

Phase leg **MOSFET Power Module**

V_{DSS} = 200V
R_{DSon} = 5mΩ max @ T_j = 25°C
I_D = 350A @ T_c = 25°C

Application

- Welding converters
- Switched Mode Power Supplies
- Uninterruptible Power Supplies
- Motor control

Features

- MOSFET
 - Low $R_{DS(on)}$
 - Low input and Miller capacitance
 - Low gate charge
 - Avalanche energy rated
- Kelvin source for easy drive
- Low stray inductance
- M5 power connectors
- High level of integration

Benefits

- Outstanding performance at high frequency operation
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Low profile
- RoHS Compliant

All ratings @ $T_i = 25^\circ\text{C}$ unless otherwise specified

1. MOSFET ratings (per MOSFET)

Absolute maximum ratings

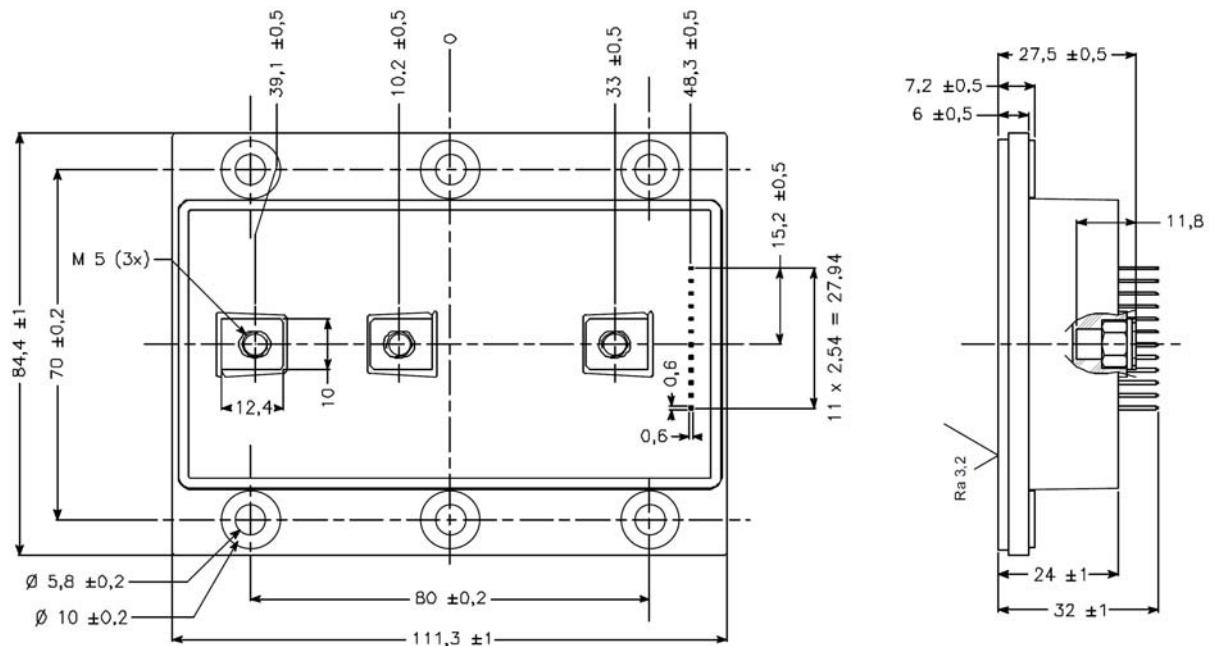
Symbol	Parameter	Max ratings		Unit
V_{DSS}	Drain - Source Voltage	200		V
I_D	Continuous Drain Current	$T_c = 25^\circ\text{C}$	350	A
		$T_c = 80^\circ\text{C}$	280	
I_{DM}	Pulsed Drain current	1500		
V_{GS}	Gate - Source Voltage	± 20		V
R_{DSon}	Drain - Source ON Resistance	5		$\text{m}\Omega$
P_D	Maximum Power Dissipation	$T_c = 25^\circ\text{C}$	1670	W
E_{AS}	Single Pulse Avalanche Energy	1300		mJ

 CAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

Electrical Characteristics

Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0V, V _{DS} = 200V				1	mA
R _{D(on)}	Drain – Source on Resistance	V _{GS} = 10V	T _j = 25°C			5	mΩ
		I _D = 280A	T _j = -45°C			3.6	
V _{GS(th)}	Gate Threshold Voltage	V _{GS} = V _{DS} , I _D = 8 mA		2		4	V
I _{GSS}	Gate – Source Leakage Current	V _{GS} = ±20 V, V _{DS} = 0V				±800	nA

Dynamic Characteristics


Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit
C _{iss}	Input Capacitance	V _{GS} = 0V V _{DS} = 25V f = 1MHz			41		nF
C _{oss}	Output Capacitance				9.2		
C _{rss}	Reverse Transfer Capacitance				3.1		
Q _g	Total gate Charge	V _{GS} = 10V V _{Bus} = 100V I _D = 375A			1184		nC
Q _{gs}	Gate – Source Charge				376		
Q _{gd}	Gate – Drain Charge				600		
T _{d(on)}	Turn-on Delay Time	V _{GS} = 15V V _{Bus} = 130V I _D = 280A R _G = 25Ω				500	ns
T _r	Rise Time					350	
T _{d(off)}	Turn-off Delay Time					1000	
T _f	Fall Time					600	
R _{thJC}	Junction to Case Thermal Resistance					0.075	°C/W

Source - Drain diode ratings and characteristics

Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit		
I _S	Continuous Source current (Body diode)			T _c = 25°C		350	A		
				T _c = 80°C		280			
V _{SD}	Diode Forward Voltage	V _{GS} = 0V, I _S = -280A				1.5	V		
t _{rr}	Reverse Recovery Time	I _S = -375A V _R = 100V dI _S /dt = 800A/μs		T _j = 25°C		130	240		
Q _{rr}				T _j = 125°C		155	420		
				T _j = 25°C		8	μC		
				T _j = 125°C		16			

2. Thermal and package characteristics

Symbol	Characteristic			Min	Max	Unit
V _{ISOL}	RMS Isolation Voltage, any terminal to case t = 1 min, 50/60Hz			2500		V
T _j	Operating junction temperature range			-40	150	°C
T _{JOP}	Recommended junction temperature under switching conditions			-40	T _{jmax} -25	
T _{STG}	Storage Temperature Range			-40	125	
T _C	Operating Case Temperature			-40	125	
Torque	Mounting torque	To heatsink	M5	2	3.5	N.m
		For terminals	M5	2	3.5	
Wt	Package Weight				550	g

Package outline (dimensions in mm)

DISCLAIMER

The information contained in the document (unless it is publicly available on the Web without access restrictions) is PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi. If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi.

Life Support Application

Seller's Products are not designed, intended, or authorized for use as components in systems intended for space, aviation, surgical implant into the body, in other applications intended to support or sustain life, or for any other application in which the failure of the Seller's Product could create a situation where personal injury, death or property damage or loss may occur (collectively "Life Support Applications").

Buyer agrees not to use Products in any Life Support Applications and to the extent it does it shall conduct extensive testing of the Product in such applications and further agrees to indemnify and hold Seller, and its officers, employees, subsidiaries, affiliates, agents, sales representatives and distributors harmless against all claims, costs, damages and expenses, and attorneys' fees and costs arising, directly or indirectly, out of any claims of personal injury, death, damage or otherwise associated with the use of the goods in Life Support Applications, even if such claim includes allegations that Seller was negligent regarding the design or manufacture of the goods.

Buyer must notify Seller in writing before using Seller's Products in Life Support Applications. Seller will study with Buyer alternative solutions to meet Buyer application specification based on Sellers sales conditions applicable for the new proposed specific part.