

Hi-Reliability Optically Coupled Isolator

4N22 [A], 4N23 [A], 4N24 [A]

4N48 [A], 4N49 [A, TX, TXV]

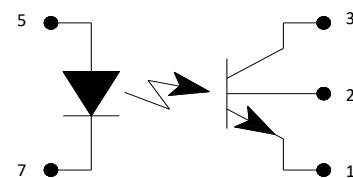
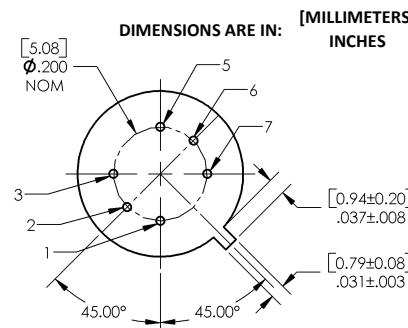
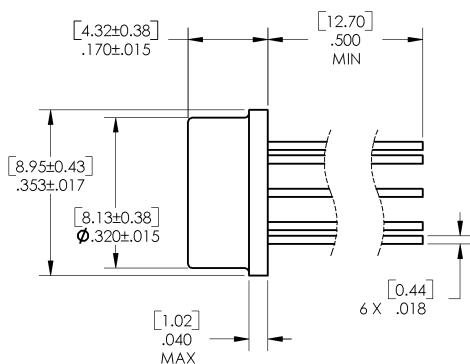
Features:

- TO-78 hermetically sealed package
- High current transfer ratio
- 1 kV electrical isolation
- Base contact provided for conventional transistor biasing
- TX and TXV devices processed to MIL-PRF-19500

Description:

Each isolator in this series consists of an infrared emitting diode and a NPN silicon phototransistor, which are mounted in a hermetically sealed TO-78 package. Devices are designed for military and/or harsh environments. The suffix letter "A" denotes the collector is electrically isolated from the case.

The 4N22, 4N22A, 4N23, 4N23A, 4N24, and 4N24A devices are processed to MIL-PRF-19500/486.




The 4N48, 4N48A, 4N49, 4N49A, 4N49TX and 4N49TXV devices are processed to MIL-PRF-19500/548.

Please contact your local representative or OPTEK for more information.

Applications:

- High-voltage isolation between input and output
- Electrical isolation in dirty environments
- Industrial equipment
- Medical equipment
- Office equipment

ORDERING INFORMATION					
Part Number	Isolation Voltage (kV)	CTR % Min / Max	I _F (mA) Typ / Max	V _{CE} (Volts) Max	Processing MIL-PRF-19500
4N22 or 4N22A	1	25 / NA	10 / 40	35	486
4N23 or 4N23A		20 / NA			
4N24 or 4N24A		40 / NA			
4N48 or 4N48A		100 / 500	1 / 40	40	548
4N49 or 4N49A		200 / 1,000			
4N49TX		4N49TXV			

Pin #	Function	Pin #	Function
1	Emitter	5	Anode
2	Base	6	Open
3	Collector	7	Cathode

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

Hi-Reliability Optically Coupled Isolator

4N22 [A], 4N23 [A], 4N24 [A]

4N48 [A], 4N49 [A, TX, TXV]

Electrical Specifications

Absolute Maximum Ratings ($T_A = 25^\circ C$ unless otherwise noted)

Storage Temperature Range 4N22, 4N22A, 4N23, 4N23A, 4N24, 4N24A 4N48, 4N48A, 4N49, 4N49A, 4N49TX, 4N49TXV	-65° C to +125° C
Operating Temperature Range 4N22, 4N22A, 4N23, 4N23A, 4N24, 4N24A 4N48, 4N48A, 4N49, 4N49A, 4N49TX, 4N49TXV	-55° C to +125° C
Input-to-Output Isolation Voltage ⁽¹⁾	± 1.00 kV _{DC}
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 seconds with soldering iron] ⁽²⁾	260° C
Input Diode	
Forward DC Current (65° C or below)	40 mA
Reverse Voltage	2 V
Peak Forward Current (1 µs pulse width, 300 pps) 4N22, 4N22A, 4N23, 4N23A, 4N24, 4N24A	1 A
Power Dissipation ⁽³⁾	60 mW
Output Phototransistor (4N22, 4N22A, 4N23, 4N23A, 4N24, 4N24A)	
Continuous Collector Current	50 mA
Collector-Emitter Voltage	35 V
Collector-Base Voltage	35 V
Emitter-Base Voltage	4 V
Power Dissipation ⁽⁴⁾	300 mW
Output Phototransistor (4N48, 4N48A, 4N49, 4N49A)	
Continuous Collector Current	50 mA
Collector-Emitter Voltage	40 V
Collector-Base Voltage	45 V
Emitter-Base Voltage	7.0 V
Power Dissipation ⁽⁴⁾	300 mW

Notes:

1. Measured with input leads shorted together and output leads shorted together.
2. RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
3. Derate linearly 1.0 mW/° C above 65° C.
4. Derate linearly 3.0 mW/° C above 25° C.

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

Hi-Reliability Optically Coupled Isolator

4N22 [A], 4N23 [A], 4N24 [A]

4N48 [A], 4N49 [A, TX, TXV]

Electrical Specifications

Electrical Characteristics ($T_A = 25^\circ C$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode						
V_F	Forward Voltage 4N22, 4N23, 4N24 [A]	0.80	-	1.30	V	$I_F = 10.0 \text{ mA}$
	4N22, 4N23, 4N24 [A] ⁽¹⁾	1.00	-	1.50		$I_F = 10.0 \text{ mA}, T_A = -55^\circ C$
	4N22, 4N23, 4N24 [A] ⁽¹⁾	0.70	-	1.20		$I_F = 10.0 \text{ mA}, T_A = -100^\circ C$
	4N48, 4N49 [A], 4N49TX, 4N49TXV	0.80	-	1.50		$I_F = 10.0 \text{ mA}$
	4N48, 4N49 [A], 4N49TX, 4N49TXV ⁽¹⁾	1.00	-	1.70		$I_F = 10.0 \text{ mA}, T_A = -55^\circ C$
	4N48, 4N49 [A], 4N49TX, 4N49TXV ⁽¹⁾	0.70	-	1.30		$I_F = 10.0 \text{ mA}, T_A = -100^\circ C$
I_R	Reverse Current	-	-	100	μA	$V_R = 2.0 \text{ V}$
Output Phototransistor						
$V_{(BR)CEO}$	Collector-Emitter Breakdown Voltage 4N22, 4N23, 4N24 [A]	35	-	-	V	$I_C = 1.0 \text{ mA}, I_B = 0, I_F = 0$
	4N48, 4N49 [A], 4N49TX, 4N49TXV	40	-	-		$I_C = 1.0 \text{ mA}, I_B = 0, I_F = 0$
$V_{(BR)CBO}$	Collector-Base Breakdown Voltage 4N22, 4N23, 4N24 [A]	35	-	-	V	$I_C = 100 \mu\text{A}, I_B = 0, I_F = 0$
	4N48, 4N49 [A], 4N49TX, 4N49TXV	45	-	-		$I_C = 100 \mu\text{A}, I_B = 0, I_F = 0$
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage 4N22, 4N23, 4N24 [A]	4	-	-	V	$I_E = 100 \mu\text{A}, I_C = 0, I_F = 0$
	4N48, 4N49 [A], 4N49TX, 4N49TXV	7	-	-		$I_E = 100 \mu\text{A}, I_C = 0, I_F = 0$
I_{CEO}	Collector-Emitter Dark Current 4N22, 4N23, 4N24 [A]	-	-	100	nA μA	$V_{CE} = 20 \text{ V}, I_B = 0, I_F = 0$
	4N48, 4N49 [A], 4N49TX, 4N49TXV ⁽²⁾	-	-	100		$V_{CE} = 20 \text{ V}, I_B = 0, I_F = 0, T_A = 100^\circ C$
$I_{C(OFF)}$	Collector-Emitter Dark Current 4N22, 4N23, 4N24 [A]	-	-	100	nA μA	$V_{CE} = 20 \text{ V}, I_B = 0, I_F = 0$
	4N48, 4N49 [A], 4N49TX, 4N49TXV ⁽¹⁾	-	-	100		$V_{CE} = 20 \text{ V}, I_B = 0, I_F = 0, T_A = 100^\circ C$
$I_{CB(OFF)}$	Collector-Base Dark Current 4N22, 4N23, 4N24 [A]	-	-	10	nA nA	$V_{CB} = 20 \text{ V}, I_E = 0, I_F = 0$
	4N48, 4N49 [A], 4N49TX, 4N49TXV	-	-	10		

Notes:

1. Guaranteed but not tested.

2. Sample tested, LTPD = 10.

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

Hi-Reliability Optically Coupled Isolator

4N22 [A], 4N23 [A], 4N24 [A] 4N48 [A], 4N49 [A, TX, TXV]

Electrical Specifications

Electrical Characteristics ($T_A = 25^\circ C$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Coupled						
$I_{C(ON)}$	On-State Collector Current 4N22, 4N22A 4N22, 4N22A 4N22, 4N22A ⁽¹⁾ 4N22, 4N22A ⁽¹⁾	0.15 2.50 1.00 1.00	- - - -	- - - -	mA	$I_F = 2.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0$ $I_F = 10.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0$ $I_F = 10.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0, T_A = -55^\circ C$ $I_F = 10.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0, T_A = 100^\circ C$
	4N23, 4N23A 4N23, 4N23A 4N23, 4N23A ⁽¹⁾ 4N23, 4N23A ⁽¹⁾	0.20 6.00 2.50 2.50	- - - -	- - - -		$I_F = 2.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0$ $I_F = 10.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0$ $I_F = 10.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0, T_A = -55^\circ C$ $I_F = 10.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0, T_A = 100^\circ C$
	4N24, 4N24A 4N24, 4N24A 4N24, 4N24A ⁽¹⁾ 4N24, 4N24A ⁽¹⁾	0.40 10.0 4.00 4.00	- - - -	- - - -		$I_F = 2.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0$ $I_F = 10.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0$ $I_F = 10.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0, T_A = -55^\circ C$ $I_F = 10.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0, T_A = 100^\circ C$
	4N48, 4N48A 4N48, 4N48A ⁽¹⁾ 4N48, 4N48A ⁽¹⁾	1.00 1.40 1.00	- - -	5		$I_F = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, I_B = 0$ $I_F = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, I_B = 0, T_A = -55^\circ C$ $I_F = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, I_B = 0, T_A = 100^\circ C$
	4N49, 4N49A (TX, TXV) 4N49, 4N49A (TX, TXV) ⁽¹⁾ 4N49, 4N49A (TX, TXV) ⁽¹⁾	2.00 2.80 2.00	- - -	10		$I_F = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, I_B = 0$ $I_F = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, I_B = 0, T_A = -55^\circ C$ $I_F = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, I_B = 0, T_A = 100^\circ C$
$I_{CB(ON)}$	On-State Collector Base 4N48, 4N49 [A], 4N49TX, 4N49TXV	30	-	-	μA	$V_{CB} = 5 \text{ V}, I_E = 0, I_F = 10 \text{ mA}$
$V_{CE(SAT)}$	Collector-Emitter Saturation Voltage 4N22, 4N23, 4N24 [A] 4N22, 4N23, 4N24 [A] 4N22, 4N23, 4N24 [A] 4N48, 4N48A 4N49, 4N49A (TX, TXV)	- - - - -	- - - - -	0.30 0.30 0.30 0.30 0.30	V	$I_F = 20 \text{ mA}, I_C = 2.5 \text{ mA}, I_B = 0$ $I_F = 20 \text{ mA}, I_C = 5.0 \text{ mA}, I_B = 0$ $I_F = 20 \text{ mA}, I_C = 10.0 \text{ mA}, I_B = 0$ $I_F = 2.0 \text{ mA}, I_C = 1.0 \text{ mA}, I_B = 0$ $I_F = 2.0 \text{ mA}, I_C = 2.0 \text{ mA}, I_B = 0$
H_{FE}	DC Current Gain 4N22, 4N22A 4N23, 4N23A 4N24, 4N24A 4N48, 4N49 [A], 4N49TX, 4N49TXV	>300	- - -	- - -	V	$V_{CE} = 5.0 \text{ V}, I_C = 10.0 \text{ mA}, I_F = 0 \text{ mA}$
R_{IO}	Resistance (Input-to-Output) 4N22, 4N23, 4N24 [A] ⁽³⁾ 4N48, 4N49 [A], 4N49TX, 4N49TXV ⁽³⁾		10^{11} 10^{11}	- -		$V_{I-O} = \pm 1000 \text{ V}_{DC}$ $V_{I-O} = \pm 1000 \text{ V}_{DC}$
C_{IO}	Capacitance (Input-to-Output) ⁽³⁾		-	-	5	pF

Notes:

1. Guaranteed but not tested.

2. Sample tested, LTPD = 10.

3. Measured with input leads shorted together and output leads shorted together.

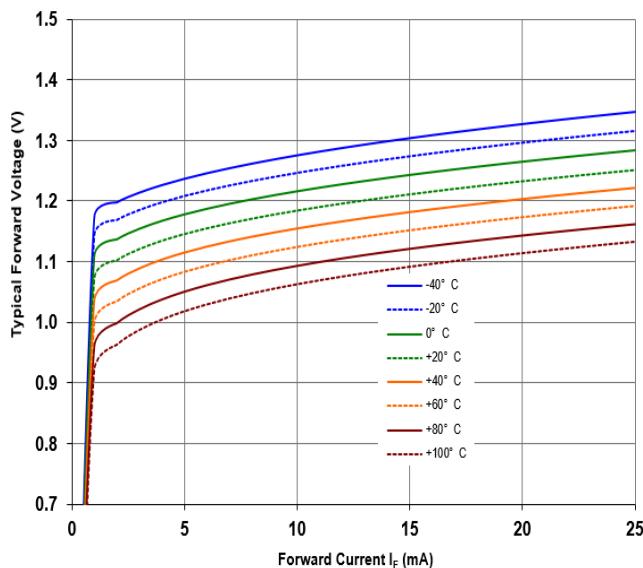
General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

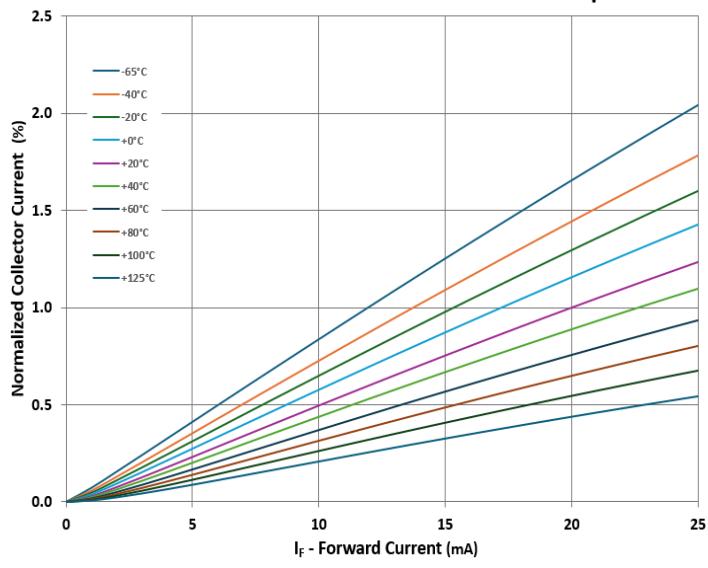
Hi-Reliability Optically Coupled Isolator

4N22 [A], 4N23 [A], 4N24 [A]

4N48 [A], 4N49 [A, TX, TXV]


Electrical Specifications

Electrical Characteristics ($T_A = 25^\circ C$ unless otherwise noted)


SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Coupled						
t_r	Output Rise Time 4N22A 4N23A 4N24A 4N48 4N49 (TX, TXV)	-	-	15	μs	$V_{CC} = 10.0 V, I_F = 10.0 mA, R_L = 100 \Omega$ $V_{CC} = 10.0 V, I_F = 10.0 mA, R_L = 100 \Omega$ $V_{CC} = 10.0 V, I_F = 10.0 mA, R_L = 100 \Omega$ $V_{CC} = 10.0 V, I_F = 5.0 mA, R_L = 100 \Omega$ $V_{CC} = 10.0 V, I_F = 5.0 mA, R_L = 100 \Omega$
t_f	Output Fall Time 4N22A 4N23A 4N24A 4N48 4N49 (TX, TXV)	-	-	15	μs	$V_{CC} = 10.0 V, I_F = 10.0 mA, R_L = 100 \Omega$ $V_{CC} = 10.0 V, I_F = 10.0 mA, R_L = 100 \Omega$ $V_{CC} = 10.0 V, I_F = 10.0 mA, R_L = 100 \Omega$ $V_{CC} = 10.0 V, I_F = 5.0 mA, R_L = 100 \Omega$ $V_{CC} = 10.0 V, I_F = 5.0 mA, R_L = 100 \Omega$

Typical Performance Curves

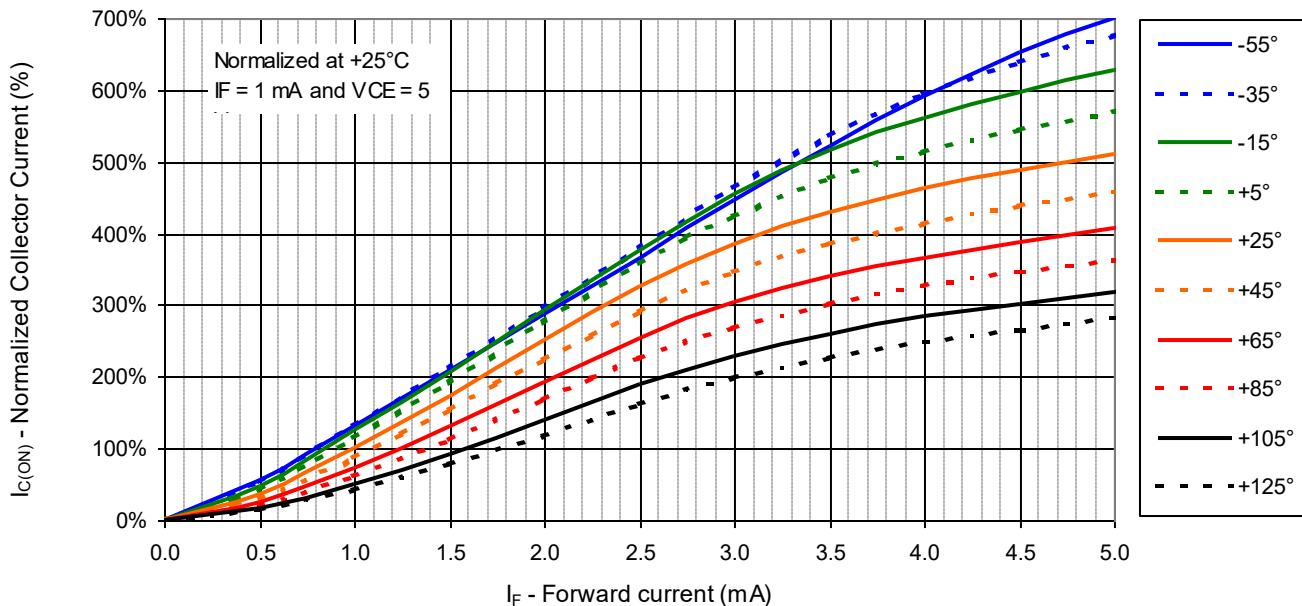
LED Forward Current vs Forward Voltage vs Temp

Collector Current vs Forward Current vs Temp

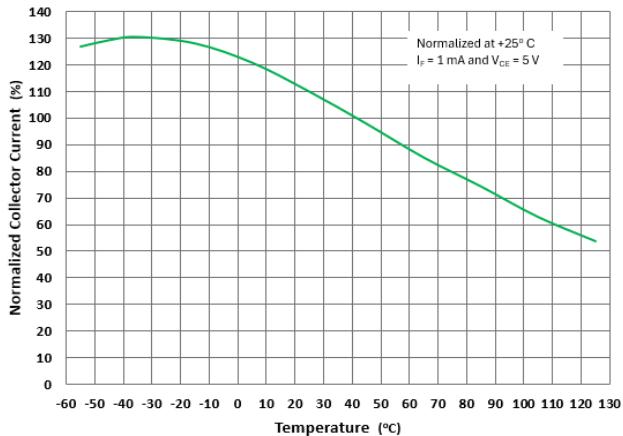
General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

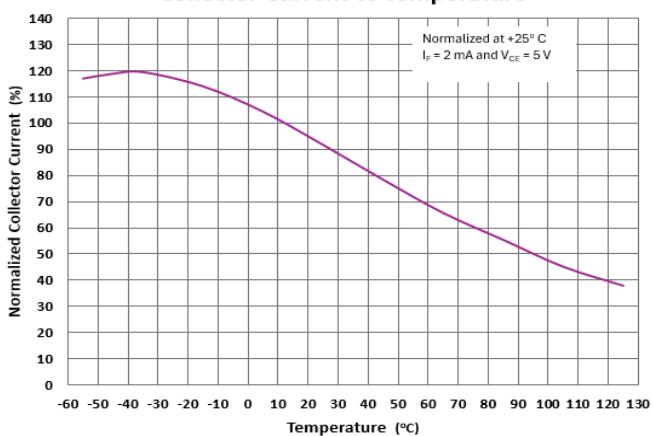
Hi-Reliability Optically Coupled Isolator


4N22 [A], 4N23 [A], 4N24 [A]

4N48 [A], 4N49 [A, TX, TXV]



Typical Performance Curves


Collector Current vs Forward Current vs Temperature

Collector Current vs Temperature

Collector Current vs Temperature

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.