
LVDS_SERDES

High-speed LVDS (SERDES) Transceiver
Rev. 1.5

Key Design Features

● Technology independent soft IP Core for FPGA, SoC and ASIC

● Supplied as human readable VHDL (or Verilog) source code

● Separate LVDS Transmitter / Receiver (SERDES) pair

● Up to 8 serial LVDS data lanes + LVDS clock

● Fully configurable clocking

● Generic parallel data width up to 128 bits wide

● Generic parallel-to-serial mux ratio up to 16:1

● Data rates of up to 1 Gbits per lane

● Integrated asynchronous FIFOs with underflow / overflow
detection

● Bitwise data alignment at the receiver

● No receiver source clock required

● Compatible with a wide range of industry standard protocols
including: Channel Link®, Camera Link®, FPD Link®, FlatLink®
etc.

● Robust and simple to implement using cheap twisted pair cable
(e.g. Cat 5 Ethernet)

Example Applications

● High bandwidth SERDES interfaces

● Serialization of wide buses e.g. 'virtual' ribbon cable

● Direct replacement for many commercial LVDS / SERDES ICs

● Data streaming interfaces over cable or twisted pair over longer
distances

Generic Parameters

Generic name Description Type Valid range

dw Parallel data width integer 2 ≤ dw ≤ 128

ratio Parallel-to-serial
multiplexer ratio

integer 2 ≤ ratio ≤ 16

duty Transmitter clock duty
cycle setting

integer 0 < duty < ratio

skew Transmitter clock
skew setting

integer 0 ≤ skew ≤ ratio

lanes Number of serial data
lanes

integer dw / ratio
(8 max)

direction Serialization /
Deserialization
direction

integer 0: forward
1: backward

polarity Receiver clock
sampling edge

integer 0: -ve edge
1: +ve edge

Block Diagram

Copyright © 2025 www.zipcores.com Download this IP Core Page 1 of 6

Figure 1: LVDS (SERDES) Transmitter (a) and Receiver (b)
basic architecture

reset

LVDS_TX

sys_clk

datain
dw

datain_val

ASYNC
FIFO

ser_clk
N:1

P
A

R
A

LL
E

L
T

O
 S

E
R

IA
L

ERROR
DETECT

underflow

overflow

rst_flags

rst_flags

tx0_p

tx0_n

N:1
tx1_p

tx1_n

N:1
tx2_p

tx2_n

N:1
tx3_p

tx3_n

N:1
tx4_p

tx4_n

N:1
tx5_p

tx5_n

N:1
tx6_p

tx6_n

N:1
tx7_p

tx7_n

tx_clk_p

tx_clk_n
(sys_clk)

dw ratio (N) lanes

reset

LVDS_RX

1:N

S
E

R
IA

L
T

O
 P

A
R

A
LL

E
L

dw ratio (N) lanes

sys_clk_f

ser_clk_f

dataout
dw

ASYNC
FIFO

(s
e

r_
cl

k)

PLL

rx0_p

rx0_n

rx1_p

rx1_n

rx2_p

rx2_n

rx3_p

rx3_n

rx4_p

rx4_n

rx5_p

rx5_n

rx6_p

rx6_n

rx7_p

rx7_n

rx_clk_p

rx_clk_n

(s
ys

_
cl

k)

dataout_val

direction

1:N

1:N

1:N

1:N

1:N

1:N

1:N

bit_slip

(a)

(b)

ERROR
DETECT

underflow

overflow

direction

polarity

duty skew

http://www.zipcores.com/high-speed-lvds-serdes-transceiver.html

LVDS_SERDES

High-speed LVDS (SERDES) Transceiver
Rev. 1.5

Pin-out Description

LVDS TRANSMITTER

Pin name I/O Description Active state

sys_clk in System clock
(Synchronous with parallel
input data)

rising edge

ser_clk in Serial clock
(= sys_clk x ratio)

rising edge

reset in Asynchronous reset low

underflow out Error flag indicates
starvation of data

high (sticky
until reset)

overflow out Error flag indicates a
surplus of data

high (sticky
until reset)

rst_flags in Reset the underflow /
overflow error flags

high

datain [dw-1:0] in Parallel input data data

datain_val in Parallel input data valid high

txN_p (max 8) out Positive Tx strobe serial
data lane 'N'

LVDS

txN_n (max 8) out Negative Tx strobe serial
data lane 'N'

LVDS

tx_clk_p out Positive Tx clock strobe LVDS

tx_clk_n out Negative Tx clock strobe LVDS

LVDS RECEIVER

Pin name I/O Description Active state

sys_clk_f out Recovered system clock
(Synchronous with parallel
output data)

rising edge

ser_clk_f out Recovered Serial clock
(= sys_clk_f x ratio)

rising edge

sys_rst_f out Resynchronized system
reset

low

reset in Asynchronous reset low

underflow out Error flag indicates
starvation of data

high (sticky
until reset)

overflow out Error flag indicates a
surplus of data

high (sticky
until reset)

rst_flags in Reset the underflow /
overflow error flags

high

bit_slip in Causes parallel data output
word to be barrel-shifted by
one bit.
(Used to align output data)

rising edge

dataout [dw-1:0] out Parallel output data data

dataout_val out Parallel output data valid high

rxN_p (max 8) in Positive Rx strobe serial
data lane 'N'

LVDS

rxN_n (max 8) in Negative Rx strobe serial
data lane 'N'

LVDS

rx_clk_p in Positive Rx clock strobe LVDS

rx_clk_n in Negative Rx clock strobe LVDS

General Description

The LVDS_SERDES IP Core is a high-speed LVDS transmitter / receiver
pair suitable for a wide range of serial interface applications. The design
is comprised of an independent transmitter and receiver that may be used
separately or together as a single transceiver.

The transceiver can accept parallel data widths of up to 128-bits and
features a user-defined multiplexer ratio. By modifying the generic
parameters, dw, ratio, duty, skew, lanes and direction, the transceiver can
be made compatible with a wide range of third-party LVDS devices such
as those from National Semiconductor®, TI®, Thine® and Maxim®.

In total, the transceiver can support up to 8 serial data lanes - each data
lane typically handling rates of between 500 Mbits/s and 1Gbits/s. The
maximum data rate attained will be dependent on a wide range of factors
such as: cable type, cable length, board layout, and the specification of
the LVDS buffers. As a general rule, data rates of 350 Mbits/s per lane
can be easily achieved on even the most basic FPGA platforms.

In addition to the 8 data lanes, a single clock lane is provided for
synchronizing the data between the transmitter and receiver. Figure 1
shows the basic architecture of the transmitter and receiver pair. The
following sections explain the transmitter and receiver functionality in
more detail.

LVDS Transmitter

The transmitter is responsible for serializing the parallel input data into
separate data lanes. The input data is partitioned into 'N' groups, where
the width of each group is defined by the generic parameter ratio. As an
example, consider a parallel data width of 21-bits and a mux ratio of 7.
The resulting architecture would have 3 data lanes in an arrangement like
that shown in Figure 2 below:

The output order of the bits within each multiplexer is controlled by the
generic parameter direction. With direction set to '1' then the serial bits
are multiplexed in the order 0, 1, 2, … etc. When direction is '0' then the
order is reversed. The direction parameter is provided for compatibility
with various third party SERDES solutions and ICs.

The transmitter requires two separate clocks for correct operation. The
signal sys_clk is a system clock that is synchronous with the input data.
The signal ser_clk is the serial clock. The system clock and serial clock
do not need to be phase-aligned, but the serial clock must be an exact
integer multiple of the system clock with the relationship:

ser_clk = sys_clk ∗ ratio

Copyright © 2025 www.zipcores.com Download this IP Core Page 2 of 6

Figure 2: Multiplexer arrangement for a data width of 21-bits
and a ratio of 7

01234567891011121314151617181920

7:1 MUX 7:1 MUX 7:1 MUX count
0 to 6

0,1,2,3,4,5,6 ...7,8,9,10,11,12,13 ...14,15,16,17,18,19,20 ...

http://www.zipcores.com/high-speed-lvds-serdes-transceiver.html

LVDS_SERDES

High-speed LVDS (SERDES) Transceiver
Rev. 1.5

After system reset, transmission of data begins on a rising clock-edge of
sys_clk when datain_val is asserted high. The serialization process then
begins with parallel data words being read on consecutive system clock
cycles.

During operation, the asynchronous FIFO detects the data rate into and
out of the transmitter. If at any point the FIFO overflows or is starved of
data, then the respective error flags overflow or underflow are asserted.
These flags may also be asserted if the relationship between the system
clock and serial clock is not maintained.

Note also that asserting the bit-slip command may cause the error flags to
be asserted. For this reason, the flags should only be observed during
normal operation when any data-alignment process has been completed.
Once set, these flags remain high until a specific reset using the rst_flags
signal. A system reset will also reset these flags, but any data alignment
at the receiver may be lost.

LVDS Transmitter clocking

The LVDS transmitter clock configuration is specified using the generic
parameters 'duty' and 'skew'. The parameter duty specifies the number of
serial clock cycles that the transmitter clock is in the active low state. An
example of this is shown in figure 3 below. The skew parameter permits
the user to skew the transmitter clock (in serial clock cycles) relative to
the LVDS data. By adjusting these parameters, the IP Core may be used
to duplicate the clocking behaviour of most commercial LVDS ICs.

LVDS Receiver

The receiver performs the reciprocal operation to the transmitter and is
responsible for de-serialization of the serial input data. Clock recovery
and serial clock generation is performed by an internal PLL or a dedicated
MMCM clock management component1. The point at which the data is
sampled (point within the data 'eye') may be controlled by the generic
parameter polarity.

Setting polarity to '0' results in the data being sampled on a falling clock-
edge close to the centre of the eye. Setting polarity to '1' results in data
being sampled on a rising clock edge. The best setting will depend on the
implementation.

After system reset, the de-serialization process begins with parallel data
words being output on consecutive cycles of the system clock. Data is
valid from the point at which the signal dataout_val is asserted high.

As with the transmitter, the asynchronous FIFO monitors the data rate
into and out of the receiver. If at any point, the clocks become out of
sync, then the respective error flags overflow or underflow are asserted.

Data alignment at the Receiver

For most situations it's not always practical to perfectly align the parallel
data at the transmitter with the parallel data at the receiver. This is
because after reset, the input serial data bits could be at any point within
an N-bit word. In order to correct this, the receiver employs a bit_slip
signal that allows the output data word to be barrel-shifted by one bit.
The bit slip signal is active on a rising-edge.

For instance, consider the case where the 32-bit pattern '0x44440000' is
transmitted with a 4:1 mux ratio. At the receiver end, the 32-bit output
word is observed as 0x2222000. In order to align the word correctly, the
bit_slip signal must be toggled until the the correct output is observed.

This is shown graphically in Figure 4 below:

Data alignment at the receiver can normally be done quite simply by using
a state machine that monitors the receiver output for a special character
or pattern. For example, with digital video, this could be a Start of Active
Video (SAV) code or an End of Active Video (EAV) code or some
combination of the two.

The state machine would monitor the output for these codes and
periodically assert bit_slip until the codes are detected and the output
data is properly aligned.

An example bit-slip implementation is provided in the VHDL source file:
lvds_data_align.vhd. This may be used for reference in order to align to a
specific data pattern.

1 Most EDA tools (e.g. AMD / Vivado) feature applications that allow
easy generation of PLL or MMCM components with the desired
parameters.

Copyright © 2025 www.zipcores.com Download this IP Core Page 3 of 6

Figure 3: Transmitter clock specification showing a duty cycle setting of 3
serial clock cycles

tx_clk_p

tx_clk_n

tx0_p/n

tx1_p/n

tx2_p/n

txN_p/n

1 cycle
 duty

Figure 4: Receiver 'bit_slip' function

0x22220000 0x11110000 0x88880000 0x44440000 etc.

Bit slip #1 Bit slip #2 Bit slip #3

http://www.zipcores.com/high-speed-lvds-serdes-transceiver.html

LVDS_SERDES

High-speed LVDS (SERDES) Transceiver
Rev. 1.5

Functional Timing

Figure 5 shows the serialization of a 32-bit data word with a mux ratio of
4:1. In this example, all 8 serial data lanes are being used. Note that the
frequency of the serial clock is exactly 4 times the frequency of the
system clock. The de-serialization process at the receiver has exactly the
same timing relationship - but performs the inverse operation.

Source File Description

All source files are provided as text files coded in VHDL. The following
table gives a brief description of each file.

Source file Description

pipeline_reg.vhd Pipeline register

fifo_async.vhd Asynchronous FIFO

lvds_obuf.vhd Differential output buffer

lvds_oclk.vhd Differential output clock generator

lvds_ibuf.vhd Differential input buffer

lvds_iclk.vhd Differential input clock buffer

lvds_pll.vhd PLL for de-skew and serial clock gen

lvds_flow_error.vhd Overflow / underflow error detector

lvds_deserializer.vhd Instantiates N x 1:N deserializer

lvds_deserializer_n.vhd 1:N deserializer

lvds_serializer.vhd Instantiates N x N:1 serializer

lvds_serializer_n.vhd N:1 serializer

lvds_data_align.vhd Example bit-slip controller for alignment

lvds_tx.vhd Top-level LVDS transmitter component

lvds_rx.vhd Top-level LVDS receiver component

lvds_serdes_bench.vhd Top-level test bench

[Note: The components lvds_obuf.vhd, lvds_ibuf.vhd, lvds_oclk.vhd,
lvds_iclk.vhd and lvds_pll.vhd are technology-specific components.
These components must be changed for equivalent parts for correct
implementation. Please contact Zipcores if further assistance is needed]

Functional Testing

An example test bench is provided for use in a suitable hardware
simulator. The compilation order of the source code is the same order as
the source code file description (above).

The test bench instantiates the transmitter and receiver top-level
components in series such that the output of the transmitter feeds directly
to the input of the receiver. The basic simulation setup is as follows:

Data in → Capture input → LVDS Tx → LVDS Rx → Capture output

The generic parameters dw, ratio,, duty, skew, lanes, direction and
polarity have been set to 32, 4, 2, 0, 8, 1 and 1 respectively for the test.
The user is free to modify these parameters as required to suit their
specific test environment.

The simulation must be run for at least 1 ms during which time the LVDS
transmitter is fed a random sequence of 32-bit words. Two output text
files are generated during the course of the simulation. These files are
'lvds_in.txt' and 'lvds_out.txt' and contain a list of data words captured at
the inputs and outputs of the transmitter and receiver. The equivalence of
these files proves the correct operation of the test.

Note that at the start of the test, the 'bit_slip' signal is asserted various
times in order to align the data correctly at the receiver. If the generic
settings are changed, then the user may have to modify the number of bit-
slip operations accordingly.

Copyright © 2025 www.zipcores.com Download this IP Core Page 4 of 6

Figure 5: Example functional timing for the serialization of a 32-bit data
word with a mux ratio of 4:1 and all 8 serial data lanes being utilized.

The direction is set to '1'.

 datain

datain_val

ser_clk

sys_clk

tx0_p

tx1_p

tx2_p

tx3_p

tx4_p

tx5_p

tx6_p

tx7_p

tx_clk_p

0x00001111

1 0 0 0

0x22222222 0x33333333 0x44440000

0 1 0 0 1 1 0 0 0 0 0 0

1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0

1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0

1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0

0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0

0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0

0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0

N.B. Only +ve LVDS strobe signals shown

http://www.zipcores.com/high-speed-lvds-serdes-transceiver.html

LVDS_SERDES

High-speed LVDS (SERDES) Transceiver
Rev. 1.5

Development Board Testing

The LVDS (SERDES) IP Core was tested in a live demo using the
Zipcores HD-video development board. The devboard is based on a
AMD / Xilinx® Spartan FPGA and features a number of general purpose
LVDS I/O pins.

An LVDS serial link was used to transmit a WXGA (1280x800) 24-bit RGB
video signal to a Sharp® LQ101K1LY04 LCD display. The connections
were set up for the Thine® THC63LVDF84B LVDS receiver IC. Figures 6
and 7 show photos of the general demo setup.

Synthesis and Implementation

The files required for synthesis and the design hierarchy is shown below:

Transmitter top-level component:

● lvds_tx.vhd
○ lvds_serializer.vhd

■ lvds_serializer_n.vhd
■ lvds_flow_error.vhd
■ fifo_async.vhd

● pipeline_reg.vhd
○ lvds_obuf.vhd
○ lvds_oclk.vhd

Receiver top-level component:

● lvds_rx.vhd
○ lvds_deserializer.vhd

■ lvds_deserializer_n.vhd
■ lvds_flow_error.vhd
■ fifo_async.vhd

● pipeline_reg.vhd
○ lvds_pll.vhd
○ lvds_ibuf.vhd
○ lvds_iclk.vhd

The LVDS SERDES IP Core is technology independent with the
exception of the differential LVDS I/O buffers and PLL component which
must be specific to the FPGA, SoC or ASIC process being used. As a
benchmark, synthesis results have been provided for the AMD / Xilinx®
7-series FPGAs. Synthesis results for other FPGAs and technologies can
be provided on request.

One recommendation is to ensure that the I/O registers are placed in the
pads of the target device. This may be specified as an additional attribute
in the RTL source code or specified in the constraints file - for instance
the ‘xdc’ or ‘sdc’ file in the synthesis tool2. Placing the inputs in the I/O of
the device will ensure more reliable data capture and timing results.

Finally, it’s also recommended that the user place the LVDS input and
output pins in a localized area, that is, not spread out around the die. This
will reduce timing skew between the input and output data.

Trial synthesis results are shown with the generic parameters set as
follows: dw = 56, ratio = 7, duty = 3, skew = 2, lanes = 8, direction = 1,
polarity = 1.

The resource usage is specified after place and route and is listed for the
combined transmitter and receiver components in a series configuration.

2 Example constraints files may be provided on request according to
the chosen synthesis tool.

Copyright © 2025 www.zipcores.com Download this IP Core Page 5 of 6

Figure 6: Demo setup with the Zipcores HD-Video board

Figure 7: LVDS demo showing Sharp LCD (WXGA)
test pattern display

http://www.zipcores.com/high-speed-lvds-serdes-transceiver.html

LVDS_SERDES

High-speed LVDS (SERDES) Transceiver
Rev. 1.5

AMD / XILINX® 7-SERIES FPGAS

Resource type A-7 K-7 V-7 V-US+

Slice Register 266 266 266 266

Slice LUTs 169 169 169 166

Block RAM 0 0 0 0

DSP 0 0 0 0

Occupied Slices 75 88 87 51 (CLB)

System clk freq.
(approx.)

70 MHz 80 MHz 90 MHz 100 MHz

Revision History

Revision Change description Date

1.0 Initial revision 12/09/2010

1.1 Added detailed bit_slip section 02/10/2010

1.2 Added development board test setup
descriptions

07/01/2011

1.3 New generic parameter 'direction' for
compatibility with various commercial LVDS
ICs. Added signal to reset error flags

15/05/2011

1.4 Added new generic parameters: clock 'duty'
and 'skew' to give further compatibility with
commercial LVDS ICs.

09/02/2015

1.5 Updated everything to the latest AMD /
Xilinx® 7-series components. Revised the
datasheet and synthesis results.

22/01/2025

Copyright © 2025 www.zipcores.com Download this IP Core Page 6 of 6

http://www.zipcores.com/high-speed-lvds-serdes-transceiver.html

