”
y } ZIPcores
-

LVDS_SERDES
High-speed LVDS (SERDES) Transceiver

Rev. 1.5
Key Design Features Block Diagram
® Technology independent soft IP Core for FPGA, SoC and ASIC
® Supplied as human readable VHDL (or Verilog) source code
reset
® Separate LVDS Transmitter / Receiver (SERDES) pair l
LVDS_TX
® Up to 8 serial LVDS data lanes + LVDS clock
ser_clk : - tx0_p
® Fully configurable clocking J _[/O't tx0_n
tx1_p
Ik .
® Generic parallel data width up to 128 bits wide Syse . _[/O't tx1_n
ASYNC 2 (a5 b2_p
® Generic parallel-to-serial mux ratio up to 16:1 datain dwﬁ L FIFO — & x2_n
» [/o't tx3_p
N:1 .
® Data rates of up to 1 Gbits per lane datain_val N o - tx3_n
— tx4_p
w N1 —| §
® Integrated asynchronous FIFOs with underflow / overflow 4 x4_n
detection é _[/dt z:_p
n
g _
® Bitwise data alignment at the receiver . x6_p
9 underfiow <} ERROR _[/O't tx6_n
® No receiver source clock required overflow <] DETECT _[/o't z;—s
® Compatible with a wide range of industry standard protocols rst_flags —ZF (sys_clk) [/O’\i tx_clk_p
including: Channel Link®, Camera Link®, FPD Link®, FlatLink® B tx_clk_n
etc. Zr Zr
® Robust and simple to implement using cheap twisted pair cable dw ratio(N) duty skew lanes direction
(e.g. Cat 5 Ethernet)
(a)
Example Applications
reset bit_slip
® High bandwidth SERDES interfaces LVDS_RX l
rst_flags
® Serialization of wide buses e.g. 'virtual' ribbon cable 0_p :}[>_ — ¢
x0_n - ERROR > underflow
® Direct replacement for many commercial LVDS / SERDES ICs ~xip — ;
rx1_n j>_ . DETECT > overflow
® Data streaming interfaces over cable or twisted pair over longer ™2_p jD N Y
distances ™2_n 2' lﬁ
x3_p]
P3N j>_ E A [> dataout
: x4_p —/ O >
Generic Parameters iy jG[>_ F ASYNC
5 p é FIFO [> dataout_val
x5_n j>_ % 3 %l
Generic name Description Type Valid range 6_p - 5 o
. —j >—+ 1N ° z
dw Parallel data width integer 2<dw<128 ::;3—;
ratio Parallel-to-serial integer 2 <ratio < 16 x7_n j>_ PLL —> sys_clk f
multiplexer ratio rx_clk_p D> ser clk
duty Transmitter clock duty | integer 0 < duty < ratio m_clk_n E[:
cycle setting lr lr lr lr lr
skew Transmitter clock integer 0 < skew < ratio) e)
skew setting dw ratio (N) lanes direction polarity
lanes Number of serial data |integer dw / ratio (b)
lanes (8 max)
direction Serialization / integer 0: forward
Deserialization 1: backward
direction Figure 1: LVDS (SEngii)aTr'gir;;@tiltjtg (a) and Receiver (b)
polarity Receiver clock integer 0: -ve edge
sampling edge 1: +ve edge

Copyright © 2025 www.zipcores.com

Download this IP Core

Page 1 of 6

http://www.zipcores.com/high-speed-lvds-serdes-transceiver.html

V
g } ZIPcores
-

LVDS_SERDES

High-speed LVDS (SERDES) Transceiver
Rev. 1.5

Pin-out Description

LVDS TRANSMITTER

General Description

The LVDS_SERDES IP Core is a high-speed LVDS transmitter / receiver

Figure 1

7/ count
Oto6

Pin name /O | Description Active state pair suitable for a wide range of serial interface applications. The design
is comprised of an independent transmitter and receiver that may be used
sys_clk in | System clock rising edge separately or together as a single transceiver.
(Synchronous with parallel
input data) The transceiver can accept parallel data widths of up to 128-bits and
. . - features a user-defined multiplexer ratio. By modifying the generic
ser_clk in | Serial clock rising edge t d tio. duty. skew. | d directi he t .
(= sys_clk x ratio) parameters, dw, ratio, duty, skew, lanes and direction, the transceiver can
- be made compatible with a wide range of third-party LVDS devices such
reset in | Asynchronous reset low as those from National Semiconductor®, TI®, Thine® and Maxim®.
underflow out | Error flag indicates high (sticky In total, the transceiver can support up to 8 serial data lanes - each data
starvation of data until reset) lane typically handling rates of between 500 Mbits/s and 1Gbits/s. The
overflow out | Error flag indicates a high (sticky maximum data rate attained will be dependent on a wide range of factors
surplus of data until reset) such as: cable type, cable length, board layout, and the specification of
the LVDS buffers. As a general rule, data rates of 350 Mbits/s per lane
rst_flags in | Reset the underflow / high can be easily achieved on even the most basic FPGA platforms.
overflow error flags
. . . . In addition to the 8 data lanes, a single clock lane is provided for
datain [dw-1.0] in_| Parallel input data data synchronizing the data between the transmitter and receiver.
datain_val in | Parallel input data valid high shows the basic architecture of the transmitter and receiver pair. The
— - following sections explain the transmitter and receiver functionality in
txN_p (max 8) out | Positive Tx strobe serial LVDS more detail.
data lane 'N'
tXN_n (max 8) out | Negative Tx strobe serial LVDS .
data lane 'N' LVDS Transmitter
tx_clk_p out | Positive Tx clock strobe LVDS
. The transmitter is responsible for serializing the parallel input data into
tx_clk_n out | Negative Tx clock strobe LVDS separate data lanes. The input data is partitioned into 'N' groups, where
the width of each group is defined by the generic parameter ratio. As an
LVDS RECEIVER example, consider a parallel data width of 21-bits and a mux ratio of 7.
Pin name 1/O | Description Active state The resulting architecture would have 3 data lanes in an arrangement like
that shown in Figure 2 below:
sys_clk_f out | Recovered system clock rising edge
(Synchronous with parallel
output data)
ser_clk_f out | Recovered Serial clock rising edge [20[10]18]17[16]15]14] [13[12]11]10] o[8] 7] [6[5[4[3[2[1]0]
(= sys_clk_f x ratio) \ 7:1 MUX 7/ \ 7:1 MUX / \ 7:1 MUX
sys_rst_f out | Resynchronized system low
reset
reset in | Asynchronous reset low 14,15,16,17,18,19,20 ... 7,8,9,10,11,12,13 ... 0,1,2,3456 ...
underflow out | Error flag indicates high (sticky
starvation of data until reset)
overflow out | Error flag indicates a high (sticky Figure 2: Multiplexer arrangemgnt for a data width of 21-bits
surplus of data until reset) and a ratio of 7
rst_flags in | Reset the underflow / high
overflow error flags The output order of the bits within each multiplexer is controlled by the
bit sli . c llel dat tout | risi d generic parameter direction. With direction set to '1' then the serial bits
it_slip in auds?s t;))ar: e Ia:'f?udpbu rising edge are multiplexed in the order 0, 1, 2, ... etc. When direction is '0' then the
\c’)vr?er bi? € barrel-shitted by order is reversed. The direction parameter is provided for compatibility
(Used fo align output data) with various third party SERDES solutions and ICs.
dataout [dw-1:0] out | Parallel output data data The transmitter requires two separate clocks for correct operation. The
- - signal sys_clk is a system clock that is synchronous with the input data.
dataout_val out | Parallel output data valid | high The signal ser_clk is the serial clock. The system clock and serial clock
~N_p (max 8) in | Positive Rx strobe serial LVDS ‘dO not neeq to be phase-aligned, bqt the serial_ cIoc!< must be an exact
data lane 'N' integer multiple of the system clock with the relationship:
rxN_n (max 8) in | Negative Rx strobe serial |LVDS
data lane ‘N ser_clk = sys_clk * ratio
rx_clk_p in | Positive Rx clock strobe LVDS
rx_clk_n in | Negative Rx clock strobe LVDS

Copyright © 2025 www.zipcores.com

Download this IP Core

Page 2 of 6

http://www.zipcores.com/high-speed-lvds-serdes-transceiver.html

”
y } ZIPcores
-

LVDS_SERDES

High-speed LVDS (SERDES) Transceiver
Rev. 1.5

After system reset, transmission of data begins on a rising clock-edge of
sys_clk when datain_val is asserted high. The serialization process then
begins with parallel data words being read on consecutive system clock
cycles.

During operation, the asynchronous FIFO detects the data rate into and
out of the transmitter. If at any point the FIFO overflows or is starved of
data, then the respective error flags overflow or underflow are asserted.
These flags may also be asserted if the relationship between the system
clock and serial clock is not maintained.

Note also that asserting the bit-slip command may cause the error flags to
be asserted. For this reason, the flags should only be observed during
normal operation when any data-alignment process has been completed.
Once set, these flags remain high until a specific reset using the rst_flags
signal. A system reset will also reset these flags, but any data alignment
at the receiver may be lost.

LVDS Transmitter clocking

The LVDS transmitter clock configuration is specified using the generic
parameters 'duty’ and 'skew'. The parameter duty specifies the number of
serial clock cycles that the transmitter clock is in the active low state. An
example of this is shown in figure 3 below. The skew parameter permits
the user to skew the transmitter clock (in serial clock cycles) relative to
the LVDS data. By adjusting these parameters, the IP Core may be used
to duplicate the clocking behaviour of most commercial LVDS ICs.

<————— 1cycle —>
— duty —

tx_clk_p m
wt_pin XXX OOOOOOOC
w2 pin X XX

Figure 3: Transmitter clock specification showing a duty cycle setting of 3
serial clock cycles

LVDS Receiver

The receiver performs the reciprocal operation to the transmitter and is
responsible for de-serialization of the serial input data. Clock recovery
and serial clock generation is performed by an internal PLL or a dedicated
MMCM clock management component'. The point at which the data is
sampled (point within the data 'eye') may be controlled by the generic
parameter polarity.

Setting polarity to '0' results in the data being sampled on a falling clock-
edge close to the centre of the eye. Setting polarity to '1' results in data
being sampled on a rising clock edge. The best setting will depend on the
implementation.

After system reset, the de-serialization process begins with parallel data
words being output on consecutive cycles of the system clock. Data is
valid from the point at which the signal dataout_val is asserted high.

As with the transmitter, the asynchronous FIFO monitors the data rate
into and out of the receiver. If at any point, the clocks become out of
sync, then the respective error flags overflow or underflow are asserted.

Data alignment at the Receiver

For most situations it's not always practical to perfectly align the parallel
data at the transmitter with the parallel data at the receiver. This is
because after reset, the input serial data bits could be at any point within
an N-bit word. In order to correct this, the receiver employs a bit_slip
signal that allows the output data word to be barrel-shifted by one bit.
The bit slip signal is active on a rising-edge.

For instance, consider the case where the 32-bit pattern '0x44440000' is
transmitted with a 4:1 mux ratio. At the receiver end, the 32-bit output
word is observed as 0x2222000. In order to align the word correctly, the
bit_slip signal must be toggled until the the correct output is observed.

This is shown graphically in Figure 4 below:

Bit slip #1 Bit slip #2 Bit slip #3

JL L JL

0x22220000 0x11110000 0x88880000 0x44440000 etc.

Figure 4: Receiver 'bit_slip' function

Data alignment at the receiver can normally be done quite simply by using
a state machine that monitors the receiver output for a special character
or pattern. For example, with digital video, this could be a Start of Active
Video (SAV) code or an End of Active Video (EAV) code or some
combination of the two.

The state machine would monitor the output for these codes and
periodically assert bit_slip until the codes are detected and the output
data is properly aligned.

An example bit-slip implementation is provided in the VHDL source file:
Ivds_data_align.vhd. This may be used for reference in order to align to a
specific data pattern.

1 Most EDA tools (e.g. AMD / Vivado) feature applications that allow
easy generation of PLL or MMCM components with the desired
parameters.

Copyright © 2025 www.zipcores.com

Download this IP Core

Page 3 of 6

http://www.zipcores.com/high-speed-lvds-serdes-transceiver.html

~
p } ZIPcores
-

LVDS_SERDES

High-speed LVDS (SERDES) Transceiver
Rev. 1.5

Functional Timing

Figure 5 shows the serialization of a 32-bit data word with a mux ratio of
4:1. In this example, all 8 serial data lanes are being used. Note that the
frequency of the serial clock is exactly 4 times the frequency of the
system clock. The de-serialization process at the receiver has exactly the
same timing relationship - but performs the inverse operation.

ssok| | L] L] L[]

ser_clk !

datain :/ []]]]] /:X 0x00001111 :X 0x22222222:)(0x33333333:)(0x44440000

1 1

datain_val' i
I I

txo_p'””””'h\o 00

tX1_PH”””;1\0 00

tx2_p”7”””1\0 00

1
Z
1
'0/—1\0
LofT\o
1
Lo/ 1\
1
vo/1\0
tX4_p:H”””-\o 00 o: o/1\o
1
1
1
1
1
1
1
|
1

o
[N
o

0

o
-
o

0

o
N
o

JITITITIT

0

o
o

tx3_p Y1\0 0 0 0

o

0

5_p] //]]]]]\o o o o o/1\0 o
x6_pJ/T]]]/\o o o o o/1\o0
o7 p JTTTTTT N0 o o o o/T\o

o
o

0

o
o

0

T
1
1
1
T
1
'
[
1
1
1
1
T
1
010 0/1\0
[
1
L
1
1
T
1
|
[
1

N.B. Only +ve LVDS strobe signals shown

Figure 5: Example functional timing for the serialization of a 32-bit data
word with a mux ratio of 4:1 and all 8 serial data lanes being utilized.
The direction is set to '1".

Source File Description

All source files are provided as text files coded in VHDL. The following
table gives a brief description of each file.

Source file Description

pipeline_reg.vhd Pipeline register

fifo_async.vhd
Ivds_obuf.vhd

Asynchronous FIFO

Differential output buffer

Ivds_oclk.vhd Differential output clock generator
Ivds_ibuf.vhd Differential input buffer

Ivds_iclk.vhd Differential input clock buffer
Ivds_pll.vhd PLL for de-skew and serial clock gen

Ivds_flow_error.vhd Overflow / underflow error detector

Ivds_deserializer.vhd Instantiates N x 1:N deserializer

Ivds_deserializer_n.vhd 1:N deserializer

Ivds_serializer.vhd Instantiates N x N:1 serializer

Ivds_serializer_n.vhd N:1 serializer

Ivds_data_align.vhd
Ivds_tx.vhd

Example bit-slip controller for alignment

Top-level LVDS transmitter component

Ivds_rx.vhd Top-level LVDS receiver component

Ivds_serdes_bench.vhd Top-level test bench

[Note: The components Ivds_obuf.vhd, Ivds_ibuf.vhd, Ivds_oclk.vhd,
Ivds_iclk.vhd and Ivds_pll.vhd are technology-specific components.
These components must be changed for equivalent parts for correct
implementation. Please contact Zipcores if further assistance is needed]

Functional Testing

An example test bench is provided for use in a suitable hardware
simulator. The compilation order of the source code is the same order as
the source code file description (above).

The test bench instantiates the transmitter and receiver top-level
components in series such that the output of the transmitter feeds directly
to the input of the receiver. The basic simulation setup is as follows:

Data in — Capture input — LVDS Tx — LVDS Rx — Capture output

The generic parameters dw, ratio,, duty, skew, lanes, direction and
polarity have been set to 32, 4, 2, 0, 8, 1 and 1 respectively for the test.
The user is free to modify these parameters as required to suit their
specific test environment.

The simulation must be run for at least 1 ms during which time the LVDS
transmitter is fed a random sequence of 32-bit words. Two output text
files are generated during the course of the simulation. These files are
'Ivds_in.txt' and 'lvds_out.txt' and contain a list of data words captured at
the inputs and outputs of the transmitter and receiver. The equivalence of
these files proves the correct operation of the test.

Note that at the start of the test, the 'bit_slip' signal is asserted various
times in order to align the data correctly at the receiver. If the generic
settings are changed, then the user may have to modify the number of bit-
slip operations accordingly.

Copyright © 2025 www.zipcores.com

Download this IP Core

Page 4 of 6

http://www.zipcores.com/high-speed-lvds-serdes-transceiver.html

~
y } ZIPcores
-

LVDS_SERDES

High-speed LVDS (SERDES) Transceiver
Rev. 1.5

Development Board Testing

The LVDS (SERDES) IP Core was tested in a live demo using the
Zipcores HD-video development board. The devboard is based on a
AMD / Xilinx® Spartan FPGA and features a number of general purpose
LVDS 1/O pins.

An LVDS serial link was used to transmit a WXGA (1280x800) 24-bit RGB
video signal to a Sharp® LQ101K1LY04 LCD display. The connections
were set up for the Thine® THC63LVDF84B LVDS receiver IC. Figures 6
and 7 show photos of the general demo setup.

Figure 6: Demo setup with the Zipcores HD-Video board

Figure 7: LVDS demo showing Sharp LCD (WXGA)
test pattern display

Synthesis and Implementation
The files required for synthesis and the design hierarchy is shown below:

Transmitter top-level component:

® |vds_tx.vhd

O Ivds_serializer.vhd
B |vds_serializer_n.vhd
B |vds_flow_error.vhd
B fifo_async.vhd

® pipeline_reg.vhd
O Ivds_obuf.vhd
O Ivds_oclk.vhd

Receiver top-level component:

® |vds_rx.vhd

O Ivds_deserializer.vhd
B |vds_deserializer_n.vhd
B |vds_flow_error.vhd
B fifo_async.vhd

® pipeline_reg.vhd
Ivds_pll.vhd
Ivds_ibuf.vhd
Ivds_iclk.vhd

00O

The LVDS SERDES IP Core is technology independent with the
exception of the differential LVDS I/O buffers and PLL component which
must be specific to the FPGA, SoC or ASIC process being used. As a
benchmark, synthesis results have been provided for the AMD / Xilinx®
7-series FPGAs. Synthesis results for other FPGAs and technologies can
be provided on request.

One recommendation is to ensure that the I/O registers are placed in the
pads of the target device. This may be specified as an additional attribute
in the RTL source code or specified in the constraints file - for instance
the ‘xdc’ or ‘sdc’ file in the synthesis tool®. Placing the inputs in the I/O of
the device will ensure more reliable data capture and timing results.

Finally, it's also recommended that the user place the LVDS input and
output pins in a localized area, that is, not spread out around the die. This
will reduce timing skew between the input and output data.

Trial synthesis results are shown with the generic parameters set as
follows: dw = 56, ratio = 7, duty = 3, skew = 2, lanes = 8, direction = 1,
polarity = 1.

The resource usage is specified after place and route and is listed for the
combined transmitter and receiver components in a series configuration.

2 Example constraints files may be provided on request according to

the chosen synthesis tool.

Copyright © 2025 www.zipcores.com

Download this IP Core

Page 5 of 6

http://www.zipcores.com/high-speed-lvds-serdes-transceiver.html

”
LVDS_SERDES
4 }ZIPcores -
-

High-speed LVDS (SERDES) Transceiver
Rev. 1.5

AMD / XILINX® 7-SERIES FPGAS

Resource type A-7 K-7 V-7 V-US+
Slice Register 266 266 266 266
Slice LUTs 169 169 169 166
Block RAM 0 0 0 0
DSP 0 0 0 0
Occupied Slices 75 88 87 51 (CLB)
System clk freq. 70 MHz 80 MHz 90 MHz 100 MHz
(approx.)

Revision History

Revision | Change description Date

1.0 Initial revision 12/09/2010

1.1 Added detailed bit_slip section 02/10/2010

1.2 Added development board test setup 07/01/2011
descriptions

1.3 New generic parameter 'direction’ for 15/05/2011

compatibility with various commercial LVDS
ICs. Added signal to reset error flags

1.4 Added new generic parameters: clock 'duty’ | 09/02/2015
and 'skew' to give further compatibility with
commercial LVDS ICs.

1.5 Updated everything to the latest AMD / 22/01/2025
Xilinx® 7-series components. Revised the
datasheet and synthesis results.

Copyright © 2025 www.zipcores.com Download this IP Core Page 6 of 6

http://www.zipcores.com/high-speed-lvds-serdes-transceiver.html

