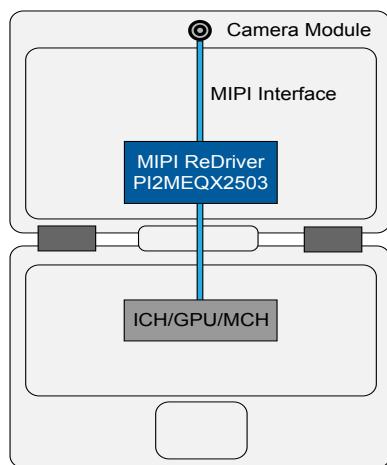


PI2MEQX2503**2.5Gbps, MIPI CSI-2/DSI D-PHY ReDriver**

Description

The PI2MEQX2503 is a low power, high performance 2.5Gbps two lanes data and clock MIPI D-PHY ReDriver™. The device complies with MIPI D-PHY1.2 standard and can be used in either a MIPI CSI-2 or MIPI DSI application at datarates of up to 2.5Gbps in D-PHY.


The device compensates for PCB, connector, and cable related loss and switching related loss to provide the optimum electrical performance from a CSI2/DSI source to sink. The inputs of PI2MEQX2503's feature configurable equalizers.

The PI2MEQX2503 output voltage swing and edge rate can be adjusted by changing the pin state. It is optimized for mobile applications, and contains activity detection circuitry on the D-PHY Link interface that can transit into a lower power mode when in ULPS and LP states.

Application(s)

- Laptops, All-in-one PCs
- Drones, Robots
- TVs, Commercial Displays
- Smart Home Devices
- AR Glasses
- Embedded Systems

Typical MIPI Re-Driver in NB Application

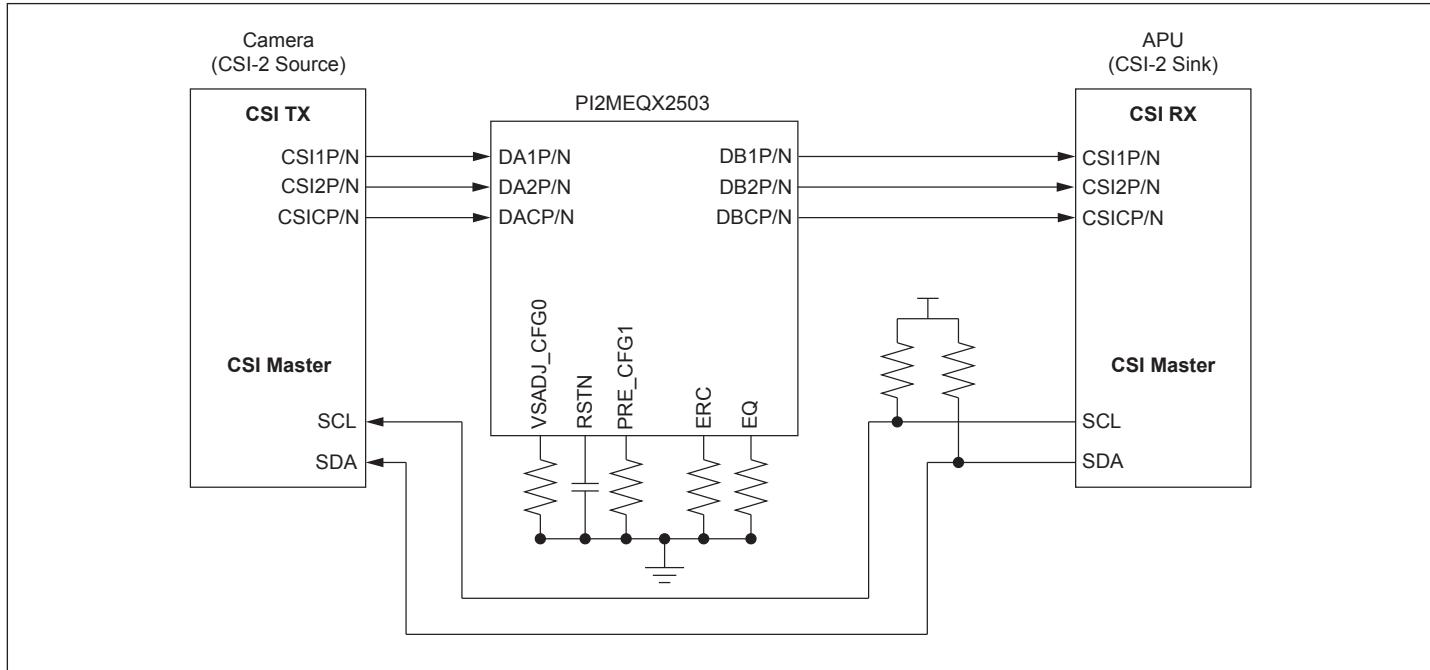
Features

- MIPI D-PHY1.2 Specification Compliant
- Enables Low-Cost Cable Solutions
- Supports 2-Lanes at 2.5Gbps in D-PHY
- Sub mW Power in Shutdown State
- Supports MIPI DSI Bi-Directional LP Mode
- Supports ULPS and LP Power States
- Supports I2C Slave Mode Setting
- Pin Strap Value Sampled on Rising Edge of RSTN
- Adjustable Output Voltage Swing
- Selectable TX Pre-Emphasis Levels
- Adjustable Rx EQ to Compensate Insertion Loss
- Configurable Edge Rate Control
- Dynamic Data Compensation
- Industrial Temperature Range: -40°C to 85°C
- Available in Single 1.8V - Supply
- Packaging (Pb-free & Green):
 - 24-pin, 2mm x 4mm, X1QFN (XEA)
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please [contact us](#) or your local Diodes representative.

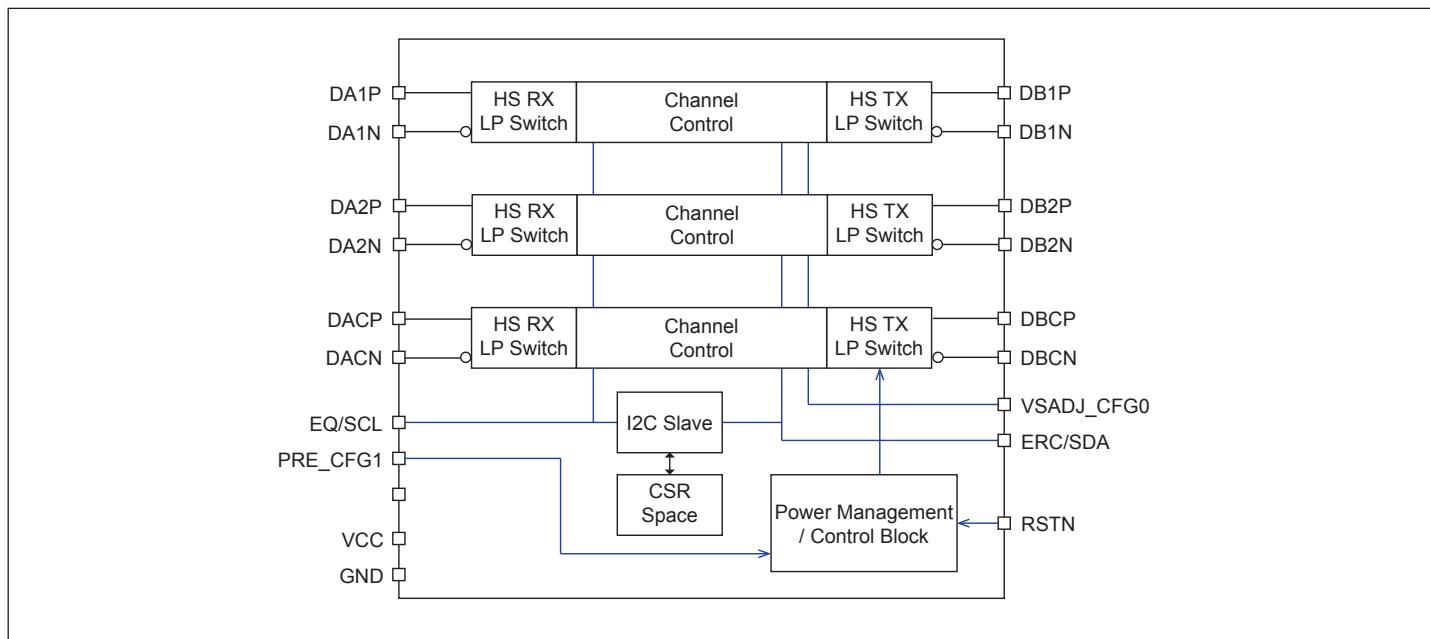
<https://www.diodes.com/quality/product-definitions/>

Ordering Information

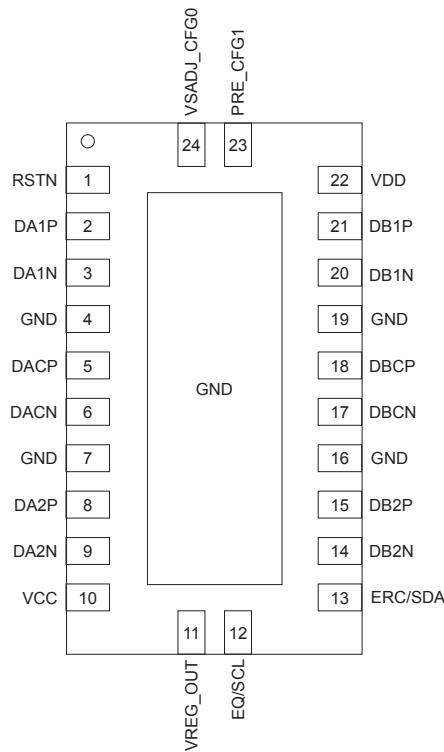
Orderable Part Number	Package Code	Package Description
PI2MEQX2503XEAEX	XEA	24-contact, Extra Thin Fine Pitch QFN (X1QFN)


Notes:

- E = Pb-free and Green
- X suffix = Tape/Reel


Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
2. See <https://www.diodes.com/quality/lead-free/> for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.


Application Schematic

Functional Block Diagram

Pin Configuration

Pin Description

Pin Number	Pin Name	Type	Description
1	RSTN	I	Reset, active low. When low, all internal CSR are reset to default and PI2MEQX2503 is placed in low power state. With internal 300kΩ pull-up resistor.
2	DA1P	100Ω Differential Input	CSI-2/DSI Lane 1 Differential positive Input. If unused, this pin should be tied to GND.
3	DA1N		CSI-2/DSI Lane 1 Differential negative input. If unused, this pin should be tied to GND.
5	DACP	100Ω Differential Input	CSI-2/DSI Differential Clock positive Input
6	DACN		CSI-2/DSI Differential Clock negative Input
8	DA2P	100Ω Differential Input	CSI-2/DSI Lane 2 Differential positive Input. If unused, this pin should be tied to GND.
9	DA2N		CSI-2/DSI Lane 2 Differential negative Input. If unused, this pin should be tied to GND.
10	VCC	Power	1.8V (±10%) Supply.
11	VREG_OUT	Power	1.2V Regulator Output. Requires a 0.1μF capacitor to GND.

Pin Number	Pin Name	Type	Description
12	EQ/SCL	I/O (3-level)	<p>RX Equalization Select. Pin state sampled on rising edge of RSTN. This pin also functions as I2C SCL pin.</p> <p>EQ/SCL = V_{IL}: Equalization = 3dB</p> <p>EQ/SCL = V_{IM}: Equalization = 6dB</p> <p>EQ/SCL = V_{IH}: Equalization = 9dB</p> <p>With internal 100kΩ pull -up and pull-down resistor, default V_{IM}</p>
13	ERC/SDA	I/O (3-level)	<p>Edge Rate Control for DB[4:0]P/N High speed transmitter rise and fall time. Pin state sampled on rising edge of RSTN. This pin also functions as I2C SDA pin.</p> <p>ERC/SDA = V_{IL}: Edge rate = 200ps</p> <p>ERC/SDA = V_{IM}: Edge rate = 150ps</p> <p>ERC/SDA = V_{IH}: Edge rate = 250ps</p> <p>With internal 100kΩ pull -up and pull-down resistor, default V_{IM}</p>
14	DB2N	100 Ω Differential Output	CSI-2/DSI Lane 2 Differential negative Output. If unused, this pin should be left unconnected.
15	DB2P	100 Ω Differential Output	CSI-2/DSI Lane 2 Differential positive Output. If unused, this pin should be left unconnected.
17	DBCN	100 Ω Differential Output	CSI-2/DSI Differential Clock negative Output
18	DBCP	100 Ω Differential Output	CSI-2/DSI Differential Clock positive Output
20	DB1N	100 Ω Differential Output	CSI-2/DSI Lane 1 Differential negative Output. If unused, this pin should be left unconnected.
21	DB1P	100 Ω Differential Output	CSI-2/DSI Lane 1 Differential positive Output. If unused, this pin should be left unconnected.
22	VDD	Power	This pin must be connected to the VREG_OUT pin through at least a 10-mil trace and a 0.1 μ F capacitor to ground.
23	PRE_CFG1	I/O (3-level)	<p>Controls DPHY TX HS pre-emphasis level and the LP TX rise and fall times. Pin state is sampled on the rising edge of RSTN.</p> <p>PRE_CFG1 = V_{IL}: Pre-emphasis level = 0dB</p> <p>PRE_CFG1 = V_{IM}: Pre-emphasis level = 1dB</p> <p>PRE_CFG1 = V_{IH}: Pre-emphasis level = 3dB</p> <p>With internal 100kΩ pull -up and pull-down resistor, default V_{IM}</p>
24	VSADJ_CFG0	I (3-level)	<p>Controls output voltage swing for DB HS transmitters and the LP TX rise and fall times. Pin state is sampled on the rising edge of RSTN.</p> <p>VSADJ_CFG0 = V_{IL}: Swing = 225mV</p> <p>VSADJ_CFG0 = V_{IM}: Swing = 250mV</p> <p>VSADJ_CFG0 = V_{IH}: Swing = 275mV</p> <p>With internal 100kΩ pull -up and pull-down resistor, default V_{IM}</p>
4, 7, 16, 19, Center Pad	GND	GND	Ground connection. The thermal pad must be connected to GND in order to optimize the thermal characteristics of the package.

Feature Description

HS Receive Equalization

The PI2MEQX2503 supports three levels of receive equalization to compensate for ISI loss in the channel. These three levels are 3dB, 6dB, and 9dB at 1.25GHz. The equalization level used by the PI2MEQX2503 is determined by the state of the EQ/SCL pin at the rising edge of RSTN. If necessary, the receiver equalization level can also be set through writing to the RXEQ register via the local I2C interface.

Table 1. EQ/SCL Pin Function

EQ/SCL Pin	HS Rx Equalization
$\leq V_{IL}$	3dB
V_{IM}	6dB at 1.25GHz
$\geq V_{IH}$	9dB at 1.25GHz

HS TX Edge Rate Control

Table 2. HS TX Edge Rate Control

EQ/SDA Pin	HS Rise/Fall Times
$\leq V_{IL}$	200ps typical
V_{IM}	150ps typical
$\geq V_{IH}$	250ps typical

I2C Slave Address

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (W/R)
1	1	0	1	1	0	0	0/1

Register Map

Address	Register	Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00h	Device ID	Read	Device ID (PI2MEQX2503): (reset value: 00000101b)							
01h	Version ID	Read	Version ID (Version 0): (reset value: 00000000b)							
02h	EQ	Read/Write	Reserved (reset value: 0000b)			EQ <3>	EQ <2>	EQ <1>	EQ <0>	
03h	ERC	Read/Write	Reserved (reset value: 00000b)				ERC <2>	ERC <1>	ERC <0>	
04h	Reserved	Read	Reserved (reset value: 00001000b)							
05h	Output Pre-emphasis & Swing	Read/Write	Reserved (reset value: 0110b)			PREEMP LEVEL <1>	PREEMP LEVEL <0>	VSADJ <1>	VSADJ <0>	

PI2MEQX2503

Register Setting for EQ/ERC/PRE_CFG1/VSADJ_CFG0

EQ<3:0> (Register 02h<3:0>)	EQ Gain at 500MHz	EQ Gain at 1.25GHz
0000	0dB	0dB
0010	2dB	3dB
0110	4dB	6dB
1011	6dB	9dB
Others	Reserved	Reserved

ERC<2:0> (Register 03h<2:0>)	Edge Rate Control
001	250ps
011	200ps
111	150ps
Others	Reserved

PREEMP LEVEL<1:0> (Register 05h<3:2>)	Pre-emphasis Level
00	0dB
01	1dB
11	3dB
Others	Reserved

VSADJ<1:0> Register 05h<1:0>	Output Voltage Swing
00	200mV
01	225mV
10	250mV
11	275mV

Bus Transaction

Writing to the Registers

Data is transmitted to the PI2MEQX2503 by sending the device address and setting the least significant bit to a logic 0. The register sub-address byte is sent after the address and determines which register will receive the data following the sub-address byte.

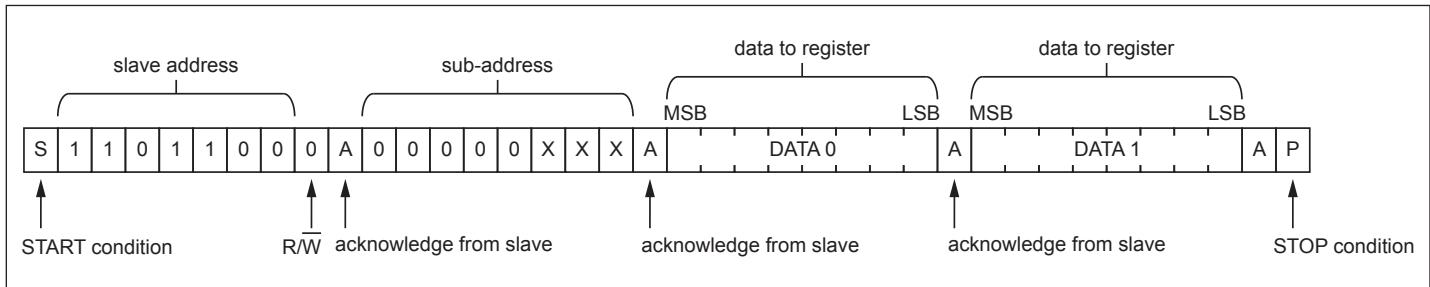


Figure 1. Write to Register

Reading the Register

In order to read data from the PI2MEQX2503, the bus master must first send the PI2MEQX2503 address with the least significant bit set to a logic 0. The sub-address byte is sent after the address and determines which register will be accessed. After a restart, the device address is sent again, but this time the least significant bit is set to a logic 1. Data from the register defined by the sub-address byte will then be sent by the PI2MEQX2503. Data is clocked into the register on the falling edge of the acknowledge clock pulse.

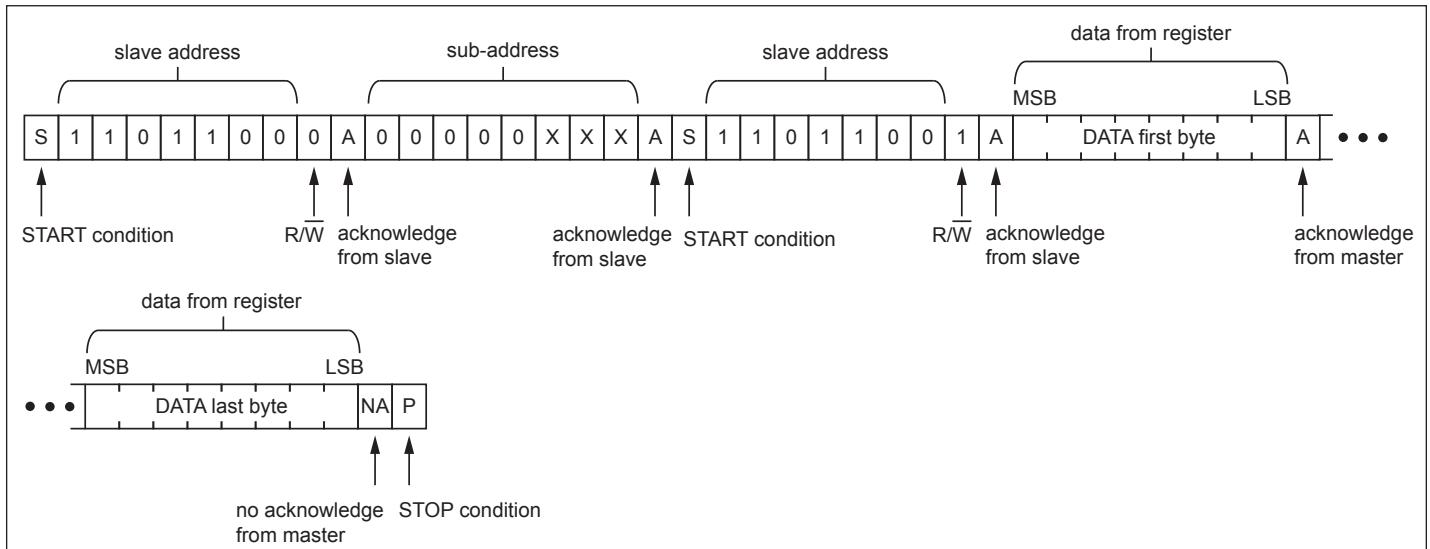


Figure 2. Read from Register

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	-65°C to +150°C
Supply Voltage to Ground Potential	-0.3V to +2.175V
Voltage Range	
D-PHY Lane I/O Differential Voltage.....	-0.3V to +1.4V
RSTN	-0.3V to +2.175V
All Other Terminals.....	-0.3V to +2.175V
Max Junction Temperature	105°C

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ESD Rating

Symbol	Parameter	Conditions	Value	Units
V _(ESD)	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	2000	V
		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	1000	V

Recommended Operating Conditions

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
V _{CC}	Supply voltage		1.62	1.8	1.98	V
T _A	Operating free-air temperature		-40		85	°C

Electrical Characteristics, Power Supply

Over operating free-air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
PACTIVE	Power under normal operation for 2 data lanes + clock.	D-PHY Lanes at 2.5Gbps; V _{CC} supply stable, V _{CC} = 1.8V		80	120	mW
P_LP11	LP11 Power	All D-PHY lanes in LP11; V _{CC} supply stable; V _{CC} = 1.8V		2	5	mW
P_STB	Standby mode power	RSTN held in asserted state (low); V _{CC} supply stable; V _{CC} = 1.8V		0.02	0.2	mW
P_ULPS	ULPS mode power	IC stay in ULPS mode; V _{CC} supply stable; V _{CC} = 1.8V		2	5	mW

Electrical Characteristics

Over operating free-air temperature range (unless otherwise noted)

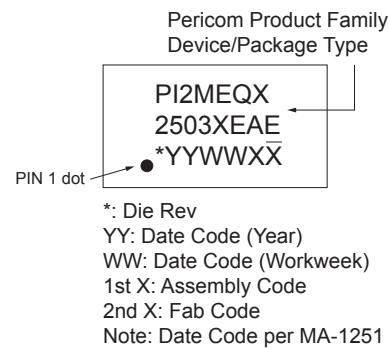
Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
Standard IO (RSTN, ERC, EQ, CFG[1:0])						
V _{IL}	Low-level control signal input voltage		0		0.14xV _{CC}	V
V _{IM}	Mid-level control signal input voltage		0.45xV _{CC}	V _{CC} /2	0.55xV _{CC}	V
V _{IH}	High-level control signal input voltage		0.86xV _{CC}		V _{CC}	V
V _F	Floating Voltage	V _{IN} = High Impedance		V _{CC} /2		V
V _{OL}	Low level output voltage (open-drain). ERC (SDA) only	At I _{OL} max.			0.2xV _{CC}	V
I _{OL}	Low Level Output Current			3		mA
I _{IH}	High level input current			±36		µA
I _{IL}	Low level input current			±36		µA
R _{PU}	Internal pull-up resistance		100			kΩ
R _{PD}	Internal pull-down resistance		100			kΩ
R _(RSTN)	RSTN control input pullup resistor		300			kΩ
SCL, SDA						
V _{IL}	Low-level I2C signal input voltage				0.3xV _{CC}	V
V _{IH}	High-level I2C signal input voltage		0.7xV _{CC}			V
MIPI Input Leakage (DA1P/N, DACP/N)						
I _{lkg}	Input leakage current	V _{CC} = 0V; V _{DD} = 0V; MIPI D-PHY pulled up to 1.35V	-65		65	µA
MIPI D-PHY HS Receiver Interface (DA1P/N, DA2P/N, DACP/N)						
V _(CM-RX_DC)	Differential Input Common-mode voltage HS Receive mode	V _(CM-RX) = (V _{AxP} + V _{AxN}) / 2	70		330	mV
V _{ID}	HS Receiver input differential voltage	V _{ID} = V _{AxP} - V _{AxN} <1.5Gbps	70			mV
		V _{ID} = V _{AxP} - V _{AxN} >1.5Gbps	40			mV
V _{IH(HS)}	Single-ended input high voltage				460	mV
V _{IL(HS)}	Single-ended input low voltage		-40			mV
R _(DIFF-HS)	Differential input impedance		75	100	125	Ω
V _(RXEQ0)	Rx EQ gain when EQ/SCL pin ≤ V _{IL}			3		dB

PI2MEQX2503

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$V_{(RXEQ1)}$	Rx EQ gain when EQ/SCL pin = V_{IM}	At 1250MHz		6		dB
$V_{(RXEQ2)}$	Rx EQ gain when EQ/SCL pin $\geq V_{IH}$	At 1250MHz		9		dB
MIPI D-PHY LP Receiver Interface (DA1P/N, DA2P/N, DACP/N)						
$V_{(LPIH)}$	LP Logic 1 Input Voltage		880			mV
$V_{(LPIL)}$	LP Logic 0 Input voltage				550	mV
$V_{(HYST)}$	LP Input Hysteresis		25			mV
MIPI D-PHY HS Transmitter Interface (DB1P/N, DB2P/N, DBCP/N)						
$V_{(CMTX)}$	HS Transmit static common-mode voltage, VSADJ_CFG0 = V_{IL}	$V_{(CMTX)} = (V_{(BP)} + V_{(BN)}) / 2$	150	200	250	mV
$ \Delta V_{(CMTX)}(1,0) $	VCMTX mismatch when output is differential-1 or differential-0	$\Delta V_{(CMTX)}(1,0) = (V_{(CMTX)}(1) - V_{(CMTX)}(0)) / 2$			5	mV
$ V_{OD(VD0)} $	HS Transmit differential voltage, VSADJ_CFG0 = V_{IL}	$ V_{OD} = V_{(DP)} - V_{(DN)} $	140	200	270	mV
$ \Delta V_{OD} $	V_{OD} mismatch when output is differential-1 or differential-0	$\Delta V_{OD} = \Delta V_{O(D1)} - \Delta V_{O(D0)} $			14	mV
$V_{OH(HS)}$	HS Output high voltage for non-transition bit	$CFG0 \geq V_{IH}$ HS Pre = 3dB			430	mV
$V_{(PRE1)}$	Pre-emphasis Level for HSTX_PRE_CFG1 = V_{IM}	$PRE = 20 \times \log (V_{OD(TBx)} / V_{OD(VDX)})$, See Figure 1.		1		dB
$V_{(PRE2)}$	Pre-emphasis level for HSTX_PRE_CFG1 = V_{IH}	$PRE = 20 \times \log (V_{OD(TBx)} / V_{OD(VDX)})$, See Figure 1.		3		dB
$R_{pd(HS)}$	Pull down resistor when RSTN = 0V			300		k Ω
LP Mode Switch Interface						
R_{ON_LP}	$I_{ON} = -8mA$, DA1P/N, DA2P/N, DCP/N = 1.2V	$V_{CC} = 1.8V$		30	60	Ω
ΔR_{ON_LP}	$I_{ON} = -8mA$, DA1P/N, DA2P/N, DCP/N = 1.2V	$V_{CC} = 1.8V$		0.1	0.5	Ω
C_{ON}		$V_{CC} = 1.8V$		7		pF
-3db BW		$V_{CC} = 1.8V$; DC bias = 0V		800		MHz

Timing Requirements

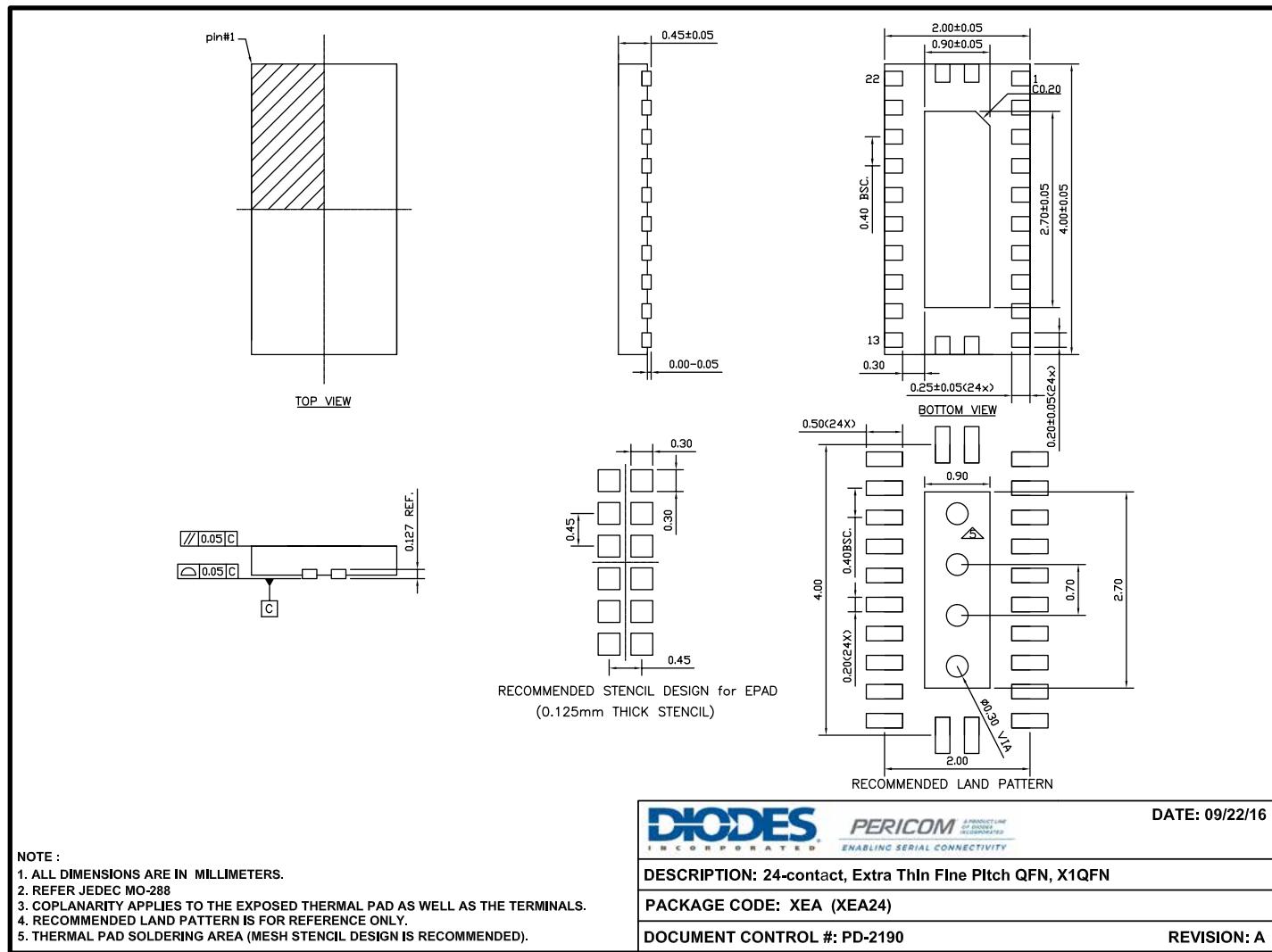
Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
I2C (ERC (SDA), EQ (SCL))						
$t_{HD;STA}$	Hold Time (repeated) START condition. After this period, the first clock pulse is generated		4			μs
t_{LOW}	Low period of SCL clock		4.7			μs
t_{HIGH}	High period of SCL clock		4			μs
$t_{SU;STA}$	Setup time for a repeated START condition		4.7			μs
$t_{HD;DAT}$	Data hold time		5			μs
$t_{SU;DAT}$	Data setup time		4			μs
$t_{SU;STO}$	Setup time for STOP condition		4			μs
t_{BUF}	Bus free time between a STOP and START condition		4.7			μs
RSTN						
t_{D1}	V_{CC} stable before de-assertion of RSTN		100			μs
t_{SU2}	Setup of VSADJ_CFG0, PRE_CFG1, EQ and ERC pin before de-assertion of RSTN		0			μs
t_{h2}	Hold of VSADJ_CFG0, PRE_CFG1, EQ and ERC pin after de-assertion of RSTN		250			μs
t_{VCC_RAMP}	V_{CC} supply ramp requirements		0.2		100	ms
Delay Time for HS Mode						
t_{HSPD}	Propagation delay from DA to DB. In HS mode			1		ns


Switching Characteristics

Over operating free-air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Typ. ⁽¹⁾	Max.	Units
I2C (ERC (SDA), EQ (SCL))						
F(SCL)	I2C Clock Frequency				100	kHz
t _F _I2C	Fall time of both SDA and SCL signals	Load of 350pF with 2-K pull-up resistor.			300	ns
t _R _I2C	Rise Time of both SDA and SCL signals	Measure at 30% - 70%			1000	ns
D-PHY Link						
F(BR)	Bit Rate				2.5	Gbps
F(HSCLK)	HS Clock Input range		100		1250	MHz
MIPI D-PHY HS Receiver Interface (DACP/N, DA1P/N, DA2P/N)						
ΔV _(CMRX_HF)	Common-mode Interface beyond 450MHz				100	mV
		>1.5GHz			50	mV
ΔV _(CMRX_LF)	Common-mode interference 50MHz – 450MHz		-50		50	mV
MIPI D-PHY HS Transmitter Interface (DBCP/N, DB1P/N, DB2P/N)						
ΔV _(CMTX_HF)	Common-level variations above 450MHz				15	mVrms
ΔV _(CMTX_LF)	Common-level variation between 50MHz – 450MHz				25	mVpeak
t _R and t _F	20% - 80% rise time and fall time	Datarate ≤ 1Gbps			0.3	UI
		Datarate > 1Gbps and ≤ 1.5Gbps			0.35	UI
		Datarate > 1.5Gbps			0.4	UI
		Datarate ≤ 1.5Gbps	100			ps
		Datarate > 1.5Gbps	50			ps
D-PHY LP Receiver Interface (DACP/N, DA1P/N, DA2P/N)						
eSPIKE	Input Pulse rejection				300	V ps
t _{MIN(RX)}	Minimum pulse width response		20			ns
V _(INT)	Peak interference amplitude				200	mV
F _(INT)	Interference Frequency		450			MHz
MIPI D-PHY LP Transmitter Interface (DBCP/N, DB1P/N, DB2P/N)						
t _{REOT}	30% - 85% rise time and fall time	Measured at end of HS transmission.			35	ns

Note:


1. All typical values are at V_{CC} = 1.8V, and T_A = 25°C.

PI2MEQX2503**Part Marking**

PI2MEQX2503

Package Mechanical

24-X1QFN (XEA)

NOTE :

1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. REFER JEDEC MO-288
3. COPLANARITY APPLIES TO THE EXPOSED THERMAL PAD AS WELL AS THE TERMINALS.
4. RECOMMENDED LAND PATTERN IS FOR REFERENCE ONLY.
5. THERMAL PAD SOLDERING AREA (MESH STENCIL DESIGN IS RECOMMENDED).

DIODES
INCORPORATED

PERICOM A PRODUCT LINE
OF CHIEFTEC
INCORPORATED
ENABLING SERIAL CONNECTIVITY

DATE: 09/22/16

DESCRIPTION: 24-contact, Extra Thin Fine Pitch QFN, X1QFN

PACKAGE CODE: XEA (XEA24)

DOCUMENT CONTROL #: PD-2190

1

For latest package information:

See <http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/>.

Tape & Reel Materials and Design

Carrier Tape

The Pocketed Carrier Tape is made of Conductive Polystyrene plus Carbon material (or equivalent). The surface resistivity is 10^6 Ohm/sq. maximum. Pocket tapes are designed so that the component remains in position for automatic handling after cover tape is removed. Each pocket has a hole in the center for automated sensing if the pocket is occupied or not, thus facilitating device removal. Sprocket holes along the edge of the center tape enable direct feeding into automated board assembly equipment. See Figures C and D for carrier tape dimensions.

Cover Tape

Cover tape is made of Anti-static Transparent Polyester film. The surface resistivity is 10^7 Ohm/Sq. Minimum to 10^{11} Ohm sq. maximum. The cover tape is heat-sealed to the edges of the carrier tape to encase the devices in the pockets. The force to peel back the cover tape from the carrier tape shall be a MEAN value of 20 to 80gm (2N to 0.8N).

Reel

The device loading orientation is in compliance with EIA-481, current version (Figure B). The loaded carrier tape is wound onto either a 13-inch reel, (Figure D) or 7-inch reel. The reel is made of Anti-static High-Impact Polystyrene. The surface resistivity 10^7 Ohm/sq. minimum to 10^{11} Ohm/sq. max.

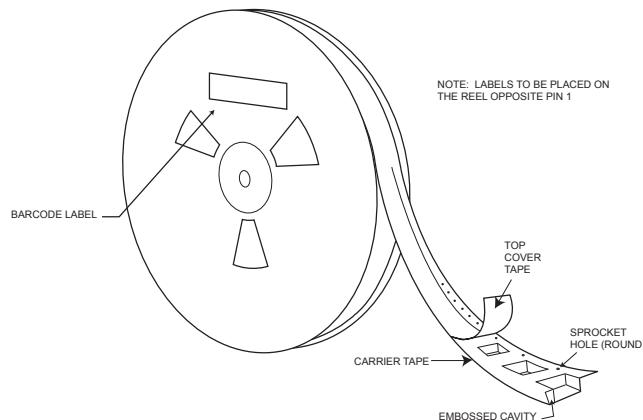


Figure A. Tape & Reel label Information

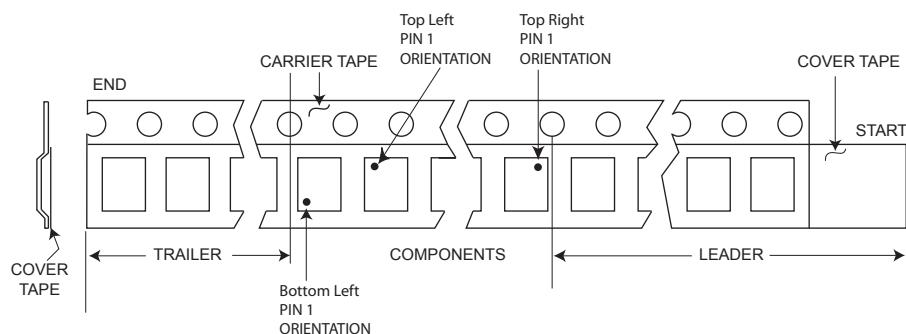
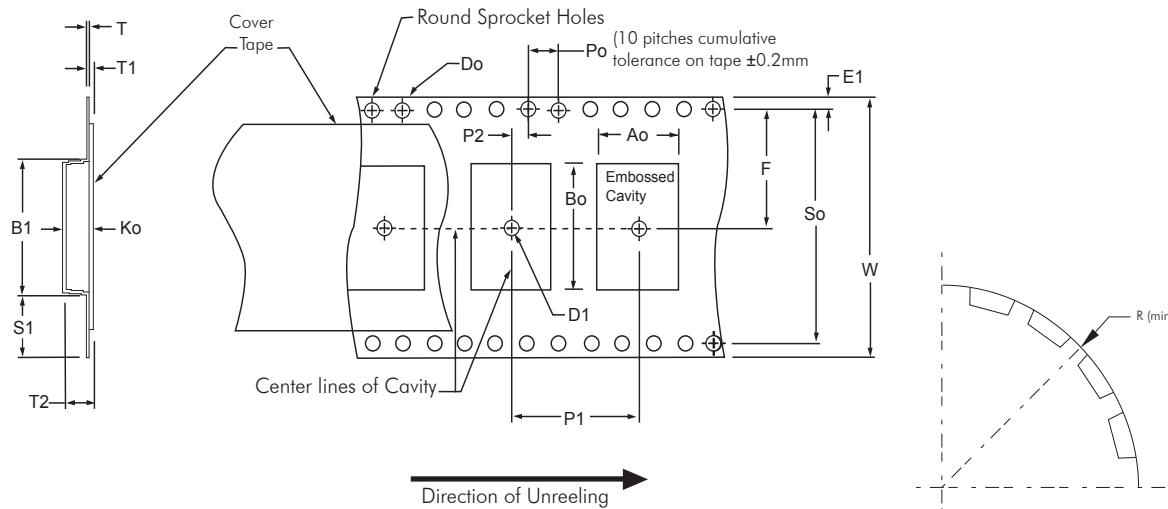
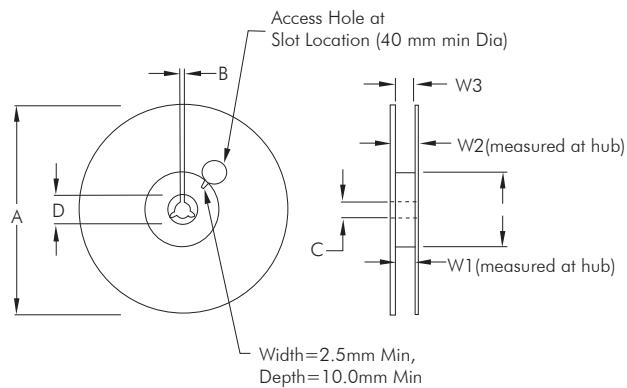



Figure B. Tape Leader and Trailer Pin 1 Orientations

PI2MEQX2503

Figure C. Standard Embossed Carrier Tape Dimensions

Constant Dimensions

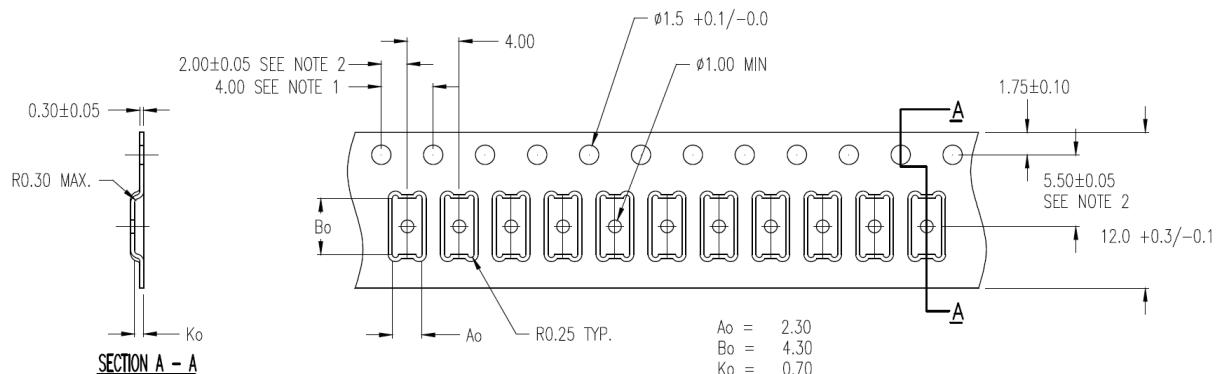

Tape Size	D ₀	D ₁ (Min)	E ₁	P ₀	P ₂	R (See Note 2)	S ₁ (Min)	T (Max)	T ₁ (Max)
8mm	1.5 +0.1 -0.0	1.0	1.75 ± 0.1	4.0 ± 0.1	2.0 ± 0.05	25	0.6	0.6	0.1
12mm									
16mm		1.5				30			
24mm					2.0 ± 0.1		N/A (See Note 3)	0.6	0.1
32mm						50			
44mm		2.0							

Variable Dimensions

Tape Size	P ₁	B ₁ (Max)	E ₂ (Min)	F	S ₀	T ₂ (Max.)	W (Max)	A ₀ , B ₀ , & K ₀
8mm	Specific per package type. Refer to FR-0221 (Tape and Reel Packing Information)	4.35	6.25	3.5 ± 0.05	N/A (see note 4)	2.5	8.3	See Note 1
12mm		8.2	10.25	5.5 ± 0.05		6.5	12.3	
16mm		12.1	14.25	7.5 ± 0.1		8.0	16.3	
24mm		20.1	22.25	11.5 ± 0.1		12.0	24.3	
32mm		23.0	N/A	14.2 ± 0.1			32.3	
44mm		35.0	N/A	20.2 ± 0.15		16.0	44.3	

NOTES:

1. A₀, B₀, and K₀ are determined by component size. The cavity must restrict lateral movement of component to 0.5mm maximum for 8mm and 12mm wide tape and to 1.0mm maximum for 16, 24, 32, and 44mm wide carrier. The maximum component rotation within the cavity must be limited to 20° maximum for 8 and 12 mm carrier tapes and 10° maximum for 16 through 44mm.
2. Tape and components will pass around reel with radius "R" without damage.
3. S₁ does not apply to carrier width ≥ 32mm because carrier has sprocket holes on both sides of carrier where Do ≥ S₁.
4. So does not exist for carrier ≤ 32mm because carrier does not have sprocket hole on both side of carrier.


Figure D. Reel Dimensions by Tape Size

Reel Dimensions

Tape Size	A	N (Min) See Note 1	W1	W2(Max)	W3	B (Min)	C	D (Min)
8mm	178	60 ±2.0mm or	8.4 +1.5/-0.0 mm	14.4 mm	Shall Accommodate Tape Width Without Interference	1.5mm	13.0 +0.5/- 0.2 mm	20.2mm
12mm	±2.0mm or 330±2.0mm	100±2.0mm	12.4 +2.0/-0.0 mm	18.4 mm				
16mm	330 ±2.0mm	100 ±2.0mm	16.4 +2.0/-0.0 mm	22.4 mm				
24mm			24.4 +2.0/-0.0 mm	30.4 mm				
32mm			32.4 +2.0/-0.0 mm	38.4 mm				
44mm			44.4 +2.0/-0.0 mm	50.4 mm				

NOTE:

1. If reel diameter $A=178 \pm 2.0\text{mm}$, then the corresponding hub diameter ($N(\text{min})$) will be $60 \pm 2.0\text{mm}$. If reel diameter $A=330 \pm 2.0\text{mm}$, then the corresponding hub diameter ($N(\text{min})$) will be $100 \pm 2.0\text{mm}$.

Figure F. PI2MEQX2503 Tape Dimension

PI2MEQX2503**IMPORTANT NOTICE**

1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (<https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/>) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.
9. This Notice may be periodically updated with the most recent version available at <https://www.diodes.com/about/company/terms-and-conditions/important-notice>

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries.

All other trademarks are the property of their respective owners.

© 2025 Diodes Incorporated. All Rights Reserved.

www.diodes.com