

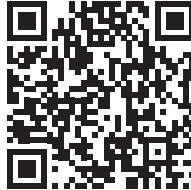
## High Accuracy 2.5A Low-Voltage AOT Synchronous Buck Regulator

### Brief Description

This Manual describes the detailed operation of the KTB8316 (4MHz) evaluation board. KTB8316 is a precision adaptive-on-time step-down switching regulator with high accuracy, fast transient response, high efficiency, and small solution size optimized for mobile and non-mobile applications. The KTB8316 (4MHz) Evaluation (EVAL) board demonstrates the KTB8316 step-down regulator detailed functionality, performance, and the PCB layout. The kit includes a fully assembled and tested KTB8316 (4MHz) EVAL board, and a printed copy of the Quick Start Guide.

### Ordering Information

| Part Number              | Description                                                   | IC Package         |
|--------------------------|---------------------------------------------------------------|--------------------|
| KTB8316EEAA-CJ-ZZ-MMEV01 | KTB8316 (4MHz) EVAL Kit – Output voltage range = 0.9V to 3.3V | PwrCSP™ HP-WLCSP-6 |


### 3D CAD Image



## EVAL Kit Physical Contents

| Item # | Description                                                   | Included | Download |
|--------|---------------------------------------------------------------|----------|----------|
| 1      | KTB8316 (4MHz) EVAL fully assembled PCB in Anti-static bag    | 1        |          |
| 2      | Hard copy for the Quick Start Guide, 1 page (A4 or US Letter) | 1        |          |
| 3      | EVAL Kit box                                                  | 1        |          |
| 4      | EVAL Kit Manual, available at clickable URL                   |          | 1        |

## QR Links for Documents

| IC Datasheet                                                                                                                                                           | KTB8316EEAA-CJ-ZY-MMEV01 Kit Landing Page                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br><a href="https://www.kinet-ic.com/ktb8316/">https://www.kinet-ic.com/ktb8316/</a> | <br><a href="https://www.kinet-ic.com/ktb8316eeaa-cj-zz-mmev01/">https://www.kinet-ic.com/ktb8316eeaa-cj-zz-mmev01/</a> |

## User-Supplied Equipment

### Required Equipment

1. Bench Power Supply for VIN: 0 to 5V, 3A minimum output range as needed for the intended application.
2. Digital Multimeter – used to measure input/output voltages and current. Two to four meters are required depending upon specific measurements.
3. Load – An Electronic Load (E-Load) is recommended for functional testing and power conversion efficiency measurements. Power resistors or an actual system load may also be used.

### Optional Equipment

1. Oscilloscope and Voltage Probes – for dynamic testing and measurements of input/output and inductor (LX) switching voltage waveforms.
2. Additional Digital Multimeters

## Recommended Operating Conditions

| Symbol    | Description             | Value      | Units |
|-----------|-------------------------|------------|-------|
| $V_{IN}$  | Input Operating Voltage | 2.5 to 5.5 | V     |
| $I_{OUT}$ | Output Load Current     | 0 to 2.5   | A     |

## Jumper and Test Point Descriptions

| Designator | Name  | Description                                                                                                                                                                                                                      | Default |
|------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| P1         | KVIN  | VIN supply kelvin voltage test points for VIN and GND                                                                                                                                                                            | -       |
| P2         | KVOUT | VOUT kelvin voltage test points for VOUT and GND                                                                                                                                                                                 | -       |
| P3         | LX    | Buck regulator inductor switch node. Connect 10:1 oscilloscope probe to LX to observe switching waveforms                                                                                                                        | -       |
| P4         | EN    | Jumper for Active-High Enable Input:<br>GND: Shutdown Mode – device disabled<br>VIN: Enable device on                                                                                                                            | VIN     |
| P5         | VOUT  | Connecting Header for VOUT                                                                                                                                                                                                       | -       |
| P6         | VIN   | Connecting Header for VIN                                                                                                                                                                                                        | -       |
| P7         | GND   | Connecting Header for GND                                                                                                                                                                                                        | -       |
| P8         | MODE  | Jumper to MODE input pin to VIN or GND<br>Open: VOUT Select via SW1 switch selection<br>VIN: MODE to VIN - Default VOUT in FPWM mode, All SW1 switches OFF<br>GND: MODE to GND - Default VOUT in Skip mode, All SW1 Switches OFF | GND     |
| P9         | GND   | Connecting Header for GND                                                                                                                                                                                                        |         |

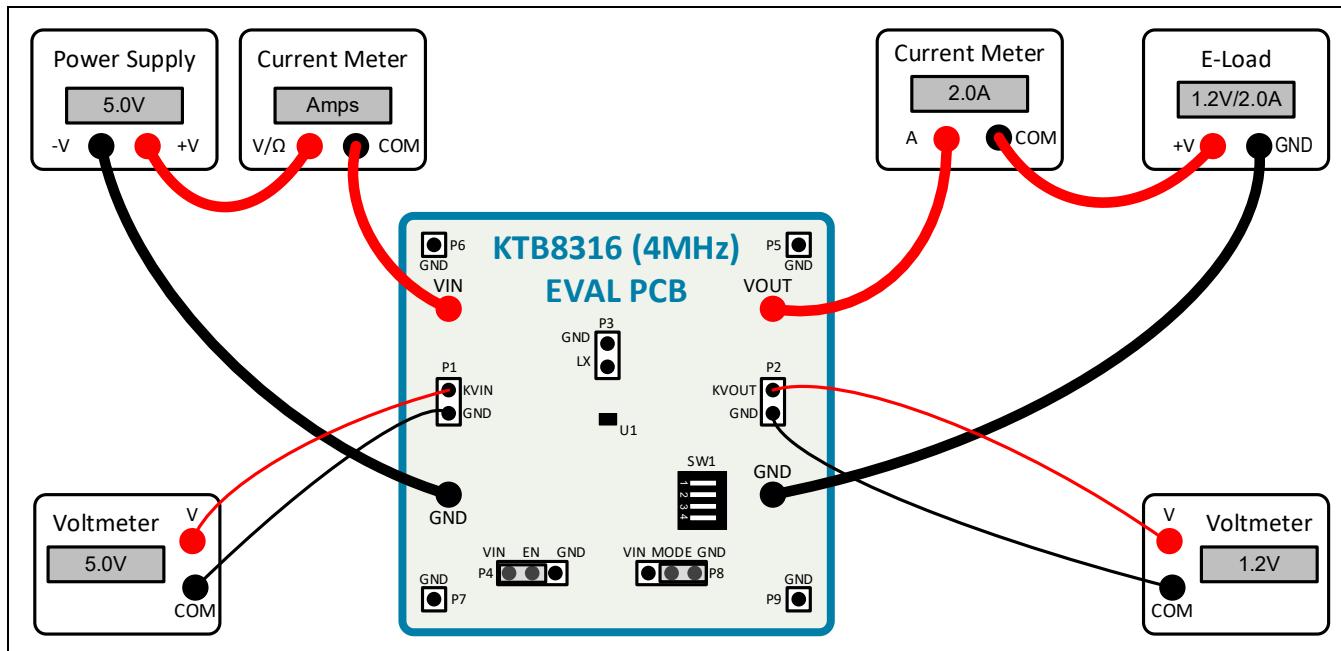
## Switch Mode and Output Voltage Settings

All SW1 switches should be set to the OFF position for EVB Assembly test and shipping.

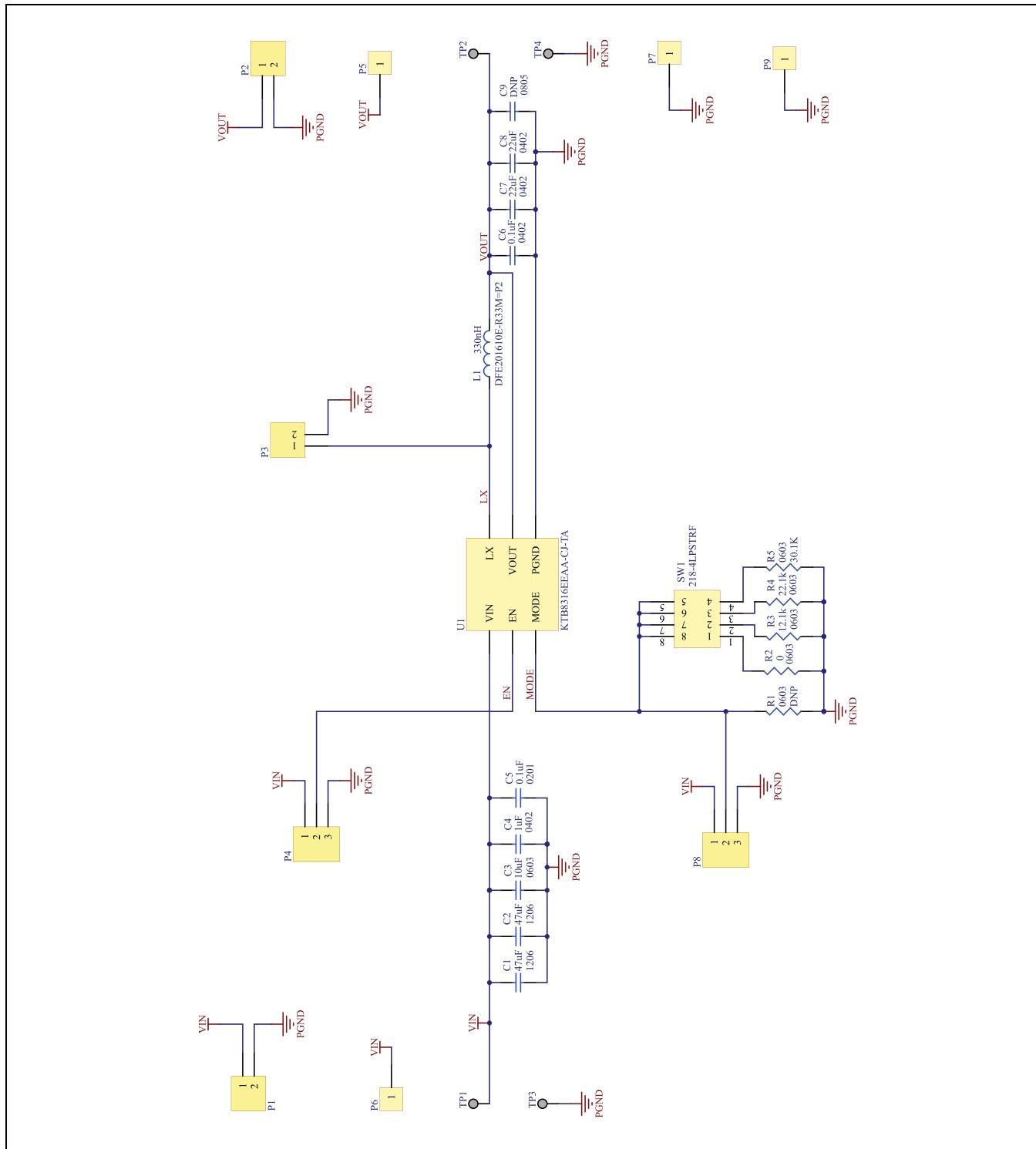
| MODE (P8)<br>JUMPER <sup>1</sup> | SW1 Switch<br>Setting <sup>2</sup> | R <sub>SET</sub> Resistor | 4MHz Operation                             |          | Switching<br>Mode | Default         |
|----------------------------------|------------------------------------|---------------------------|--------------------------------------------|----------|-------------------|-----------------|
|                                  |                                    |                           | R <sub>SET</sub> Value <sup>3</sup><br>(Ω) | VOUT (V) |                   |                 |
| MODE to GND                      | All OFF                            | N/A                       | N/A                                        | 1.2      | Skip              | Default Setting |
| OFF                              | SW1-1 ON                           | R2                        | 0                                          | 1.2      | Skip              |                 |
| OFF                              | SW1-2 ON                           | R3                        | 12.1k                                      | 0.9      | Skip              |                 |
| OFF                              | SW1-3 ON                           | R4                        | 22.1k                                      | 1.8      | Skip              |                 |
| OFF                              | SW1-4 ON                           | R5                        | 30.1k                                      | 3.3      | Skip              |                 |
| MODE to VIN                      | All OFF                            | N/A                       | N/A                                        | 1.2      | FPWM              |                 |

1. The MODE Jumper must be open (not placed) when setting the output voltage by the SW1 switch. Placing the MODE jumper to VIN or GND with any SW1 switch closed will result in non-specified output mode and voltage conditions.
2. Only one SW1 switch position should be ON at a time. Closing more than one switch will result in non-specified output voltage conditions. All SW1 switches should be OFF when the MODE pin jumper (P8) is connected to VIN or GND.
3. Consult the KTB8316 datasheet applications information to adjust the value of the R2, R3, R4 or R5 RSET resistor values to set an output voltage condition not shown in this table.

## Regulator Switching Frequency and Output Voltage


| IC Part Number | Switching Frequency (MHz) | L1 Inductor Value (nH) | Minimum Output Voltage (V) | Maximum Output Voltage (V) |
|----------------|---------------------------|------------------------|----------------------------|----------------------------|
| KTB8316EEAA-CJ | 4                         | 330                    | 0.9                        | 3.3                        |

## Quick Start Procedures


1. Check Jumpers P4, P8 and SW1 switch settings for default conditions.
  - a. Default Settings:
    - i. P4 = Jumper EN to VIN to enable the device
    - ii. P8 = MODE to GND for skip mode
    - iii. All SW1 switches set to the OFF position for skip mode and nominal output voltage
2. Before connecting the EVAL Kit input supply test leads to the VIN bench power supply, turn the supply on and adjust the voltage as close to 0V as possible. Disable the power supply output or turn the supply off. While disabled or off, connect the VIN test leads to the bench power supply.
3. Connect the power supply positive test lead to VIN and negative test lead to GND on the evaluation board.
4. Connect the step-down (buck) regulator output to an electronic load, load resistor or system load. Connect VOUT to the positive load terminal and GND to the negative or ground terminal.
5. Enable or turn on the VIN bench power supply and very slowly ramp its voltage to the desired input voltage. While ramping VIN slowly, use the bench supply's output current indication (or a digital multimeter) to monitor the VIN current. If the current becomes high, reduce the VIN voltage quickly to prevent damage. Then inspect the setup for any wiring errors.
6. Regulator operation may be validated by observing the VOUT voltage level, this may be performed with or without an applied load. The output voltage is monitored by connecting multimeter across the KVOUT/GND P2 terminals.
7. To hardware shutdown the step-down (buck) regulator, move the P4 jumper to connect EN to GND.

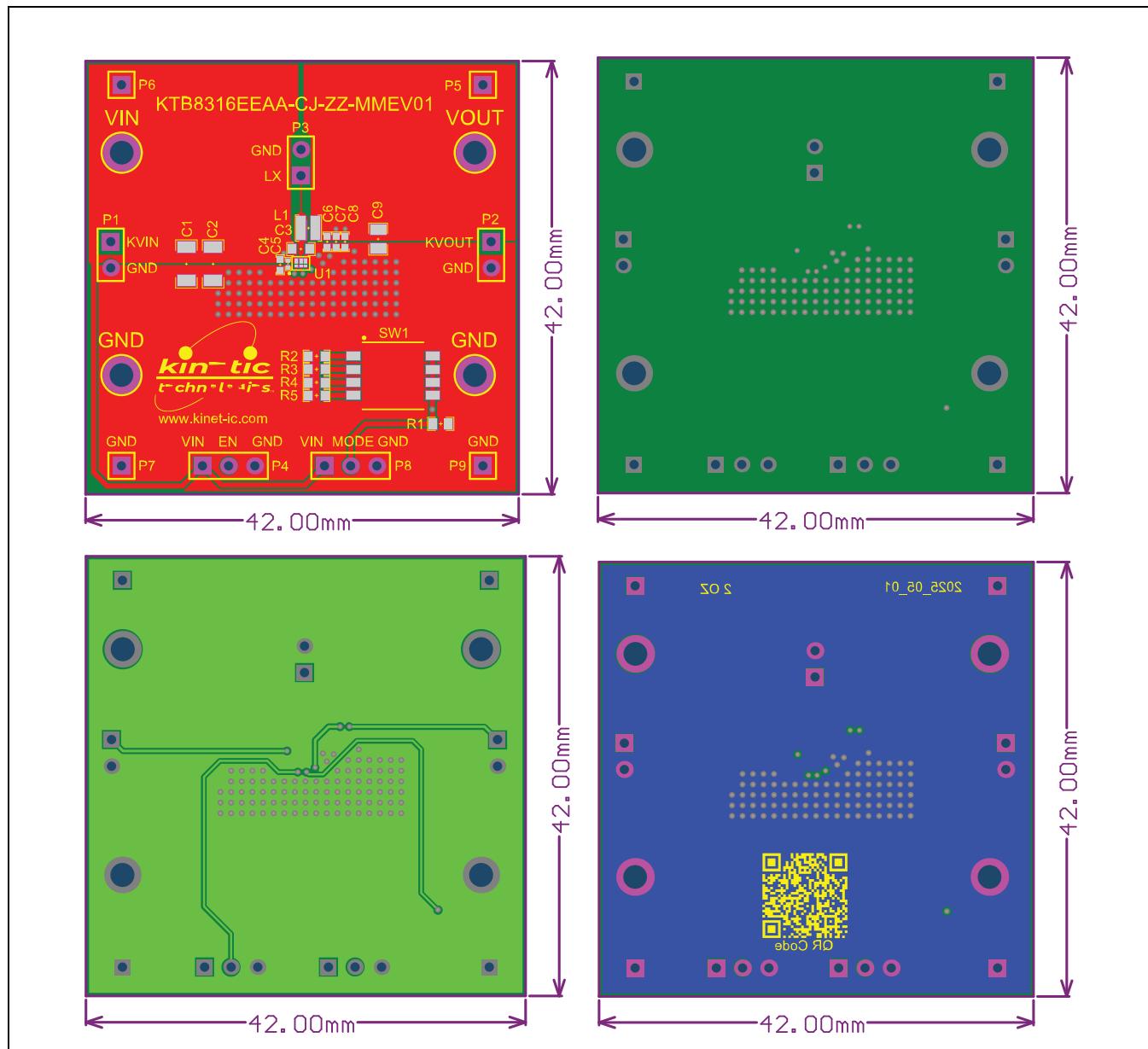
## Typical Test Setup Diagram

As an example, use the following test setup to measure input/output in the Quick Start Procedures.



## Electrical Schematic






## Bill of Materials (BOM)

KTB8316EEAA-CJ-ZZ-MMEV01 – 4MHz Operation, VOUT range = 0.9V to 3.3V.

| Designator         | Description                                                   | Quantity | Value       | Manufacturer                | Manufacturer Part Number |
|--------------------|---------------------------------------------------------------|----------|-------------|-----------------------------|--------------------------|
| C1, C2             | CAP CER 47 $\mu$ F 10V X5R 1206                               | 2        | 47 $\mu$ F  | Samsung                     | CL31A476MPHNNNE          |
| C3                 | CAP CER 10 $\mu$ F 10V X5R 0603                               | 1        | 10 $\mu$ F  | Samsung                     | CL10A106MP8NNNC          |
| C4                 | CAP CER 1 $\mu$ F 10V X5R 0402                                | 1        | 1 $\mu$ F   | Samsung                     | CL05A105KP5NNNC          |
| C5                 | CAP CER 0.1 $\mu$ F 10V X5R 0201                              | 1        | 0.1 $\mu$ F | Samsung                     | CL03A104KP3NNNC          |
| C6                 | CAP CER 0.1 $\mu$ F 6.3V X5R 0402                             | 1        | 0.1 $\mu$ F | Murata Electronics          | GRM152R60J104KE19D       |
| C7, C8             | CAP CER 22 $\mu$ F 6.3V X5R 0402                              | 2        | 22 $\mu$ F  | Murata Electronics          | GRM158R60J226ME01D       |
| C9                 | Cap 0805 DNP                                                  | 1        | DNP         |                             |                          |
| L1                 | FIXED IND 330NH 4A 26MOHM SMD                                 | 1        | 330nH       | Murata Electronics          | DFE201610E-R33M=P2       |
| P1, P2, P3         | CONN HEADER VERT 2POS 2.54MM                                  | 3        |             | Sullins Connector Solutions | PREC002SAAN-RC           |
| P4, P8             | CONN HEADER VERT 3POS 2.54MM                                  | 2        |             | Sullins                     | PREC003SAAN-RC           |
| P5, P6, P7, P9     | Connector Header Through Hole 1 position                      | 4        |             | Sullins Connector Solutions | PREC001SAAN-RC           |
| R1                 | Res 0603 DNP                                                  | 1        | DNP         |                             |                          |
| R2                 | RES 0 OHM JUMPER 1/10W 0603                                   | 1        | 0           | Yageo                       | RC0603JR-070RL           |
| R3                 | RES 12.1K OHM 1% 1/10W 0603                                   | 1        | 12.1k       | Yageo                       | RC0603FR-0712K1L         |
| R4                 | RES 22.1K OHM 1% 1/10W 0603                                   | 1        | 22.1k       | Yageo                       | RC0603FR-0722K1L         |
| R5                 | RES 30.1K OHM 1% 1/10W 0603                                   | 1        | 30.1K       | Yageo                       | RC0603FR-0730K1L         |
| SW1                | SWITCH SLIDE DIP SPST 0.025A 24V                              | 1        |             | CTS Electrocomponents       | 218-4LPSTRF              |
| TP1, TP2, TP3, TP4 | TERM TURRET SINGLE L=5.56MM TIN                               | 4        |             | Keystone                    | 1502-2                   |
| U1                 | High Accuracy 2.5A Low-Voltage AOT Synchronous Buck Regulator | 1        |             | Kinetic Technologies        | KTB8316EEAA-CJ-TA        |

## Printed Circuit Board (PCB)



## Additional Test Procedures

1. The DC-to-DC step-down switching waveform may be observed on the P3 LX/GND terminals. Connect a 10:1 high impedance oscilloscope probe to LX with as short as possible ground lead to GND. Adjust the oscilloscope as needed to observe the LX switching waveform.
2. To test or observe step-down output voltage or switch mode to a different setting from the default condition, turn off or disconnect the input power source. Change the SW1 switch settings as outlined in the switch mode and output voltage setting table. Re-apply power to the device and observe operation.
3. Step-down regulation efficiency measurement:
  - a. Place a current meter in series with the positive input supply to VIN. Place a second current meter between VOUT and the applied load which may be a variable load resistor or electronic load.
  - b. Connect a voltmeter to measure input voltage on the input supply P1 test pins KVIN and GND. Connect a second voltmeter to the P2 VOUT test pins KVOUT and GND to measure output voltage.
  - c. Simultaneously record the Input voltage, Input current, output voltage and output current for a given input voltage level and applied load current. The efficiency is then calculated using equation:

$$\text{Efficiency (\%)} = (P_{\text{OUT}}/P_{\text{IN}}) \times 100\% = [(V_{\text{OUT}} \times I_{\text{OUT}}) / (V_{\text{IN}} \times I_{\text{IN}})] \times 100\%$$

## Important Notices

### Legal notice

Copyright © Kinetic Technologies. Other names, brands and trademarks are the property of others.

Kinetic Technologies assumes no responsibility or liability for information contained in this document. Kinetic Technologies reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. The information contained herein is believed to be accurate and reliable at the time of printing.

### Reference design policy

This document is provided as a design reference and Kinetic Technologies assumes no responsibility or liability for the information contained in this document. Kinetic Technologies reserves the right to make corrections, modifications, enhancements, improvements, and other changes to this reference design documentation without notice.

Reference designs are created using Kinetic Technologies' published specifications as well as the published specifications of other device manufacturers. This information may not be current at the time the reference design is built. Kinetic Technologies and/or its licensors do not warrant the accuracy or completeness of the specifications, or any information contained therein.

Kinetic Technologies does not warrant that the designs are production worthy. Customer should completely validate and test the design implementation to confirm the system functionality for the end use application.

Kinetic Technologies provides its customers with limited product warranties, according to the standard Kinetic Technologies terms and conditions.

For the most current product information visit us at [www.kinet-ic.com](http://www.kinet-ic.com)

### Life support policy

LIFE SUPPORT: KINETIC TECHNOLOGIES' PRODUCTS ARE NOT DESIGNED, INTENDED, OR AUTHORIZED FOR USE AS COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS. NO WARRANTY, EXPRESS OR IMPLIED, IS MADE FOR THIS USE. AUTHORIZATION FOR SUCH USE SHALL NOT BE GIVEN BY KINETIC TECHNOLOGIES, AND THE PRODUCTS SHALL NOT BE USED IN SUCH DEVICES OR SYSTEMS, EXCEPT UPON THE WRITTEN APPROVAL OF THE PRESIDENT OF KINETIC TECHNOLOGIES FOLLOWING A DETERMINATION BY KINETIC TECHNOLOGIES THAT SUCH USE IS FEASIBLE. SUCH APPROVAL MAY BE WITHHELD FOR ANY OR NO REASON.

"Life support devices or systems" are devices or systems which (1) are intended for surgical implant into the human body, (2) support or sustain human life, or (3) monitor critical bodily functions including, but not limited to, cardiac, respirator, and neurological functions, and whose failure to perform can be reasonably expected to result in a significant bodily injury to the user. A "critical component" is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

### SUBSTANCE COMPLIANCE

Kinetic Technologies IC products are compliant with RoHS, formally known as Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. However, this evaluation kit does not fall within the scope of the EU directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and may not meet the requirements of these or related directives. To the best of our knowledge the information is true and correct as of the date of the original publication of the information. Kinetic Technologies bears no responsibility to update such statement.