

SiWN917 NCP Single Chip Wi-Fi® and Bluetooth® LE Wireless Secure Solutions

Silicon Labs' SiWN917 Network Connectivity Processor (NCP) is a comprehensive multi-protocol wireless sub-system. It has an integrated built-in wireless subsystem, advanced security, and integrated power-management. It has a multi-threaded Network Wireless Processor (NWP) running up to 160 MHz. All the networking and wireless stacks run on independent threads. The wireless subsystem integrates baseband digital signal processing, analog front-end, calibration eFuse, 2.4 GHz RF transceiver and integrated power amplifier thus providing a fully-integrated solution for a range of embedded wireless applications.

SiWN917 applications include:

- Smart Home
- Security Cameras
- HVAC
- Smart Sensors
- Smart Appliances
- Health and Fitness
- Pet Tracker
- Smart Cities
- Smart Meters
- Industrial Wearable
- Smart Buildings
- Asset Tracking
- Smart hospitals

KEY FEATURES

- Wi-Fi 6 Single Band 2.4 GHz 20 MHz 1x1 stream IEEE 802.11 b/g/n/ax
- Bluetooth LE 5.4
- Wi-Fi 6 Benefits: TWT for improved efficiency and longer battery life, MU-MIMO/OFDMA for Higher Throughput, network capacity and low latency
- Best in Class Device and Wireless Security
- WLAN Tx power up to +19.5 dBm with integrated PA
- Bluetooth LE Tx power up to +19 dBm with integrated PA
- WLAN Rx sensitivity as low as -97.5 dBm
- Wi-Fi Standby Associated mode current: 65 µA @ 1-second beacon listen interval
- In-package Flash up to 4 MB
- Embedded Wi-Fi, Bluetooth LE and networking stacks supporting wireless coexistence
- Operating temperature: -40 °C to +85 °C
- Single or dual-supply operation:
 - Single supply: 3.3 V
 - Dual supply: 3.3 V and 1.8 V

1. Feature List

• Memory

- Embedded Static Random Access Memory (SRAM) up to 672 KB total
- Flash up to 4 MB (in-package)

• Security

- Secure Boot
- Secure firmware upgrade through boot-loader, Secure OTA.
- Secure Key storage and HW device identity with PUF
- Secure Zone
- Encrypted XiP (Execute in place) from flash
- Secure Attestation
- Hardware Accelerators: Advanced Encryption Standard (AES) 128/256/192, Secure Hash Algorithm (SHA) 256/384/512, Hash Message Authentication Code (HMAC), Random Number Generator (RNG), Cyclic Redundancy Check (CRC), SHA3, AES-Galois Counter Mode (GCM)/ Cipher based Message Authentication Code (CMAC), Cha-Cha-poly, True Random Number Generator (TRNG)
- Software Implementation: RSA, ECC
- Anti Rollback
- Debug Lock

• Wi-Fi

- Compliant to single-spatial stream IEEE 802.11 b/g/n/ax with single band (2.4 GHz) support
- Support for 20 MHz channel bandwidth for 802.11n and 802.11ax
- Operating Modes: Wi-Fi 4 STA, Wi-Fi 6 (802.11ax) STA, Wi-Fi 4 AP, Enterprise STA, Wi-Fi 6 STA + Wi-Fi 4 AP, Wi-Fi STA + BLE
- Support for 802.11ax 20 MHz non-AP STA mandatory features (such as OFDMA, MU-MIMO) and optional features of individual Target wake-up time (iTWT), Broadcast TWT (bTWT)², Intra PPDU power save², SU extended range (ER), DCM (Dual Carrier Modulation), DL MU-MIMO, DL/UL OFDMA, MBSSID², BFRP, Spatial Re-use², BSS Coloring², and NDP feedback up to 4 antennas
- Transmit power up to +19.5 dBm with integrated PA
- Receive sensitivity as low as -97.5 dBm
- Data Rates: 802.11b: 1, 2, 5.5, 11; 802.11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps ; 802.11n: MCS0 to MCS7; 802.11ax: MCS0 to MCS7
- Operating Frequency Range: 2412 MHz – 2484 MHz
- PTA Coexistence with Zigbee/Thread/Bluetooth

• Intelligent Power Management

- Power optimizations leveraging multiple power domains and partitioned sub systems
- Many system-, component-, and circuit-level innovations and optimizations
- Multiple Power Modes
- Deep sleep mode with only timer active – with and without RAM retention

• Bluetooth

- Transmit power up to +19 dBm with integrated PA
- Receive sensitivity — LE 1 Mbps: -96 dBm, LR 125 kbps: -107 dBm
- Operating Frequency Range — 2.402 GHz - 2.480 GHz
- Support LE (1 Mbps & 2 Mbps) and LR (125 kbps & 500 kbps) rates
- Advertising extensions
- Data length extensions
- LL privacy
- LE dual role
- BLE acceptlist
- 2 Simultaneous BLE Connections (2 Peripheral, 2 Central, or 1 Central & 1 Peripheral)

• RF Features

- Integrated baseband processor with calibration memory
- Integrated RF transceiver, high-power amplifier, balun and T/R switch

• Embedded Wi-Fi Stack

- Support for Embedded Wi-Fi STA mode, Wi-Fi Access point mode and Concurrent (AP+STA) mode
- Supports advanced Wi-Fi Security features: WPA Personal, WPA2 Personal, WPA3 Personal, WPA/WPA2/WPA3 Enterprise in STA mode
- Networking: Integrated IPv4/IPv6 stack, TCP, UDP, ICMP, ICMPv6, ARP, DHCP Client/Server, DHCPv6 Client/Server, DNS Client, SSL3.0/TLS1.3 Client, SNTP, mDNS, SNI
- Applications: HTTP/s Client, HTTP/s Server², MQTT/s Client, AWS Client, Azure Client
- Sockets: BSD Sockets, IoT Sockets
- Over-the-Air (OTA) firmware update
- Provisioning using Wi-Fi AP or BLE

• Embedded Bluetooth Stack

- Support GAP profile
- Support GATT profile
- Support SMP
- Support LE L2CAP

• Wireless Sub-System Power Consumption

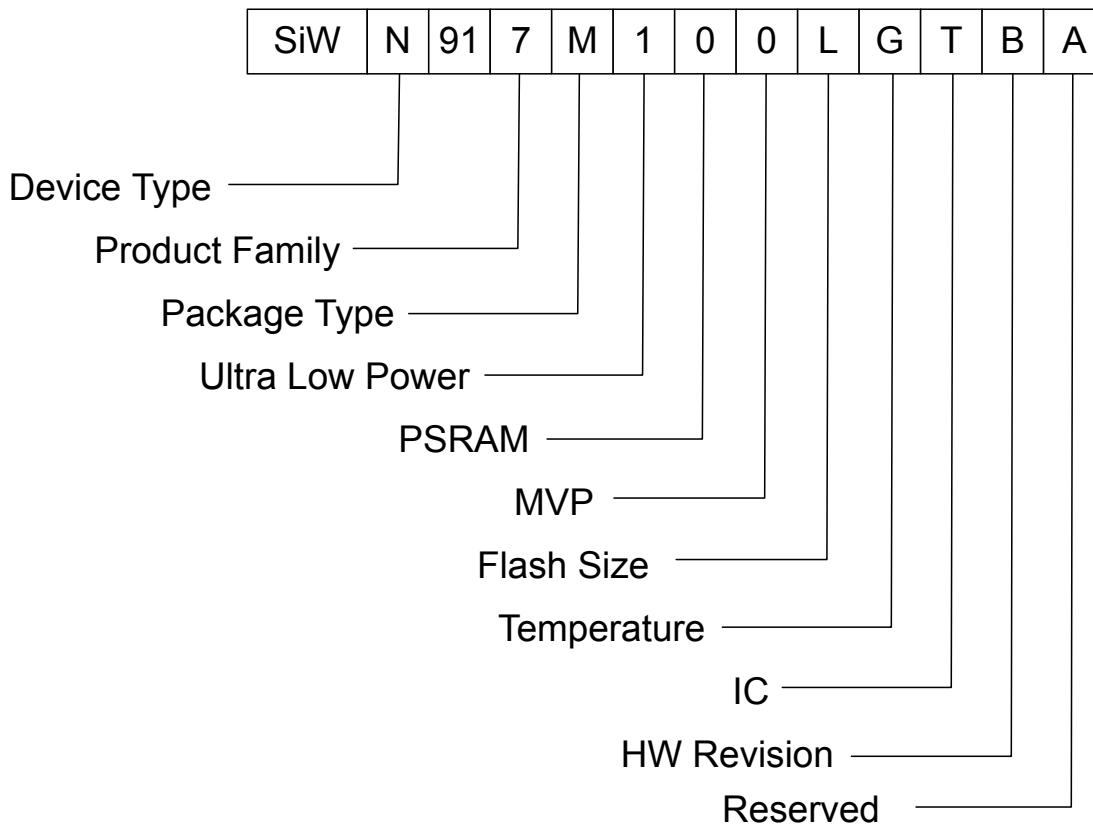
- Wi-Fi 4 Standby Associated mode current: 65 µA @ 1-second beacon listen interval
- Wi-Fi 1 Mbps Listen current: 16.5 mA
- Wi-Fi LP chain Rx current: 22 mA
- Deep sleep current ~2.5 µA, Standby current (352 KB RAM retention) ~10 µA

• Operating Conditions

- Single or dual-supply operation:
 - Single supply: 3.3 V
 - Dual supply: 3.3 V and 1.8 V
- Operating temperature: -40 °C to +85 °C

• Software and Regulatory Certifications

- Wi-Fi Alliance: Wi-Fi 4, Wi-Fi 6
- Bluetooth Qualification
- Regulatory pre-certifications (FCC, IC, RED, UKCA, MIC)¹


Note:

1. For latest certification information, refer to regulatory app notes or contact Silicon Labs for availability.
2. For information about software roadmap features, and lists of available features and profiles, contact Silicon Labs or refer to Release Notes and Reference Manuals.

2. Ordering Information

Table 2.1. List of OPNs

Part Number	Common Features	Device Type	Flash Size	Temperature
SiWN917M100LGTBA	Wi-Fi 6 Ultra low power IC, 7x7 DR-QFN, Integrated 2.4 GHz Radio	NCP	4 MB In-Package Flash	-40 to 85 °C
Note:				
1. Devices are shipped without firmware loaded. For custom parts with pre-loaded firmware, please contact Silicon Labs.				

Figure 2.1. Ordering Guide

Table 2.2. OPN Decoder

Field	Options
Device Type	T: RCP (Transceiver) N: NCP G: SoC
Product Family	7: Ultra-low power 5: Ultra-low cost
Package Type	M: DR-QFN

Field	Options
Ultra Low Power	0: ULP Features disabled 1: ULP Features enabled
PSRAM	0: No PSRAM Support 1: External PSRAM 2: 2 MB In-Package PSRAM 4: 8 MB In-Package PSRAM
MVP	0: MVP Features disabled 1: MVP Features enabled
Flash Size	X: No Internal Flash L: 4 MB In-Package Flash M: 8 MB In-Package Flash
Temperature	G: -40 °C to 85 °C
IC/Module	T: IC Package
HW Revision	B: Revision B
Reserved	A: Reserved

Table of Contents

1. Feature List	2
2. Ordering Information	4
3. Applications	8
4. Block Diagrams	9
5. System Overview	11
5.1 Introduction	11
5.2 WLAN	11
5.2.1 MAC	11
5.2.2 Baseband Processing	11
5.3 Bluetooth	11
5.3.1 MAC	12
5.3.2 Baseband Processing	12
5.4 RF Transceiver	12
5.4.1 Receiver and Transmitter Operating Modes	13
5.5 Security Features	13
5.6 Embedded Wi-Fi Software	13
5.6.1 Security	13
5.7 Power Architecture	13
5.7.1 Highlights	14
5.7.2 System Power Supply Configurations	14
5.7.3 Power Management	14
5.8 Memory Architecture	14
5.9 Low Power Modes	15
5.9.1 ULP Mode	15
6. Pinout and Pin Description	16
6.1 Pin Diagram	16
6.2 Pin Description	17
6.2.1 RF and Control Interfaces	17
6.2.2 Power and Ground Pins	18
6.2.3 Peripheral Interfaces	19
6.2.4 Miscellaneous Pins	26
7. Electrical Specifications	27
7.1 Absolute Maximum Ratings	27
7.2 Recommended Operating Conditions	28
7.3 DC Characteristics	29
7.3.1 RESET_N and POC_IN Pins	29
7.3.2 Power On Control (POC) and Reset	30
7.3.3 ULP Regulators	32
7.3.4 Power Management Unit	33

7.3.5 Thermal Characteristics	35
7.3.6 Digital I/O Signals	35
7.4 AC Characteristics.	35
7.4.1 Clock Specifications.	35
7.4.2 SDIO 2.0 Secondary	38
7.4.3 HSPI Secondary	40
7.4.4 GPIO Pins	42
7.4.5 In-Package Flash Memory	43
7.5 RF Characteristics	43
7.5.1 WLAN 2.4 GHz Transmitter Characteristics	44
7.5.2 WLAN 2.4 GHz Receiver Characteristics on HP RF Chain	45
7.5.3 WLAN 2.4 GHz Receiver Characteristics on LP RF Chain	47
7.5.4 Bluetooth Transmitter Characteristics on High-Performance (HP) RF Chain	48
7.5.5 Bluetooth Transmitter Characteristics on Low-Power (LP) 8 dBm RF Chain	49
7.5.6 Bluetooth Transmitter Characteristics on Low-Power (LP) 0 dBm RF Chain	50
7.5.7 Bluetooth Receiver Characteristics for 1 Mbps Data Rate	51
7.5.8 Bluetooth Receiver Characteristics for 2 Mbps Data Rate	53
7.5.9 Bluetooth Receiver Characteristics for 125 kbps Data Rate	54
7.5.10 Bluetooth Receiver Characteristics for 500 kbps Data Rate	54
7.6 Typical Current Consumption	55
7.6.1 WLAN 2.4 GHz 3.3 V Current Consumption.	56
7.6.2 Bluetooth LE Current Consumption.	57
8. Reference Schematics, BOM and Layout Guidelines	58
8.1 Schematics	58
8.1.1 System Supplies	58
8.1.2 RF Supplies	59
8.1.3 GPIO Supplies	60
8.1.4 RF Frontend	61
8.1.5 LF Clock Options.	62
8.1.6 Flash Memory Configurations	62
8.1.7 Reset.	63
8.1.8 Host Interface	64
8.2 BOM	65
8.3 Layout Guidelines for DR-QFN	68
8.4 Calibration Requirements	68
9. Package Specifications	69
9.1 Package Outline	69
9.2 PCB Land Pattern	72
9.3 Top Marking	74
10. SiWN917 Documentation and Support	75
11. Revision History.	76

3. Applications

Smart Home

Smart Locks, Motion/Entrance Sensors, Water Leak sensors, Smart plugs/switches, Light Emitting Diode (LED) lights, Door-bell cameras, Washers/Dryers, Refrigerators, Thermostats, Consumer Security cameras, Voice Assistants, etc.

Other Consumer Applications

Toys, Anti-theft tags, Smart dispensers, Weighing scales, Fitness Monitors, Blood pressure monitors, Blood sugar monitors, Portable cameras, etc.

Other Applications (Medical, Industrial, Retail, Agricultural, Smart City, etc.)

Healthcare Tags, Industrial Wearables, Infusion pumps, Sensors/actuators in Manufacturing, Electronic Shelf labels, Agricultural sensors, Product tracking tags, Smart Meters, Parking sensors, Street LED lighting, Automotive After-market, Security Cameras, Gateways, etc.

4. Block Diagrams

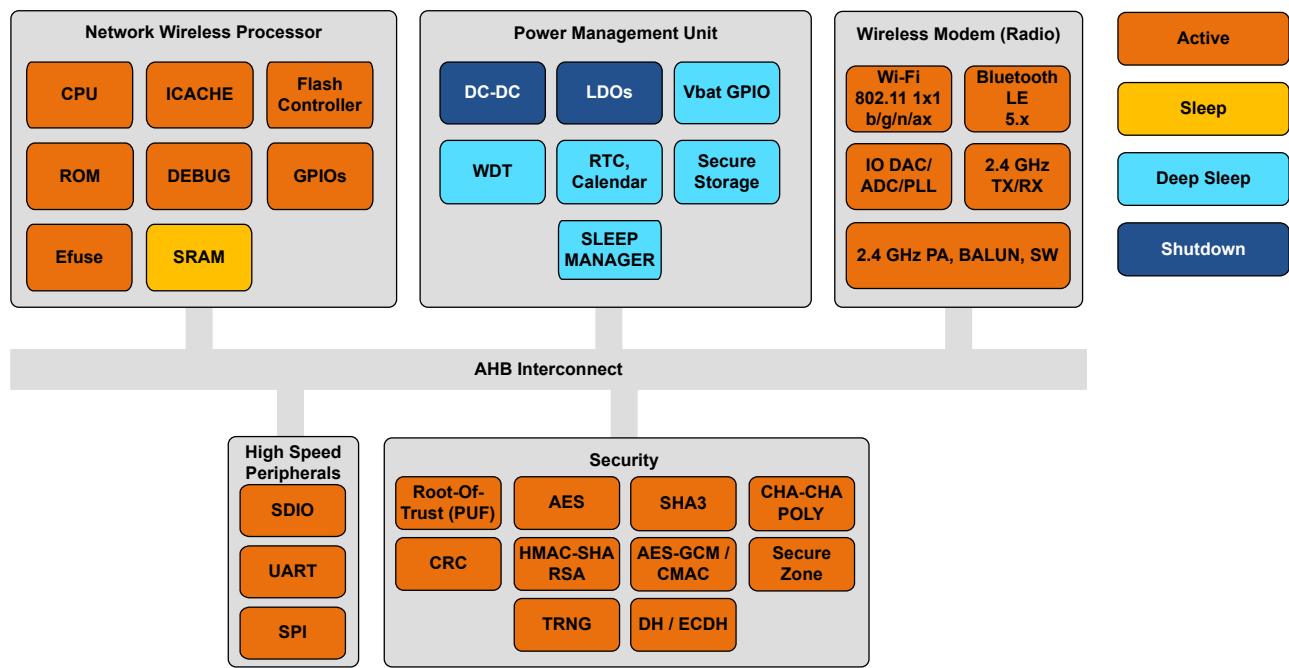


Figure 4.1. System Block Diagram

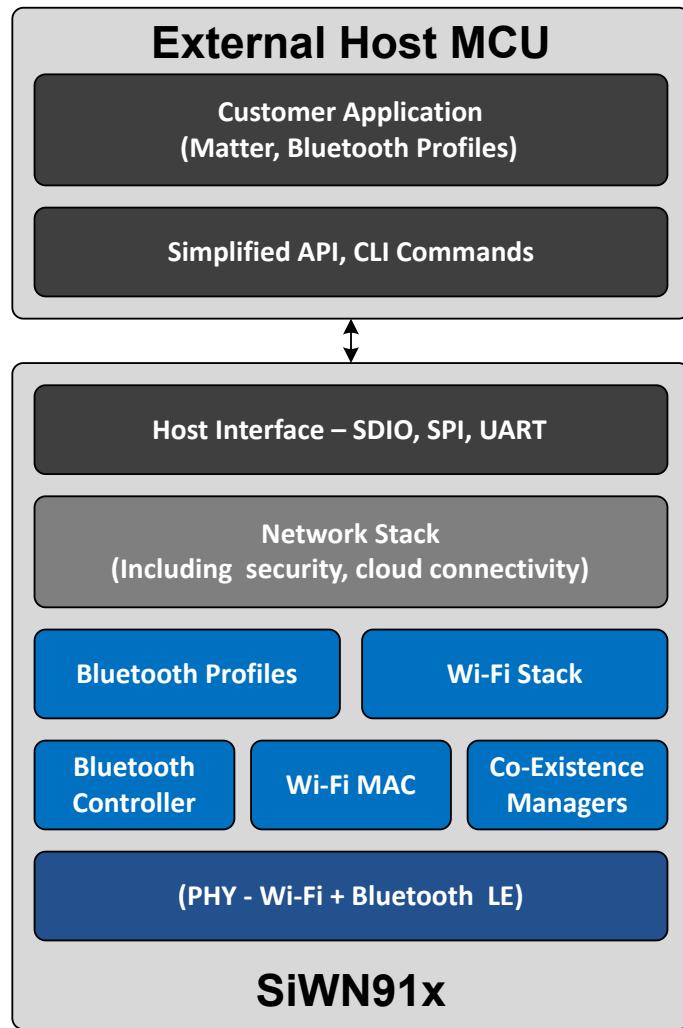


Figure 4.2. SiWN917 NCP Software Architecture

Note: Customer can connect multiple hosts, but only one host interface can be active after power-on.

5. System Overview

5.1 Introduction

SiWN91x NCP includes a Network Wireless Processor (NWP) 4-Threaded processor running up to 160 MHz. All the networking and wireless stacks run on independent threads of the NWP. In addition, the NWP subsystem also acts as the secure processing domain and takes care of secure boot, secure firmware update and provides access to security accelerators and secure peripherals through pre-defined APIs. The NWP based "Networking, Security and Wireless subsystem" have power, clocks/PLLs, bus-matrices, and memory.

5.2 WLAN

- Compliant to single-spatial stream IEEE 802.11 b/g/n/ax with single band (2.4 GHz) support
- Support for 20 MHz channel bandwidth for 802.11n and 802.11ax.
- Operating Modes: Wi-Fi 4 STA, Wi-Fi 6 (802.11ax) STA, Wi-Fi 4 AP, Enterprise STA, Wi-Fi 6 STA + Wi-Fi 4 AP, Wi-Fi STA + BLE
- Wi-Fi 6 Features: Individual Target wake-up time (iTWT), Broadcast TWT (bTWT), SU extended range (ER), DCM (Dual Carrier Modulation), DL MU-MIMO, DL/UL OFDMA, MBSSID, BFRP, Spatial Re-use, BSS Coloring, and NDP feedback up to 4 antennas
- Integrated PA
- Data Rates—802.11b: up to 11 Mbps; 802.11g: up to 54 Mbps; 802.11n: MCS0 to MCS7; 802.11ax: MCS0 to MCS7
- Operating Frequency Range: 2412 MHz – 2484 MHz

5.2.1 MAC

- Conforms to IEEE 802.11b/g/n/j/ax standards for MAC
- Hardware accelerators for AES
- WPA, WPA2, WPA3 and WMM support
- AMPDU aggregation for high performance
- Firmware downloaded from host based on application
- Hardware accelerators for DH (for WPS) and ECDH

5.2.2 Baseband Processing

- Supports 11b: DSSS for 1, 2 Mbps and CCK for 5.5, 11 Mbps
- Supports all OFDM data rates
 - 802.11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps
 - 802.11ax, 802.11n: MCS 0 to MCS 7
- High-performance multipath handling in OFDM, DSSS, and CCK modes

5.3 Bluetooth

Key Features

- Transmit power up to +19.5 dBm with integrated PA
- Receive sensitivity — LE 1 Mbps: -96 dBm, LR 125 kbps: -107 dBm
- Operating Frequency Range — 2.402 GHz - 2.480 GHz
- Support LE (1 Mbps & 2 Mbps) and LR (125 kbps & 500 kbps) rates
- Advertising extensions
- Data length extensions
- LL privacy
- LE dual role
- BLE acceptlist
- Two simultaneous BLE connections (2 peripheral or 2 central, or 1 central and 1 peripheral)

5.3.1 MAC

Link Manager

- Creation, modification & release of physical links
- Connection establishment between Link managers of two Bluetooth devices
- Link supervision is implemented in Link Manager
- Link power control is done depending on the inputs from Link Controller
- Enabling & disabling of encryption & decryption on logical links
- AES hardware acceleration

Link Controller

- Encodes and decodes header of BLE packets
- Manages flow control, acknowledgment, re-transmission requests, etc.
- Stores the last packet status for all physical transports
- Indicates the success status of packet transmission to upper layers
- Indicates the link quality to the LMP layer

Device Manager

- Executes HCI Commands
- Controls Scan & Connection processes
- Controls all BLE Device operations except data transport operations
- BLE Controller state transition management
- Anchor point synchronization & management
- Scheduler

5.3.2 Baseband Processing

- Supports BLE 1 Mbps, 2 Mbps and long range 125 kbps, 500 kbps

5.4 RF Transceiver

- SiWN917 features two highly configurable RF transceivers supporting WLAN 11b/g/n/ax and Bluetooth LE wireless protocols. Both RF transceivers together operating in multiple modes covering High Performance (HP) and Low Power (LP) operations. List of operating modes are given in next section.
- It contains two fully integrated fractional-N frequency synthesizers having reference from internal oscillator with 40 MHz crystal. One of the synthesizer is a low power architecture which also caters single-bit data modulation feature for Bluetooth LE protocols.
- There are two transmitter chains in the chip. First one uses a direct conversion architecture getting carrier signal from the high-performance frequency synthesizer. It contains an on-chip balun and its output is terminated as single-ended output at "RF_TX" pin. This transmitter supports all the mentioned WLAN protocols, and Bluetooth LE protocol for high output power. The second transmitter is a low power architecture for supporting constant envelope modulation formats. This has two outputs differentiated by their maximum output power level. The 0 dBm output is shared with "RF_RX" pin and the 8 dBm output is terminated at "RF_BLETX" pin.
- The receiver contains two front end paths with a configurable common LNA catering HP and LP operations. This also has two analog base-band blocks where one is zero-IF architecture supporting all the mentioned WLAN protocols and the other one is low-IF architecture supporting Bluetooth LE. Input to the pin is "RF_RX" sharing with 0 dBm Tx output.
- Impedance matching for each RF pins need to be done separately for optimum performance.

5.4.1 Receiver and Transmitter Operating Modes

The available radio operating modes are

- WLAN HP TX - WLAN High-Performance Transmitter with up to 19.5 dBm PA
- WLAN HP RX - WLAN High-Performance Receiver
- WLAN LP RX - WLAN Low-Power Receiver
- BLE HP TX - Bluetooth LE High-Performance Transmitter with up to 19 dBm PA
- BLE HP RX - Bluetooth LE High-Performance Receiver
- BLE LP TX - Bluetooth LE Low-Power Transmitter with 8 dBm PA
- BLE LP TX - Bluetooth LE Low-Power Transmitter with 0 dBm PA
- BLE LP RX - Bluetooth LE Low-Power Receiver

Note: All the TX / RX modes are automatically controlled by radio firmware and not individually selectable.

5.5 Security Features

- Secure Boot
- Secure OTA Firmware update
- TRNG: Generates high-entropy random numbers based on RF noise, increasing the effort/time needed to expose secret keys
- Secure Zone
- Secure Key storage : HW device identity and key storage with PUF
- Debug Lock
- Anti Rollback : Firmware downgrade to a lower version is prohibited through OTP to prevent the use of older, potentially vulnerable FW version
- Encrypted XIP from flash with XTS/CTR mode
- Secure Attestation : Allows a device to authenticate its identity using a cryptographically signed token and exchange of secret keys
- Hardware Accelerators: AES128/256/192, SHA256/384/512, HMAC, RNG, CRC, SHA3, AES-GCM/ CMAC, ChaCha-poly
- Software Implementation: RSA and ECC

5.6 Embedded Wi-Fi Software

- The wireless software package supports Embedded Wi-Fi (802.11 b/g/n/ax) Client mode, Wi-Fi Access point mode (up to 4 clients), and Enterprise Security in client mode.
- The software package includes complete firmware and application profiles.
- It has a wireless coexistence manager to arbitrate between protocols.

5.6.1 Security

Wireless software supports multiple levels of security capabilities available for the development of IoT devices.

- Accelerators: AES128/256
- WPA/WPA2/WPA3-Personal, WPA/WPA2/WPA3 Enterprise for Client

5.7 Power Architecture

The Power Control Hardware implements the control sequences for transitioning between different power states (Active/Standby/Sleep/Shutdown).

5.7.1 Highlights

- Two integrated buck switching regulators (High performance and ULP) to enable efficient Voltage Scaling across wide operating mode currents ranging from $<1\ \mu\text{A}$ to 170 mA
- Multiple voltage domains with Independent voltage scaling of each domain.
- Fine grained power-gating including peripherals, buses and pads, thereby reducing power consumption when the peripheral/buses/pads are inactive.
- Flexible switching between different Active states with controls from Software.
- Hardware based wakeup from Standby/Sleep/Shutdown states.
- All the peripherals are clock gated by default thereby reducing the power consumption in inactive state.
- Low wakeup times as configurable by Software.

5.7.2 System Power Supply Configurations

SiWN917 chipsets support highly flexible power supply configurations for various application scenarios. Two application scenarios are listed below.

- 3.3 V single supply - A single 3.3 V supply derived from the system PMU can be input to all I/O supplies.
- 1.8 V and 3.3 V supply - A 1.8 V supply derived from the system PMU can be input to all I/O supplies except PA2G_AVDD. A 3.3 V supply derived from system Power Management Unit (PMU) can be fed to the power amplifier supply pin PA2G_AVDD. There will be slight RF performance degradation if antenna select signals (ULP_GPIO_4, ULP_GPIO_5, ULP_GPIO_0) are powered at 1.8 V from the ULP_IO_VDD supply.

5.7.3 Power Management

The SiWN917 chipsets have an internal power management subsystem, including DC-DC converters and linear regulators. This subsystem generates all the voltages required by the chipset to operate from a wide variety of input sources.

- LC DC-DC switching converter for RF and digital blocks
 - Input voltage (1.8 V or 3.3 V) on pin VINBCKDC
 - Nominal Output - 1.45 V and 170 mA maximum load on pin VOUTBCKDC
- SC DC-DC - Switching converter for Always-ON core logic domain
 - Input voltage (1.8 V or 3.3 V) on pin UULP_VBATT_1 and UULP_VBATT_2
 - Nominal Outputs
 - 1.05 V on pin UULP_VOUTSCDC
 - 0.75 V on pin UULP_VOUTSCDC_RETN
- SoC LDO - Linear regulator for digital blocks
 - Input - 1.45 V from LC DC-DC or external regulated supply on pin VINLDOSOC
 - Nominal Output - 1.15 V and 100 mA maximum load on pin VOUTLDOSOC
- LDO RF and AFE - Linear regulator for RF and AFE
 - Input - 1.45 V from LC DC-DC or external regulated supply on pin RF_AVDD
 - Nominal Output - 1.21 V on pin VOUTLDOAFE

Note: Output of VOUTLDOAFE will be 0.75 V - 1.05 V after initial power-up, until the RF has been initialized.

- Flash LDO - Linear regulator for In-package flash and external memories
 - Input voltage (1.8 V or 3.3 V) on pin VINLDO1P8
 - Nominal Output - 1.8 V and 48 mA maximum load on pin VOUTLDO1P8

5.8 Memory Architecture

There are on chip Read Only Memory(ROM), Random Access Memory(RAM) and in-package flash connectivity. Sizes of ROM/RAM/flash will vary depending on the chip configuration.

The NWP processor has the following memory:

- Embedded SRAM up to 672 KB total
- 448 KB of ROM which holds the Secure primary bootloader, Network Stack, Wireless stacks and security functions
- 16 KB of Instruction cache (I cache)
- Flash up to 4 MB (in-package)
- eFuse of 1024 bytes (used to store primary boot configuration, security and calibration parameters)

5.9 Low Power Modes

It supports Ultra-low power consumption with multiple power modes to reduce system energy consumption.

- Voltage and Frequency Scaling
- Deep sleep (ULP) mode with only the sleep timer active – with and without RAM retention
- Wi-Fi standby associated mode with automatic periodic wake-up
- Automatic clock gating of the unused blocks or transit the system from Normal to ULP mode.

5.9.1 ULP Mode

In Ultra Low Power mode, the deep sleep manager has control over the processors and subsystems and controls their active and sleep states. During deep sleep, the always-on logic domain operates on a lowered supply and a low-frequency clock to reduce power consumption. The ULP mode supports the following wake-up options:

- Timeout wakeup - Exit sleep state after programmed timeout value.
- GPIO Based Wakeup: Exit sleep state when GPIO goes High/Low based on programmed polarity.

6. Pinout and Pin Description

6.1 Pin Diagram

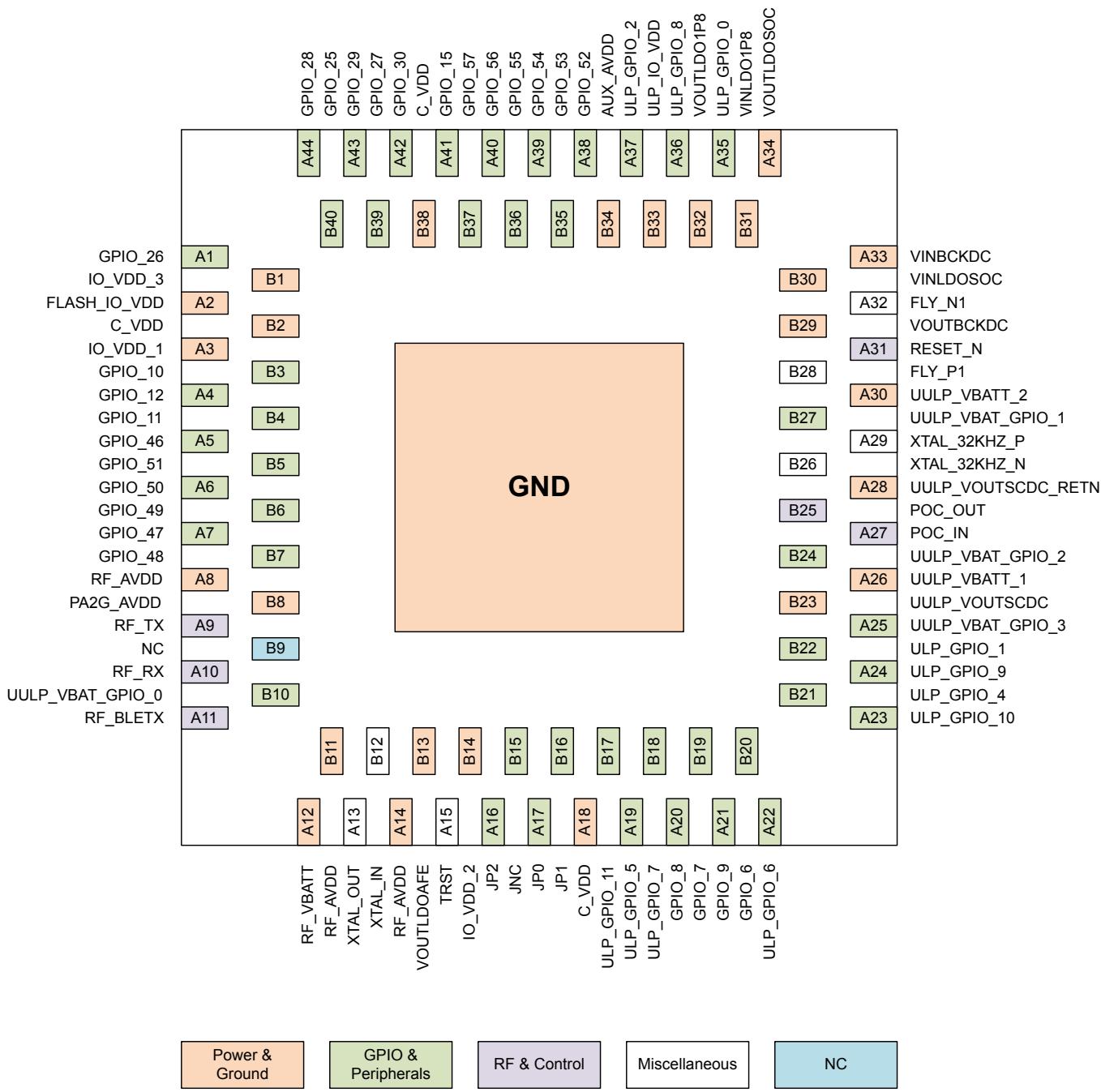


Figure 6.1. SiWN917xxxxxxxxBA

6.2 Pin Description

6.2.1 RF and Control Interfaces

Table 6.1. Chip Packages - RF and Control Interfaces

Pin Name	Pin Number	I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description
RF_TX	A9	PA2G_AVDD	Output	NA	2.4 GHz High Performance RF Output
RF_RX	A10	RF_AVDD	Inout	NA	2.4 GHz RF Input for High Performance WLAN and High Performance BLE. It can also be used as 2.4 GHz RF output for Low Power BLE 0 dBm
RF_BLETX	A11	RF_AVDD	Output	NA	2.4 GHz RF Output for Low Power BLE 8 dBm
RESET_N	A31	UULP_VBATT_2	Inout	NA	Active-low asynchronous reset signal, which resets only digital blocks. RESET_N will be pulled low if POC_IN is low.
POC_IN	A27	UULP_VBATT_1	Input	NA	This is an input to the chip which resets all analog and digital blocks in the device. It should be made high only after supplies are valid to ensure the IC is in safe state until valid power supply is available.
POC_OUT	B25	UULP_VBATT_1	Output	NA	This is internally generated. Initially, it is low. But it becomes high when the supplies (UULP_VBATT_1, UULP_VOUTSCDC) are valid.
ULP_GPIO_0	A35	ULP_IO_VDD	Inout	NA	Antenna select pin for External switch configuration. Please refer to Reference schematics for more info. For internal RF switch configuration, may be used for GPIO functions.
ULP_GPIO_4	B21	ULP_IO_VDD	Inout	NA	Antenna select pin for External switch configuration. Please refer to Reference schematics for more info. For internal RF switch configuration, may be used for GPIO functions.
ULP_GPIO_5	A19	ULP_IO_VDD	Inout	NA	Antenna select pin for External switch configuration. Please refer to Reference schematics for more info. For internal RF switch configuration, may be used for GPIO functions.

6.2.2 Power and Ground Pins

Table 6.2. Chip Packages - Power and Ground Pins

Pin Name	Type	Pin Number	Direction	Description
UULP_VBATT_1	Power	A26	Input	Always-on VBATT Power supply to the UULP domains.
UULP_VBATT_2	Power	A30	Input	Always-on VBATT Power supply to the UULP domains.
RF_VBATT	Power	A12	Input	Always-on VBATT Power supply to the RF.
VINBCKDC	Power	A33	Input	Power supply for the on-chip buck DC-DC.
VOUTBCKDC	Power	B29	Output	Output of the on-chip buck DC-DC.
VINLDOSOC	Power	B30	Input	Power supply for SoC LDO. Connect to VOUTBCKDC as per the Reference Schematics.
VOUTLDOSOC	Power	A34	Output	Output of SoC LDO.
VINLDO1P8	Power	B31	Input	Power supply for 1.8 V LDO
VOUTLDO1P8	Power	B32	Output	Output of 1.8 V LDO.
VOUTLDOAFE	Power	B13	Output	Output of RF AFE LDO.
FLASH_IO_VDD	Power	A2	Input	I/O supply for external memory. Connect to VOUTLDO1P8 as per the Reference Schematics.
IO_VDD_1	Power	A3	Input	I/O Supply for GPIOs. Refer to the GPIOs section for details on which GPIOs have this as the I/O supply.
IO_VDD_2	Power	B14	Input	I/O Supply for GPIOs. Refer to the GPIOs section for details on which GPIOs have this as the I/O supply.
IO_VDD_3 (SDIO_IO_VDD)	Power	B1	Input	I/O Supply for SDIO I/Os. Refer to the GPIOs section for details on which GPIOs have this as the I/O supply.
ULP_IO_VDD	Power	B33	Input	I/O Supply for ULP GPIOs.
PA2G_AVDD	Power	B8	Input	Power supply for the 2.4 GHz RF Power Amplifier.
RF_AVDD	Power	A8, A14, B11	Input	Power supply for the 2.4 GHz RF and AFE. Connect to VOUTBCKDC as per the Reference Schematics.
AUX_AVDD	Power	B34	Output	Auxiliary LDO Output supply for the Analog peripherals.
UULP_VOUTSCDC	Power	B23	Output	UULP Switched Cap DCDC Output.
UULP_VOUTSCDC_RETN	Power	A28	Output	UULP Retention Supply Output.
C_VDD	Power	B2, A18, B38	Input	Power supply for the digital core. Connect to the VOUTLDOSOC as per the Reference Schematics.
GND	Ground	GND Paddle	GND	Common ground pins.

6.2.3 Peripheral Interfaces

Table 6.3. Chip Packages - Peripheral Interfaces

Pin Name	Pin Number	I/O Supply Do- main	Direction	Initial State (Power up, Ac- tive Reset)	Description 1,2,3,4									
GPIO_6	B20	IO_VDD_1	Inout	HighZ	Default: HighZ Sleep: HighZ									
GPIO_7	B19	IO_VDD_1	Inout	HighZ	Default: HighZ Sleep: HighZ This pin can be configured by software to be any of the following. PTA_GRANT: "PTA Grant" output signal is part of 3-wire coexistence (Packet Traffic Arbitration) interface.									
GPIO_8/UART1_RX	A20	IO_VDD_1	Inout	HighZ	<table border="1"> <tr> <td>Host</td><td>Default</td><td>Sleep</td></tr> <tr> <td>UART</td><td>UART1_RX - UART Host in- terface serial in- put.</td><td>HighZ</td></tr> <tr> <td>Non UART</td><td>HighZ</td><td>HighZ</td></tr> </table>	Host	Default	Sleep	UART	UART1_RX - UART Host in- terface serial in- put.	HighZ	Non UART	HighZ	HighZ
Host	Default	Sleep												
UART	UART1_RX - UART Host in- terface serial in- put.	HighZ												
Non UART	HighZ	HighZ												
GPIO_9/UART1_TX	A21	IO_VDD_1	Inout	HighZ	<table border="1"> <tr> <td>Host</td><td>Default</td><td>Sleep</td></tr> <tr> <td>UART</td><td>UART1_T X - UART Host in- terface serial out- put.</td><td>HighZ</td></tr> <tr> <td>Non UART</td><td>HighZ</td><td>HighZ</td></tr> </table>	Host	Default	Sleep	UART	UART1_T X - UART Host in- terface serial out- put.	HighZ	Non UART	HighZ	HighZ
Host	Default	Sleep												
UART	UART1_T X - UART Host in- terface serial out- put.	HighZ												
Non UART	HighZ	HighZ												

Pin Name	Pin Number	I/O Supply Do- main	Direction	Initial State (Power up, Ac- tive Reset)	Description 1,2,3,4
GPIO_10	B3	IO_VDD_1	Inout	HighZ	<p>Default: HighZ Sleep: HighZ</p> <p>This pin can be configured by software to be any of the following.</p> <ul style="list-style-type: none"> HOST_WAKEUP_IND: This is used as indication from host to dev that host is ready to take the packet and device can transfer the packet to host. This is supported only in UART host mode. It is part of Wake-on-Wireless functionality. Please check with Silabs for availability of this functionality
GPIO_11	B4	IO_VDD_1	Inout	HighZ	<p>Default: HighZ Sleep: HighZ</p> <p>This pin can be configured by software to be any of the following.</p> <ul style="list-style-type: none"> WAKEUP_FROM_DEV: Used as a wakeup indication to host from device. It is part of Wake-on-Wireless functionality. It is recommended that one use an external weak pull-down resistor on this pin and software has to be configured suitably. Please check with Silabs for availability of this functionality.
GPIO_12	A4	IO_VDD_1	Inout	HighZ	<p>Default: HighZ Sleep: HighZ</p> <p>This pin can be configured by software to be any of the following.</p> <ul style="list-style-type: none"> UART1_RTS - UART interface Request to Send, if UART Host Interface flow control is enabled.
GPIO_15	A41	IO_VDD_3	Inout	HighZ	<p>Default: HighZ Sleep: HighZ</p> <p>This pin can be configured by software to be any of the following.</p> <ul style="list-style-type: none"> UART1_CTS - UART interface Clear to Send, if UART Host Interface flow control is enabled.

Pin Name	Pin Number	I/O Supply Do- main	Direction	Initial State (Power up, Ac- tive Reset)	Description 1,2,3,4		
GPIO_25/SDIO_CLK/ HSPI_CLK	B40	IO_VDD_3	Inout	HighZ	Host	Default	Sleep
					SDIO	SDIO_CLK - SDIO interface clock	HighZ
					SPI	HSPI_CLK - SPI Slave interface clock	HighZ
					Non SDIO,SPI	HighZ	HighZ
GPIO_26/SDIO_CMD/ HSPI_CSN	A1	IO_VDD_3	Inout	HighZ	Host	Default	Sleep
					SDIO	SDIO_CMD - SDIO interface CMD signal	HighZ
					SPI	HSPI_CS_N - Active-low Chip Select signal of SPI Slave interface	HighZ
					Non SDIO,SPI	HighZ	HighZ
GPIO_27/SDIO_D0/ HSPI_MOSI	B39	IO_VDD_3	Inout	HighZ	Host	Default	Sleep
					SDIO	SDIO_D0 - SDIO interface Data0 signal	HighZ
					SPI	HSPI_MOSI - SPI Slave interface Master-Out-Slave-In signal	HighZ
					Non SDIO,SPI	HighZ	HighZ

Pin Name	Pin Number	I/O Supply Do- main	Direction	Initial State (Power up, Ac- tive Reset)	Description 1,2,3,4		
GPIO_28/SDIO_D1/ HSPI_MISO	A44	IO_VDD_3	Inout	HighZ	Host	Default	Sleep
					SDIO	SDIO_D1 - SDIO in- terface Data1 signal	HighZ
					SPI	HSPI_MI- SO - SPI Slave in- terface Master- In- Slave- Out sig- nal	HighZ
					Non SDIO,SPI	HighZ	HighZ
GPIO_29/SDIO_D2/ HSPI_INTR	A43	IO_VDD_3	Inout	HighZ	Host	Default	Sleep
					SDIO	SDIO_D2 - SDIO in- terface Data2 signal	HighZ
					SPI	HSPI_IN TR - SPI Slave in- terface Interrupt Signal to the Host	HighZ
					Non SDIO,SPI	HighZ	HighZ
GPIO_30/SDIO_D3	A42	IO_VDD_3	Inout	Pullup	Host	Default	Sleep
					SDIO	SDIO_D3 - SDIO in- terface Data3 signal	HighZ
					Non SDIO,SPI	HighZ	HighZ
GPIO_46	A5	IO_VDD_1	Inout	HighZ	Default: HighZ Sleep: HighZ		
GPIO_47	A7	IO_VDD_1	Inout	HighZ	Default: HighZ Sleep: HighZ		
GPIO_48	B7	IO_VDD_1	Inout	HighZ	Default: HighZ Sleep: HighZ		

Pin Name	Pin Number	I/O Supply Do- main	Direction	Initial State (Power up, Ac- tive Reset)	Description 1,2,3,4
GPIO_49	B6	IO_VDD_1	InOut	HighZ	Default: HighZ Sleep: HighZ
GPIO_50	A6	IO_VDD_1	InOut	HighZ	Default: HighZ Sleep: HighZ
GPIO_51	B5	IO_VDD_1	InOut	HighZ	Default: HighZ Sleep: HighZ
GPIO_52	A38	IO_VDD_1	InOut	HighZ	Default: HighZ Sleep: HighZ
GPIO_53	B35	IO_VDD_1	InOut	HighZ	Default: HighZ Sleep: HighZ
GPIO_54	A39	IO_VDD_1	InOut	HighZ	Default: HighZ Sleep: HighZ
GPIO_55	B36	IO_VDD_1	InOut	HighZ	Default: HighZ Sleep: HighZ
GPIO_56	A40	IO_VDD_1	InOut	HighZ	Default: HighZ Sleep: HighZ
GPIO_57	B37	IO_VDD_1	InOut	HighZ	Default: HighZ Sleep: HighZ
ULP_GPIO_0	A35	ULP_IO_VDD	InOut	HighZ	Default: HighZ Sleep: HighZ Antenna select pin for external switch configuration. Please refer to reference schematics for more info. For internal RF switch configuration, may be used for GPIO functions.
ULP_GPIO_1	B22	ULP_IO_VDD	InOut	HighZ	Default: HighZ Sleep: HighZ This pin can be configured by software to be any of the following <ul style="list-style-type: none"> PTA_REQ: "PTA Request" input signal is part of 3-wire co-existence (Packet Traffic Arbitration) interface.
ULP_GPIO_2	A37	ULP_IO_VDD	InOut	HighZ	Default: HighZ Sleep: HighZ

Pin Name	Pin Number	I/O Supply Do- main	Direction	Initial State (Power up, Ac- tive Reset)	Description 1,2,3,4
ULP_GPIO_4	B21	ULP_IO_VDD	InOut	HighZ	<p>Default: HighZ Sleep: HighZ</p> <p>Antenna select pin for external switch configuration. Please refer to reference schematics for more info. For internal RF switch configuration, may be used for GPIO functions.</p>
ULP_GPIO_5	A19	ULP_IO_VDD	InOut	HighZ	<p>Default: HighZ Sleep: HighZ</p> <p>Antenna select pin for external switch configuration. Please refer to reference schematics for more info. For internal RF switch configuration, may be used for GPIO functions.</p>
ULP_GPIO_6	A22	ULP_IO_VDD	InOut	HighZ	<p>Default: HighZ Sleep: HighZ</p> <p>This pin can be configured by software to be any of the following.</p> <ul style="list-style-type: none"> PTA_PRIO: "PTA Priority" input signal is part of 3-wire co-existence (Packet Traffic Arbitration) interface.
ULP_GPIO_7	B18	ULP_IO_VDD	InOut	HighZ	<p>Default: HighZ Sleep: HighZ</p>
ULP_GPIO_8	A36	ULP_IO_VDD	InOut	HighZ	<p>Default: HighZ Sleep: HighZ</p>
ULP_GPIO_9 / UART2_TX	A24	ULP_IO_VDD	InOut	HighZ	<p>Default: UART2_TX- Debug UART Interface serial output Sleep: HighZ</p>
ULP_GPIO_10	A23	ULP_IO_VDD	InOut	HighZ	<p>Default: HighZ Sleep: HighZ</p>
ULP_GPIO_11	B17	ULP_IO_VDD	InOut	HighZ	<p>Default: HighZ Sleep: HighZ</p>

Pin Name	Pin Number	I/O Supply Do- main	Direction	Initial State (Power up, Ac- tive Reset)	Description 1,2,3,4
UULP_VBAT_GPIO_0	B10	UULP_VBATT_1	Output	High	<p>Default: High Sleep: High</p> <p>This pin can be configured by software to be any of the following.</p> <ul style="list-style-type: none"> • SLEEP_IND_FROM_DEV: This signal is used to send an indication to the Host processor. An indication is sent when the chip enters (logic low) and exits (logic high) the ULP Sleep mode.
UULP_VBAT_GPIO_1	B27	UULP_VBATT_1	InOut	HighZ	<p>Default: HighZ Sleep: HighZ</p> <p>UULP_VBAT_GPIO_1: Reserved</p>
UULP_VBAT_GPIO_2	B24	UULP_VBATT_1	InOut	HighZ	<p>Default: HighZ Sleep: ULP_WAKEUP</p> <p>This pin can be configured by software to be any of the following.</p> <ul style="list-style-type: none"> • HOST_BYP_ULP_WAKEUP: This signal has two functionalities – one during the bootloading process and one after the bootloading. During bootloading, this signal is an active-high input to indicate that the bootloader should bypass any inputs from the Host processor and continue to load the default firmware from Flash. After bootloading, this signal is an active-high input to indicate that the device should wakeup from its Ultra Low Power (ULP) sleep mode.
UULP_VBAT_GPIO_3	A25	UULP_VBATT_1	InOut	HighZ	<p>Default: HighZ Sleep: HighZ</p> <p>Reserved</p>
JP0	A17	IO_VDD_2	Input	Pullup	<p>Default: JP0 Sleep: HighZ</p> <p>JP0 - Reserved. Connect to a test point for debugging purposes</p>
JP1	B16	IO_VDD_2	Input	Pullup	<p>Default: JP1 Sleep: HighZ</p> <p>JP1 - Reserved. Connect to a test point for debugging purposes</p>

Pin Name	Pin Number	I/O Supply Do- main	Direction	Initial State (Power up, Ac- tive Reset)	Description 1,2,3,4
JP2	A16	IO_VDD_2	Input	Pullup	Default: JP2 Sleep: HighZ JP2 - Reserved. Connect to a test point for debugging purposes
JNC	B15	IO_VDD_2	Output	Pullup	Default: JNC Sleep: HighZ JNC - Reserved. Connect to a test point for debugging purposes

Note:

1. "Default" state refers to the state of the device after initial boot loading and firmware loading is complete.
2. "Sleep" state refers to the state of the device after entering Sleep state
3. Please refer to "Hardware Reference Manual" for software programming information
4. Please refer to "Software Reference Manual" for software programming information
5. In the application, wherever SiWN917 is connected to an external host, during the power-off state, the host should ensure that all the pins (analog or digital) connected to the SiWN917 are not driven. Else, the pins must be grounded.

6.2.4 Miscellaneous Pins

Table 6.4. Miscellaneous Pins

Pin Name	Pin Number	I/O Supply Do- main	Direction	Initial State (Power up, Ac- tive Reset)	Description
FLY_P1	B28	NA	Input	NA	Fly Capacitor for Switched cap DCDC. Please refer to Reference Schematics
FLY_N1	A32	NA	Input	NA	Fly Capacitor for Switched cap DCDC. Please refer to Reference Schematics
XTAL_IN	B12	RF_VBATT	Input	NA	Input to the on-chip oscillator from the external 40 MHz crystal.
XTAL_OUT	A13	RF_VBATT	Output	NA	Output of the on-chip oscillator to the external 40 MHz crystal.
TRST	A15	IO_VDD_2	Input	HighZ	Test signal. Connect to Ground.
XTAL_32KHZ_N	B26	NA	Inout	NA	Analog Pin. 32.768 kHz crystal connection
XTAL_32KHZ_P	A29	NA	Inout	NA	Analog Pin. 32.768 kHz crystal connection
NC	B9	NA	NA	NA	No-Connect

7. Electrical Specifications

7.1 Absolute Maximum Ratings

Stresses beyond those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions beyond those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at <https://www.silabs.com/about-us/quality>.

Note: All the specifications are preliminary and subject to change.

Table 7.1. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Storage temperature	T_{store}		-40	—	125	°C
Maximum junction temperature	T_j_{max}		—	—	125	°C
Always-on VBATT supply to the UULP Domains	$V_{UULP_VBATT_1}$		-0.5	—	3.63	V
Always-on VBATT supply to the UULP Domains	$V_{UULP_VBATT_2}$		-0.5	—	3.63	V
Always-on VBATT Power supply to the RF	V_{RF_VBATT}		-0.5	—	3.63	V
Power supply for the on-chip Buck	$V_{VINBCKDC}$		-0.5	—	3.63	V
Power supply for SoC LDO	$V_{VINLDOSOC}$		-0.5	—	1.8	V
Power supply for 1.8 V LDO	$V_{VINLDO1P8}$		-0.5	—	3.63	V
I/O supply for Flash	$V_{FLASH_IO_VDD}$		-0.5	—	3.63	V
I/O supplies for GPIOs	$V_{IO_VDD_1}$		-0.5	—	3.63	V
I/O supplies for GPIOs	$V_{IO_VDD_2}$		-0.5	—	3.63	V
I/O supplies for GPIOs	$V_{IO_VDD_3}$		-0.5	—	3.63	V
I/O supplies for ULP GPIOs	$V_{ULP_IO_VDD}$		-0.5	—	3.63	V
DC voltage on any I/O pin ¹	V_{IO_PIN}		-0.5	—	$VDD + 0.5$	V
Current per I/O pin	I_{IOMAX}	Sink	—	—	100	mA
		Source	—	—	100	mA
Power supply for the 2.4 GHz RF Power Amplifier	V_{PA2G_AVDD}		-0.5	—	3.63	V
Power supply for the 2.4 GHz RF and AFE	V_{RF_AVDD}		-0.5	—	1.98	V
Power supply for the digital core	V_{C_VDD}		-0.5	—	1.21	V
Total average max current into chip	I_{Pmax}		—	—	500	mA
Note:						
1. VDD = I/O supply domain pin. Refer to pin description tables for supply domain associated with each I/O.						

7.2 Recommended Operating Conditions

Note: The device may operate continuously at the maximum allowable ambient T_{ambient} rating as long as the maximum junction $T_{\text{junction(max)}}$ is not exceeded. For an application with significant power dissipation, the allowable T_{ambient} may be lower than the maximum T_{ambient} rating. $T_{\text{ambient}} = T_{\text{junction(max)}} - (\Theta_{\text{JA}} \times \text{Power Dissipation})$. Refer to the Thermal Characteristics table for Θ_{JA} .

Table 7.2. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit	
Ambient temperature	T_{ambient}		-40	25	85	°C	
Junction temperature	T_{junction}		—	—	105	°C	
Power supply for UULP_VBATT_1, UULP_VBATT_2, and RF_VBATT ¹	V _{VBATT}	3.3 V nominal operation	2.97	3.3	3.63	V	
		1.8 V nominal operation	1.71	1.8	1.98	V	
Power supply for the on-chip Buck ¹	V _{VINBCKDC}	3.3 V nominal operation	2.97	3.3	3.63	V	
		1.8 V nominal operation	1.71	1.8	1.98	V	
Power supply for 1.8 V LDO ₁	V _{VINLDO1P8}	Regulation mode	2.97	3.3	3.63	V	
		Bypass mode	1.71	1.8	1.98	V	
Power supply for SoC LDO	V _{VINLDOSOC}		1.35	1.45	1.55	V	
I/O supply for Flash	V _{FLASH_IO_VDD}		1.71	1.8	1.98	V	
Power supply for the 2.4 GHz RF Power Amplifier	V _{PA2G_AVDD}		2.97	3.3	3.63	V	
Power supply for IO_VDD_1 ₁	V _{IO_VDD_1}	3.3 V nominal operation	2.97	3.3	3.63	V	
		1.8 V nominal operation	1.71	1.8	1.98	V	
Power supply for IO_VDD_2 ₁	V _{IO_VDD_2}	3.3 V nominal operation	2.97	3.3	3.63	V	
		1.8 V nominal operation	1.71	1.8	1.98	V	
Power supply for IO_VDD_3 ₁	V _{IO_VDD_3}	3.3 V nominal operation	2.97	3.3	3.63	V	
		1.8 V nominal operation	1.71	1.8	1.98	V	
Power supply for ULP_IO_VDD ¹	V _{ULP_IO_VDD}	3.3 V nominal operation	2.97	3.3	3.63	V	
		1.8 V nominal operation	1.71	1.8	1.98	V	
Note:							
1. Supplies can operate at a nominal 3.3 V or 1.8 V level independent of the other supplies in the system.							

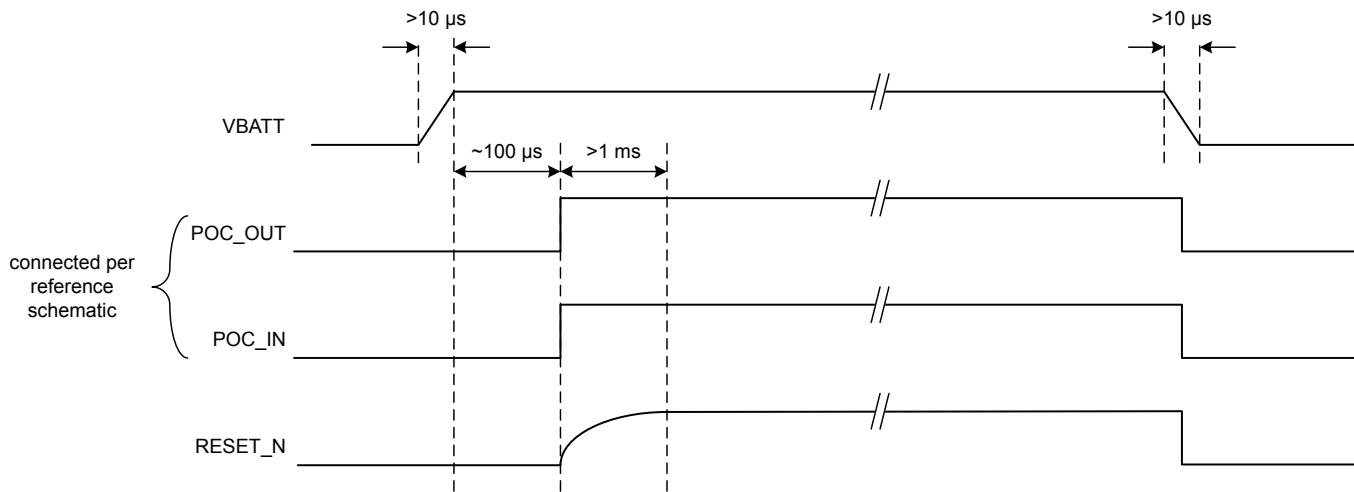
7.3 DC Characteristics

7.3.1 RESET_N and POC_IN Pins

Table 7.3. RESET_N and POC_IN Pins

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
High level input voltage	V _{IH}	RESET_N pin, UULP_VBATT_2 = 3.3 V	0.8 * UULP_VBA TT_2	—	—	V
		RESET_N pin, UULP_VBATT_2 = 1.8 V	1.17	—	—	V
		POC_IN pin, UULP_VBATT_1 = 3.3 V	2.76	—	—	V
		POC_IN pin, UULP_VBATT_1 = 1.8 V	1.38	—	—	V
Low level input voltage	V _{IL}	RESET_N pin, UULP_VBATT_2 = 3.3 V	—	—	0.3 * UULP_VBA TT_2	V
		RESET_N pin, UULP_VBATT_2 = 1.8 V	—	—	0.63	V
		POC_IN pin, UULP_VBATT_1 = 3.3 V	—	—	1.10	V
		POC_IN pin, UULP_VBATT_1 = 1.8 V	—	—	0.24	V

7.3.2 Power On Control (POC) and Reset


There are three signals involved in power-on control and reset of the device:

- POC_IN: When pulled low, POC_IN will reset all of the internal blocks in the device. The POC_IN signal can be controlled either by external circuitry, by POC_OUT, or both.
- RESET_N: RESET_N is an open-drain signal which will be pulled low during a chip reset. It is released after POC_IN is high. RESET_N should be connected to an RC circuit to fulfill the timing requirements shown in [Figure 7.1 Power Up Sequence on page 30](#).
- POC_OUT: The POC_OUT signal is the output of the internal blackout supply monitor. POC_OUT is distributed to all I/O cells to prevent the I/O cells from powering up in an undesired configuration and is also used inside the IC to place the IC in a safe state until a valid supply is available for proper operation. During power up, POC_OUT stays low until the UULP_VBATT_1 reaches 1.6 V. After the VBATT supply exceeds 1.6 V, POC_OUT becomes high and normal operation begins. If VBATT becomes lower than the blackout threshold voltage, POC_OUT will return low. POC_OUT can be used to provide chip reset by connecting to POC_IN in a loopback configuration.

The recommended schematic for the reset signals is shown in [8.1 Schematics](#).

[Figure 7.1 Power Up Sequence on page 30](#) shows the signal timing when POC_OUT, POC_IN, and RESET_N are connected per the recommended schematic. The POC_IN-to-RESET_N delay will occur when POC_IN transitions from low to high. VBATT in the figure refers to the connection of UULP_VBATT_1 and UULP_VBATT_2 (connected together in the schematic).

In this configuration the system only has to control the supply (VBATT) during power-up and power down and need not control POC_IN externally. On power-up the chip will be reset internally. The power-down sequence will follow VBATT and external control of POC_IN is not required.

Figure 7.1. Power Up Sequence

If the chip is to be reset from an external host device while powered up, the POC_IN signal should be pulled low for at least 10 ms as shown in [Figure 7.2 External Reset via POC_IN on page 31](#). Upon release of POC_IN, the POC_IN-to-RESET_N delay will occur.

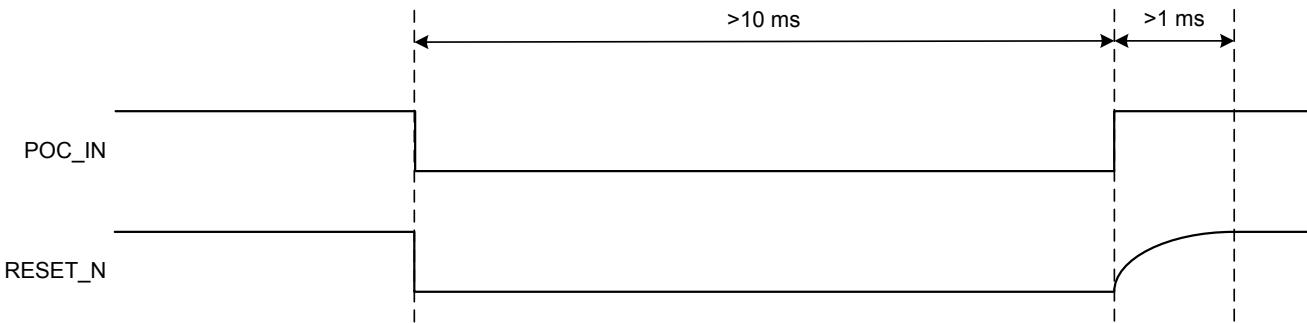


Figure 7.2. External Reset via POC_IN

In the above timing diagrams, it is assumed that all supplies including VBATT are connected together. If they are not connected together and independently controlled, then the guidance below must be followed.

- **Case1:** POC is looped back and there is no external control for POC_IN

- All supplies can be enabled at the same time, if possible
- If supplies cannot be enabled at the same time, the VBATT supplies should be powered up first and all other supplies should be powered on at least 1 ms before RESET_N is high. The RC circuit controlling RESET_N must be adjusted to provide the appropriate delay.
- While powering down, supplies can be powered off simultaneously, or with VBATT the last to be disabled.

- **Case2:** POC is looped back and there is external control for POC_IN during power-up / power-down.

- All supplies can be enabled at the same time, or VBATT may be enabled before other supplies.
- POC_IN should be kept low for at least 600 us after all the supplies have settled.
- On power-down, POC_IN can be driven low before disabling the supplies. Supplies can be powered off simultaneously, or with VBATT the last to be disabled.

7.3.3 ULP Regulators

ULP (Ultra Low Power) regulators are used to power low power Always-ON digital and analog power management circuitry inside the IC. The ULP regulators include two high power LDOs, a Low power LDO, and a switched capacitor DC-DC regulator. These regulators operate directly off of UULP_VBATT_2.

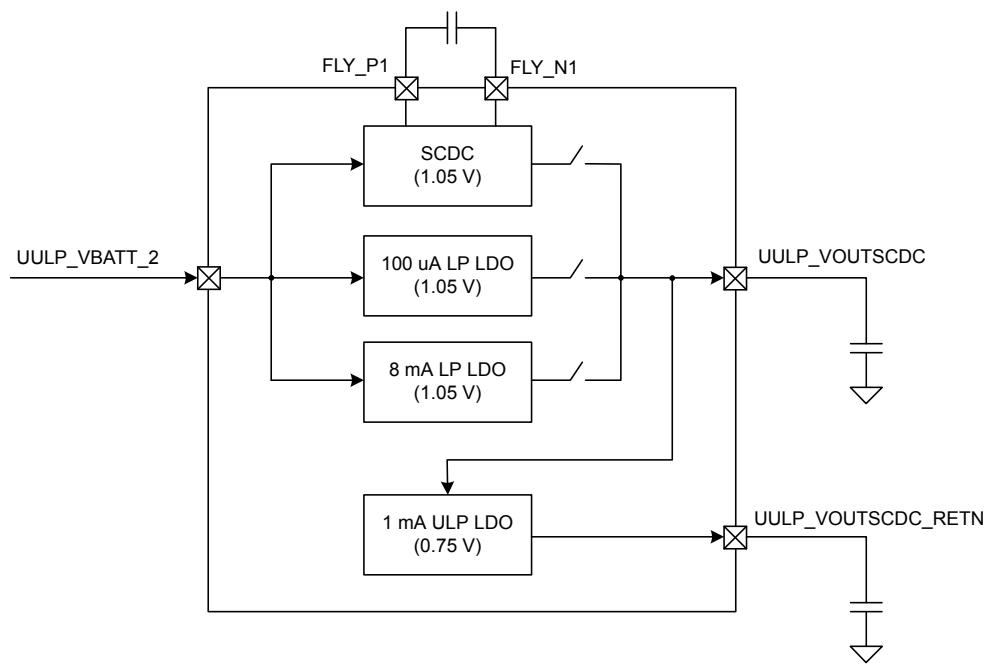


Figure 7.3. Block Diagram

7.3.3.1 SC-DCDC

SC-DCDC stands for a Switched Capacitor DC-DC regulator. It operates from UULP_VBATT_2 and generates a programmable output voltage. It has two major modes of operation, viz. LDO mode and DC-DC mode. And further each of these modes have a low power and high power option.

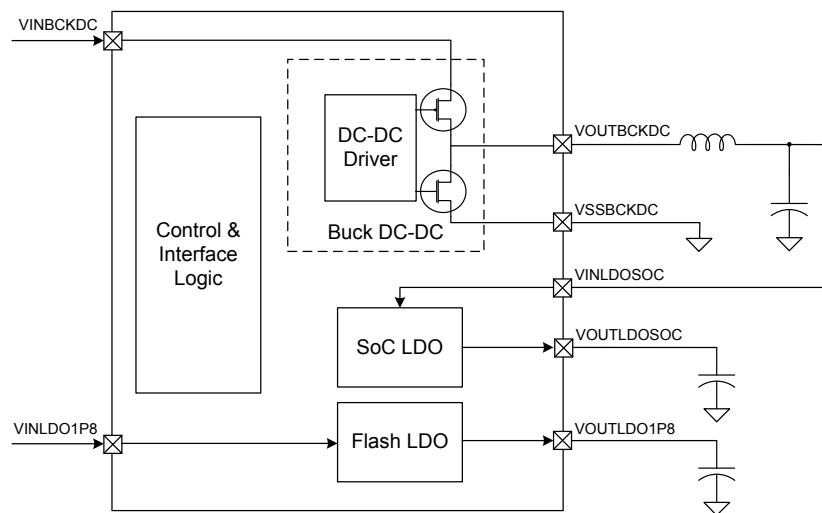

The IC starts up in the LDO mode and later switches to DC-DC Mode.

Table 7.4. SC-DCDC - Electrical Specifications

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Input Voltage Range ¹	V_{IN}		1.71	—	3.63	V
Output Voltage at UULP_VOUTSCDC	$V_{OUTSCDC}$		—	1.05	—	V
Output Voltage at UULP_VOUTSCDC_RETN	$V_{OUTSCDC_RETN}$		—	0.75	—	V
Note:						
1. The ULP regulator switches from SC-DCDC mode to LDO mode for V_{in} lower than 2.4 V						

7.3.4 Power Management Unit

This section describes and specifies the Power Management Unit solution for the mixed signal System on Chip (SoC).

Figure 7.4. Power Management Block Diagram

Power Management Unit

The major features are

- 1.45 V DCDC switching converter
- 1.15 V LDO for SOC digital supply
- 1.8 V LDO for Flash supply

7.3.4.1 DCDC Switching Converter

- Power save mode at light load currents.
- 100% duty cycle for lowest dropout.
- Soft start

Table 7.5. DCDC Switching Converter Electrical Specifications

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Input Supply Voltage (VINBCKDC)	V_{in}		1.71	3.3	3.63	V
Output Voltage Range (VOUTBCKDC)	V_{out}		1.35	1.45	1.6	V
Load current	I_{load}	Active mode	—	—	170	mA

7.3.4.2 SoC LDO Electrical Specifications

Table 7.6. SoC LDO Electrical Specifications

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Input Supply Voltage (VINL-DOSOC)	V_{in}		1.35	1.45	1.55	V
Output Voltage Range (VOUTLDO1P8)	V_{out}		1.05	1.15	1.20	V
Load current	I_{load}		—	—	100	mA

7.3.4.3 Flash LDO Electrical Specifications - Regulation Mode

Table 7.7. Flash LDO Electrical Specifications - Regulation Mode

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Input Supply Voltage (VINL-DO1P8)	V_{in}	Flash LDO in Regulation Mode	2.97	3.3	3.63	V
Output Voltage Range (VOUTLDO1P8)	V_{out}		1.75	1.88	1.95	V
Load current	I_{load}		—	—	48	mA
Line Regulation	REG_{line}	V_{in} Changed from 2.97 V to 3.63 V	—	—	0.6	%
Load Regulation	REG_{load}	I_{load} changed from 5 μ A to 48 mA	—	—	3	%

7.3.4.4 Flash LDO Electrical Specifications - Bypass Mode

Table 7.8. Flash LDO Electrical Specifications - Bypass Mode

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Input Supply Voltage (VINL-DO1P8) ¹	V_{in}	Flash LDO in Bypass Mode	1.71	1.8	1.98	V
On Resistance between V_{in} and V_{out}	R_{on}		—	0.87	—	Ω
Voltage across the VIN and V_{out} pin of the Flash LDO	V_{drop}	Load = 48 mA (Max)	—	42	70	mV

Note:

1. For higher load currents, the input supply should be increased to compensate the V_{drop} across the R_{on} of the pass transistor of Flash LDO.

7.3.5 Thermal Characteristics

Table 7.9. Thermal Characteristics

Package	Board	Parameter	Symbol	Test Condition	Value	Unit
84 Pin DR-QFN (7 mm x 7 mm)	JEDEC - High Thermal Cond. (2s2p) ¹	Thermal Resistance, Junction to Ambient	Θ_{JA}	Still Air	30	°C/W

Note:

1. PCB: 76.2 mm x 114.3 mm x 1.6 mm (JEDEC High Effective); 2s2p = 2 signals, 2 planes.
2. The absolute maximum device current when transmitting at highest transmit power will not exceed 400 mA.

7.3.6 Digital I/O Signals

Table 7.10. Digital I/O Signals

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
High level input voltage	V_{IH}	$IO_{-}VDDx = 3.3\text{ V}$	2	—	—	V
		$IO_{-}VDDx = 1.8\text{ V}$	1.17	—	—	V
Low level input voltage	V_{IL}	$IO_{-}VDDx = 3.3\text{ V}$	—	—	0.8	V
		$IO_{-}VDDx = 1.8\text{ V}$	—	—	0.63	V
Low level output voltage	V_{OL}		—	—	0.4	V
High level output voltage	V_{OH}		$IO_{-}VDDx - 0.4$	—	—	V
Low level output current	I_{OL}	GPIO_* and ULP_GPIO_* pins	2	4	12	mA
		UULP_GPIO_*	1	—	2	mA
High level output current	I_{OH}	GPIO_* and ULP_GPIO_* pins	2	4	12	mA
		UULP_GPIO_*	1	—	2	mA

7.4 AC Characteristics

7.4.1 Clock Specifications

SiWN917 chipsets include the following clock options:

- Low frequency clock options for sleep manager and RTC
 - 32.768 kHz on-chip crystal oscillator for an external crystal at pins XTAL_32KHZ_P and XTAL_32KHZ_N. **Required for all power-sensitive Wi-Fi, BLE, and Coex use cases.**
 - Internal 32 kHz RC oscillator. Suitable only for applications with low timing accuracy requirements, and no critical timing. Typical accuracy is +/- 1.2%.
- High frequency clock options
 - 40 MHz on-chip crystal oscillator with external crystal at XTAL_IN and XTAL_OUT pins for RF reference
 - Internal RC oscillator, used during device boot-up
 - Internal high-frequency ring oscillator

7.4.1.1 Low Frequency Clocks

Low-frequency clock selection can be done through software. The RC oscillator clock is not suited for high timing accuracy applications and may increase overall system current consumption in duty-cycled power modes.

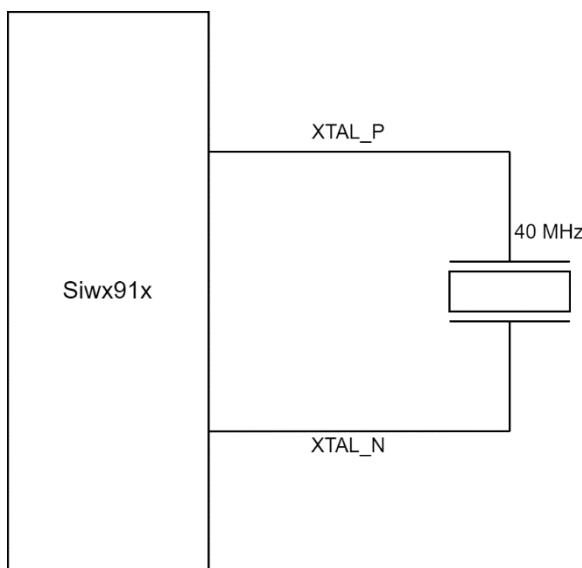
Table 7.11. 32 kHz RC Oscillator

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Oscillator Frequency	f_{osc}		—	32	—	kHz
Frequency variation across temperature	f_{osc_Acc}		—	1.2	—	%

32.768 kHz Internal XTAL Oscillator

There is an option to use internal 32.768 kHz low-frequency XTAL clock with a crystal attached to the XTAL_32KHZ_P and XTAL_32KHZ_N pins. Below are the recommended external crystal specs that need to connect to the internal xtal oscillator.

Table 7.12. Internal 32.768 kHz XTAL Oscillator


Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Oscillator Frequency ¹	f_{osc}		—	32.768	—	kHz
Drive Level	Drive		0.5	—	—	uW
Frequency Variation with Temp and Voltage ²	f_{osc_Acc}		—	+/-250	—	ppm
Equivalent series resistance	ESR		—	—	80	kΩ
Load capacitance range	C_L		4	—	12.5	pF

Note:

1. Oscillator specified for fundamental mode, parallel resonant crystal
2. Combined frequency offset must be below this limit, including temperature induced changes, tolerance, and the variance of load capacitances (load capacitor and parasitic trace impedance)

7.4.1.2 40 MHz Clock

The 40 MHz internal oscillator mode can be used by connecting a 40 MHz crystal between the pins XTAL_P and XTAL_N. Load capacitance is integrated inside the chipset and calibrated and the calibrated value can be stored in eFuse using calibration software.

Table 7.13. 40 MHz Crystal Specifications

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Oscillator Frequency ¹	f_{osc}		—	40	—	MHz
Drive Level	Drive		100	—	—	uW
Frequency Variation with Temp and Voltage	f_{osc_Acc}		-20	—	20	ppm
Equivalent series resistance	ESR		—	—	60	Ω
Load capacitance range	C_L		7	—	10	pF

Note:

1. Oscillator specified for fundamental mode, parallel resonant crystal

7.4.2 SDIO 2.0 Secondary

7.4.2.1 Full Speed Mode

Table 7.14. SDIO 2.0 Secondary Full Speed Mode

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
SDIO_CLK	$f_{\text{sdio_clk}}$		—	—	25	MHz
SDIO_DATA, SDIO_CMD input setup time	t_s		4	—	—	ns
SDIO_DATA, SDIO_CMD input hold time	t_h		1.2	—	—	ns
SDIO_DATA, clock to output delay	t_{od}		—	—	13	ns
Output Load	C_L		5	—	10	pF

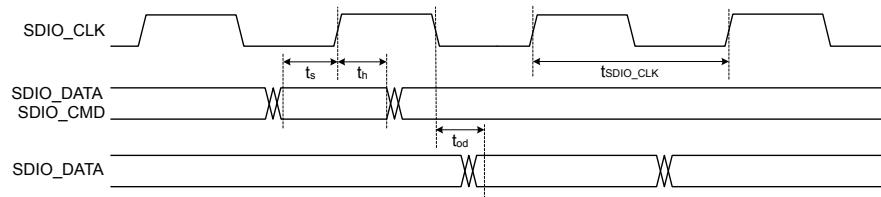


Figure 7.5. Interface Timing Diagram for SDIO 2.0 Secondary Full Speed Mode

7.4.2.2 High Speed Mode

Table 7.15. SDIO 2.0 Secondary High Speed Mode

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
SDIO_CLK	f_{sdio_clk}		25	—	50	MHz
SDIO_DATA, input setup time	t_s		4	—	—	ns
SDIO_DATA, input hold time	t_h		1.2	—	—	ns
SDIO_DATA, clock to output delay	t_{od}		2.5	—	13	ns
Output Load	C_L		5	—	10	pF

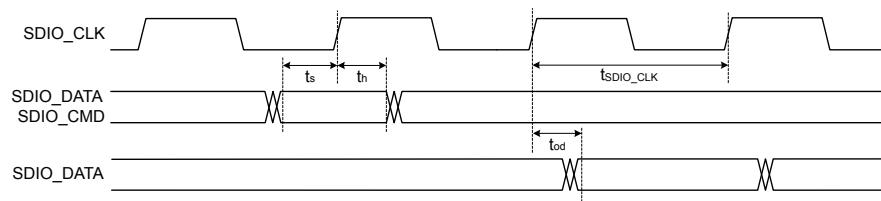


Figure 7.6. Interface Timing Diagram for SDIO 2.0 Secondary High Speed Mode

7.4.3 HSPI Secondary

7.4.3.1 Low Speed Mode

Table 7.16. HSPI Secondary Low Speed Mode

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
HSPI_CLK	f_{hspi}		0	—	25	MHz
HSPI_CSN to output delay	t_{cs}		—	—	7.5	ns
HSPI_CSN to input setup time	t_{cst}		4.5	—	—	ns
HSPI_MOSI, input setup time	t_s		1.4	—	—	ns
HSPI_MOSI, input hold time	t_h		1.5	—	—	ns
HSPI_MISO, clock to output delay	t_{od}		—	—	8.75	ns
Output Load	C_L		5	—	10	pF

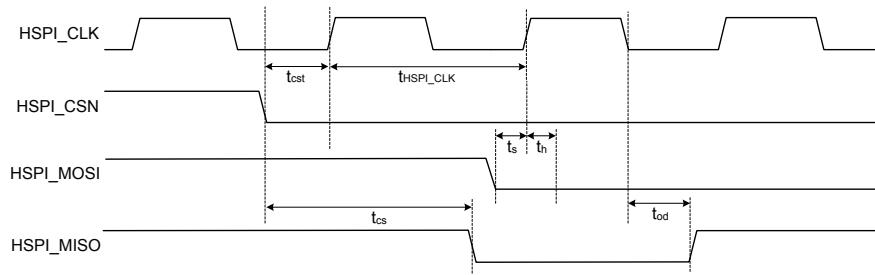


Figure 7.7. Interface Timing Diagram for HSPI Secondary Low Speed Mode

In low speed mode, HSPI_MISO data is driven on the falling edge of HSPI_CLK, and HSPI_MOSI is read on the rising edge of HSPI_CLK.

7.4.3.2 High Speed Mode

Table 7.17. HSPI Secondary High Speed Mode

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
HSPI_CLK	f_{hspi}		25	—	80	MHz
HSPI_CSN to output delay	t_{cs}		—	—	7.5	ns
HSPI_CSN to input setup time	t_{cst}		4.5	—	—	ns
HSPI_MOSI, input setup time	t_s		1.4	—	—	ns
HSPI_MOSI, input hold time	t_h		1.4	—	—	ns
HSPI_MISO, clock to output delay	t_{od}		1.5	—	8.75	ns
Output Load	C_L		5	—	10	pF



Figure 7.8. Interface Timing Diagram for HSPI Secondary High Speed Mode

In high speed mode, HSPI_MISO data is driven on the rising edge of HSPI_CLK, and HSPI_MOSI is read on the rising edge of HSPI_CLK.

7.4.3.3 Ultra High Speed Mode

Table 7.18. HSPI Secondary Ultra High Speed Mode

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
HSPI_CLK	f_{hspi}		80	—	100	MHz
HSPI_MOSI, input setup time	t_s		1.4	—	—	ns
HSPI_MOSI, input hold time	t_h		1.4	—	—	ns
HSPI_MISO, clock to output delay	t_{od}		1.5	—	8.75	ns
Output Load	C_L		5	—	10	pF

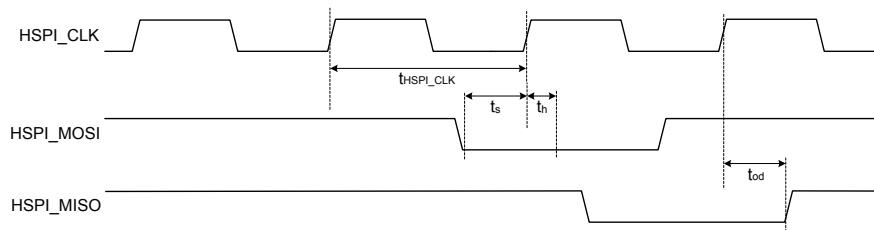


Figure 7.9. Interface Timing Diagram for HSPI Secondary Ultra High Speed Mode

In ultra high speed mode, HSPI_MISO data is driven on the rising edge of HSPI_CLK, and HSPI_MOSI is read on the rising edge of HSPI_CLK.

7.4.4 GPIO Pins

Table 7.19. GPIO Pins

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Rise time	t_{rf}	Pin configured as output	1	—	5	ns
Fall time	t_{ff}	Pin configured as output	0.9	—	5	ns
Rise time	t_r	Pin configured as input	0.3	—	1.3	ns
Fall time	t_f	Pin configured as input	0.2	—	1.2	ns

7.4.5 In-Package Flash Memory

Table 7.20. In-Package Flash Memory

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Endurance	N _{endu}	Sector erase/program	10000	—	—	cycles
		Page erase/program, page in large sector	10000	—	—	cycles
		Page erase/program, page in small sector	10000	—	—	cycles
Retention time	t _{ret}	Powered	10	—	—	years
		Unpowered	10	—	—	years
Block Erase time (32 KB)	t _{er}	Page, sector or multiple consecutive sectors	—	150	1400	ms
Page programming time	t _{prog}		—	0.5	3	ms
Chip Erase time	t _{ce}		—	20	65	s

7.5 RF Characteristics

In the sub-sections below,

- All numbers are measured at $T_A = 25^\circ\text{C}$, PA2G_AVDD = VINBCKDC = 3.3 V using an external 40 MHz crystal, unless otherwise stated.
- Please refer to [8. Reference Schematics, BOM and Layout Guidelines](#). As shown in [Figure 8.4 Option 1: RF Frontend with External Switch on page 61](#), there are three RF pins at the IC: RF_TX, RF_RX, and RF_BLETX. The RF front end for testing includes the matching network, RF switch and a band-pass filter. Typical front-end loss is about 2 dB. Silicon Labs recommends using the suggested reference design to meet these specs.
- All reported Receiver Sensitivity and Transmit Power numbers are based on the RF front end option shown in [Figure 8.4 Option 1: RF Frontend with External Switch on page 61](#). The value at the antenna port (ANT1) will be based on front end loss, which is typically 2 dB lower than pins RF1, RF2, and RF3 of the RF switch (SW2). Using the internal switch option incurs 1-1.5 dBm performance degradation.
- Supported WLAN channels for different regions include:
 - US: Channels 1 (2412 MHz) through 11 (2462 MHz)
 - Europe: Channels 1 (2412 MHz) through 13 (2472 MHz)
 - Japan: Channels 1 (2412 MHz) through 14 (2484 MHz), Channel 14 supports 1 and 2 Mbps data rates only

7.5.1 WLAN 2.4 GHz Transmitter Characteristics

7.5.1.1 WLAN 2.4 GHz Transmitter Characteristics with 3.3 V Supply

Unless otherwise indicated, typical conditions are: $T_A = 25^\circ\text{C}$. $\text{PA2G_AVDD} = \text{VINBCKDC} = 3.3\text{ V}$. Remaining supplies are at typical operating conditions. Parameters are referred at IC pin (RF_TX).

Table 7.21. WLAN 2.4 GHz Transmitter Characteristics with 3.3 V Supply

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Transmit Power for 20 MHz Bandwidth, with EVM limits ¹ ^{2 3}	POUT	802.11b 1 Mbps DSSS, EVM< -9 dB	—	19	—	dBm
		802.11b 11 Mbps CCK, EVM< -9 dB	—	19	—	dBm
		802.11g 6 Mbps OFDM, EVM< -5 dB ⁴	—	19.5	—	dBm
		802.11g 54 Mbps OFDM, EVM< -25 dB ⁴	—	15.5	—	dBm
		802.11n HT20 MCS0 Mixed Mode, EVM< -5 dB ⁴	—	19.5	—	dBm
		802.11n HT20 MCS7 Mixed Mode, EVM< -27 dB ⁴	—	14.5	—	dBm
		802.11ax HE20 MCS0 SU, EVM< -5 dB ^{5 4}	—	18.5	—	dBm
		802.11ax HE20 MCS7 SU, EVM< -27 dB ^{5 4}	—	13	—	dBm
Power variation across channels	POUT _{VAR_CH}		—	2	—	dB
Power variation across temperature	POUT _{VAR_T}	-40 to +85 °C	—	3	—	dB

Note:

1. Transmit power listed in this table is average power across all channels. Customers should calibrate crystal error and follow application note guidelines to achieve regulatory compliance.
2. TX power in edge channels will be limited by Restricted band edge in the FCC region.
3. Refer to the Wi-Fi Gain Table section in AN1437 for details on TX power backoff for compliance with regulatory limits.
4. 11b/g/n/ax @ Channels(1-13) TX power will be limited by antenna conducted output power test case (dBm/MHz) in MIC region.
5. 11ax TX power will be limited by PSD in the ETSI region.

7.5.2 WLAN 2.4 GHz Receiver Characteristics on HP RF Chain

Unless otherwise indicated, typical conditions are: $T_A = 25^\circ\text{C}$. $\text{PA2G_AVDD} = \text{VINBCKDC} = 3.3\text{ V}$. Remaining supplies are at typical operating conditions. Parameters are referred at IC pin RF_RX

Table 7.22. WLAN 2.4 GHz Receiver Characteristics on HP RF Chain

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Sensitivity for 20 MHz Bandwidth ^{1 2 3}	SENS	802.11b 1 Mbps DSSS ⁴	—	-97.5	—	dBm
		802.11b 11 Mbps CCK ⁴	—	-88	—	dBm
		802.11g 6 Mbps OFDM ⁵	—	-93	—	dBm
		802.11g 54 Mbps OFDM ⁵	—	-76.5	—	dBm
		802.11n HT20 MCS0 Mixed Mode ⁶	—	-92	—	dBm
		802.11n HT20 MCS7 Mixed Mode ⁶	—	-73	—	dBm
		802.11ax HE20 MCS0 SU ⁷	—	-91.5	—	dBm
		802.11ax HE20 MCS7 SU ⁷	—	-72	—	dBm
		802.11ax HE20 MCS0 ER ⁷	—	-92.5	—	dBm
Maximum Input Level for PER below 10%	RX _{SAT}	802.11b	—	3	—	dBm
		802.11g	—	-2.5	—	dBm
		802.11n	—	-4.5	—	dBm
		802.11ax	—	-2.5	—	dBm
RSSI Accuracy Range	RSSI _{RNG}		—	+/-4	—	dB
Adjacent Channel Interference ⁸	ACI	802.11b 1 Mbps DSSS ^{4 9}	—	43	—	dB
		802.11b 11 Mbps CCK ^{4 9}	—	35	—	dB
		802.11g 6 Mbps OFDM ^{5 10}	—	38	—	dB
		802.11g 54 Mbps OFDM ^{5 10}	—	18	—	dB
		802.11n HT20 MCS0 Mixed Mode ^{6 10}	—	32	—	dB
		802.11n HT20 MCS7 Mixed Mode ^{6 10}	—	10	—	dB
		802.11ax HE20 MCS0 SU ^{7 10}	—	20	—	dB
		802.11ax HE20 MCS7 SU ^{7 10}	—	3	—	dB

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Alternate Adjacent Channel Interference ⁸	AACI	802.11b 1 Mbps DSSS ^{4 9}	—	49	—	dB
		802.11b 11 Mbps CCK ^{4 9}	—	42	—	dB
		802.11g 6 Mbps OFDM ^{5 10}	—	49	—	dB
		802.11g 54 Mbps OFDM ^{5 10}	—	27	—	dB
		802.11n HT20 MCS0 Mixed Mode ^{6 10}	—	48	—	dB
		802.11n HT20 MCS7 Mixed Mode ^{6 10}	—	26	—	dB
		802.11ax HE20 MCS0 SU ^{7 10}	—	48	—	dB
		802.11ax HE20 MCS7 SU ^{7 10}	—	25	—	dB

Note:

1. RX Sensitivity Variation is up to 2 dB for channels (1, 2, 3, 4, 5, 9, and 10) at typical / room temperature.
2. RX Sensitivity can be degraded up to 3 dB for channels (6, 7, 8, 11, 12, 13 and 14) at typical / room temperature.
3. Sensitivity variation across temperature -40 °C to 85 °C is up to 3 dB
4. 802.11b, Packet size is 1024 bytes, < 8% PER limit, Carrier modulation is non-DCM
5. 802.11g, Packet size is 1024 bytes, < 10% PER limit, Carrier modulation is non-DCM
6. 802.11n, Packet size is 4096 bytes, < 10% PER limit, Carrier modulation is non-DCM
7. 802.11ax, Packet size is 4096 bytes, < 10% PER limit, Carrier modulation is non-DCM
8. ACI / AACI is calculated as Interferer Power(dBm)- Inband power(dBm)
9. Desired signal power is 6 dB above standard defined sensitivity level
10. Desired signal power is 3 dB above standard defined sensitivity level

7.5.3 WLAN 2.4 GHz Receiver Characteristics on LP RF Chain

Unless otherwise indicated, typical conditions are: $T_A = 25^\circ\text{C}$. $\text{PA2G_AVDD} = \text{VINBCKDC} = 3.3\text{ V}$. Remaining supplies are at typical operating conditions. Parameters are referred at IC pin RF_RX

Table 7.23. WLAN 2.4 GHz Receiver Characteristics on LP RF Chain

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Sensitivity for 20 MHz Bandwidth ^{1 2 3}	SENS	802.11b 1 Mbps DSSS ⁴	—	-97	—	dBm
		802.11b 11 Mbps CCK ⁴	—	-87.5	—	dBm
		802.11g 6 Mbps OFDM ⁵	—	-92.5	—	dBm
		802.11g 36 Mbps OFDM ⁵	—	-81.5	—	dBm
		802.11n HT20 MCS0 Mixed Mode ⁶	—	-91.5	—	dBm
		802.11n HT20 MCS4 Mixed Mode ⁶	—	-80.5	—	dBm
Maximum Input Level for PER below 10%	RX _{SAT}	802.11b	—	-8	—	dBm
		802.11g	—	-0.5	—	dBm
		802.11n	—	-1	—	dBm
RSSI Accuracy Range	RSSI _{RNG}		—	+/-4	—	dB
Adjacent Channel Interference ⁷	ACI	802.11b 1 Mbps DSSS ^{4 8}	—	43	—	dB
		802.11b 11 Mbps CCK ^{4 8}	—	36	—	dB
		802.11g 6 Mbps OFDM ^{5 9}	—	38	—	dB
		802.11g 36 Mbps OFDM ^{5 9}	—	25	—	dB
		802.11n HT20 MCS0 Mixed Mode ^{6 9}	—	32	—	dB
		802.11n HT20 MCS4 Mixed Mode ^{6 9}	—	18	—	dB
Alternate Adjacent Channel Interference ⁷	AACI	802.11b 1 Mbps DSSS ^{4 8}	—	46	—	dB
		802.11b 11 Mbps CCK ^{4 8}	—	40	—	dB
		802.11g 6 Mbps OFDM ^{5 9}	—	43	—	dB
		802.11g 36 Mbps OFDM ^{5 9}	—	31	—	dB
		802.11n HT20 MCS0 Mixed Mode ^{6 9}	—	43	—	dB
		802.11n HT20 MCS4 Mixed Mode ^{6 9}	—	30	—	dB

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Note:						
1. RX Sensitivity Variation is up to 2 dB for channels (1, 2, 3, 4, 5, 9, and 10) at typical / room temperature						
2. RX Sensitivity can be degraded up to 3 dB for channels (6, 7, 8, 11, 12, 13 and 14) at typical / room temperature						
3. Sensitivity variation across temperature -40 °C to 85 °C is up to 3 dB						
4. 802.11b, Packet size is 1024 bytes, < 8% PER limit, Carrier modulation is non-DCM						
5. 802.11g, Packet size is 1024 bytes, < 10% PER limit, Carrier modulation is non-DCM						
6. 802.11n, Packet size is 4096 bytes, < 10% PER limit, Carrier modulation is non-DCM						
7. ACI / AACI is calculated as Interferer Power(dBm)- Inband power(dBm)						
8. Desired signal power is 6 dB above standard defined sensitivity level						
9. Desired signal power is 3 dB above standard defined sensitivity level						

7.5.4 Bluetooth Transmitter Characteristics on High-Performance (HP) RF Chain

Unless otherwise indicated, typical conditions are: $T_A = 25^\circ\text{C}$. $\text{PA2G_AVDD} = \text{VINBCKDC} = 3.3\text{ V}$. Remaining supplies are at typical operating conditions. Parameters are referred at IC pin (RF_TX).

Table 7.24. Bluetooth Transmitter Characteristics on High-Performance (HP) RF Chain

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Transmit Power ^{1 2}	POUT	LE 1 Mbps	—	19	—	dBm
		LE 2 Mbps ³	—	19	—	dBm
		LR 500 kbps	—	19	—	dBm
		LR 125 kbps ⁴	—	19	—	dBm
Power variation across channels	POUT _{VAR_CH}		—	2	—	dB
Power variation across temperature	POUT _{VAR_T}	-40 to +85 °C	—	3	—	dB
Adjacent Channel Power $ M-N =2$	ACP _{eq2}	LE	—	-25	—	dBm
Adjacent Channel Power $ M-N > 2$	ACP _{gt2}	LE	—	-31	—	dBm
BLE Modulation Characteristics at 1 Mbps	MOD _{CHAR}	Δf1 Avg	—	250	—	kHz
		Δf2 Max	—	250	—	kHz
		Δf2 Avg/Δf1 Avg	—	1.3	—	

Note:

1. ETSI Max Power should be limited to 10 dBm because device falls under DTS, non-adaptive
2. Refer to the BLE Gain Table section in AN1437 for details on TX power backoff for compliance with regulatory limits.
3. In FCC for data rates 1 Mbps, 2 Mbps, and 500 kbps, Channels in 2476 - 2480 MHz, TX output power will be limited by band edge.
4. In FCC - LR 125 kbps Max Power should be limited to 12 dBm to meet PSD requirement because, device falls under DTS, non-adaptive

7.5.5 Bluetooth Transmitter Characteristics on Low-Power (LP) 8 dBm RF Chain

Unless otherwise indicated, typical conditions are: $T_A = 25^\circ\text{C}$. $\text{PA2G_AVDD} = \text{VINBCKDC} = 3.3\text{ V}$. Remaining supplies are at typical operating conditions. Parameters are referred at IC pin (RF_BLETX).

Table 7.25. Bluetooth Transmitter Characteristics on Low-Power (LP) 8 dBm RF Chain

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Transmit Power ¹	POUT	LE 1 Mbps	—	8	—	dBm
		LE 2 Mbps ²	—	8	—	dBm
		LR 500 kbps	—	8	—	dBm
		LR 125 kbps	—	8	—	dBm
Power variation across channels	POUT _{VAR_CH}		—	2	—	dB
Power variation across temperature	POUT _{VAR_T}	-40 to +85 °C	—	3	—	dB
Adjacent Channel Power M-N = 2	ACP _{eq2}	LE	—	-32	—	dBm
Adjacent Channel Power M-N > 2	ACP _{gt2}	LE	—	-36	—	dBm
BLE Modulation Characteristics at 1 Mbps	MOD _{CHAR}	Δf1 Avg	—	248	—	kHz
		Δf2 Max	—	249	—	kHz
		Δf2 Avg/Δf1 Avg	—	1.3	—	kHz

Note:

1. Refer to the BLE Gain Table section in AN1437 for details on TX power backoff for compliance with regulatory limits.
2. In FCC, Channel 2480 MHz, 2 Mbps data rate Tx output Power will be limited by Band edge

7.5.6 Bluetooth Transmitter Characteristics on Low-Power (LP) 0 dBm RF Chain

Unless otherwise indicated, typical conditions are: $T_A = 25^\circ\text{C}$. $\text{PA2G_AVDD} = \text{VINBCKDC} = 3.3\text{ V}$. Remaining supplies are at typical operating conditions. Parameters are referred at IC pin (RF_BLETX).

Table 7.26. Bluetooth Transmitter Characteristics on Low-Power (LP) 0 dBm RF Chain

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Transmit Power	POUT	LE 1 Mbps	—	-0.5	—	dBm
		LE 2 Mbps	—	-0.5	—	dBm
		LR 500 kbps	—	-0.5	—	dBm
		LR 125 kbps	—	-0.5	—	dBm
Power variation across channels	POUT _{VAR_CH}		—	2	—	dB
Power variation across temperature	POUT _{VAR_T}	-40 to +85 °C	—	2	—	dB
Adjacent Channel Power M-N = 2	ACP _{eq2}	LE	—	-41	—	dBm
Adjacent Channel Power M-N > 2	ACP _{gt2}	LE	—	-47	—	dBm
BLE Modulation Characteristics	MOD _{CHAR}	Δf1 Avg	—	248	—	kHz
		Δf2 Max	—	249	—	kHz
		Δf2 Avg/Δf1 Avg	—	1.3	—	kHz

7.5.7 Bluetooth Receiver Characteristics for 1 Mbps Data Rate

Unless otherwise indicated, specifications apply to both HP and LP chains. Typical conditions are: $T_A = 25^\circ\text{C}$, $\text{PA2G_AVDD} = \text{VINBCKDC} = 3.3\text{ V}$, remaining supplies are at typical operating conditions, packet length is 37 bytes, parameters are referred at IC pin RF_RX

Table 7.27. Bluetooth Receiver Characteristics for 1 Mbps Data Rate

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Max usable receiver input level	RX_{SAT}	Signal is reference signal, 255 byte payload, $\text{BER} = 0.017\%$, HP Chain	—	2	—	dBm
		Signal is reference signal, 255 byte payload, $\text{BER} = 0.017\%$, LP Chain	—	-2	—	dBm
Sensitivity ^{1 2}	SENS	Signal is reference signal, 37 byte payload, $\text{BER} = 0.1\%$	—	-96	—	dBm
		Signal is reference signal, 255 byte payload, $\text{BER} = 0.017\%$	—	-94	—	dBm
Signal to co-channel interferer ³	C/I _{CC}	(see notes) ^{4 5}	—	-12	—	dB
$N \pm 1$ Adjacent channel selectivity ³	C/I ₁	Interferer is reference signal at +1 MHz offset ^{4 6 5 7}	—	-6	—	dB
		Interferer is reference signal at -1 MHz offset ^{4 6 5 7}	—	-4	—	dB
$N \pm 2$ Alternate channel selectivity ³	C/I ₂	Interferer is reference signal at +2 MHz offset ^{4 6 5 7}	—	19	—	dB
		Interferer is reference signal at -2 MHz offset ^{4 6 5 7}	—	24	—	dB
$N \pm 3$ Alternate channel selectivity ³	C/I ₃	Interferer is reference signal at +3 MHz offset ^{4 6 5 7}	—	20	—	dB
		Interferer is reference signal at -3 MHz offset ^{4 6 5 7}	—	31	—	dB
$N \geq \pm 4 $ Alternate channel selectivity ³	C/I ₄	Interferer is reference signal at $\geq \pm 4 $ MHz offset ^{4 6 5 7}	—	33	—	dB
Selectivity to image frequency ³	C/I _{IM}	Interferer is reference signal at image frequency ^{4 5 7 8}	—	17	—	dB
Selectivity to image frequency ± 1 MHz ³	C/I _{IM_1}	Interferer is reference signal at image frequency +1 MHz ^{4 5 7 8}	—	29	—	dB
		Interferer is reference signal at image frequency -1 MHz ^{4 5 7 8}	—	20	—	dB

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Note:						
1. Sensitivities for channels 19, 39 are up to 2 dB lower performance						
2. Sensitivity variation across temperature -40 °C to 85 °C is up to 4 dB						
3. C/I is calculated as Interferer Power(dBm)- Inband power(dBm)						
4. 0.1% BER, 37 byte packet size						
5. Desired signal = -67 dBm						
6. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz						
7. With allowed exceptions						
8. Image frequency is at +4 MHz offset						

7.5.8 Bluetooth Receiver Characteristics for 2 Mbps Data Rate

Unless otherwise indicated, specifications apply to both HP and LP chains. Typical conditions are: $T_A = 25^\circ\text{C}$, $\text{PA2G_AVDD} = \text{VINBCKDC} = 3.3\text{ V}$, remaining supplies are at typical operating conditions, packet length is 37 bytes, parameters are referred at IC pin RF_RX

Table 7.28. Bluetooth Receiver Characteristics for 2 Mbps Data Rate

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Max usable receiver input level	RX_{SAT}	Signal is reference signal, 255 byte payload, $\text{BER} = 0.017\%$, HP Chain	—	2	—	dBm
		Signal is reference signal, 255 byte payload, $\text{BER} = 0.017\%$, LP Chain	—	-6	—	dBm
Sensitivity ^{1 2}	SENS	Signal is reference signal, 37 byte payload, $\text{BER} = 0.1\%$	—	-93	—	dBm
		Signal is reference signal, 255 byte payload, $\text{BER} = 0.017\%$	—	-91	—	dBm
Signal to co-channel interferer ³	C/I _{CC}	(see notes) ^{4 5}	—	-10	—	dB
$N \pm 1$ Adjacent channel selectivity ³	C/I ₁	Interferer is reference signal at +2 MHz offset ^{4 6 5 7}	—	5	—	dB
		Interferer is reference signal at -2 MHz offset ^{4 6 5 7}	—	1	—	dB
$N \pm 2$ Alternate channel selectivity ³	C/I ₂	Interferer is reference signal at +4 MHz offset ^{4 6 5 7}	—	14	—	dB
		Interferer is reference signal at -4 MHz offset ^{4 6 5 7}	—	20	—	dB
Selectivity to image frequency ³	C/I _{IM}	Interferer is reference signal at image frequency ^{4 5 7 8}	—	14	—	dB
Selectivity to image frequency ± 2 MHz ³	C/I _{IM_2}	Interferer is reference signal at image frequency +2 MHz ^{4 5 7 8}	—	24	—	dB
		Interferer is reference signal at image frequency -2 MHz ^{4 5 7 8}	—	5	—	dB

Note:

1. Sensitivities for channels 19, 39 are up to 2 dB lower performance
2. Sensitivity variation across temperature -40°C to 85°C is up to 4 dB
3. C/I is calculated as Interferer Power(dBm)- Inband power(dBm)
4. 0.1% BER, 37 byte packet size
5. Desired signal = -67 dBm
6. Desired frequency $2402\text{ MHz} \leq F_c \leq 2480\text{ MHz}$
7. With allowed exceptions
8. Image frequency is at +4 MHz offset

7.5.9 Bluetooth Receiver Characteristics for 125 kbps Data Rate

Unless otherwise indicated, specifications apply to both HP and LP chains. Typical conditions are: $T_A = 25^\circ\text{C}$, $\text{PA2G_AVDD} = \text{VINBCKDC} = 3.3\text{ V}$, remaining supplies are at typical operating conditions, packet length is 37 bytes, parameters are referred at IC pin RF_RX

Table 7.29. Bluetooth Receiver Characteristics for 125 kbps Data Rate

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Max usable receiver input level	RX_{SAT}	Signal is reference signal, 255 byte payload, $\text{BER} = 0.017\%$, HP Chain	—	3	—	dBm
		Signal is reference signal, 255 byte payload, $\text{BER} = 0.017\%$, LP Chain	—	0	—	dBm
Sensitivity ^{1 2}	SENS	Signal is reference signal, 37 byte payload, $\text{BER} = 0.1\%$	—	-107	—	dBm
		Signal is reference signal, 255 byte payload, $\text{BER} = 0.017\%$	—	-106	—	dBm

Note:

1. Sensitivities for channels 19, 39 are up to 2 dB lower performance
2. Sensitivity variation across temperature -40°C to 85°C is up to 4 dB

7.5.10 Bluetooth Receiver Characteristics for 500 kbps Data Rate

Unless otherwise indicated, specifications apply to both HP and LP chains. Typical conditions are: $T_A = 25^\circ\text{C}$, $\text{PA2G_AVDD} = \text{VINBCKDC} = 3.3\text{ V}$, remaining supplies are at typical operating conditions, packet length is 37 bytes, parameters are referred at IC pin RF_RX

Table 7.30. Bluetooth Receiver Characteristics for 500 kbps Data Rate

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Max usable receiver input level	RX_{SAT}	Signal is reference signal, 255 byte payload, $\text{BER} = 0.017\%$, HP Chain	—	3	—	dBm
		Signal is reference signal, 255 byte payload, $\text{BER} = 0.017\%$, LP Chain	—	0	—	dBm
Sensitivity ^{1 2}	SENS	Signal is reference signal, 37 byte payload, $\text{BER} = 0.1\%$	—	-102.5	—	dBm
		Signal is reference signal, 255 byte payload, $\text{BER} = 0.017\%$	—	-101.5	—	dBm

Note:

1. Sensitivities for channels 19, 39 are up to 2 dB lower performance
2. Sensitivity variation across temperature -40°C to 85°C is up to 4 dB

7.6 Typical Current Consumption

Figure 7.10 Supply Connection for Current Measurements on page 55 shows the supply connection and measurement point for supply current numbers in this section. A 32.768 kHz crystal is used at pins XTAL_32KHZ_P and XTAL_32KHZ_N.

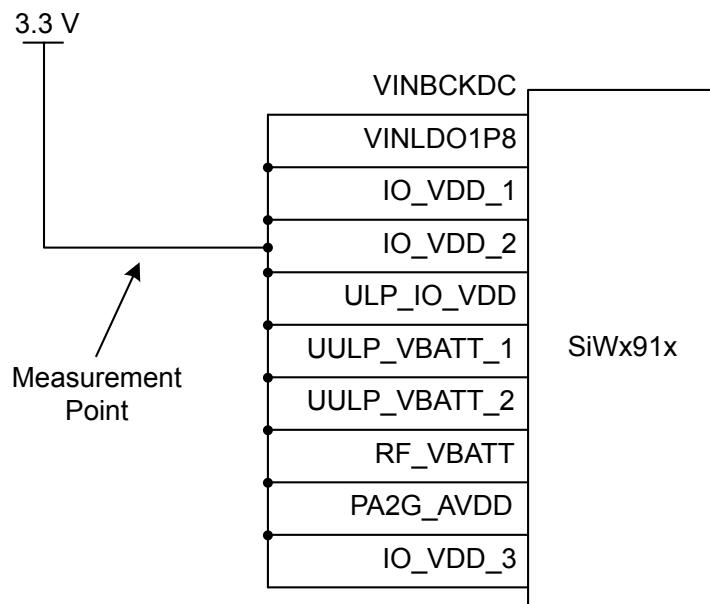


Figure 7.10. Supply Connection for Current Measurements

7.6.1 WLAN 2.4 GHz 3.3 V Current Consumption

$T_A = 25^\circ\text{C}$. PA2G_AVDD = VINBCKDC = 3.3 V. Remaining supplies are at typical operating conditions. NWP clock running at 80 MHz.

Table 7.31. WLAN 2.4 GHz 3.3 V Current Consumption

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit	
Listen current	I_{RX_LISTEN}	LP Chain, 1 Mbps Listen	—	16.5	—	mA	
Active Receive Current	I_{RX_ACTIVE}	1 Mbps RX Active, LP Chain	—	22	—	mA	
		HT20 MCS0, HP Chain	—	51	—	mA	
		HT20 MCS7, HP Chain	—	51	—	mA	
		HE20 MCS0, HP Chain	—	51	—	mA	
		HE20 MCS7, HP Chain	—	51	—	mA	
Transmit Current ¹	I_{TX}	1 Mbps, HP Chain	—	240	—	mA	
		HT20 MCS0, HP Chain	—	230	—	mA	
		HT20 MCS7, HP Chain	—	180	—	mA	
		HE20 MCS0, HP Chain	—	220	—	mA	
		HE20 MCS7, HP Chain	—	170	—	mA	
Deep Sleep	I_{SLEEP}	No RAM retained	—	2.5	—	μA	
		352 KB RAM retained	—	10	—	μA	
Standby Associated, DTIM = 10	I_{STBY_ASSOC}	WLAN Keep Alive Every 30 s with 352 KB RAM Retained, Without TCP Keep Alive	—	65	—	μA	
		WLAN Keep Alive Every 30 s with 352 KB RAM Retained, TCP Keep Alive Every 240 s	—	67	—	μA	
11ax TWT, Auto Config Enabled, Without TCP Keep Alive	I_{STBY_AX}	RX latency 2 s with 8 ms wakeup duration, WLAN Keep Alive Every 30 s with 352 KB RAM Retained	—	92	—	μA	
		RX latency 30 s with 8 ms wakeup duration, WLAN Keep Alive Every 30 s with 352 KB RAM Retained	—	32	—	μA	
		RX latency 60 s with 8 ms wakeup duration, WLAN Keep Alive Every 60 s with 352 KB RAM Retained	—	22	—	μA	
11ax TWT, Auto Config Enabled, With TCP Keep Alive Every 240 s	$I_{STBY_AX_TCP}$	RX latency 2 s with 8 ms wakeup duration, WLAN Keep Alive Every 30 s with 352 KB RAM Retained	—	97	—	μA	
		RX latency 30 s with 8 ms wakeup duration, WLAN Keep Alive Every 30 s with 352 KB RAM Retained	—	35	—	μA	
		RX latency 60 s with 8 ms wakeup duration, WLAN Keep Alive Every 60 s with 352 KB RAM Retained	—	26	—	μA	
Note:							
1. The absolute maximum device current when transmitting at highest transmit power will not exceed 400 mA.							

7.6.2 Bluetooth LE Current Consumption

 $T_A = 25^\circ\text{C}$. PA2G_AVDD = VINBCKDC = 3.3 V. Remaining supplies are at typical operating conditions. NWP clock running at 80 MHz.

Table 7.32. Bluetooth LE Current Consumption

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
TX Active Current	I_{TX}	LP chain, Tx Power = 0 dBm	—	10	—	mA
		LP chain, Tx Power = Max TX power	—	18	—	mA
RX Active Current	I_{RX}	LP chain	—	11	—	mA
Advertising, Unconnectable	I_{ADV_UC}	Advertising on all 3 channels, 37 Byte payload, Interval = 1.28 s, Tx Power = 0 dBm, LP chain	—	37	—	μA
Advertising, Connectable	I_{ADV_CN}	Advertising on all 3 channels, 37 Byte payload, Interval = 1.28 s, Tx Power = 0 dBm, LP chain	—	41	—	μA
Connected	I_{CONN}	Connection Interval = 1.28s, No data, Tx Power = 0 dBm, LP chain	—	36	—	μA
		Connection Interval = 200 ms, No data, Tx Power = 0 dBm, LP chain	—	115	—	μA

8. Reference Schematics, BOM and Layout Guidelines

8.1 Schematics

Typical schematic connections are shown in this section. Please refer to following documents for more information.

- Follow guidelines in Application Note AN1436 for calibrating the external 40 MHz crystal.
- Follow guidelines in Application Note AN1440 for calibrating the power of RF front-end circuitry.
- Follow guidelines in Application Note AN1423 for RF design related aspects.

1. Customers should include provision for programming or updating the firmware and calibration at manufacturing.
 - a. If using UART, we recommend bringing out the HSPI or SDIO lines to test points, so designers could use the faster interface for programming the firmware as needed.
 - b. If using HSPI or SDIO as host interface, then firmware programming or update can be done through the host MCU, or if designer prefers to program standalone at manufacturing, then it is recommended to have test points on the HSPI or SDIO signals.
2. The reference schematics should be followed for optimal RF performance.
3. Use recommended MPNs (Manufacturer Part Number) shown near components wherever possible.

8.1.1 System Supplies

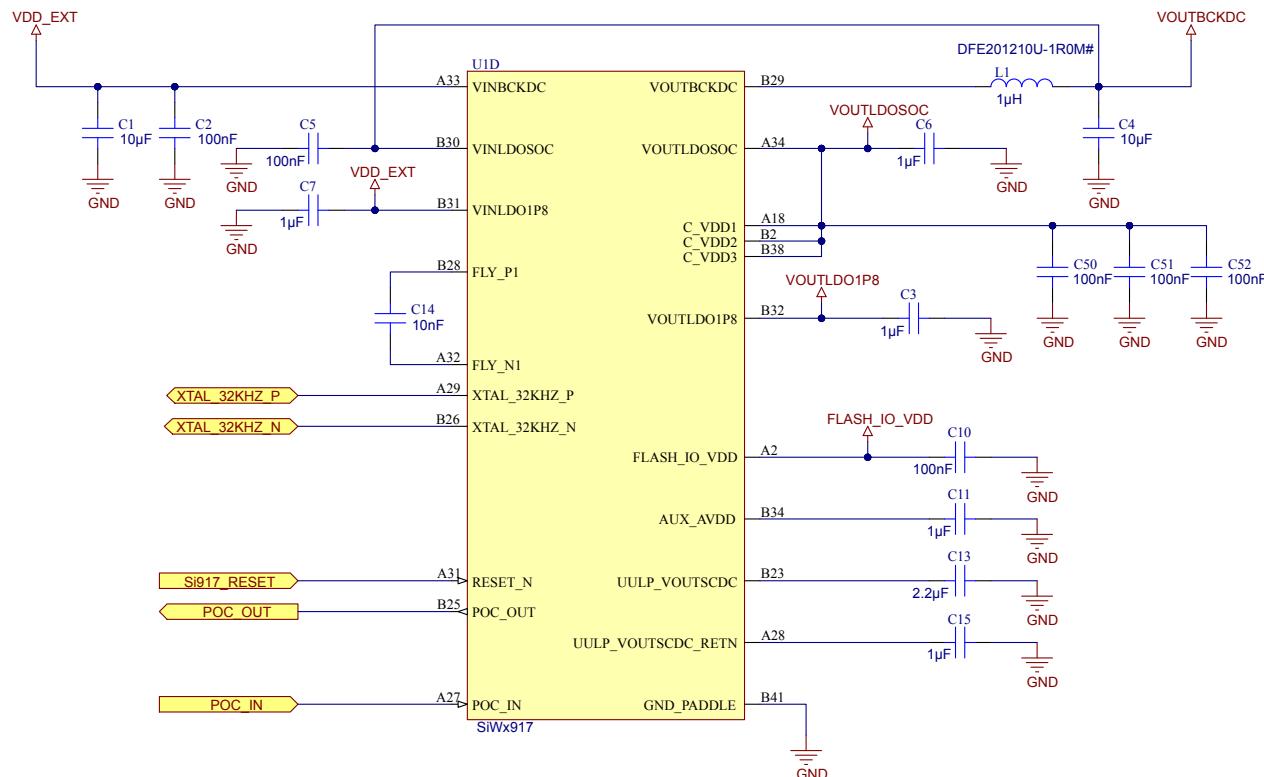
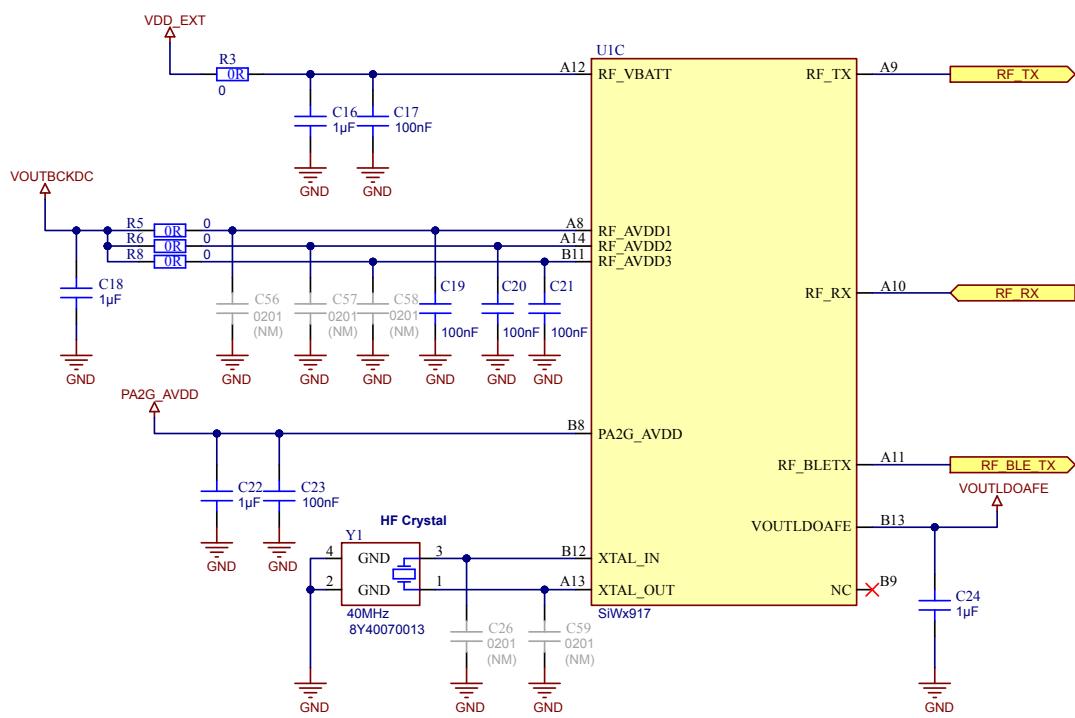



Figure 8.1. System Power Supplies

Note:

1. Place all the decoupling capacitors close to the IC pins.
2. It is recommended to follow star routing for the supply pins from main supply source and add test points to all supply pins.
3. VDD_EXT supply voltage must match the recommended operating conditions of power supply pins.

8.1.2 RF Supplies

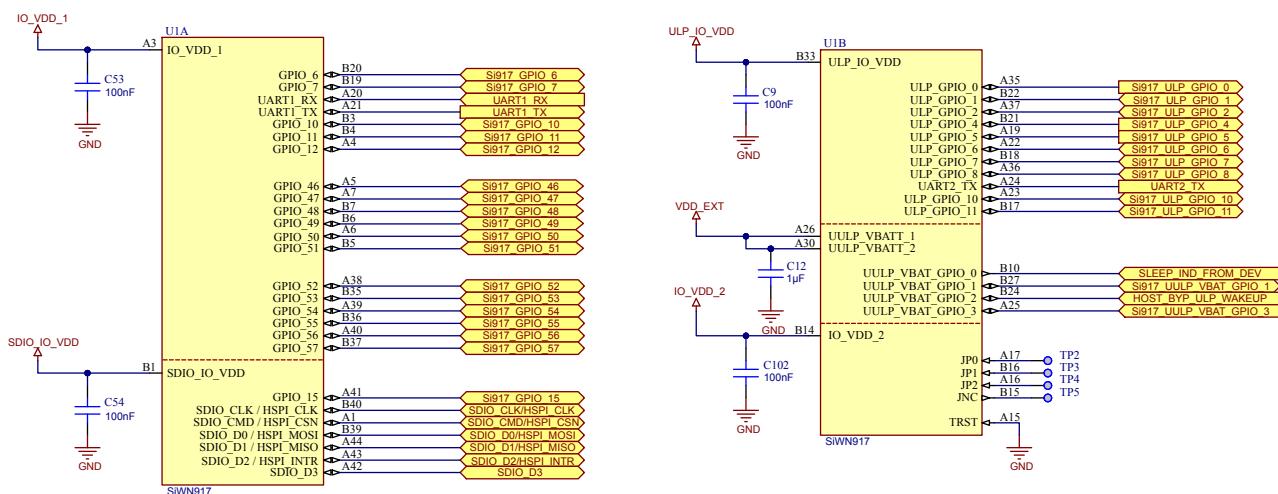


Figure 8.2. RF Power and HF Crystal Support

Note:

1. Do not share routing between PA2G_AVDD and RF_VBATT. Use star routing for PA2G_AVDD and RF_VBATT.
2. VOUTBCKDC should be star routed to RF_AVDD supply pins.
3. VDD_EXT supply voltage must match the recommended operating conditions of power supply pins.
4. Use recommended part for high frequency crystal 40 MHz. This 40 MHz crystal can be tuned with the internal capacitors in the device.
5. PA2G_AVDD can be independent of other supplies and it must be operated at 3.3V only.
6. C26 and C59 are optional tuning capacitors.
7. R5, C56, R6, C57, R8 and C58 are placeholder components for power supply noise filtering.
8. R3 is a placeholder component for power supply noise filtering.
9. It is recommended to add test points to all supply pins.

8.1.3 GPIO Supplies

Figure 8.3. GPIO Supply Domains

Note:

1. IO_VDD_1, IO_VDD_2, IO_VDD_3, ULP_IO_VDD can be powered independently by different Voltage Sources based on their corresponding signals voltage levels requirements. Voltages must be as per the recommended Operating conditions
2. Place C12 close to UULP_VBATT_2 pin.
3. Even if GPIOs are not used, their respective IO domains must still be connected to the power supply.
4. VDD_EXT supply voltage must match the recommended operating conditions of power supply pins.
5. It is recommended to add test points to all supply pins.

8.1.4 RF Frontend

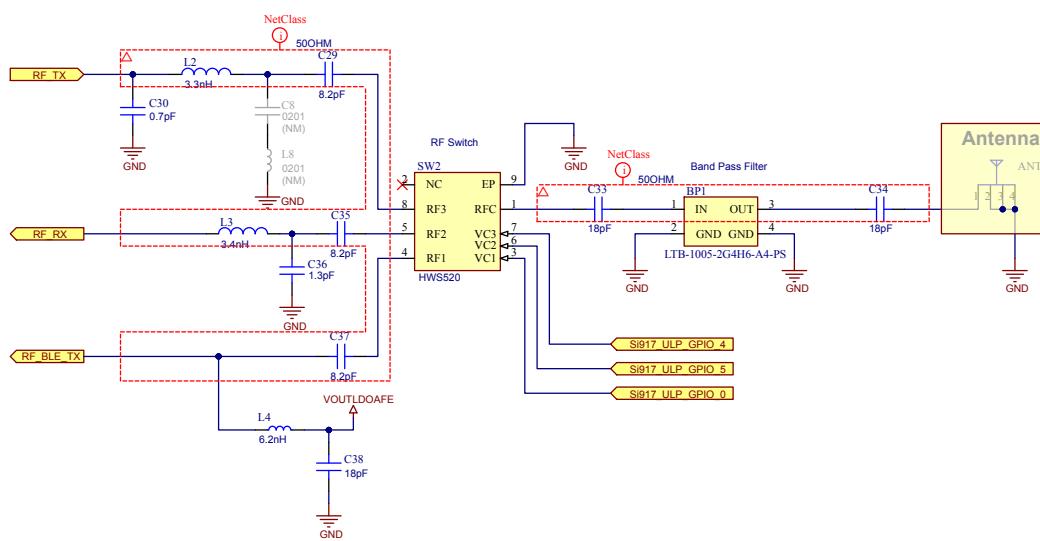


Figure 8.4. Option 1: RF Frontend with External Switch

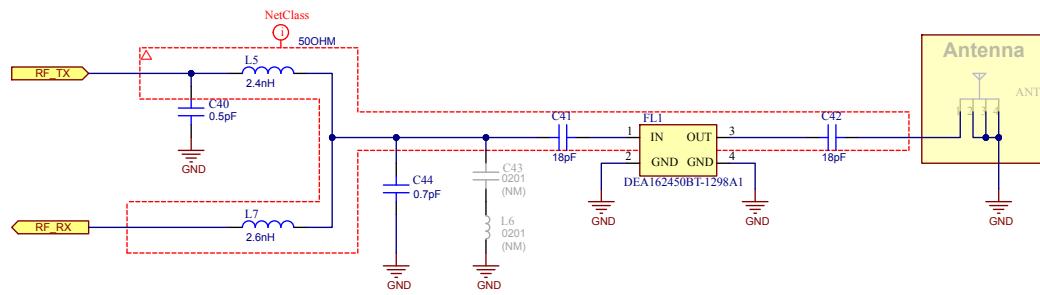
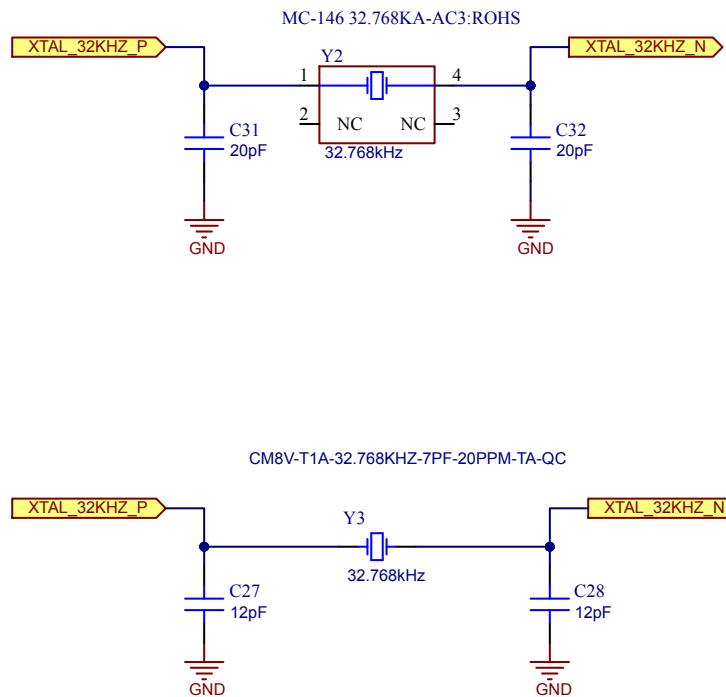


Figure 8.5. Option 2: RF Frontend with Internal Switch


Note:

1. ANT1 and ANT2: In-built antenna or an external antenna (with U.FL connector) can be used.
2. The 8 dBm BLE LP transmit path on RF_BLETX is not available for the internal switch option.
3. Maintain 50 ohm characteristic impedance for RF traces.
4. It is recommended to add microwave coaxial switch connector (Example : Murata's MM8430-2610RA1) or U.FL connector for conducted measurements.
5. Additional matching circuit to be provided near the antenna, based on antenna used and location on the board.
6. For the external RF switch option, follow the reference layout for RF front-end circuit from IC pins up to at least RF switch.
 - Provision C38 on the VOUTLDOAFE trace. C38 must be placed close to L4.
 - Trace routing from the VOUTLDOAFE pin to inductor L4 must be short, with a maximum length of 15 mm.
 - If the trace length is between 7.5 mm and 15 mm, mount capacitor C38.
7. For the internal RF switch option, follow the reference layout for RF front-end circuit from IC pins up to at least the FL1 band pass filter.
8. C8 and L8 (external switch) or C43 and L6 (internal switch) are placeholder components for harmonic emission filtering.
9. Follow guidelines in Application Note AN1440 for calibrating the power of RF front-end circuitry.
10. Follow guidelines in Application Note AN1423 for RF design related aspects.
11. There will be significant RF performance degradation if antenna select signals (ULP_GPIO_4, ULP_GPIO_5, ULP_GPIO_0) are powered at 1.8 V from the ULP_IO_VDD supply. It is recommended to supply ULP_IO_VDD from the 3.3 V supply.
12. There will be slight RF performance degradation with the internal RF switch option. Refer to Application Note AN1423 for details.

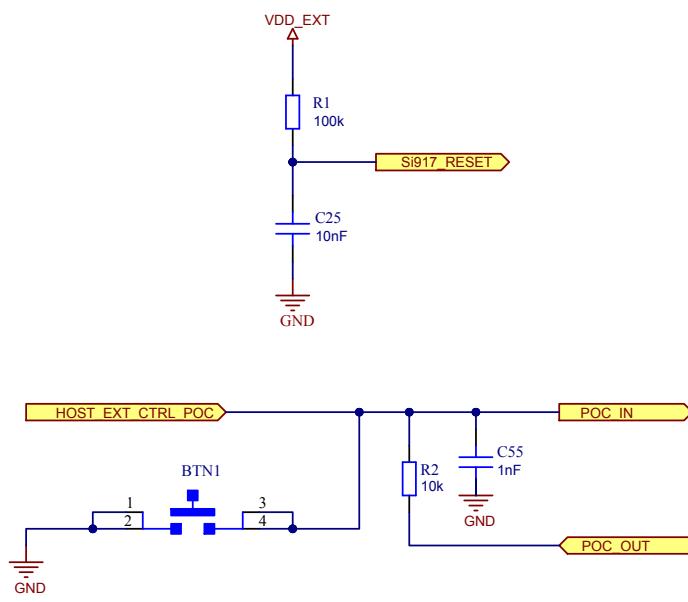
13. ULP_GPIO_0/4/5 are used to control the switch in external switch configuration. These signals map to the following functions:

- ULP_GPIO_0: RF_BLETX pin active
- ULP_GPIO_4: RF_TX pin active
- ULP_GPIO_5: RF_RX pin active

8.1.5 LF Clock Options

Figure 8.6. 32.768 kHz Clock Options

Note:


1. Two different crystals and their circuits are shown in the figure. Use one of them only.
2. Load capacitors for external crystals must be fine-tuned based on the layout design.

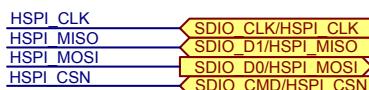
8.1.6 Flash Memory Configurations

Figure 8.7. Option 1: In-Package Flash Powered From On-Chip LDO Supply

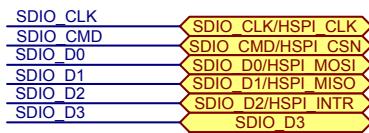
8.1.7 Reset

Figure 8.8. Reset Configuration

Note:


1. The configuration shown allows for blackout monitor functionality along with external reset of the SiWx917 IC.
2. The POC_IN signal connects to the POC_IN pin on the SiWx917. POC_IN resets all the internal blocks of the IC.
3. The Si917_RESET signal connects to the RESET_N pin on the SiWx917. It is recommended to use the RC filter as shown. RESET_N is an open-drain output pin that will be pulled low when POC_IN goes low.
4. The POC_OUT signal connects to the POC_OUT pin on the SiWx917. POC_OUT is an active-low, push-pull output from the internal blackout monitor. In this configuration, it is isolated from the external HOST_EXT_CTRL_POC signal with a series resistor. In applications without external host control (HOST_EXT_CTRL_POC), POC_OUT may be directly connected to POC_IN. Without external host control to the POC_IN pin, the IC cannot be reset multiple times after power-on.
5. The HOST_EXT_CTRL_POC signal connects to a GPIO of an external host processor. In this configuration, HOST_EXT_CTRL_POC must be an open-drain output to allow POC_OUT to control POC_IN.
6. VDD_EXT must be at the same voltage level as the UULP_VBATT_2 supply pin.
7. HOST_EXT_CTRL_POC must be at the same voltage level as the UULP_VBATT_1 supply pin.

8.1.8 Host Interface


Option 1: UART

Option 2: HSPI

Option 3: SDIO

Figure 8.9. Host Interface Options

Note:

1. In UART mode, ensure that the input signals, UART_RX and UART_CTS are not floating when the device is powered up and reset is de-asserted. This can be done by ensuring that the host processor configures its signals (outputs) before de-asserting the reset.
2. In HSPI mode, ensure that the input signals, HSPI_CSN and HSPI_CLK are not floating when the device is powered up and reset is de-asserted. This can be done by ensuring that the external Host processor configures its signals (outputs) before de-asserting the reset. HSPI_INTR is the interrupt signal driven by the secondary device. This signal may be configured as Active-high or Active-low. If it is active-high, an external pull-down resistor is required. If it is active-low, an external pull-up resistor is required.

The following actions can be carried out by the host processor during power-up of the device, and before/after ULP Sleep mode.

- a. To use the signal in the Active-high or Active-low mode, ensure that during the power up of the device, the Interrupt is disabled in the Host processor before de-asserting the reset. After de-asserting the reset, the Interrupt needs to be enabled only after the HSPI initialization is done and the Interrupt mode is programmed to either Active-high or Active-low mode as required.
- b. The Host processor needs to disable the interrupt before the ULP Sleep mode is entered and enable it after HSPI interface is reinitialized upon wakeup from ULP Sleep.

3. In SDIO mode, pull-up resistors should be present on SDIO_CMD & SDIO Data lines as per the SDIO physical layer specification version 2.0.

8.2 BOM

Manufacturer part numbers provided in this section are a guideline, and may be replaced with suitably equivalent components as needed. Device characteristics and performance are measured using the specified crystals, supply filtering, and RF frontend circuitry.

Table 8.1. SiWN917 Circuitry: Mandatory Components (Power Management + Crystal + SiWN917 IC)

S.No	Quantity	Designator	Value	Manufacturer	Manufacturer PN	Description
1	1	C1	10 μ F	Murata	GRM188R61C106MAALD	CAP CER 0603 X5R 10uF 16V 20%
2	10	C2, C5, C9, C10, C50, C51, C52, C53, C54, C102	100 nF	Murata	GRT155R71H104KE01D	CAP CER 0402 X7R 0.1uF 50V 10%
3	10	C3, C6, C7, C11, C12, C15, C16, C18, C22, C24	1 μ F	Murata	GRM033R61C105ME15D	CAP CER 0201 X5R 1uF 16V 20%
4	1	C4	10 μ F	CalChip	GMC21X7R106K25NT	CAP CER 0805 X7R 10uF 25V 10%
5	1	C13	2.2 μ F	Murata	GRM033R61A225ME47D	CAP CER 0201 X5R 2.2uF 10V 20%
6	1	C14	10 nF	Murata	GRM033R61C103KA12D	CAP CER 0201 X5R 10nF 16V 10%
7	5	C17, C19, C20, C21, C23	100 nF	Murata	GRM033R61C104KE14J	CAP CER 0201 X5R 100nF 16V 10%
8	1	L1	1 μ H	Murata	DFE201210U-1R0M=P2	IND Fixed 0805 1uH 2A 95mOhm 20%
9	4	R3, R5, R6, R8	0 Ω	Yageo	RC0201FR-07200RL	RES 0201 0R
10	1	U1	SiWN917	Silicon Labs	SiWN917	Choose the suitable OPN from List of OPNs from Ordering Information section in datasheet.
11	1	Y1	40 MHz	TXC	8Y40070013	CRYSTAL 2.0X1.6mm 40MHz 8pF 8ppm

Table 8.2. SiWN917: RF Front-End Options (one of them has to be used mandatorily)

S. No.	Quantity	Designator	Value	Manufacturer	Manufacturer PN	Description
Option 1: RF Matching +External RF Switch + Band Pass Filter						
12	1	ANT1	2.45 GHz	Johanson	2450AT18D0100001	ANT SMD 3.2X1.6X1.2MM 2.4GHz
13	1	BP1	2.45 GHz	Maglayers	LTB-1005-2G4H6-A4-PS	FILTER BAND PASS 0402-4Pin 2.45GHz 100MHz
14	3	C29, C35, C37	8.2 pF	Murata	GJM0335C1E8R2BB01	CAP CER 0201 C0G 8.2pF 25V ± 0.1 pF

S. No.	Quantity	Designator	Value	Manufacturer	Manufacturer PN	Description
15	1	C30	0.7 pF	Murata	GJM0335C1HR70WB01	CAP CER 0201 C0G 0.7pF 50V ±0.05pF
16	2	C33, C34, C38	18 pF	Murata	GRM0335C1H180GA01	CAP CER 0201 C0G 18pF 50V 2%
17	1	C36	1.3 pF	Murata	GJM0335C1E1R3WA01D	CAP CER 0201 C0G 1.3pF 50V ±0.05pF
18	1	L2	3.3 nH	Murata	LQP03HQ3N3B02	IND Fixed 0201 3.3nH 500mA 170mOhm ±0.1nH
19	1	L3	3.4 nH	Murata	LQP03TN3N4C02	IND Fixed 0201 3.4nH 450mA 250mOhm ±0.2nH
20	1	L4	6.2 nH	Murata	LQP03HQ6N2H02	IND Fixed 0201 6.2nH 400mA 250mOhm 3%
21	1	SW2	HWS520	Hexawave	HWS520	IC RF SWITCH SP3T 6GHz USON8L

Option 2: Internal RF Switch + Matching + BPF

22	1	ANT2	2.45 GHz	Johanson	2450AT18D0100001	ANT SMD 3.2X1.6X1.2MM 2.4GHz
23	2	C41, C42	18 pF	Murata	GJM0335C1E180GB01D	CAP CER 0201 C0G 18pF 25V 2%
24	1	C40	0.5 pF	Murata	GJM0335C1ER50WB01	CAP CER 0201 C0G 0.5pF 25V ±0.05pF
25	1	C44	0.7 pF	Murata	GJM0335C1ER70WB01	CAP CER 0201 C0G 0.7pF 25V ±0.05pF
26	1	FL1	2.45 GHz	TDK	DEA162450BT-1298A1	FILTER BAND PASS 1608 2400MHz 2500MHz
27	1	L5	2.4 nH	Murata	LQP03TN2N4B02	IND Fixed 0201 2.4nH 500mA 200mOhm ±0.1nH
28	1	L7	2.6 nH	Murata	LQP03TN2N6B02	IND Fixed 0201 2.6nH 500mA 200mOhm ±0.1nH

Table 8.3. SiWN917: External 32.768 kHz Clock Options

S. No.	Quantity	Designator	Value	Manufacturer	Manufacturer PN	Description
Option 1a: 32.768 kHz Crystal						
29	1	Y2	32.768 kHz	Epson	MC-146 32.768KA-AC3:ROHS	CRYSTAL 7.0x1.5mm 32.768kHz 9pF 20ppm
30	2	C31, C32	20 pF	Murata	GRM0335C1H200GA01	CAP CER 0201 C0G 20pF 50V 2%
Option 1b: 32.768 kHz Crystal						
31	2	C27, C28	9 pF	Murata	GJM0335C1E9R0WB01	CAP CER 0201 C0G 9pF 25V ±0.05pF
32	1	Y3	32.768 kHz	Micro Crystal	CM8V-T1A-32.768KHZ-7PF-20PPM-TA-QC	CRYSTAL 2.0x1.2mm 32.768kHz 7pF 20ppm

Table 8.4. SiWN917: Discrete Parts (BTN1 is optional and need not be used for every use-case)

S. No.	Quantity	Designator	Value	Manufacturer	Manufacturer PN	Description
33	1	BTN1	PTS810 SJM 250 SMTR LFS	C&K	PTS810 SJM 250 SMTR LFS	Tactile Switch SPST-NO 0.05A 16V
34	1	R1	100 kΩ	Yageo	RC0201FR-07100KL	RES 0201 100K 1/20W 1% 200ppm
35	1	C25	10 nF	Murata	GRM033R61C103KA12D	CAP CER 0201 X5R 10nF 16V 10%
36	1	R2	10 kΩ	Yageo	RC0201FR-0710KL	RES 0201 10K 1/20W 1% 200ppm
37	1	C55	1 nF	Murata	GRM033R71C102KA01D	CAP CER 0201 X7R 1nF 16V 10%

8.3 Layout Guidelines for DR-QFN

The following guidelines outline the integration of the DR-QFN:

1. The following supply pins must be star routed from the supply source:
 - a. VINBCKDC
 - b. VINLDO1P8
 - c. IO_VDD_1, IO_VDD_2, IO_VDD_3
 - d. ULP_IO_VDD
 - e. UULP_VBATT_1
 - f. UULP_VBATT_2
 - g. RF_VBATT
 - h. PA2G_AVDD
2. The RF traces must have a characteristic impedance of 50 Ohms. Any standard 50 Ohms RF trace (Microstrip or Coplanar wave guide) may be used. The width of the 50 Ohms line depends on the PCB stack, e.g., the dielectric of the PCB, thickness of the copper, thickness of the dielectric and other factors. Consult the PCB fabrication unit to get these factors right.
3. Each GND pin must have a separate GND via.
4. All decoupling capacitors placement must be as much close as possible to the corresponding power pins, and the trace lengths as short as possible.
5. Ensure all power supply traces widths are sufficient enough to carry corresponding currents.
6. Add GND copper pour underneath IC in all layers, for better thermal dissipation.
7. Provision an RF shield around the IC and RF circuitry, excluding antenna portion.
8. Refer to RF Matching and Layout Design Guide Application Note AN1423 for more details about following RF related design aspects.
9. Add 5 x 5 thermal vias (25 total) of at least 10-mils drill size equally placed on the "GND paddle" for better thermal dissipation.
10. The layout guidelines for the buck DC-DC are as follows:

Minimize the loop area formed by inductor switching node, output capacitors & input capacitors. This helps keep high current paths as short as possible. Keeping high current paths shorter and wider would help decrease trace inductance & resistance. This would significantly help increase the efficiency in high current applications. This reduced loop area would also help in reducing the radiated EMI that may affect nearby components.

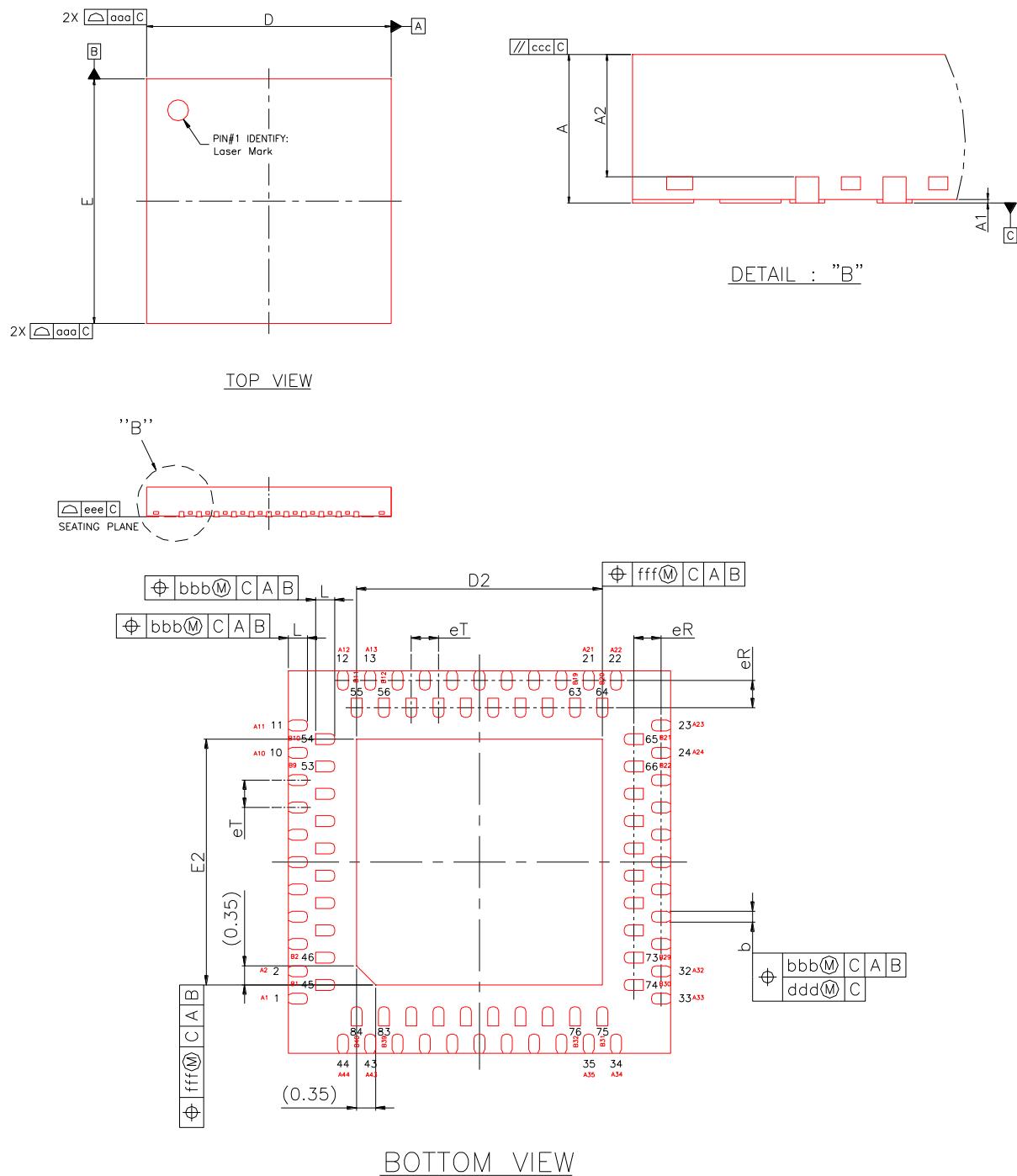
 - a. The capacitor for VINBCKDC (C1) should be very close to the IC pin and the ground pad of the capacitor should have direct vias to the ground plane.
 - b. The inductor (L1) should be close to IC pin VOUTBCKDC and the buck capacitor (C4) should be placed close to the inductor. The ground pad of the capacitor should have direct vias to the ground plane underneath.
 - c. The ground plane underneath the buck inductor (L1) in the top layer should be made as an isolated copper patch and should descend down to the main ground layer through multiple vias.
 - d. The path from VOUTBCKDC to VINLDOSOC is a high current path. The trace should be as short and wide as possible and it is recommended to run grounded shield traces on either side of this high current trace.
 - e. The capacitor on VINLDOSOC (C4) should be very close to the IC pin & the ground pad of the capacitor should have direct vias to the ground plane underneath.
11. Refer to Silicon Labs' radio board designs and Application Note AN1423 for layout examples.

8.4 Calibration Requirements

The IC design circuit, as shown in Section 8.1 Schematics, involves discrete components in the RF path and 50-ohm PCB traces. There can be variations in manufacturing tolerances from these discrete components and part-to-part IC variation leading to board-to-board performance variation in power level.

Accurate control over TX power is required for regulatory purposes. It is recommended that one performs TX Gain offset calibration on the end-product to compensate for these board-to-board power variations. This requires provision for conducted power measurement on end-product. If the customer does not have the capability for conducted power measurement and this calibration, then fixed TX power back off may be required to ensure regulatory compliance.

Refer to the following Application Notes for detailed calibration procedures:


- Application Note AN1436 for calibrating the external 40 MHz crystal.
- Application Note AN1440 for calibrating the power of RF front-end circuitry.

9. Package Specifications

9.1 Package Outline

Table 9.1. Package Dimensions - DR-QFN

Parameter	Value (LxWxH)	Units
Package Dimensions	7 x 7 x 0.85	mm
Tolerance	±0.1	mm

Figure 9.1. Package Outline - DR-QFN

Table 9.2. PCB Landing Pattern - DR-QFN

Dimension	MIN	NOM	MAX
A	0.75	0.85	0.95
A1	0.00	0.02	0.05
A2	0.65	0.70	0.75
b	0.15	0.20	0.25
D	6.90	7.00	7.10
E	6.90	7.00	7.10
D2	4.40	4.50	4.60
E2	4.40	4.50	4.60
eT	0.50 BSC		
eR	0.50 BSC		
L	0.30	0.35	0.40
aaa	0.10		
bbb	0.10		
ccc	0.20		
ddd	0.05		
eee	0.08		
fff	0.10		

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-220.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9.2 PCB Land Pattern

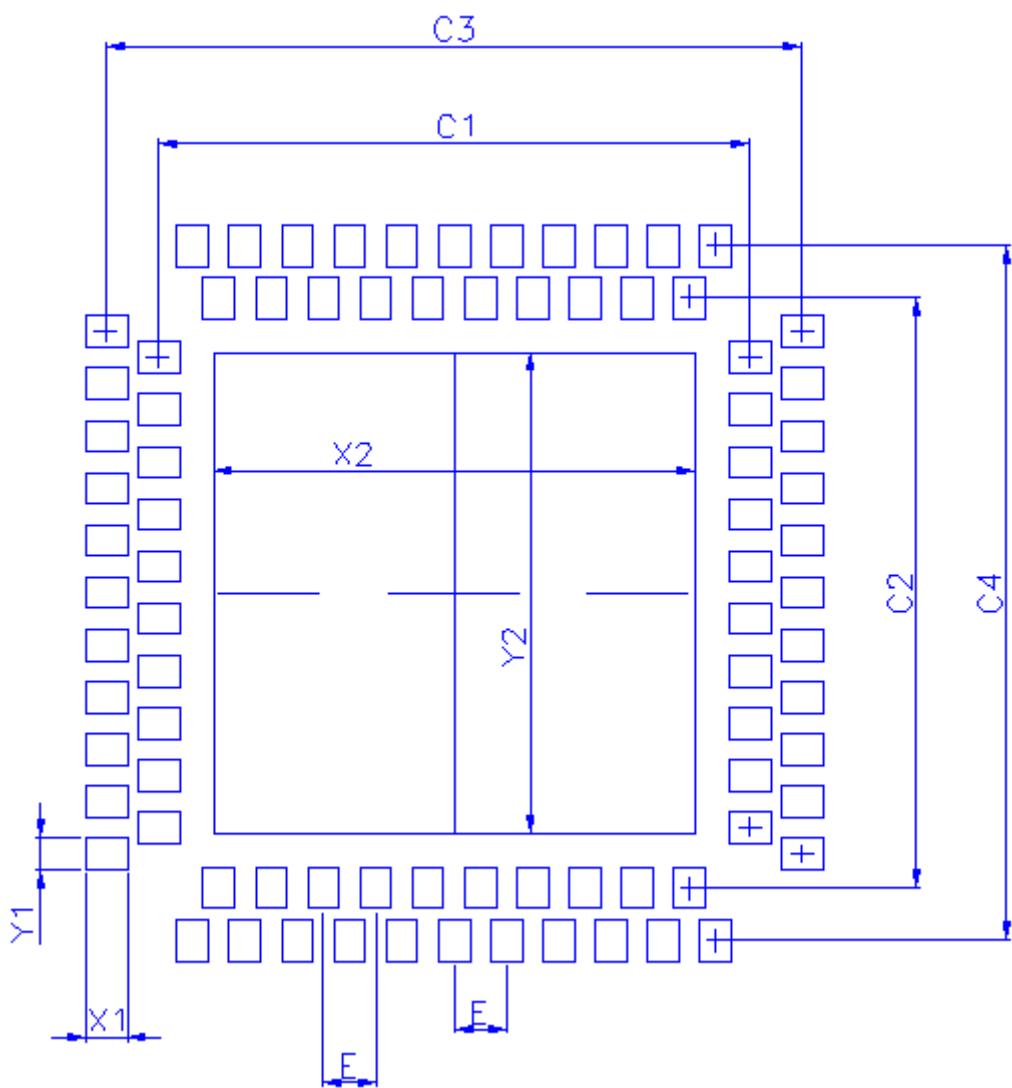


Figure 9.2. PCB Landing Pattern - DR-QFN

Table 9.3. Dimension Table

Dimension	mm
C1	5.65
C2	5.65
C3	6.65
C4	6.65
E	0.5 BSC
X1	0.40
X2	4.60
Y1	0.25
Y2	4.60

Note:**General**

1. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.

Solder Mask Design

1. All pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 10 µm minimum, all the way around the pad.

Stencil Design

1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
2. The stencil thickness should be 0.100 mm (4 mils).
3. The stencil aperture to land pad size recommendation is 80% paste coverage.

*Above notes and stencil design are shared as recommendations only. A customer or user may find it necessary to use different parameters and fine tune their SMT process as required for their application and tooling.

9.3 Top Marking

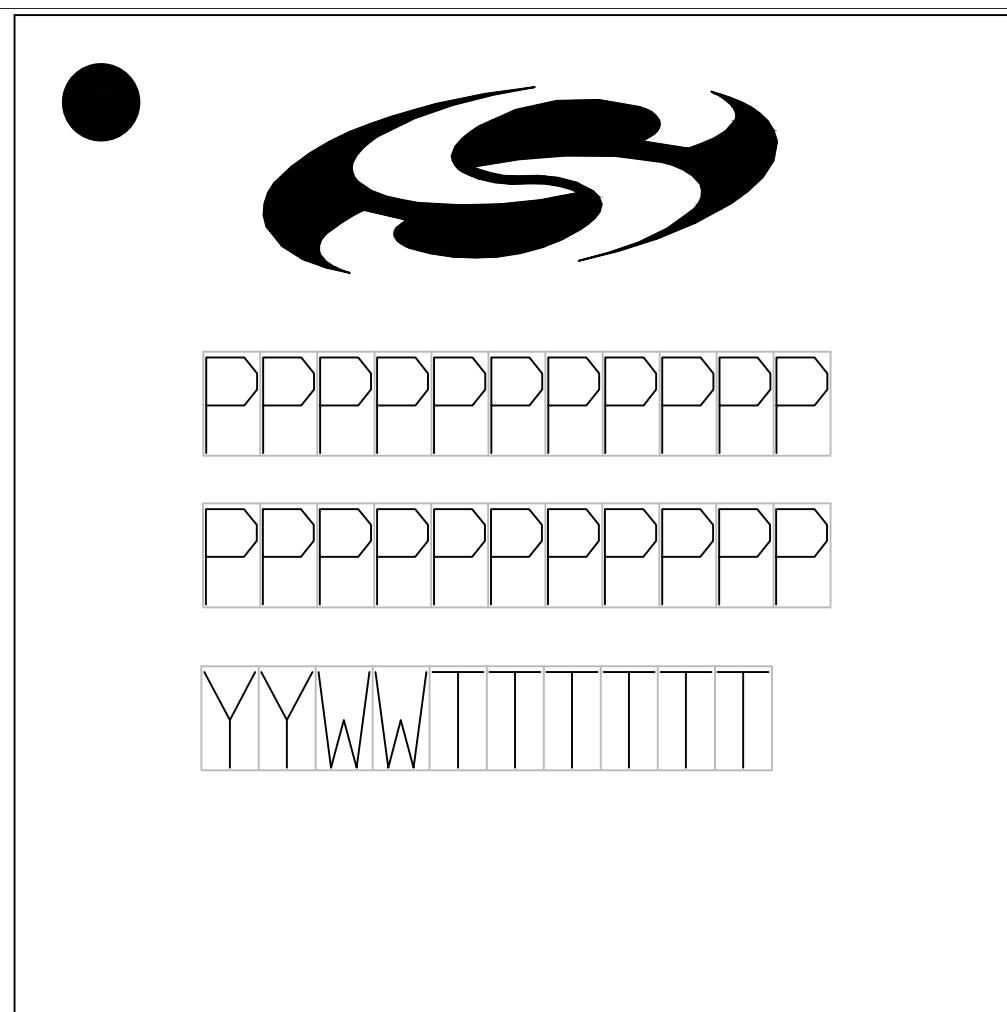


Figure 9.3. Top Marking

Mark Description

The package marking consists of:

- PPPPPPPPPP - Part number designation in both the rows
- YYWWTTTTT -
 - YY – Last two digits of the assembly year
 - WW – Two-digit workweek when the device was assembled
 - TTTTTT – A trace or manufacturing code. The first letter is the device revision.

10. SiWN917 Documentation and Support

Silicon Labs offers a set of documents which provide further information required for evaluating, and developing products and applications using SiWN917. These documents will be available on the Silicon Labs website. The documents include information related to Software releases, Evaluation Kits, User Guides, Programming Reference Manuals, Application Notes, and others.

For further assistance, you can contact Silicon Labs Technical Support [here](#).

Resource Location

SiWN917 Document Library: <https://docs.silabs.com/wiseconnect/3.4.0/wiseconnect-developing-with-wiseconnect-sdk/>

Technical Support: <http://www.silabs.com/support/>

11. Revision History

Revision 1.0

December, 2024

- Removed LVCMOS external 32.768 kHz clock option. A 32.768 kHz crystal is mandatory for all applications requiring low-power Wi-Fi, BLE, and Coex sleep.
- Updated language used for security features throughout document
- [6.1 Pin Diagram](#): Corrected name of UULP_VOUTSCDC pin
- [7. Electrical Specifications](#):
 - [Table 7.7 Flash LDO Electrical Specifications - Regulation Mode on page 34](#): Load regulation maximum changed to 3%
 - Removed specification table for internal RC boot oscillator and clarified this is only for boot-up
 - All electrical specifications updated with final char results and test limits
- [8. Reference Schematics, BOM and Layout Guidelines](#)
 - Updated schematic images with text-searchable versions
 - Corrected manufacturer part details for C36, L2, L3, C41, C42, C40, C44, L5, and L7
 - Added notes for position and usage of capacitor C38

Revision 0.7

September, 2024

- Replaced references to "ThreadArch" with "Network Wireless Processor" and / or "NWP"
- [Table 2.1 List of OPNs on page 4](#): Removed OPN SiWN917M100XGTBA
- Removed references to external flash support
- Corrected last character of OPN decoder, which is Reserved for these products
- Normalized pin names for SPI Secondary to HSPI Secondary to match documentation and software
- Corrected package name to DR-QFN throughout document
- Removed non-implemented peripherals from block diagrams, text, and specification tables
- Updated typical electrical characteristics with characterization results
- [7.1 Absolute Maximum Ratings](#): Added absolute maximum voltage and current ratings for I/O pins
- [7.3.2 Power On Control \(POC\) and Reset](#) Clarified POC and Reset functionality
- [7.5 RF Characteristics](#) Added supported WLAN channels for different regions
- [8. Reference Schematics, BOM and Layout Guidelines](#)
 - Split schematics into separate figures with in-text notes for legibility
 - Updated component recommendations per final design guidelines
- [Figure 9.2 PCB Landing Pattern - DR-QFN on page 72](#): Corrected dimensions C1, C2, C3, C4
- Presentation and formatting changes throughout document, including figure and table title assignments, units, cross-references, specification table formats, GPIO mux table formats, etc.

Revision 0.5

December, 2023

- Updated Section [2. Ordering Information](#)
- Updated [Table 6.3 Chip Packages - Peripheral Interfaces on page 19](#)
- Updated [7.3.3.1 SC-DCDC](#)
- Updated Section [7.6.1 WLAN 2.4 GHz 3.3 V Current Consumption](#)

Revision 0.1

October, 2023

Initial draft.

Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

IoT Portfolio

www.silabs.com/iot

SW/HW

www.silabs.com/simplicity

Quality

www.silabs.com/quality

Support & Community

www.silabs.com/community

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.

Trademark Information

Silicon Laboratories Inc.[®], Silicon Laboratories[®], Silicon Labs[®], SiLabs[®] and the Silicon Labs logo[®], Bluegiga[®], Bluegiga Logo[®], EFM[®], EFM32[®], EFR, Ember[®], Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Redpine Signals[®], WiSeConnect, n-Link, EZLink[®], EZRadio[®], EZRadioPRO[®], Gecko[®], Gecko OS, Gecko OS Studio, Precision32[®], Simplicity Studio[®], Telegesis, the Telegesis Logo[®], USBXpress[®], Zentri, the Zentri logo and Zentri DMS, Z-Wave[®], and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.