

## Description

Abracon's ultra-low power Real-Time Clock (RTC) module with embedded 32.768 kHz crystal oscillator, AB-RTC-XP-32.768kHz-2, uses I<sup>2</sup>C communication interface to configure numerous features while sustaining frequency accuracy ( $\pm 20\text{ppm}$  @ 25°C) in a compact lead-free ceramic SMD 2.0 x 1.2 mm package. These features include a digital offset function, alarm and timer function capability, oscillator stop detection and internal power-on reset function. The RTC has a broad operating power supply range of 0.9V to 5.5V with low power consumption (190nA @ 3V).



## Features

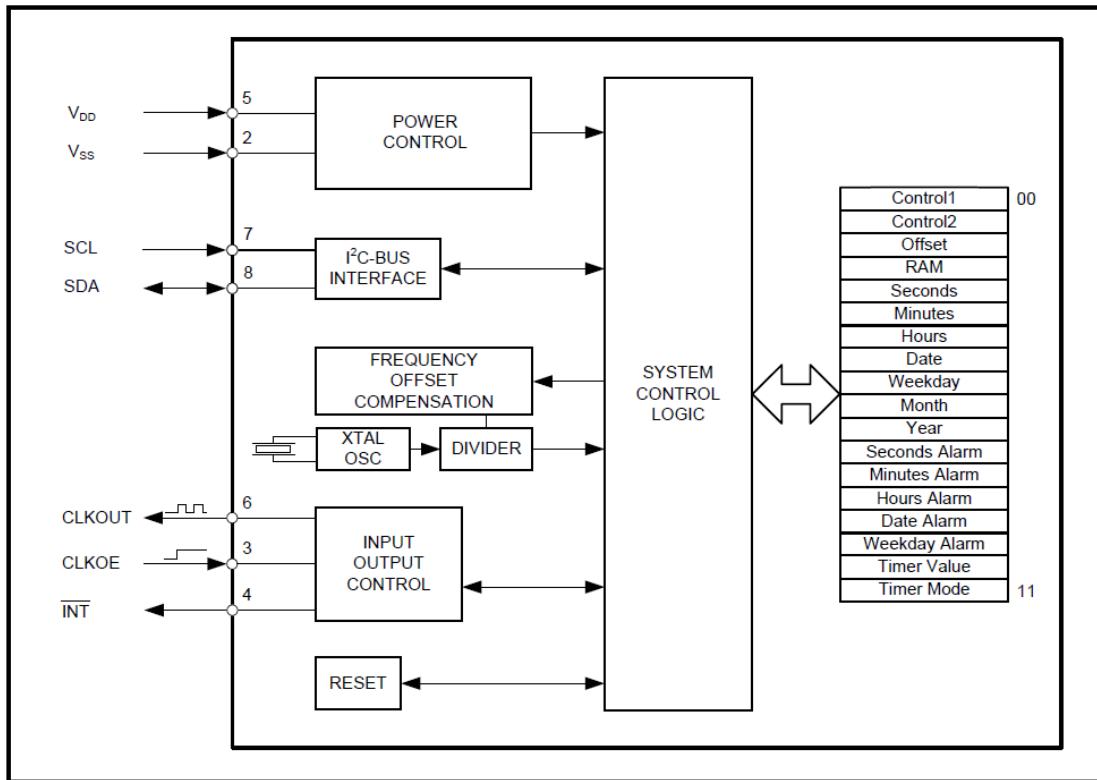
- Very low power consumption: 190nA @ 3V
- Time accuracy:  $\pm 20$  ppm @ 25°C
- Oscillator stop detection function
- Integrated CMOS Oscillator with 32.768kHz crystal resonator
- Wide operating voltage range: 0.9V to 5.5V
- Wide interface operating voltage: 1.8 to 5.5V
- Programmable offset register for frequency adjustment
- Internal Power-On Reset (POR)
- Alarm Interrupts for second, minutes, hour, date and weekday
- Automatic leap year calculation (2000 to 2099)
- Clock output: 32.768 kHz, 16.384kHz, 8.192 kHz, 4.096 kHz, 2.048 kHz, 1.024 kHz, and 1 Hz
- I<sup>2</sup>C-bus interface: 400 kHz
- REACH/RoHS II Compliant | MSL Level 1

## Typical Applications

- IoT, Smart Metering
- Industrial, Factory Automation
- Health Care Monitoring Systems
- Wearables, Portables, and Sensors

## Absolute Maximum Ratings according to IEC 60134:

| SYMBOL            | PARAMETER                | CONDITIONS       | MIN  | TYP | MAX        | UNIT |
|-------------------|--------------------------|------------------|------|-----|------------|------|
| V <sub>DD</sub>   | Power Supply Voltage     |                  | -0.5 |     | 6.5        | V    |
| I <sub>DD</sub>   | Power supply Current     |                  | -50  |     | 50         | mA   |
| V <sub>I</sub>    | Input voltage            | Input Pin        | -0.5 |     | 6.5        | V    |
| V <sub>O</sub>    | Output voltage           | Output Pin       | -0.5 |     | 6.5        | V    |
| I <sub>I</sub>    | Input current            |                  | -10  |     | 10         | mA   |
| I <sub>O</sub>    | Output current           |                  | -10  |     | 10         | mA   |
| P <sub>TOT</sub>  | Total power dissipation  |                  |      |     | 300        | mW   |
| V <sub>ESD</sub>  | ESD Voltage              | HBM              |      |     | $\pm 5000$ | V    |
|                   |                          | CDM              |      |     | $\pm 2000$ | V    |
| I <sub>LU</sub>   | Latch-up Current         | JEDEC            |      |     | $\pm 200$  | mA   |
| T <sub>OPR</sub>  | Operating Temperature    |                  | -40  |     | 85         | °C   |
| T <sub>STO</sub>  | Storage Temperature      |                  | -55  |     | 125        | °C   |
| T <sub>PEAK</sub> | Maximum reflow condition | JEDEC J-STD-020C |      |     | 265        | °C   |


Conditions:

HBM: Human Body Model, according to JESD22-A114.

CDM: Charged-Device Model, according to JESD22-C101.

Latch-up testing: According to JESD78, at maximum ambient temperature (TA(max))

Block Diagram



**Frequency Characteristics** ( $T_A = -40$  to  $+85^\circ\text{C}$  unless otherwise indicated.  $V_{DD} = 0.9$  to  $5.5\text{V}$ , TYP values at  $25^\circ\text{C}$  and  $3.0\text{V}$ )

| SYMBOL                     | PARAMETER                                 | CONDITIONS                                                                                        | MIN | TYP                                                                     | MAX      | UNIT             |
|----------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------|----------|------------------|
| F                          | Crystal Frequency                         |                                                                                                   |     | 32.768                                                                  |          | kHz              |
| $t_{\text{START}}$         | Oscillator start-up time                  |                                                                                                   |     | 0.2                                                                     | 2        | s                |
| $\Delta f/V$               | Frequency vs. voltage characteristics     |                                                                                                   |     | $\pm 1$                                                                 |          | ppm/V            |
| $\delta_{\text{CLKOUT}}$   | CLKOUT duty cycle                         | $F_{\text{CLKOUT}} = 32.768 \text{ kHz}$ ,<br>$T_A = 25^\circ\text{C}$                            | 40  |                                                                         | 60       | %                |
| $\Delta F/F$               | Frequency accuracy                        | $F_{\text{CLKOUT}} = 32.768 \text{ kHz}$ ,<br>$T_A = 25^\circ\text{C}$ , $V_{DD} = 3.0 \text{ V}$ |     | $\pm 10$                                                                | $\pm 20$ | ppm              |
| $\Delta F/F_{\text{TOPR}}$ | Frequency vs. temperature characteristics | $T_{\text{OPR}} = -40$ to $+85^\circ\text{C}$<br>$V_{DD} = 3.0 \text{ V}$                         |     | $-0.035 \text{ ppm}/^\circ\text{C}^2 (T_{\text{OPR}} - T_0)^2 \pm 10\%$ |          | ppm              |
| $T_0$                      | Turnover temperature                      |                                                                                                   | 20  |                                                                         | 30       | $^\circ\text{C}$ |
| $\Delta F/F$               | Aging first year max.                     | $T_A = 25^\circ\text{C}$ , $V_{DD} = 3.0 \text{ V}$                                               |     |                                                                         | $\pm 3$  | ppm              |

**DC Characteristics** ( $T_A = -40$  to  $+85^\circ\text{C}$  unless otherwise indicated.  $V_{DD} = 0.9$  to  $5.5\text{V}$ , TYP values at  $25^\circ\text{C}$  and  $3.0\text{V}$ )

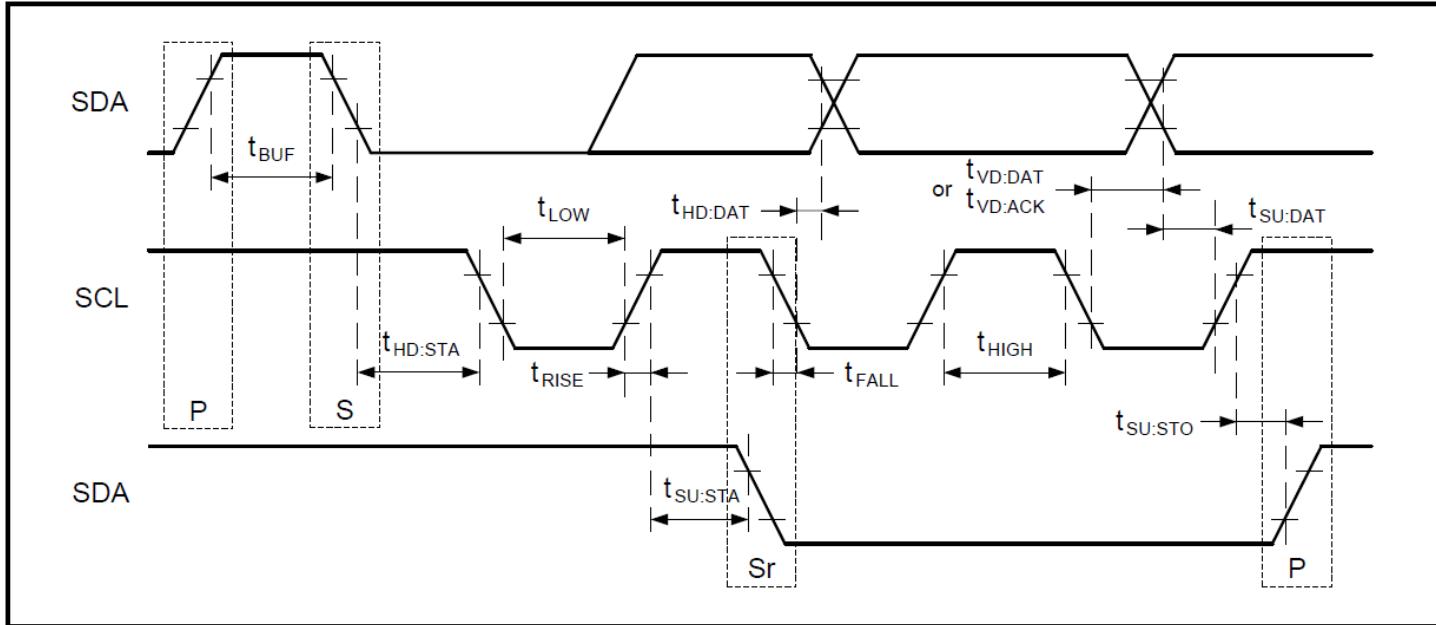
| SYMBOL          | PARAMETER                                                                                                              | CONDITIONS                                                               | MIN | TYP | MAX | UNIT          |
|-----------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----|-----|-----|---------------|
| <b>Supplies</b> |                                                                                                                        |                                                                          |     |     |     |               |
| $V_{DD}$        | Power Supply Voltage                                                                                                   | Time-keeping mode <sup>(1)</sup> ;<br>interface; $f_{SCL} = 0\text{ Hz}$ | 0.9 |     | 5.5 | V             |
|                 |                                                                                                                        | Interface active <sup>(2)</sup> ;<br>$f_{SCL} = 400\text{ kHz}$          | 1.8 |     | 5.5 |               |
| $I_{DD}$        | $V_{DD}$ supply current timekeeping.<br>CLKOUT disabled;<br>Interface inactive, $f_{SCL} = 0\text{ Hz}$ <sup>(3)</sup> | $V_{DD} = 3.0\text{ V}$ , $T_A = 25^\circ\text{C}$                       |     | 190 |     | nA            |
|                 |                                                                                                                        | $V_{DD} = 3.0\text{ V}$ , $T_A = 50^\circ\text{C}$ <sup>(4)</sup>        |     | 230 |     |               |
|                 |                                                                                                                        | $V_{DD} = 3.0\text{ V}$ , $T_A = 85^\circ\text{C}$                       |     | 450 | 600 |               |
| $I_{DD}$        | $V_{DD}$ supply current timekeeping.<br>CLKOUT disabled;<br>Interface active, $f_{SCL} = 400\text{ kHz}$               | $V_{DD} = 3.0\text{ V}$                                                  |     | 18  | 50  | $\mu\text{A}$ |

Note 1: For reliable oscillator start-up at power-on,  $V_{DD}$  greater than  $1.2\text{ V}$  has to be applied. If powered up at  $0.9\text{ V}$ ,  $t_{START}$  might be a little higher, especially at high temperature. Normally the power supply is not  $0.9\text{ V}$  at start-up and only occurs at the end of a battery discharge.

$V_{DD}$  min of  $0.9\text{ V}$  is specified so that the customer can calculate the dimension of a battery or capacitor for a specific application.  $V_{DD}$  min of  $1.2\text{ V}$  or greater is needed to ensure speedy oscillator start-up time.

Note 2: 400 kHz I<sup>2</sup>C operation is production tested at  $1.8\text{ V}$ . Design methodology allows I<sup>2</sup>C operation at  $1.8\text{ V} - 5\%$  ( $1.71\text{ V}$ ) which has been verified during product characterization on a limited number of devices.

Note 3: Timer source clock =  $1/60\text{ Hz}$ ; level of pins SCL and SDA is  $V_{DD}$  or  $V_{SS}$ .


Note 4: Tested on sample basis.

**DC Characteristics** ( $T_A = -40$  to  $+85^\circ\text{C}$  unless otherwise indicated.  $V_{DD} = 0.9$  to  $5.5\text{V}$ , TYP values at  $25^\circ\text{C}$  and  $3.0\text{V}$ )

| SYMBOL         | PARAMETER                        | CONDITIONS                                                       | MIN            | TYP | MAX            | UNIT          |
|----------------|----------------------------------|------------------------------------------------------------------|----------------|-----|----------------|---------------|
| <b>Inputs</b>  |                                  |                                                                  |                |     |                |               |
| $V_I$          | Input Voltage                    |                                                                  | $V_{SS} - 0.5$ |     | $V_{DD} + 0.5$ |               |
| $V_{IH}$       | HIGH level input voltage         |                                                                  | $0.7 * V_{DD}$ |     | $V_{DD}$       | V             |
| $V_{IL}$       | LOW level input voltage          |                                                                  | $V_{SS}$       |     | $0.3 * V_{DD}$ | V             |
| $I_{LEAK}$     | Input leakage current            | $V_I = V_{SS}$ or $V_{DD}$                                       |                | 0   |                | $\mu\text{A}$ |
|                |                                  | $V_I = V_{SS}$ or $V_{DD}$ , post ESD event                      | -0.15          |     | +0.15          |               |
| $C_I$          | Input capacitance <sup>(5)</sup> | On pins SDA, SCL and CLKOE                                       |                |     | 7              | pF            |
| <b>Outputs</b> |                                  |                                                                  |                |     |                |               |
| $V_{OH}$       | HIGH level output voltage        | On pin CLKOUT                                                    | $0.8 * V_{DD}$ |     | $V_{DD}$       | V             |
| $V_{OL}$       | LOW level output voltage         | On pins SDA, INT, CLKOUT                                         | $V_{SS}$       |     | $0.2 * V_{DD}$ | V             |
| $I_{OH}$       | HIGH level output current        | Output source current                                            |                |     |                |               |
|                |                                  | On pin CLKOUT, $V_{OH} = 2.6\text{V}$ , $VDD = 3.0\text{V}$      | 1              | 3   |                | V             |
| $I_{OL}$       | LOW level output current         | Output sink current                                              |                |     |                |               |
|                |                                  | On pins, SDA, $V_{OL} = 0.4 \text{ V}$ , $VDD = 3.0 \text{ V}$   | 3              | 8.5 |                | mA            |
|                |                                  | On pins, INT, $V_{OL} = 0.4 \text{ V}$ , $VDD = 3.0 \text{ V}$   | 2              | 6   |                |               |
|                |                                  | On pin, CLKOUT, $V_{OL} = 0.4 \text{ V}$ , $VDD = 3.0 \text{ V}$ | 1              | 3   |                |               |

Note 5: Implicit by design.

### I<sup>2</sup>C BUS Timing Characteristics



### I<sup>2</sup>C AC Characteristics ( $V_{DD} = 1.8$ to 5.5V $T_A = -40$ to $+85^\circ C$ )

| SYMBOL        | PARAMETER                               | MIN                         | MAX | UNIT    |
|---------------|-----------------------------------------|-----------------------------|-----|---------|
| $f_{SCL}$     | SCL input clock frequency               | 0                           | 400 | kHz     |
| $t_{LOW}$     | Low period of SCL clock                 | 1.3                         |     | $\mu s$ |
| $t_{HIGH}$    | High period of SCL clock                | 0.6                         |     | $\mu s$ |
| $t_{RISE}$    | Rise time of SDA and SCL                | 20                          | 300 | ns      |
| $t_{FALL}$    | Fall time of SDA and SCL                | $20 \times (V_{DD} / 5.5V)$ | 300 | ns      |
| $t_{HD:STA}$  | START condition hold time               | 0.6                         |     | $\mu s$ |
| $t_{SU:STA}$  | START condition setup time              | 0.6                         |     | $\mu s$ |
| $t_{SU:DAT}$  | SDA setup time                          | 100                         |     | ns      |
| $t_{HD:DAT}$  | SDA hold time                           | 0                           |     | $\mu s$ |
| $t_{SU:STO}$  | STOP condition setup time               | 0.6                         |     | $\mu s$ |
| $t_{BUFS}$    | Bus free time before a new transmission | 1.3                         |     | $\mu s$ |
| $t_{VDD:DAT}$ | Data valid time                         | 0                           | 0.9 | $\mu s$ |
| $t_{VDD:ACK}$ | Data valid acknowledge time             | 0                           | 0.9 | $\mu s$ |
| $t_{SP}$      | Spike pulse width                       | 0                           | 50  | ns      |
| $C_b$         | Capacitive load for each bus line       |                             | 400 | pF      |

S = Start condition, Sr = Repeated Start condition, P = Stop condition

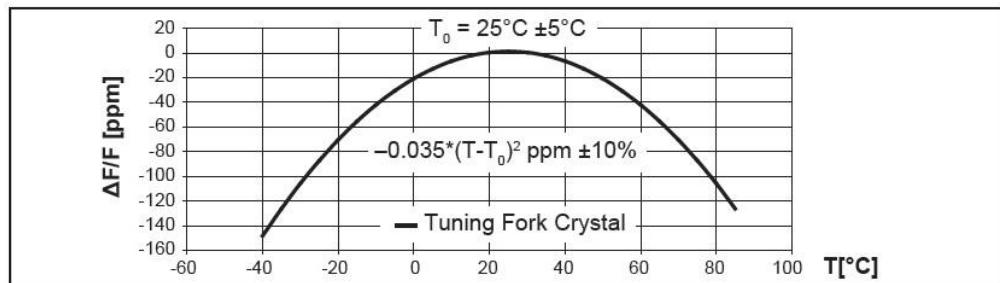
#### Caution:

When communicating with the AB-RTC-XL-32.768kHz-2 module, the series of operations from transmitting the START (or repeated START) condition to transmitting the STOP (or repeated START) condition should occur within 1 second. If this series of operations requires 1 second or more, the I<sup>2</sup>C-bus interface will be automatically cleared and set to standby mode by the bus timeout function of the AB-RTC-XL-32.768kHz-2 module.

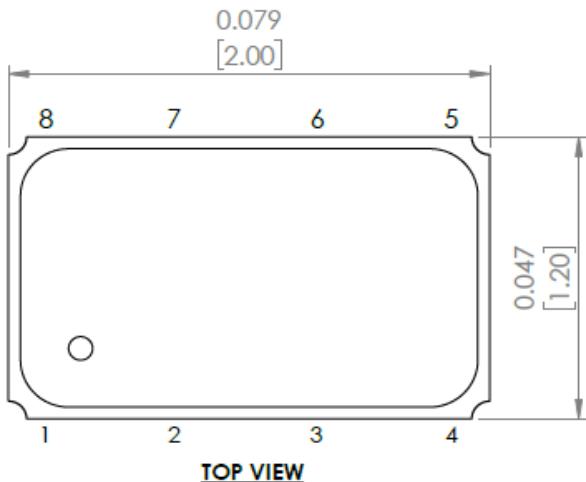
### Part Identification

AB - RTC - XP - 32.768kHz - 2 -

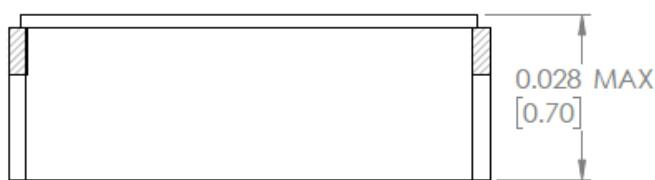
| Packaging          |  |
|--------------------|--|
| Blank: Bulk        |  |
| T1: 1000pcs / reel |  |
| T3: 3000pcs / reel |  |


### Environmental Characteristics

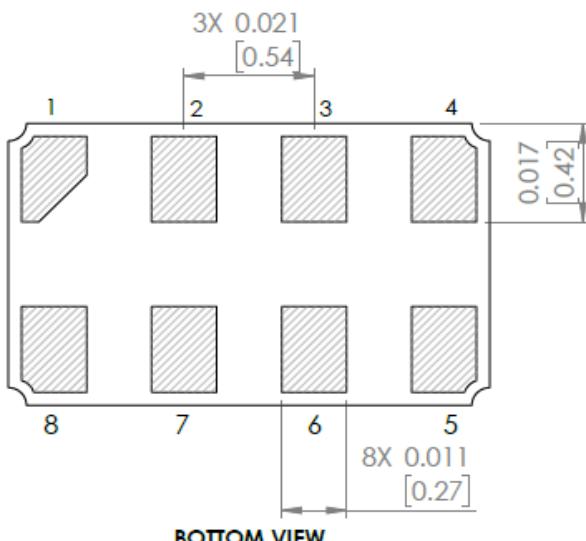
|                      |              | Conditions                         | Max. Dev.   |
|----------------------|--------------|------------------------------------|-------------|
| Shock resistance     | $\Delta F/F$ | 5000 g, 0.3 ms, $\frac{1}{2}$ sine | $\pm 5$ ppm |
| Vibration resistance | $\Delta F/F$ | 20 g / 10–2000 Hz                  | $\pm 5$ ppm |


### Terminating and Processing

| Package       | Termination     | Processing                             |
|---------------|-----------------|----------------------------------------|
| SON-8 (DFN-8) | Au flashed pads | IPC/JEDEC J-STD-020C 260°C / 20 - 40 s |

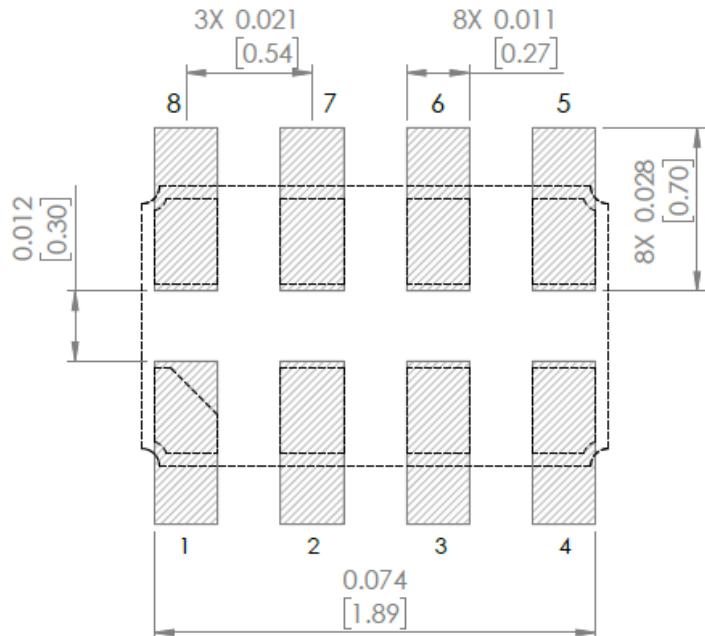

### Frequency Temperature Characteristics




### Mechanical Dimensions



**TOP VIEW**




**FRONT VIEW**



**BOTTOM VIEW**

### RECOMMENDED LAND PATTERN



| Pin # | Function        | Description                         |
|-------|-----------------|-------------------------------------|
| 1     | SDA             | Serial Data                         |
| 2     | CLKOE           | Clock Output Enable                 |
| 3     | IT              | Interrupt Output                    |
| 4     | V <sub>ss</sub> | Ground                              |
| 5     | V <sub>DD</sub> | Power Supply Voltage                |
| 6     | NC              | No Connect                          |
| 7     | CLKOUT          | Clock Output                        |
| 8     | SCL             | I <sup>2</sup> C Serial Clock Input |

Pin 1 Note: I<sup>2</sup>C Serial Data Input-Output; open-drain; requires pull-up resistor.

Pin 2 Note: Input to enable the CLKOUT pin. If CLKOE is HIGH, the CLKOUT pin is in output mode. When CLKOE is tied to Ground, the CLKOUT pin is LOW.: Not connected. Is internally connected and should be left floating.

Pin 3 Note: Interrupt Output; open-drain; active LOW; requires pull-up resistor; Used to output alarm, minute, half minute, countdown timer and compensation Interrupt signals.

Pin 6 Note: Not Connected, Internally connected and should be left floating.

Pin 7 Note: Clock Output; push-pull; controlled by CLKOE. If CLKOE is HIGH (V<sub>DD</sub>), the CLKOUT pin drives the square wave of 32.768 kHz, 16.384 kHz, 8.192 kHz, 4.096 kHz, 2.048 kHz, 1.024 kHz or 1 Hz (Default value is 32.768 kHz). When CLKOE is tied to Ground, the CLKOUT pin is LOW.

Pin 8 Note: I<sup>2</sup>C Serial Clock Input; requires pull-up resistor.

Metal Lid is Connected to V<sub>ss</sub> (Pin #4).

### Dimensions: Inches [mm]

Reflow Profile [JEDEC J-STD-020]

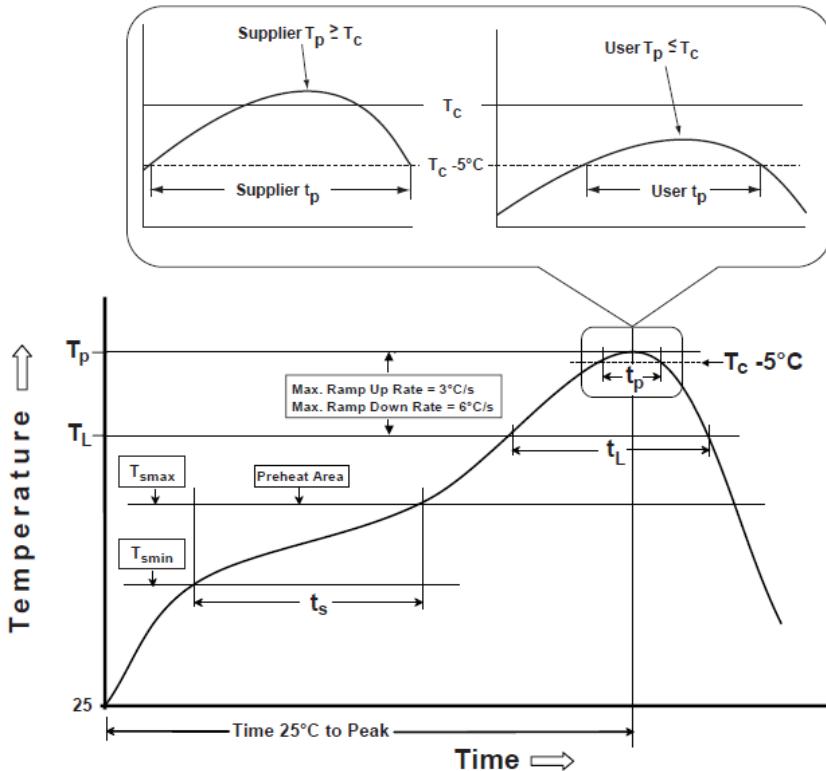



Table 1

**SnPb Eutectic Process  
Classification Temperatures ( $T_c$ )**

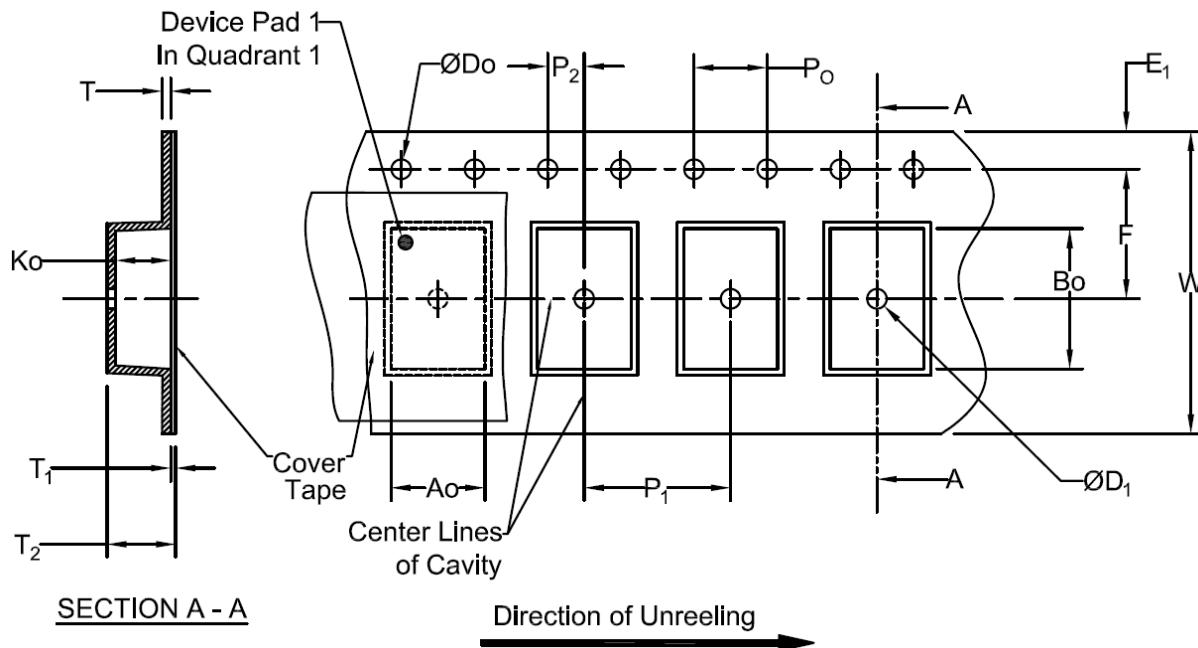
| Package Thickness | Volume mm <sup>3</sup> <350 | Volume mm <sup>3</sup> ≥350 |
|-------------------|-----------------------------|-----------------------------|
| <2.5 mm           | 235 °C                      | 220 °C                      |
| ≥2.5 mm           | 220 °C                      | 220 °C                      |

Table 2

**Pb-Free Process  
Classification Temperatures ( $T_c$ )**

| Package Thickness | Volume mm <sup>3</sup> <350 | Volume mm <sup>3</sup> 350-2000 | Volume mm <sup>3</sup> >2000 |
|-------------------|-----------------------------|---------------------------------|------------------------------|
| <1.6 mm           | 260 °C                      | 260 °C                          | 260 °C                       |
| 1.6 mm - 2.5 mm   | 260 °C                      | 250 °C                          | 245 °C                       |
| >2.5 mm           | 250 °C                      | 245 °C                          | 245 °C                       |

| Profile Feature                                                                   | Sn-Pb Eutectic Assembly      | Pb-Free Assembly             |
|-----------------------------------------------------------------------------------|------------------------------|------------------------------|
| Preheat / soak                                                                    |                              |                              |
| Temperature minimum ( $T_{smin}$ )                                                | 100°C                        | 150°C                        |
| Temperature maximum ( $T_{smax}$ )                                                | 150°C                        | 200°C                        |
| Time ( $T_{smin}$ to $T_{smax}$ ) ( $t_s$ )                                       | 60 - 120 sec.                | 60 - 120 sec.                |
| Average ramp-up rate ( $T_{smax}$ to $T_p$ )                                      | $3^{\circ}\text{C/sec. max}$ | $3^{\circ}\text{C/sec. max}$ |
| Liquidous temperature ( $T_L$ )                                                   | 183°C                        | 217°C                        |
| Time at liquidous ( $t_L$ )                                                       | 60 - 150 sec.                | 60 - 150 sec.                |
| Peak package body temperature ( $T_p$ )*                                          | see Table 1                  | see Table 2                  |
| Time ( $t_p$ )** within 5°C of the specified classification temperature ( $T_c$ ) | 20 sec.                      | 30 sec.                      |
| Ramp-down rate ( $T_p$ to $T_{smax}$ )                                            | $6^{\circ}\text{C/sec. max}$ | $6^{\circ}\text{C/sec. max}$ |
| Time 25°C to peak temperature                                                     | 6 min. max                   | 8 min. max                   |
| Reflow cycles                                                                     | 2 max                        | 2 max                        |


\*Tolerance for peak profile temperature ( $T_p$ ) is defined as a supplier minimum and a user maximum.

\*\*Tolerance for time at peak profile temperature ( $t_p$ ) is defined as supplier minimum and a user maximum.

## Packaging


T1: 1,000pcs/reel

T3: 3,000pcs/reel



| Tape Specifications (mm) |                |                |                |                      |                      |                      |         |
|--------------------------|----------------|----------------|----------------|----------------------|----------------------|----------------------|---------|
| Width                    | Ao             | Bo             | Do             | D <sub>1</sub> (Min) | E <sub>1</sub>       | F                    | Ko      |
| <b>8mm</b>               | *              | *              | 1.5+0.1/-0.0   | 1.0                  | 1.25±0.1             | 3.5±0.05             | *       |
| Width                    | P <sub>1</sub> | P <sub>2</sub> | P <sub>0</sub> | T (Max)              | T <sub>1</sub> (Max) | T <sub>2</sub> (Max) | W (Max) |
| <b>8mm</b>               | 4.0±0.1        | 2.0±0.05       | 4.0±0.1        | 0.6                  | 0.1                  | 2.5                  | 8.3     |

\*Note: Compliant to EIA-481



| Reel Specifications (mm) |          |         |         |               |         |         |                 |
|--------------------------|----------|---------|---------|---------------|---------|---------|-----------------|
| Width                    | Qty/Reel | A (Nom) | B (Min) | C (Min)       | D (Min) | N (Min) | *W <sub>1</sub> |
| 8mm                      | 1000     | 178     | 1.5     | 13.0+0.5/-0.2 | 20.2    | 50      | 8.4+1.5/-0.0    |
|                          | 3000     | 178     | 1.5     | 13.0+0.5/-0.2 | 20.2    | 50      | 8.4+1.5/-0.0    |

**\*Note: Measured at Hub**