storage element. The stored energy is thus preserved. On the other hand, when power is restored to the **SRC** pin, the AEM1090x must perform a cold start to resume harvesting.

11.5. Temperature Monitoring

11.5.1. Configuration

- SRC is supplied by a 1.0 V voltage source with 5 mA current compliance.
 - V_{OC} = 1.0 V
 - I_{SRC} = 5 mA
- R_MPP[2:0] = HHL
 - R_MPP = 70 %
- T_MPP[1:0] = HL
 - T_{MPPT} = 512 ms
 - T_{VOC} = 4 ms
- STO_CFG[2:0] = HHL
 - V_{OVDIS} = 3.01 V
 - V_{OVCH} = 4.35 V
- Temperature monitoring is enabled with default values:
 - The temperature range in which the AEM1090x charges the storage element is 0 °C to 45 °C.
- DIS_STO_CH = L
 - Storage element charge is enabled.
- KEEP_ALIVE = H
 - keep-alive feature is enabled.

11.5.2. Observations

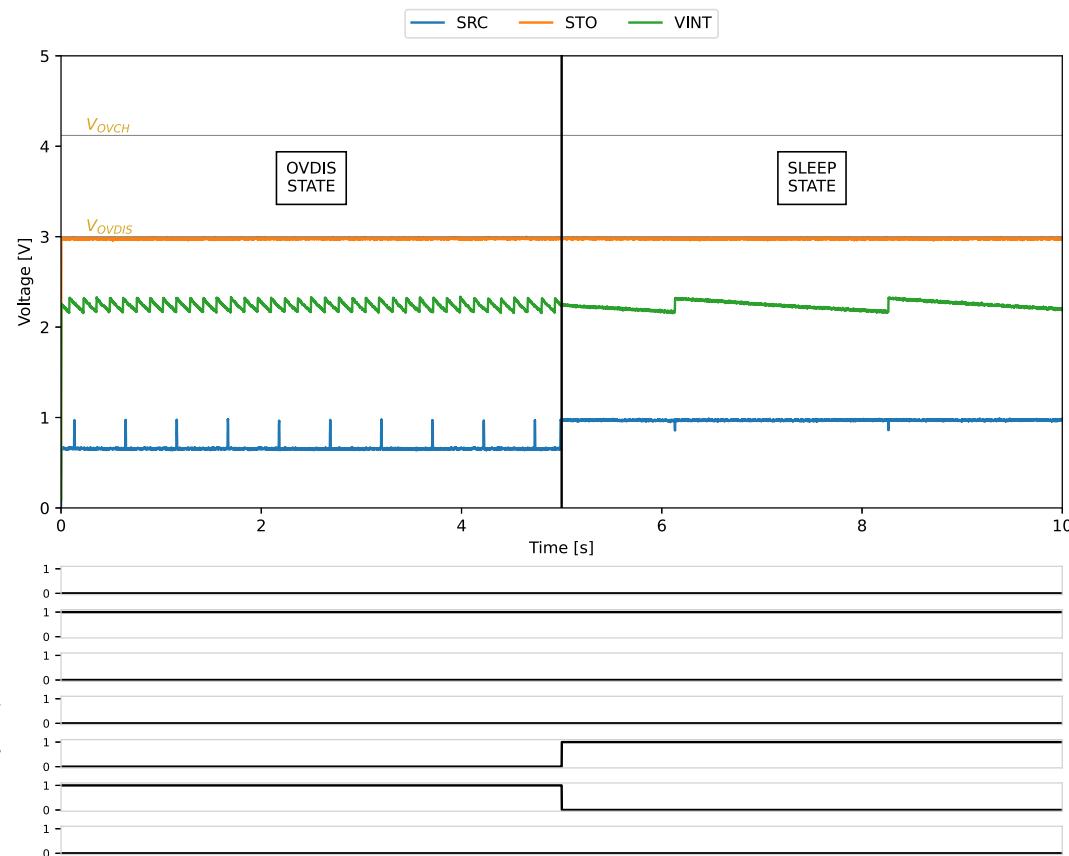


Figure 22: Temperature monitoring behavior

Figure 22 shows the AEM1090x charging the storage element (V_{SRC} is regulated) while being in OVDIS STATE. At 5 s, the temperature drops below 0 °C, causing the AEM1090x to stop charging (V_{SRC} goes to V_{OC}) the storage element. The AEM1090x goes in SLEEP STATE.

12. Minimum BOM

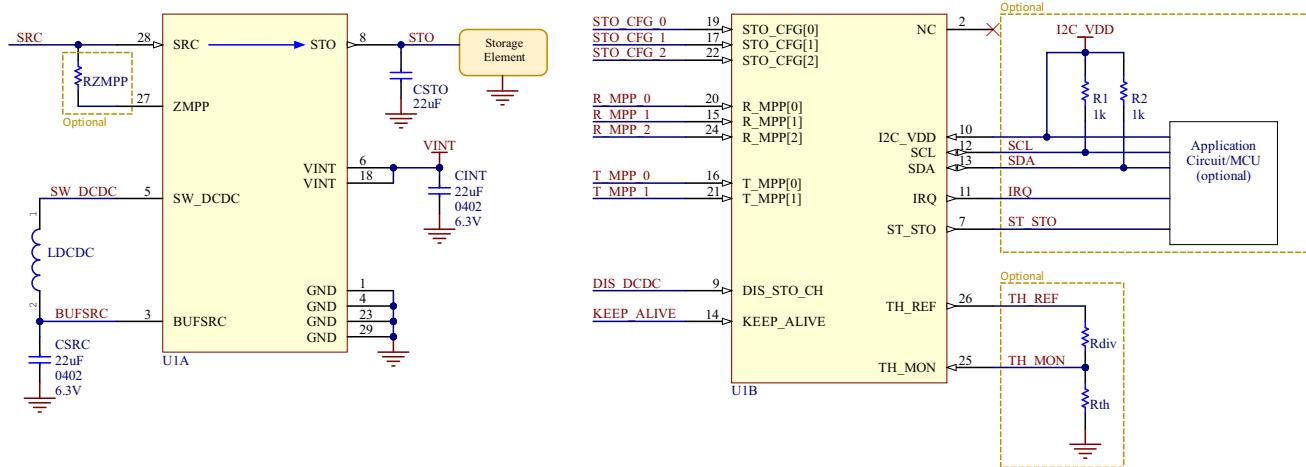


Figure 23: AEM1090x schematic

	Designator	Description	Quantity	Manufacturer	Part number
Mandatory	U1	AEM1090x	1	e-peas	order at sales@e-peas.com
	Battery	Storage element with 2.5 V min. voltage	1	To be defined by the user	
	LDCDC (AEM10900)	Power inductor 6.8 μ H 1.15A 1008	1	TDK	VLS252012HBX-6R8M-1
	LDCDC (AEM10901)	Power inductor 33 μ H 680 mA 1515	1	Coilcraft	LPS4018-333MRB
	CSRC	Ceramic capacitor 22 μ F 6.3 V 20% X5R 0402	1	Murata	GRM158R60J226ME01
	CINT	Ceramic capacitor 22 μ F 6.3 V 20% X5R 0402	1	Murata	GRM158R60J226ME01
	CSTO	Ceramic capacitor 22 μ F 6.3 V 20% X5R 0402	1	Murata	GRM158R60J226ME01
Optional	RZMPP	Resistor for ZMPP functionality	1	To be defined by user	
	R1, R2	Pull-up 1 k Ω Resistors for I ² C interface	2	Yageo	AC0603FR-071KL
	Rth	10 k Ω NTC thermistor for temperature monitoring	1	Murata	NCP15XH103J03RC
	Rdiv	Resistor 22 k Ω 1%	1	Yageo	PNRC0402FR-0722KL

Table 41: AEM1090x bill of material

13. Layout

The following Figures are showcasing layout examples of the AEM1090x.

The following guidelines must be applied for best performances:

- Make sure that ground and power signals are routed with large tracks. If an internal ground plane is used, place via as close as possible to the components, especially for decoupling capacitors.
- Reactive components related to the boost converter must be placed as close as possible to the corresponding pins (**SWDCDC**, **BUFSRC** and **STO**), and be routed with large tracks/polygons.

- PCB track capacitance must be reduced as much as possible on the boost converter switching node **SWDCDC**. This is done as follows:

- Keep the connection between the **SWDCDC** pin and the inductor short.
- Remove the ground and power planes under the **SWDCDC** node. The polygon on the opposite external layer may also be removed.
- Increase the distance between **SWDCDC** and the ground polygon on the external PCB layer where the AEM1090x is mounted.
- PCB track capacitance must be reduced as much as possible on the **TH_REF** node. Same principle as for **SWDCDC** may be applied.

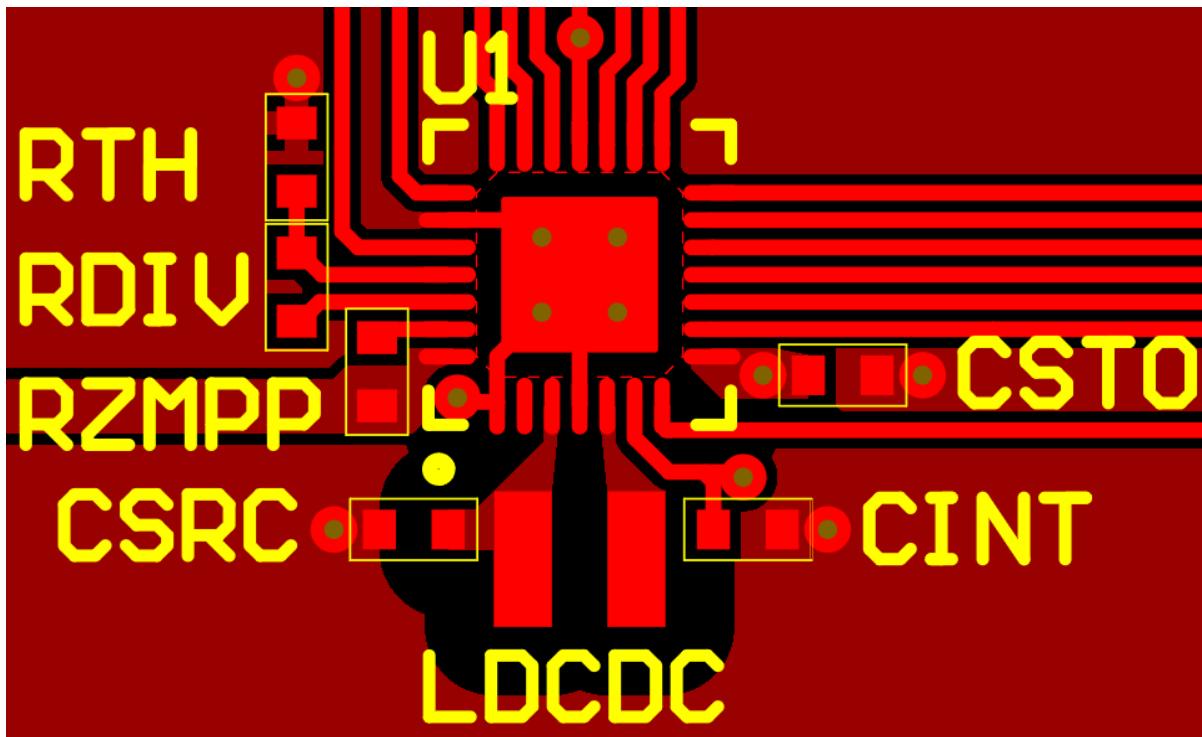


Figure 24: AEM10900 QFN28 layout example

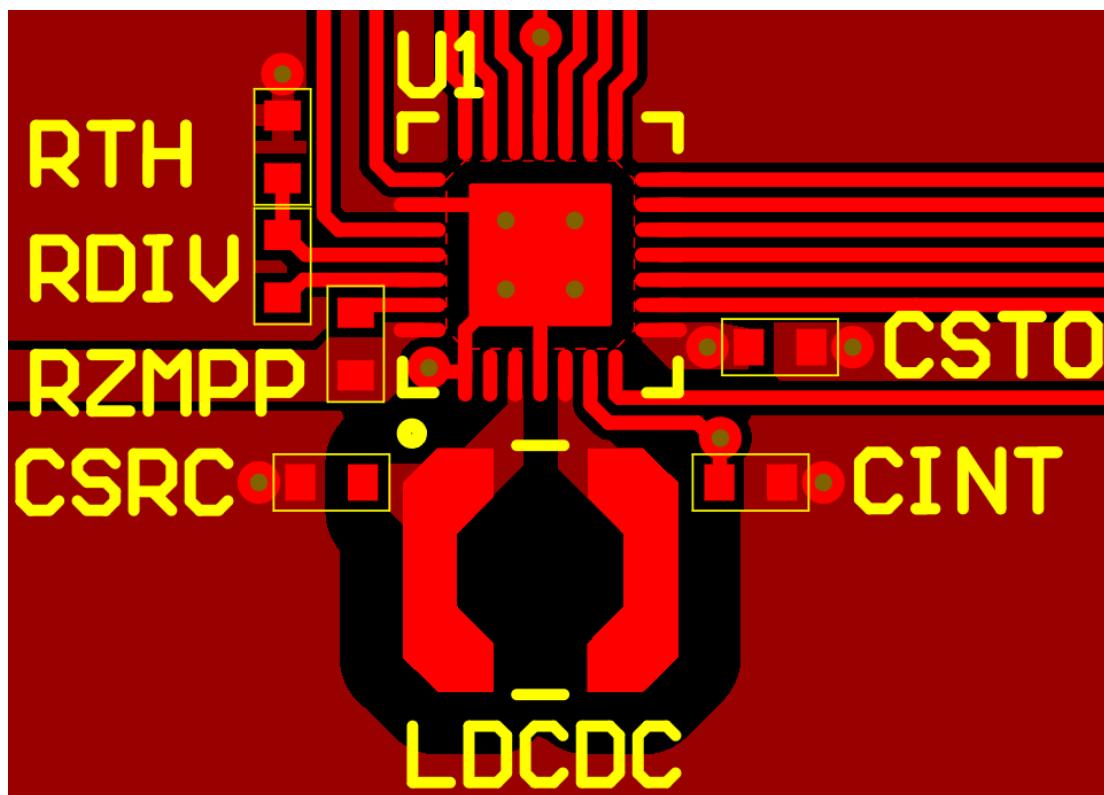


Figure 25: AEM10901 QFN28 layout example

14. Package Information

14.1. Moisture Sensitivity Level

Package	Moisture Sensitivity Level (MSL) ¹
QFN-28	Level 1

Table 42: Moisture sensitivity level

1. According to JEDEC 22-A113 standard.

14.2. RoHS Compliance

e-peas product complies with RoHS requirement.

e-peas defines "RoHS" to mean that semiconductor end-products are compliant with RoHS regulation for all 10 RoHS substances.

This applies to silicon, die attached adhesive, gold wire bonding, lead frames, mold compound, and lead finish (pure tin).

14.3. REACH Compliance

The component and elements used by e-peas subcontractors to manufacture e-peas PMICs and devices are REACH compliant. For more detailed information, please contact e-peas sales team.

14.4. Tape and Reel Dimensions

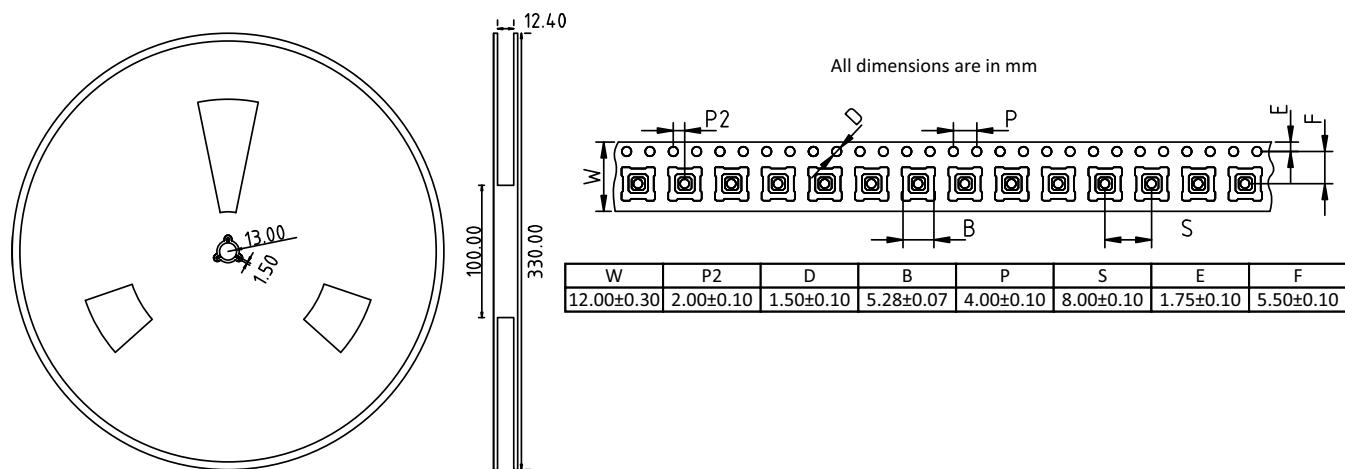


Figure 26: Tape and reel dimensions

14.5. Package Dimensions

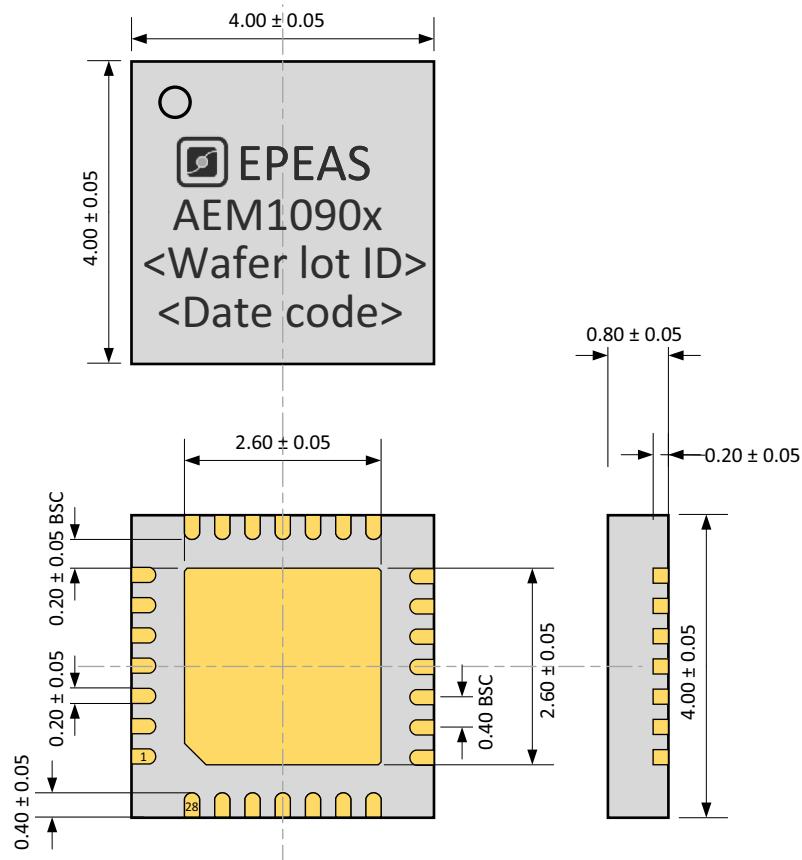


Figure 27: QFN28 4x4 mm drawing (all dimensions in mm)

14.6. Board Layout

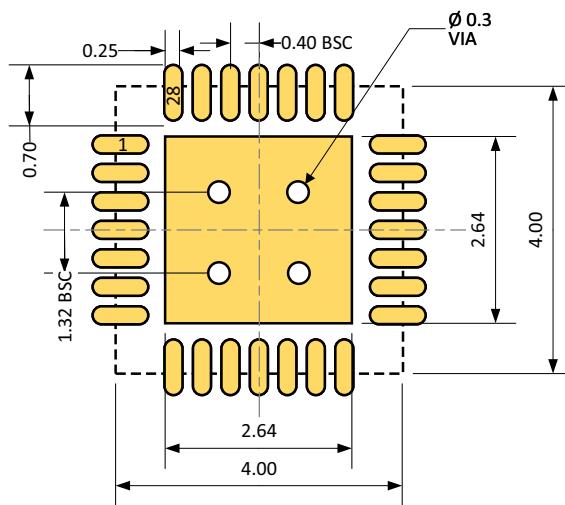


Figure 28: Recommended board layout for QFN28 package (all dimensions in mm)

15. Glossary

15.1. SRC Acronyms

V_{SRC}

Voltage at **SRC** pin.

V_{SRC,CS}

Minimum source voltage required for cold start.

V_{OC}

Open-circuit voltage of the harvester connected to the **SRC** pin.

V_{MPP}

Target regulation voltage on **SRC** when extracting power.

P_{SRC,CS}

Minimum power available on **SRC** for the AEM1090x to coldstart.

I_{SRC}

Current drawn at the **SRC** pin.

C_{SRC}

BUFSRC pin decoupling capacitor.

L_{DCDC}

DCDC converter inductor.

R_{ZMPP}

Resistor that defines the AEM1090x DCDC converter input resistance when used in ZMPP mode.

T_{MPPT}

Maximum power point tracking sampling period.

T_{VOC}

Duration of the **SRC** open circuit voltage evaluation.

15.2. STO Acronyms

V_{STO}

Voltage at **STO** pin.

V_{OVDIS}

Overdischarge voltage at **STO** pin.

V_{OVCH}

Overcharge voltage at **STO** pin.

I_{QSUPPLY}

Quiescent current on **VINT** when the AEM1090x is in **SUPPLY STATE**.

I_{QSLEEP}

Quiescent current on **VINT** when the AEM1090x is in **SLEEP STATE**.

I_{QSTO}

Quiescent current on **STO** when Keep-alive functionality is disabled.

T_{STO,SUPPLY}

Time between two **V_{STO}** evaluations in **SUPPLY STATE**

T_{STO,SLEEP}

Time between two **V_{STO}** evaluations in **SLEEP STATE**

T_{CRIT}

Time spent in **SHUTDOWN STATE** with **V_{STO}** below **V_{OVDIS}** before switching to **OVDIS STATE**

15.3. VINT Acronyms

V_{INT}

AEM1090x internal circuit voltage supply.

V_{INT,RESET}

Minimum voltage on **VINT** before switching to **RESET STATE** (from any other state).

V_{INT,CS}

Minimum voltage on **VINT** to allow the AEM1090x to switch from **RESET STATE** to **SENSE STO STATE**.

C_{INT}

VINT pin decoupling capacitor.

15.4. I²C Acronyms

R_{SCL} / R_{SDA}

Respectively, I²C **SCL** and **SDA** pin pull-up resistors.

15.5. Various Acronyms

R_{DIV}

Resistor that creates a resistive voltage divider with **R_{TH}**.

T_{GPIO,MON}

Time between two GPIO state evaluations

T_{DIS_STO_CH,MON}

Time between two **DIS_STO_CH** IO state evaluations

T_{TEMP,MON}

Time between two temperature evaluations

16. Revision History

Revision	Date	Description
1.0	April, 2021	Creation of the document.
1.1	April, 2021	<ul style="list-style-type: none">- Modification of SRC_DATA register value table- Added performance and typical applications
1.2	August, 2022	<ul style="list-style-type: none">- Change name of the register and field for the I²C Communication- Change the Package and the pinout for the WLCSP package
1.3	January, 2023	<ul style="list-style-type: none">- Global layout update.- First page full rework.- Introduction: added details on cold start power and SRC extracting range.- Typical electrical characteristics:<ul style="list-style-type: none">- Cold start voltage vs. MPP voltage.- Cold start power depending on keep-alive enabling.- Recommended operating conditions: refined LCDCDC value range.- MPPT description rework.- Keep-alive description improved.- IRQ pin: added dedicated section.- States description improved.- Configuration by pin/registers: clarified.- DIS_STO_CH: added dedicated section.- Register descriptions: added register names in section titles and improved tables layout.- Keep-alive register: added note.- Improved register descriptions:<ul style="list-style-type: none">- IRQEN.I2CRDY.- IRQFLG.I2CRDY.- External inductor informations: improved.- Typical application circuits: improved schematics aesthetics.- Improved performance graphs aesthetics.- Quiescent current graph: improved aesthetics.- Moved “Minimum BOM” section outside “Package” section.- Added glossary.- Explanations about CSTO influence on efficiency.
1.4	February, 2024	<ul style="list-style-type: none">- Thermal pad (back plane) renamed as pin 29.- Small fixes
1.5	August, 2024	<ul style="list-style-type: none">- Small fixes.
2.0	July, 2024	<ul style="list-style-type: none">- Small fixes.- Thermal pad (back plane) renamed as pin 29.- Added ST_STO- Changed APM register- Increased SRC voltage range- Removed necessity for STO protection- Updated FSM diagram.- Updated efficiency graphs.- Improved register description.- Cleaner “circuit behavior” section- Updated IQ graph

Table 43: Revision history (part 1)

Revision	Date	Description
2.1	September, 2024	<ul style="list-style-type: none">- Small fixes- Changed default value of version register- Changed BUFSRC max voltage to 3 V- Added ESD and latch-up value in “Absolute Maximum Ratings” table.- Created a “Specification” section and moved the following sections in it:<ul style="list-style-type: none">- “Absolute Maximum Ratings”.- “Typical Electrical Characteristics at 25 °C”, renamed as “Electrical Characteristics at 25 °C”.- “Recommended Operating Conditions”.- “Performance Data”, renamed as “Typical Characteristics”.- Renamed the “Thermal Resistance” section and moved it in the “Package information” section.- “Pin description” table: added KEEP_ALIVE pin state when left floating.- Fixed APM register value to energy formula and removed the α table and added a note to contact support for more information.- Added precisions about the behavior of the DIS_STO_CH pin combined with the PWR.STOCHDIS register field.- One register per page for a clearer text flow.- Added Cold-start power graphs.- Updated IQ values.- Added STO, GPIO and THMON monitoring period.
2.2	March, 2025	<ul style="list-style-type: none">- Changed “Features and Benefits” order.- Changed first page applications.- Removed WLCSP16 package.- Corrected color for I²C pins in “Pin Configurations and Functions”.- Removed latch-up values in “Absolute Maximum Ratings”.- Corrected operating temperature and added storage temperature in “Absolute Maximum Ratings”.- Renamed SRCTHRES to SRCLOW.- Renamed STATUS.CHARGE to STATUS.CHARGING- Renamed STATUS.BSTDIS to STATUS.CHAREGEDIS- Changed register description in “Register Map”.- Changed default value of VOVDIS/VOVCH registers in “Register Map”.- Unsplited VOVDIS/VOVCH table.- Updated “Package Information” figure.- Added tape and reel dimensions.- Small fixes.

Table 43: Revision history (part 2)