
Introducing the Adafruit Bluefruit LE
Friend

Created by Kevin Townsend

https://learn.adafruit.com/introducing-adafruit-ble-bluetooth-low-energy-friend

Last updated on 2024-06-03 01:37:32 PM EDT

©Adafruit Industries Page 1 of 131

7

9

10

13

14

17

23

23

26

29

Table of Contents

Overview
• Why Not Just Use a BLE USB Dongle?
• So it's a Fancy Pants Wireless UART Adapter?
• Why Use Adafruit's Module?
• Getting Started

QuickStart Guide

HW Setup
• v3.0 Software Requirements
• v1.0 and v2.0 Software Requirements
• HW Layout
• Mode Selection Switch
• TXD/RXD Status LEDs
• DFU Mode Switch
• Mode Indicator LED
• Connection Status LED

Operating Modes
• Data Mode
• Command Mode
• DFU Mode

Terminal Settings
• TerraTerm (Windows)
• CoolTerm (OS X)
• Testing the Terminal Config

UART Test
• BLEFriend Configuration
• nRF UART Configuration
• Sample Video

Factory Reset

Command Mode
• Hayes/AT Commands
• Test Command Mode '=?'
• Write Command Mode '=xxx'
• Execute Mode
• Read Command Mode '?'

Standard AT
• AT
• ATI
• ATZ
• ATE
• +++

General Purpose
• AT+FACTORYRESET

©Adafruit Industries Page 2 of 131

32

38

44

47

• AT+DFU
• AT+HELP
• AT+NVMWRITE
• AT+NVMREAD
• AT+MODESWITCHEN

Hardware
• AT+BAUDRATE
• AT+HWADC
• AT+HWGETDIETEMP
• AT+HWGPIO
• AT+HWGPIOMODE
• AT+HWI2CSCAN
• AT+HWVBAT
• AT+HWRANDOM
• AT+HWMODELED
• AT+UARTFLOW

Beacon
• AT+BLEBEACON
• AT+BLEURIBEACON
• Deprecated: AT+EDDYSTONEENABLE
• AT+EDDYSTONEURL
• AT+EDDYSTONECONFIGEN
• AT+EDDYSTONESERVICEEN
• AT+EDDYSTONEBROADCAST

BLE Generic
• AT+BLEPOWERLEVEL
• AT+BLEGETADDRTYPE
• AT+BLEGETADDR
• AT+BLEGETPEERADDR
• AT+BLEGETRSSI

BLE Services
• AT+BLEUARTTX
• AT+BLEUARTTXF
• AT+BLEUARTRX
• AT+BLEUARTFIFO
• AT+BLEKEYBOARDEN
• AT+BLEKEYBOARD
• AT+BLEKEYBOARDCODE
• Modifier Values
• HID Keyboard Codes
• AT+BLEHIDEN
• AT+BLEHIDMOUSEMOVE
• AT+BLEHIDMOUSEBUTTON
• AT+BLEHIDCONTROLKEY
• AT+BLEHIDGAMEPADEN
• AT+BLEHIDGAMEPAD
• AT+BLEMIDIEN
• AT+BLEMIDIRX
• AT+BLEMIDITX
• AT+BLEBATTEN
• AT+BLEBATTVAL

©Adafruit Industries Page 3 of 131

64

72

80

84

91

94

96

97

BLE GAP
• AT+GAPCONNECTABLE
• AT+GAPGETCONN
• AT+GAPDISCONNECT
• AT+GAPDEVNAME
• AT+GAPDELBONDS
• AT+GAPINTERVALS
• AT+GAPSTARTADV
• AT+GAPSTOPADV
• AT+GAPSETADVDATA

BLE GATT
• GATT Limitations
• AT+GATTCLEAR
• AT+GATTADDSERVICE
• AT+GATTADDCHAR
• AT+GATTCHAR
• AT+GATTLIST
• AT+GATTCHARRAW

Debug
• AT+DBGMEMRD
• AT+DBGNVMRD
• AT+DBGSTACKSIZE
• AT+DBGSTACKDUMP

History
• Version 0.7.7
• Version 0.7.0
• Version 0.6.7
• Version 0.6.6
• Version 0.6.5
• Version 0.6.2
• Version 0.5.0
• Version 0.4.7
• Version 0.3.0

Command Examples
• Heart Rate Monitor Service
• Python Script

Field Updates
• Requirements
• Forcing DFU Mode
• DFU Mode Confirmation
• DFU Timeout
• Firmware Images

DFU on iOS
• Install Bluefruit LE Connect
• Update Process

DFU on Android (4.3+)
• Install Bluefruit LE Connect
• Verified Devices

©Adafruit Industries Page 4 of 131

98

107

107

108

114

117

128

• Update Process

BLE Sniffer
• Select the Sniffer Target
• Working with Wireshark
• Capturing Exchanges Between Two Devices
• Scan Response Packets
• Connection Request
• Write Request
• Regular Data Requests
• Notify Event Data
• Closing Wireshark and nRF-Sniffer
• Moving Forward

GATT Service Details
• UART Service

UART Service
• Characteristics
• TX (0x0002)
• RX (0x0003)

Software Resources
• Bluefruit LE Client Apps and Libraries
• Bluefruit LE Connect (Android/Java)
• Bluefruit LE Connect (iOS/Swift)
• Bluefruit LE Connect for OS X (Swift)
• Bluefruit LE Command Line Updater for OS X (Swift)
• Deprecated: Bluefruit Buddy (OS X)
• ABLE (Cross Platform/Node+Electron)
• Bluefruit LE Python Wrapper
• Debug Tools
• AdaLink (Python)
• Adafruit nRF51822 Flasher (Python)

Device Recovery
• How to Recover a Bluefruit Board
• Still Having Problems?

BLE FAQ

Downloads
• Files
• Schematics
• Schematic and Fab Print for CP2102N Version
• v3.0 Schematic (CP2104 Based)
• v2.0 Schematic (FTDI Based)

©Adafruit Industries Page 5 of 131

©Adafruit Industries Page 6 of 131

Overview
The BLEFriend makes it easy to get any USB enabled device talking to your BLE
enabled phone or tablet using a standard USB CDC connection.

In it's simplest form, it works on the same principle as a common USB/Serial adapter
(the FTDI Friend (http://adafru.it/284), for example!). Any data that you enter via your
favorite terminal emulator on your development machine will be transferred over the
air to the connected phone or tablet, and vice versa.

Why Not Just Use a BLE USB Dongle?
Good question! You can get a Bluetooth 4.0 USB dongle (http://adafru.it/1327) from
the store already, and it's a useful tool to have (particularly on the Raspberry Pi or
BBB), but that won't solve some problems out of the box.

Please note that there are three versions of this board. An older v1.0 blue PCB
which uses 16KB SRAM parts and can run firmware 0.5.0 and lower. A newer v2.0
black PCB that uses the latest 32KB parts and can run old firmware plus version
0.6.2 and higher, based on the FTDI bridge and with an SWD connector. A cost-
optimized v3.0 board that uses a CP2104 USB chip and drops the SWD
connector. v3.0 can run all of the same firmware as v2.0, and is the latest board
available.

©Adafruit Industries Page 7 of 131

https://www.adafruit.com/product/284
https://www.adafruit.com/product/1327

To start with, Bluez (Linux) has a decent learning curve (and doesn't run on OS X if
you're a Mac user). Windows 7 doesn't even support Bluetooth Low Energy, and on
OS X you'll have to sort through the native Bluetooth APIs and development tools that
require an annual paid license and specific license terms to access. There isn't a
standard, open source, cross-platform way to talk BLE today.

With the BLEFriend, you can be up and running in under and hour on just about
anything with a USB port, with easy migration across platforms and operating
systems. It's not perfect (it's currently a peripheral mode only solution), but it's the
easiest way you'll find to get any USB device talking to your iOS or Android device.

So it's a Fancy Pants Wireless UART
Adapter?
The board is capable of much more than simulating a basic UART bridge (and this is
still early days for the Bluefruit LE board family)! Thanks to an easy to learn AT
command set (https://adafru.it/iCO), you can also create you own basic GATT
Services (https://adafru.it/iCP) and Characteristics, simulate Beacons (https://adafru.it/
iCu), and change the way that the device advertises itself for other Bluetooth Low
Energy devices to see.

To make sure that your device stays up to date and can benefit from the latest
Bluefruit LE firmware from Adafruit, you can also update the firmware on your
BLEFriend over the air (https://adafru.it/iCQ) using any supported iOS or Android
device.

You can even pick up a sniffer edition of the board that comes pre-flashed with
special firmware that turns your BLEFriend into a low cost Bluetooth Low Energy
sniffer (https://adafru.it/iCR), capturing data and pushing it out to Wireshark. We
currently offer this as a seperate product, though, since the firmware isn't compatible
with the over the air bootloader used on the standard products, but we'll address this
in the future with a tutorial for J-Link owners, allowing you to switch between modes
using your SWD debugger.

Why Use Adafruit's Module?
There are plenty of BLE modules out there, with varying quality on the HW design as
well as the firmware. We always try to keep the bar as high as possible at Adafruit,

©Adafruit Industries Page 8 of 131

file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/command-mode
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/command-mode
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/ble-gatt
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/ble-gatt
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/beacon
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/field-updates
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/field-updates
file:///home/introducing-the-adafruit-bluefruit-le-sniffer/overview
file:///home/introducing-the-adafruit-bluefruit-le-sniffer/overview

and one of the biggest advantages of the BLEFriend and the entire Bluefruit LE family
is that we wrote all of the firmware running on the devices ourelves from scratch.

We control every line of code that runs on our modules ... and so we aren't at the
mercy of any third party vendors who may or may not be interested in keeping their
code up to date or catering to our customer's needs.

Because we control everything about the product, we add features that are important
to our customers, benefit from being able to use the latest Bluetooth specifications,
can solve any issues that do come up without having to persuade a half-hearted
firmware engineer on the other side of the planet, and we can even change Bluetooth
SoCs entirely if the need ever arises!

Getting Started
If you just want to get up and running quickly, this is the right guide for you, and the
QuickStart section should have you up and running in no time.

If you're new to Bluetooth Low Energy, and want to get a high level overview of how
data is organized and how devices communicate with each other, you might want to
have a look at our Introduction to Bluetooth Low Energy (https://adafru.it/iCS) learning
guide, or buy Getting Started with Bluetooth Low Energy (http://adafru.it/1978) from
the store.*

* Full disclosure: co-written by me :)

QuickStart Guide
The BLEFriend board is designed to be easy to use and get started with.

In most circumstance, the only thing you'll need is an FTDI driver, and a terminal
emulator to start working with BLE from your development machine.

This guide will explain some of the different operating modes (https://adafru.it/
iCT) that the BLEFriend board can be configure to operate in, how to setup your
terminal emulator (https://adafru.it/iCU) to start talking to the BLEFriend, and a basic
example of sending bi-directional data (https://adafru.it/iCV)between the BLEFriend
and a BLE-enabled phone or tablet.

The BLEFriend is (of course) capable of much more than basic UART data exchanges!
You can use it to create custom GATT services and characteristics. You can emulate a

©Adafruit Industries Page 9 of 131

file:///home/introduction-to-bluetooth-low-energy/introduction
https://www.adafruit.com/products/1978
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/operating-modes
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/terminal-settings
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/uart-test
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/beacon

Beacon (https://adafru.it/iCu) for indoor navigation purposes. You can update the
firmware on your device (https://adafru.it/iCQ) over the air, or even develop your own
firmware thanks to the SWD pins on the bottom of the PCB if you possess a HW
debugger like the Segger J-Link.

Depending on the version of the board you have or whether or not you have access
to a J-Link, you can even use the BLEFriend as a powerful Bluetooth Low Energy
sniffer (https://adafru.it/iCW) to debug or reverse engineer existing BLE devices, and
write your own custom applications or drivers for existing HW!

Have a look through this quick start guide to familiarise yourself with the basics,
though, and you should be able to quickly move on to more advanced topics in no
time!

HW Setup

v3.0 Software Requirements
The cost-optimized v3.0 board uses the less expensive CP2104 USB to Serial bridge,
which requires that you install the Silicon Labs VCP drivers (https://adafru.it/vrf) on
your system before using the board.

v1.0 and v2.0 Software Requirements
Setting up the BLEFriend is super easy. All you need to start talking to the device is a
standard FTDI driver for the FT231x located on the device.

©Adafruit Industries Page 10 of 131

file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/beacon
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/field-updates
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/field-updates
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/ble-sniffer
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/ble-sniffer
http://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

Find the appropriate FTDI VCP installer on the FTDI Driver Download Page (https://
adafru.it/aJv), install it on you system, and then insert the BLEFriend in any USB port
on your system.

HW Layout
There are a few items on the BLEFriend you should be familiar with before you start
working with it. To help you get started quickly, we've highlighted them in the image
below:

Mode Selection Switch

This switch can be moved between 'CMD' (Command Mode) and 'UART' (Data Mode),
which will change the way that the device behaves in your terminal emulator.

For more information on these two operating modes, see the Operating
Modes (https://adafru.it/iCT) page in this learning guide.

This image applies to v2.0. The latest cost-optimized v3.0 release drops the SWD
connector, and leaving the SWD pins on available on the bottom of the PCB.

©Adafruit Industries Page 11 of 131

http://www.ftdichip.com/Drivers/VCP.htm
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/operating-modes
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/operating-modes

TXD/RXD Status LEDs

These two LEDs are provided primarily for debug purposes to help you visualise the
incoming and outgoing characters over the USB CDC interface.

DFU Mode Switch

Holding this switch down when you insert the device into the USB port will cause the
device to enter a special 'DFU' mode, which allows you to update the firmware over
the air.

For more information on DFU mode see the Field Updates (https://adafru.it/iCQ) page.

Mode Indicator LED

This LED is used to indicate the mode that the device is currently operating in (Data,
Command or DFU).

Connection Status LED

This LED will be enabled when the BLEFriend has successfully established a
connection with another BLE device, and it useful for debugging purposes.

©Adafruit Industries Page 12 of 131

file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/field-updates

Operating Modes
BLEFriend modules can be operated in one of three modes:

Data Mode
Data mode makes use of the BLE UART Service, and turns the BLEFriend into a HW
UART bridge between a BLE Central device (your phone or tablet) and your PC or
USB-enabled device.

To use data mode, simply connect your BLEFriend module to the USB port on your
PC, move the mode selection switch to UART and start sending or receiving data at
9600 bps using your favorite terminal software.

If the MODE LED blinks twice followed by a three second delay you are in Data Mode:

Command Mode
Command mode is used to send configuration commands to the module or retrieve
information about the module itself or the device connected on the other side of the
BLE connection.

To use command mode, make sure that the mode selection switch is set to CMD, and
enter a valid Hayes AT style command using your favorite terminal emulator at 9600
bps (for example 'ATI' to display some basic info about the module).

If the MODE LED blinks three times followed by a three second delay you are in
Command Mode:

©Adafruit Industries Page 13 of 131

For more information on this operating mode see the dedicated Command
Mode (https://adafru.it/iCO) page in this learning guide.

DFU Mode
DFU Mode (which stands for 'device firmware upgrade' or sometimes 'device field
update') is a special mode that allows you to update the firmware on the BLEFriend
over the air using dedicated DFU applications available on iOS and Android.

This allows you to update your device with the latest BLEFriend firmware from
Adafruit without having to purchase an external HW debugger like the Segger J-
Link (http://adafru.it/1369).

To enter DFU mode hold down the DFU button while inserting the BLEFriend into the
USB port.

If the LED blinks at a constant rate, you know that you are in DFU mode:

For more information on DFU mode see the dedicate Device Field Update (DFU)
page (https://adafru.it/iCQ).

Terminal Settings
Since the BLEFriend board uses UART for the data transport, you will need to
configure your favorite terminal emulator software with the appropriate settings to
send or receive data over UART.

©Adafruit Industries Page 14 of 131

file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/command-mode
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/command-mode
https://www.adafruit.com/product/1369
https://www.adafruit.com/product/1369
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/field-updates
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/field-updates

The BLEFriend is configured to run with the following settings:

9600 bps
HW flow control (CTS+RTS)
8n1 (8-bit data, no parity, 1 stop bit)

TerraTerm (Windows)
If you are using Windows we recommend using TeraTerm (https://adafru.it/e9I), which
should be configured as follows (via the 'Setup > Serial Port' menu):

CoolTerm (OS X)
If you are using OS X, we recommend using CoolTerm (https://adafru.it/e9J), a free
and reasonably fully featured terminal emulator package.

•
•
•

©Adafruit Industries Page 15 of 131

http://ttssh2.sourceforge.jp/
http://freeware.the-meiers.org/

You'll need to set the following configuration options in Coolterm to communicate
with the Bluefruit LE Pro module:

Testing the Terminal Config
To make sure the connection is properly configured, you can set the device
in Command Mode (the LED should blink three times followed by a short delay in this
mode), and enter the ATI command, as shown below (which will provide some basic
information about the BLE module):

Make sure you click the 'Connect' button to open the connection in CoolTerm,
and 'Disconnect' to close the connection when you are done.

©Adafruit Industries Page 16 of 131

UART Test
To test out the BLE UART service that is used to transfer data between the BLEFriend
and your Bluetooth Low Energy enabled mobile device, you can used the nRF UART
application from Nordic Semiconductors for iOS (https://adafru.it/
dd7) or Android (https://adafru.it/dd6).

BLEFriend Configuration
Set the BLEFriend to DATA MODE by placing the mode selector switch (near the USB
connector) to the UART position.

The 'MODE' indicator LED will blink two times and then pause for three seconds when
you are in DATA mode:

Make sure you are in CMD mode or you won't get any echo or AT command
replies!

This tutorial uses the Android version of nRF UART but the iOS UI is reasonably
similar.

©Adafruit Industries Page 17 of 131

https://itunes.apple.com/us/app/nrf-uart/id614594903?mt=8
https://play.google.com/store/apps/details?id=com.nordicsemi.nrfUARTv2

Using your favorite terminal emulator (https://adafru.it/iCU), connect to the
BLEFriend at 9600 baud with HW flow control enabled.

nRF UART Configuration
Open the nRF UART application on Android or iOS, and click the 'Connect' button

©Adafruit Industries Page 18 of 131

file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/terminal-settings

After clicking on 'Connect' you should see a list of BLE peripherals in range:

Select the 'UART' device by clicking on it from the popup selection dialogue, and a
connection will be established between the BLEFriend and your phone or tablet.

NOTE: You know that you are connected to another device when the CONN LED is lit
up on the BLEFriend:

©Adafruit Industries Page 19 of 131

Once you see the 'Connected To: UART' message in nRF UART, you can start sending
and receiving data between the two devices using the mobile app or the terminal
emulator.

Sending data from one device should cause the text to appear on the other end:

©Adafruit Industries Page 20 of 131

On the BLEFriend side we can see the 'testing' string that was sent from nRF UART in
the terminal emulator below:

Typing data into the terminal emulator will cause it to appear in the nRF UART
application, as shown below:

The incoming data is broken up into small packets because it is transferred in chunks
of up to 20 bytes per payload.

©Adafruit Industries Page 21 of 131

All data transfers in BLE occur at a rate controlled by the BLE central device (the
phone or tablet). Every n milliseconds, the phone will ping the BLE peripheral (the
BLEFriend) and check if there is any data available.

If anything is found in the UART FIFO, for example, it will be sent and data will start to
accumulate again in the FIFO until the next connection event.

Sample Video
Download the screen capture below to see nRF UART in action, first receiving 'this is
a test' from the BLEFriend (typed in on the terminal emulator), and then sending
'adafruit' out to the BLEFriend, where is will appear in the terminal emulator.

nRFUART_640.mp4
https://adafru.it/ea5

Depending on which terminal emulator SW you use, you would see something like
this on your development machine running a similar demo yourself:

©Adafruit Industries Page 22 of 131

https://learn.adafruit.com/system/assets/assets/000/021/050/original/nRFUART_640.mp4?1415487803

Factory Reset

If you have any problems with your BLEFriend module, you can perform a factory
reset by entering command mode (set the mode selection switch to 'CMD'), and
entering the following command in your terminal emulator:

AT+FACTORYRESET

This will erase the non volatile memory section where the config data is stored and
reset everything to factory default values, and perform a system reset.

When you see the 'OK' response the device should be ready to use.

Command Mode
By placing the BLEFriend module in 'Command' mode (set the mode selection switch
to CMD) you can enter a variety of Hayes AT style commands to configure the device
or retrieve basic information about the module of BLE connection.

You can determine if you are in Command Mode by looking at the mode LED. It
should blink three times followed by a three second pause, as shown below:

Hayes/AT Commands
When operating in command mode, the Bluefruit LE Pro modules use a Hayes AT-
style command set (https://adafru.it/ebJ)to configure the device.

The advantage of an AT style command set is that it's easy to use in machine to
machine communication, while still being somewhat user friendly for humans.

As of version 0.5.0+ of the firmware, you can perform a factory reset by holding
the DFU button down for 10s until the blue CONNECTED LED lights up, and then
releasing the button.

©Adafruit Industries Page 23 of 131

http://en.wikipedia.org/wiki/Hayes_command_set
http://en.wikipedia.org/wiki/Hayes_command_set

Test Command Mode '=?'
'Test' mode is used to check whether or not the specified command exists on the
system or not.

Certain firmware versions or configurations may or may not include a specific
command, and you can determine if the command is present by taking the command
name and appending '=?' to it, as shown below

AT+BLESTARTADV=?

If the command is present, the device will reply with 'OK'. If the command is not
present, the device will reply with 'ERROR'.

AT+BLESTARTADV=?
OK\r\n
AT+MISSINGCMD=?
ERROR\r\n

Write Command Mode '=xxx'
'Write' mode is used to assign specific value(s) to the command, such as changing the
radio's transmit power level using the command we used above.

To write a value to the command, simple append an '=' sign to the command followed
by any paramater(s) you wish to write (other than a lone '?' character which will be
interpretted as tet mode):

AT+BLEPOWERLEVEL=-8

If the write was successful, you will generally get an 'OK' response on a new line, as
shown below:

AT+BLEPOWERLEVEL=-8
OK\r\n

If there was a problem with the command (such as an invalid parameter) you will get
an 'ERROR' response on a new line, as shown below:

AT+BLEPOWERLEVEL=3
ERROR\r\n

©Adafruit Industries Page 24 of 131

Note: This particular error was generated because '3' is not a valid value for the
AT+BLEPOWERLEVEL command. Entering '-4', '0' or '4' would succeed since these
are all valid values for this command.

Execute Mode
'Execute' mode will cause the specific command to 'run', if possible, and will be used
when the command name is entered with no additional parameters.

AT+FACTORYRESET

You might use execute mode to perform a factory reset, for example, by executing the
AT+FACTORYRESET command as follows:

AT+FACTORYRESET
OK\r\n

NOTE: Many commands that are means to be read will perform the same action
whether they are sent to the command parser in 'execute' or 'read' mode. For
example, the following commands will produce identical results:

AT+BLEGETPOWERLEVEL
-4\r\n
OK\r\n
AT+BLEGETPOWERLEVEL?
-4\r\n
OK\r\n

If the command doesn't support execute mode, the response will normally be 'ERROR'
on a new line.

Read Command Mode '?'
'Read' mode is used to read the current value of a command.

Not every command supports read mode, but you generally use this to retrieve
information like the current transmit power level for the radio by appending a '?' to the
command, as shown below:

AT+BLEPOWERLEVEL?

If the command doesn't support read mode or if there was a problem with the
request, you will normally get an 'ERROR' response.

©Adafruit Industries Page 25 of 131

If the command read was successful, you will normally get the read results followed
by 'OK' on a new line, as shown below:

AT+BLEPOWERLEVEL?
-4\r\n
OK\r\n

Note: For simple commands, 'Read' mode and 'Execute' mode behave identically.

Standard AT
The following standard Hayes/AT commands are available on Bluefruit LE modules:

AT
Acts as a ping to check if we are in command mode. If we are in command mode, we
should receive the 'OK' response.

Codebase Revision: 0.3.0

Parameters: None

Output: None

AT
OK

ATI
Displays basic information about the Bluefruit module.

Codebase Revision: 0.3.0

Parameters: None

Output: Displays the following values:

Board Name
Microcontroller/Radio SoC Name
Unique Serial Number

•
•
•

©Adafruit Industries Page 26 of 131

Core Bluefruit Codebase Revision
Project Firmware Revision
Firmware Build Date
Softdevice, Softdevice Version, Bootloader Version (0.5.0+)

ATI
BLEFRIEND
nRF51822 QFAAG00
FB462DF92A2C8656
0.5.0
0.5.0
Feb 24 2015
S110 7.1.0, 0.0
OK

Updates:

Version 0.4.7+ of the firmware adds the chip revision after the chip name if it can
be detected (ex. 'nRF51822 QFAAG00').
Version 0.5.0+ of the firmware adds a new 7th record containing the softdevice,
softdevice version and bootloader version (ex. 'S110 7.1.0, 0.0').

ATZ
Performs a system reset.

Codebase Revision: 0.3.0

Parameters: None

Output: None

ATZ
OK

ATE
Enables or disables echo of input characters with the AT parser

Codebase Revision: 0.3.0

Parameters: '1' = enable echo, '0' = disable echo

•
•
•
•

•

•

©Adafruit Industries Page 27 of 131

Output: None

Disable echo support
ATE=0
OK
#Enable echo support
ATE=1
OK

+++
Dynamically switches between DATA and COMMAND mode without changing the
physical CMD/UART select switch.

When you are in COMMAND mode, entering '+++\n' or '+++\r\n' will cause the module
to switch to DATA mode, and anything typed into the console will go direct to the
BLUE UART service.

To switch from DATA mode back to COMMAND mode, simply enter '+++\n' or '+++\r\n'
again (be sure to include the new line character!), and a new 'OK' response will be
displayed letting you know that you are back in COMMAND mode (see the two 'OK'
entries in the sample code below).

Codebase Revision: 0.4.7

Parameters: None

Output: None

ATI
BLEFRIEND
nRF51822 QFAAG00
B122AAC33F3D2296
0.4.6
0.4.6
Dec 22 2014
OK
+++

Note that +++ can also be used on the mobile device to send and receive AT
command on iOS or Android, though this should always be used with care.

See the AT+MODESWITCHEN command to control the availability of the +++
command

©Adafruit Industries Page 28 of 131

OK
OK

General Purpose
The following general purpose commands are available on all Bluefruit LE modules:

AT+FACTORYRESET
Clears any user config data from non-volatile memory and performs a factory reset
before resetting the Bluefruit module.

Codebase Revision: 0.3.0

Parameters: None

Output: None

AT+FACTORYRESET
OK

AT+DFU
Forces the module into DFU mode, allowing over the air firmware updates using a
dedicated DFU app on iOS or Android.

Codebase Revision: 0.3.0

Parameters: None

Output: None

As of version 0.5.0+ of the firmware, you can perform a factory reset by holding
the DFU button down for 10s until the blue CONNECTED LED lights up, and then
releasing the button.

The AT parser will no longer responsd after the AT+DFU command is entered,
since normal program execution effectively halts and a full system reset is
performed to start the bootloader code

©Adafruit Industries Page 29 of 131

AT+DFU
OK

AT+HELP
Displays a comma-separated list of all AT parser commands available on the system.

Codebase Version: 0.3.0

Parameters: None

Output: A comma-separated list of all AT parser commands available on the system.

AT+HELP
AT+FACTORYRESET,AT+DFU,ATZ,ATI,ATE,AT+DBGMEMRD,AT+DBGNVMRD,AT+HWLEDPOLARITY,AT+HWLED,AT+HWGETDIETEMP,AT+HWMODEPINPOLARITY,AT+HWMODEPIN,AT+HWGPIOMODE,AT+HWGPIO,AT+HWI2CSCAN,AT+HWADC,AT+HWVBAT,AT+HWPWM,AT+HWPWRDN,AT+BLEPOWERLEVEL,AT+BLEGETADDRTYPE,AT+BLEGETADDR,AT+BLEBEACON,AT+BLEGETRSSI,AT+GAPGETCONN,AT+GAPDISCONNECT,AT+GAPDEVNAME,AT+GAPDELBONDS,AT+GAPINTERVALS,AT+GAPSTARTADV,AT+GAPSTOPADV,AT+GAPAUTOADV,AT+GAPSETADVDATA,AT+BLEUARTTX,AT+BLEUARTRX,AT+GATTADDSERVICE,AT+GATTADDCHAR,AT+GATTCHAR,AT+GATTLIST,AT+GATTCLEAR,AT+HELP
OK

AT+NVMWRITE
Writes data to the 256 byte user non-volatile memory (NVM) region.

Codebase Version: 0.7.0

Parameters:

offset: The numeric offset for the first byte from the starting position in the user
NVM
datatype: Which can be one of STRING (1), BYTEARRAY (2) or INTEGER (3)
data: The data to write to NVM memory (the exact payload format will change
based on the specified datatype).

Output: Nothing

Write 32768 as an integer starting at byte 16 in user NVM
AT+NVMWRITE=16,INTEGER,32768
OK

The sample code below may not match future firmware releases and is provided
for illustration purposes only

•

•
•

©Adafruit Industries Page 30 of 131

AT+NVMREAD
Reads data from the 256 byte user non-volatile memory (NVM) region.

Codebase Version: 0.7.0

Parameters:

offset: The numeric offset for the first byte from the starting position in the user
NVM
size: The number of bytes to read
datatype: The type used for the data being read, which is required to properly
parse the data and display it as a response. The value can be one of STRING (1),
BYTEARRAY (2) or INTEGER (3)

Output: The data read back, formatted based on the datatype argument.

Read an integer back from position 16 in user NVM
AT+NVMREAD=16, 4, INTEGER
32768
OK

AT+MODESWITCHEN
Enables or disables mode switches via the '+++' command on the BLE peripheral of
BLE UART side of the connection.

Codebase Version: 0.7.1

Parameters:

location: This can be a string, either 'local' or 'ble' indicating which side should
have the '+++' command enabled or disabled, 'local' being the Bluefruit
peripheral and 'ble' being the phone or tablet.
state: '0' to disable '+++' mode switches, '1' to enable them.

Output: None

•

•
•

•

•

By default, '+++' is enabled locally, and disabled in BLE

©Adafruit Industries Page 31 of 131

Disable reomte '+++' mode switches
AT+MODESWITCHEN=ble,0
OK

Hardware
The following commands allow you to interact with the low level HW on the Bluefruit
LE module, such as reading or toggling the GPIO pins, performing an ADC conversion
,etc.:

AT+BAUDRATE
Changes the baud rate used by the HW UART peripheral on the nRF51822. Note that
we do not recommend using higher baudrates than 9600 because the nRF51 UART
can drop characters!

Codebase Revision: 0.7.0

Parameters: Baud rate, which must be one of the following values:

1200
2400
4800
9600
14400
19200
28800
38400
57600
76800
115200
230400
250000
460800
921600
1000000

Output: The current baud rate

Set the baud rate to 115200
AT+BAUDRATE=115200

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

©Adafruit Industries Page 32 of 131

OK

Check the current baud rate
AT+BAUDRATE
115200
OK

AT+HWADC
Performs an ADC conversion on the specified ADC pin

Codebase Revision: 0.3.0

Parameters: The ADC channel (0..7)

Output: The results of the ADC conversion

AT+HWADC=0
178
OK

AT+HWGETDIETEMP
Gets the temperature in degree celcius of the BLE module's die. This can be used for
debug purposes (higher die temperature generally means higher current
consumption), but does not corresponds to ambient temperature and can not be used
as a replacement for a normal temperature sensor.

Codebase Revision: 0.3.0

Parameters: None

Output: The die temperature in degrees celcius

AT+HWGETDIETEMP
32.25
OK

AT+HWGPIO
Gets or sets the value of the specified GPIO pin (depending on the pin's mode).

©Adafruit Industries Page 33 of 131

Codebase Revision: 0.3.0

Parameters: The parameters for this command change depending on the pin mode.

OUTPUT MODE: The following comma-separated parameters can be used when
updating a pin that is set as an output:

Pin numbers
Pin state, where:

0 = clear the pin (logic low/GND)
1 = set the pin (logic high/VCC)

INPUT MODE: To read the current state of an input pin or a pin that has been
configured as an output, enter the pin number as a single parameter.

Output: The pin state if you are reading an input or checking the state of an input pin
(meaning only 1 parameter is supplied, the pin number), where:

0 means the pin is logic low/GND
1 means the pin is logic high/VCC

Set pin 14 HIGH
AT+HWGPIO=14,1
OK

Set pin 14 LOW
AT+HWGPIO=14,0
OK

Read the current state of pin 14
AT+HWGPIO=14
0
OK

Try to update a pin that is not set as an output
AT+HWGPIOMODE=14,0
OK

•
•

◦
◦

•
•

Trying to set the value of a pin that has not been configured as an output will
produce an 'ERROR' response.

Some pins are reserved for specific functions on Bluefruit modules and can not
be used as GPIO. If you try to make use of a reserved pin number an 'ERROR'
response will be generated.

©Adafruit Industries Page 34 of 131

AT+HWGPIO=14,1
ERROR

AT+HWGPIOMODE
This will set the mode for the specified GPIO pin (input, output, etc.).

Codebase Revision: 0.3.0

Parameters: This command one or two values (comma-separated in the case of two
parameters being used):

The pin number
The new GPIO mode, where:

0 = Input
1 = Output
2 = Input with pullup enabled
3 = Input with pulldown enabled

Output: If a single parameters is passed (the GPIO pin number) the current pin mode
will be returned.

Configure pin 14 as an output
AT+HWGPIOMODE=14,0
OK

Get the current mode for pin 14
AT+HWPGIOMODE=14
0
OK

AT+HWI2CSCAN
Scans the I2C bus to try to detect any connected I2C devices, and returns the
address of devices that were found during the scan process.

Codebase Revision: 0.3.0

•
•

◦
◦
◦
◦

Some pins are reserved for specific functions on Bluefruit modules and can not
be used as GPIO. If you try to make use of a reserved pin number an 'ERROR'
response will be generated.

©Adafruit Industries Page 35 of 131

Parameters: None

Output: A comma-separated list of any I2C address that were found while scanning
the valid address range on the I2C bus, or nothing is no devices were found.

I2C scan with two devices detected
AT+HWI2CSCAN
0x23,0x35
OK

I2C scan with no devices detected
AT+HWI2CSCAN
OK

AT+HWVBAT
Returns the main power supply voltage level in millivolts

Codebase Revision: 0.3.0

Parameters: None

Output: The VBAT level in millivolts

AT+HWVBAT
3248
OK

AT+HWRANDOM
Generates a random 32-bit number using the HW random number generator on the
nRF51822 (based on white noise).

Codebase Revision: 0.4.7

Parameters: None

Output: A random 32-bit hexadecimal value (ex. '0x12345678')

AT+HWRANDOM
0x769ED823
OK

©Adafruit Industries Page 36 of 131

AT+HWMODELED
Allows you to override the default behaviour of the MODE led (which indicates the
operating mode by default).

Codebase Revision: 0.6.6

Parameters: LED operating mode, which can be one of the following values:

disable or DISABLE or 0 - Disable the MODE LED entirely to save power
mode or MODE or 1 - Default behaviour, indicates the current operating mode
hwuart or HWUART or 2 - Toggles the LED on any activity on the HW UART bus
(TX or RX)
bleuart or BLEUART or 3 - Toggles the LED on any activity on the BLE UART
Service (TX or RX characteristic)
spi or SPI or 4 - Toggles the LED on any SPI activity
manual or MANUAL or 5 - Manually sets the state of the MODE LED via a
second comma-separated parameter, which can be on, off, or toggle.

Output: If run with no parameters, returns an upper-case string representing the
current MODE LED operating mode from the fields above

Get the curent MODE LED setting
AT+HWMODELED
MODE
OK

Change the MODE LED to indicate BLE UART activity
AT+HWMODELED=BLEUART
OK

Manually toggle the MODE LED
AT+HWMODELED=MANUAL,TOGGLE
OK

AT+UARTFLOW
Enables or disable hardware flow control (CTS + RTS) on the UART peripheral block of
the nRF51822.

Codebase Revision: 0.7.0

•
•
•

•

•
•

©Adafruit Industries Page 37 of 131

Parameters: HW flow control state, which can be one of:

on
off
0
1

Output: If run with no parameters, returns a number representing whether flow
control is enabled (1) or disabled (0).

Check the current flow control state
AT+UARTFLOW
1
OK

Disable HW flow control
AT+UARTFLOW=off
OK

Beacon
Adafruit's Bluefruit LE modules currently support the following 'Beacon' technologies:

Beacon (Apple) via AT+BLEBEACON
UriBeacon (Google) via AT+BLEURIBEACON (deprecated)
Eddystone (Google) via AT+EDDYSTONE*

Modules can be configured to act as 'Beacons' using the following commands:

AT+BLEBEACON
Codebase Revision: 0.3.0

Parameters: The following comma-separated parameters are required to enable
beacon mode:

Bluetooth Manufacturer ID (uint16_t)
128-bit UUID
Major Value (uint16_t)
Minor Value (uint16_t)
RSSI @ 1m (int8_t)

•
•
•
•

•
•
•

•
•
•
•
•

©Adafruit Industries Page 38 of 131

Output: None

Enable Apple iBeacon emulation
Manufacturer ID = 0x004C
AT+BLEBEACON=0x004C,01-12-23-34-45-56-67-78-89-9A-AB-BC-CD-DE-EF-
F0,0x0000,0x0000,-59
OK
Reset to change the advertising data
ATZ
OK

Enable Nordic Beacon emulation
Manufacturer ID = 0x0059
AT+BLEBEACON=0x0059,01-12-23-34-45-56-67-78-89-9A-AB-BC-CD-DE-EF-
F0,0x0000,0x0000,-59
OK
Reset to change the advertising data
ATZ
OK

Entering Nordic Beacon emulation using the sample code above, you can see the
simulated beacon in Nordic's 'Beacon Config' tool below:

AT+BLEBEACON will cause the beacon data to be stored in non-volatile config
memory on the Bluefruit LE module, and these values will be persisted across
system resets and power cycles. To remove or clear the beacon data you need
to enter the 'AT+FACTORYRESET' command in command mode.

©Adafruit Industries Page 39 of 131

AT+BLEURIBEACON
Converts the specified URI into a UriBeacon (https://adafru.it/edk) advertising packet,
and configures the module to advertise as a UriBeacon (part of Google's Physical
Web (https://adafru.it/ehZ) project).

To view the UriBeacon URIs you can use one of the following mobile applications:

Android 4.3+: Physical Web (https://adafru.it/edi) on the Google Play Store
iOS: Physical Web (https://adafru.it/edj) in Apple's App Store

Codebase Revision: 0.4.7

•
•

©Adafruit Industries Page 40 of 131

https://github.com/google/uribeacon
http://google.github.io/physical-web/
http://google.github.io/physical-web/
https://play.google.com/store/apps/details?id=physical_web.org.physicalweb
https://itunes.apple.com/us/app/physical-web/id927653608?mt=8

Parameters: The URI to encode (ex. http://www.adafruit.com/blog (https://adafru.it/
ei0))

Output: None of a valid URI was entered (length is acceptable, etc.).

AT+BLEURIBEACON=http://www.adafruit.com/blog
OK

Reset to change the advertising data
ATZ
OK

If the supplied URI is too long you will get the following output:

AT+BLEURIBEACON=http://www.adafruit.com/this/uri/is/too/long
URL is too long
ERROR

Deprecated: AT+EDDYSTONEENABLE
This command will enable Eddystone (https://adafru.it/fSA) support on the Bluefruit LE
module. Eddystone support must be enabled before the other related commands can
be used.

Codebase Revision: 0.6.6

Parameters: 1 or 0 (1 = enable, 0 = disable)

Output: The current state of Eddystone support if no parameters are provided (1 =
enabled, 0 = disabled)

If the URI that you are trying to encode is too long, try using a shortening service
like bit.ly, and encode the shortened URI.

UriBeacon should be considered deprecated as a standard, and EddyStone
should be used for any future development. No further development will happen
in the Bluefruit LE firmware around UriBeacon.

This command was removed in firmware 0.7.0 to avoid confusion. Use
AT+EDDYSTONESERVICEEN in 0.7.0 and higher.

©Adafruit Industries Page 41 of 131

http://www.adafruit.com/blog
https://github.com/google/eddystone

Enable Eddystone support
AT+EDDYSTONEENABLE=1
OK

Check the current Eddystone status on the module
AT+EDDYSTONEENABLE
1
OK

AT+EDDYSTONEURL
This command will set the URL for the Eddystone-URL (https://adafru.it/fSB) protocol.

Codebase Revision: 0.6.6

Parameters:

The URL to encode (mandatory)
An optional second parameter indicates whether to continue advertising the
Eddystone URL even when the peripheral is connected to a central device
Firmware 0.6.7 added an optional third parameter for the RSSI at 0 meters value.
This should be measured by the end user by checking the RSSI value on the
receiving device at 1m and then adding 41 to that value (to compensate for the
signal strength loss over 1m), so an RSSI of -62 at 1m would mean that you
should enter -21 as the RSSI at 0m. Default value is -18dBm.

Output: Firmware <= 0.6.6: none. With firmware >= 0.6.7 running this command with
no parameters will return the current URL.

Set the Eddystone URL to adafruit
AT+EDDYSTONEURL=http://www.adafruit.com
OK

Set the Eddystone URL to adafruit and advertise it even when connected
AT+EDDYSTONEURL=http://www.adafruit.com,1
OK

AT+EDDYSTONECONFIGEN
This command causes the Bluefruit LE module to enable the Eddystone URL config
service for the specified number of seconds.

This command should be used in combination with the Physical Web application from
Google, available for Android (https://adafru.it/edi) or iOS (https://adafru.it/edj). Run

•
•

•

©Adafruit Industries Page 42 of 131

https://github.com/google/eddystone/tree/master/eddystone-url
https://play.google.com/store/apps/details?id=physical_web.org.physicalweb
https://itunes.apple.com/us/app/physical-web/id927653608?mt=8

this command then select the 'Edit URL' option from the app to change the destination
URL over the air.

Codebase Revision: 0.6.6

Parameters: The number of seconds to advertised the config service UUID

Output: None

Start advertising the Eddystone config service for 5 minutes (300s)
AT+EDDYSTONECONFIGEN=300
OK

AT+EDDYSTONESERVICEEN
Adds or removes the Eddystone service from the GATT table (requires a reset to take
effect).

Codebase Revision: 0.7.0

Parameters: Whether or not the Eddystone service should be enabled or not, using
on of the following values:

on
off
1
0

Output: If the command is executed with no parameters it will disable a numeric value
indicating whether the service is enabled (1) or disabled (0).

Enable Eddystone service
AT+EddyStonServiceEn=on
OK

AT+EddyStonServiceEn=1
OK

Disable Eddystone service
AT+EddyStonServiceEn=off
OK

•
•
•
•

You must perform a system reset for this command to take effect.

©Adafruit Industries Page 43 of 131

AT+EddyStonServiceEn=0
OK

AT+EDDYSTONEBROADCAST
This command can be used to start of stop advertising the Eddystone payload using
the URL stored in non-volatile memory (NVM).

Codebase Revision: 0.7.0

Parameters: Whether or not the payload should be broadcast, using one of the
following values:

on
off
1
0

Output: If executed with no parameters, the current broadcast state will be displayed
as a numeric value.

Enable broadcasting current setting of EddyStone (stored previously on nvm)
AT+EddyStoneBroadcast=on
OK

AT+EddyStoneBroadcast=1
OK

Disable broadcasting current setting of EddyStone (still stored on nvm)
AT+EddyStoneBroadcast=off
OK

AT+EddyStoneBroadcast=0
OK

BLE Generic
The following general purpose BLE commands are available on Bluefruit LE modules:

AT+BLEPOWERLEVEL
Gets or sets the current transmit power level for the module's radio (higher transmit
power equals better range, lower transmit power equals better battery life).

•
•
•
•

©Adafruit Industries Page 44 of 131

Codebase Revision: 0.3.0

Parameters: The TX power level (in dBm), which can be one of the following values
(from lowest to higher transmit power):

-40
-20
-16
-12
-8
-4
0
4

Output: The current transmit power level (in dBm)

Get the current TX power level (in dBm)
AT+BLEPOWERLEVEL
0
OK

Set the TX power level to 4dBm (maximum value)
AT+BLEPOWERLEVEL=4
OK

Set the TX power level to -12dBm (better battery life)
AT+BLEPOWERLEVEL=-12
OK

Set the TX power level to an invalid value
AT+BLEPOWERLEVEL=-3
ERROR

AT+BLEGETADDRTYPE
Gets the address type (for the 48-bit BLE device address).

Normally this will be '1' (random), which means that the module uses a 48-bit address
that was randomly generated during the manufacturing process and written to the die
by the manufacturer.

•
•
•
•
•
•
•
•

The updated power level will take effect as soon as the command is entered. If
the device isn't connected to another device, advertising will stop momentarily
and then restart once the new power level has taken effect.

©Adafruit Industries Page 45 of 131

Random does not mean that the device address is randomly generated every time,
only that a one-time random number is used.

Codebase Revision: 0.3.0

Parameters: None

Output: The address type, which can be one of the following values:

0 = public
1 = random

AT+BLEGETADDRTYPE
1
OK

AT+BLEGETADDR
Gets the 48-bit BLE device address.

Codebase Revision: 0.3.0

Parameters: None

Output: The 48-bit BLE device address in the following format: 'AA:BB:CC:DD:EE:FF'

AT+BLEGETADDR
E4:C6:C7:31:95:11
OK

AT+BLEGETPEERADDR
Gets the 48-bit address of the peer (central) device we are connected to.

Codebase Revision: 0.6.5

Parameters: None

Output: The 48-bit address of the connected central device in hex format. The
command will return ERROR if we are not connected to a central device.

•
•

©Adafruit Industries Page 46 of 131

AT+BLEGETPEERADDR
48:B2:26:E6:C1:1D
OK

AT+BLEGETRSSI
Gets the RSSI value (Received Signal Strength Indicator), which can be used to
estimate the reliability of data transmission between two devices (the lower the
number the better).

Codebase Revision: 0.3.0

Parameters: None

Output: The RSSI level (in dBm) if we are connected to a device, otherwise '0'

Connected to an external device
AT+BLEGETRSSI
-46
OK

Not connected to an external device
AT+BLEGETRSSI
0
OK

BLE Services
The following commands allow you to interact with various GATT services present on
Bluefruit LE modules when running in Command Mode.

AT+BLEUARTTX
This command will transmit the specified text message out via the UART
Service (https://adafru.it/iCn) while you are running in Command Mode.

Codebase Revision: 0.3.0

Please note that the address returned by the central device is almost always a
random value that will change over time, and this value should generally not be
trusted. This command is provided for certain edge cases, but is not useful in
most day to day scenarios.

©Adafruit Industries Page 47 of 131

file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/uart-service
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/uart-service

Parameters: The message payload to transmit. The payload can be up to 240
characters (since AT command strings are limited to a maximum of 256 bytes total).

Output: This command will produce an ERROR message if you are not connected to a
central device, or if the internal TX FIFO on the Bluefruit LE module is full.

As of firmware release 0.6.2 and higher, AT+BLEUARTTX can accept a limited set
of escape code sequences:

\r = carriage return
\n = new line
\t = tab
\b = backspace
\\ = backward slash

As of firmware release 0.6.7 and higher, AT+BLEUARTTX can accept the following
escape code sequence since AT+BLEUARTTX=? has a specific meaning to the AT
parser:

\? = transmits a single question mark

As of firmware release 0.7.6 and higher, AT+BLEUARTTX can accept the following
escape code sequence:

\+ = transmit a single '+' character without having to worry about `+++` mode
switch combinations

Send a string when connected to another device
AT+BLEUARTTX=THIS IS A TEST
OK

Send a string when not connected
AT+BLEUARTTX=THIS IS A TEST
ERROR

•
•
•
•
•

•

•

ESCAPE SEQUENCE NOTE: If you are trying to send escape sequences in code
via something like 'ble.print("...");' please note that you will need to send a double
back-slash for the escape code to arrive as-intended in the AT command. For
example: ble.println("AT+BLEUARTTX=Some Test\\r\\n");

You must be connected to another device for this command to execute

©Adafruit Industries Page 48 of 131

TX FIFO Buffer Handling

Starting with firmware version 0.6.7, when the TX FIFO buffer is full a 200ms blocking
delay will be used to see if any free space becomes available in the FIFO before
returning ERROR. The exact process is detailed in the flow chart below:

You can use the AT+BLEUARTFIFO=TX (https://adafru.it/id3) command to check the
size of the TX FIFO before sending data to ensure that you have enough free space
available in the buffer.

The TX FIFO has the following size, depending on the firmware version used:

Firmware <=0.6.6: 160 characters wide
Firmware >=0.6.7: 1024 characters wide

Note: The TX FIFO full check will happen for each GATT transaction (of up to 20
bytes of data each), so large data transfers may have multiple 200ms wait states.

•
•

It IS possible with large data transfers that part of the payload can be
transmitted, and the command can still produce an ERROR if the FIFO doesn't
empty in time in the middle of the payload transfer (since data is transmitted in
maximum 20 byte chunks). If you need to ensure reliable data transfer, you
should always check the TX FIFO size before sending data, which you can do
using the AT+BLEUARTFIFO command. If not enough space is available for the
entire payload, add a SW delay until enough space is available. Any single

©Adafruit Industries Page 49 of 131

AT+BLEUARTTXF
This is a convenience function the serves the same purpose as AT+BLEUARTTX, but
data is immediately sent in a single BLE packet ('F' for force packet). This command
will accept a maximum of 20 characters, which is the limit of what can be send in a
single packet.

Codebase Revision: 0.7.6

Parameters: See AT+BLEUARTTX

Output: See AT+BLEUARTTX

AT+BLEUARTRX
This command will dump the UART service (https://adafru.it/iCn)'s RX buffer to the
display if any data has been received from from the UART service while running in
Command Mode. The data will be removed from the buffer once it is displayed using
this command.

Any characters left in the buffer when switching back to Data Mode will cause the
buffered characters to be displayed as soon as the mode switch is complete (within
the limits of available buffer space, which is 1024 bytes on current black 32KB SRAM
devices, or 160 bytes for the blue first generation BLEFriend board based on 16KB
SRAM parts).

Codebase Revision: 0.3.0

Parameters: None

Output: The RX buffer's content if any data is available, otherwise nothing.

Command results when data is available
AT+BLEUARTRX

AT+BLEUARTTX command can fit into the FIFO, but multiple large instances of
this command may cause the FIFO to fill up mid transfer.

You can also use the AT+BLEUARTFIFO=RX command to check if any incoming
data is available or not.

©Adafruit Industries Page 50 of 131

file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/uart-service

Sent from Android
OK

Command results when no data is available
AT+BLEUARTRX
OK

AT+BLEUARTFIFO
This command will return the free space available in the BLE UART TX and RX FIFOs.
 If you are transmitting large chunks of data, you may want to check if you have
enough free space in the TX FIFO before sending, keeping in mind that individual
GATT packets can contain up to 20 user bytes each.

Codebase Revision: 0.6.7

Parameters: Running this command with no parameters will return two comma-
separated values indicating the free space in the TX buffer, following by the RX buffer.
 To request a specific buffer, you can execute the command with either a "TX" or "RX"
value (For example: "AT+BLEUARTFIFO=TX").

Output: The free space remaining in the TX and RX FIFO buffer if no parameter is
present, otherwise the free space remaining in the specified FIFO buffer.

AT+BLEUARTFIFO
1024,1024
OK

AT+BLEUARTFIFO=TX
1024
OK

AT+BLEUARTFIFO=RX
1024
OK

AT+BLEKEYBOARDEN
This command will enable GATT over HID (GoH) keyboard support, which allows you
to emulate a keyboard on supported iOS and Android devices. By default HID
keyboard support is disabled, so you need to set BLEKEYBOARDEN to 1 and then
perform a system reset before the keyboard will be enumerated and appear in the
Bluetooth preferences on your phone, where if can be bonded as a BLE keyboard.

Codebase Revision: 0.5.0

©Adafruit Industries Page 51 of 131

Parameters: 1 or 0 (1 = enable, 0 = disable)

Output: None

Enable BLE keyboard support then reset
AT+BLEKEYBOARDEN=1
OK
ATZ
OK

Disable BLE keyboard support then reset
AT+BLEKEYBOARDEN=0
OK
ATZ
OK

AT+BLEKEYBOARD
Sends text data over the BLE keyboard interface (if it has previously been enabled via
AT+BLEKEYBOARDEN).

Any valid alpha-numeric character can be sent, and the following escape sequences
are also supported:

\r - Carriage Return
\n - Line Feed
\b - Backspace
\t - Tab
\\ - Backslash

As of version 0.6.7 you can also use the following escape code when sending a single
character ('AT+BLEKEYBOARD=?' has another meaning for the AT parser):

\? - Question mark

As of firmware version 0.6.6 this command is now an alias for AT+BLEHIDEN

You must perform a system reset (ATZ) before the changes take effect!

Before you can use your HID over GATT keyboard, you will need to bond your
mobile device with the Bluefruit LE module in the Bluetooth preferences panel.

•
•
•
•
•

•

©Adafruit Industries Page 52 of 131

Codebase Revision: 0.5.0

Parameters: The text string (optionally including escape characters) to transmit

Output: None

Send a URI with a new line ending to execute in Chrome, etc.
AT+BLEKEYBOARD=http://www.adafruit.com\r\n
OK

Send a single question mark (special use case, 0.6.7+)
AT+BLEKEYBOARD=\?
OK

AT+BLEKEYBOARDCODE
Sends a raw hex sequence of USB HID keycodes to the BLE keyboard interface
including key modifiers and up to six alpha-numeric characters.

This command accepts the following string-encoded byte array payload, matching the
way HID over GATT sends keyboard data:

Byte 0: Modifier
Byte 1: Reserved (should always be 00)
Bytes 2..7: Hexadecimal value(s) corresponding to the HID keys (if no character
is used you can enter '00' or leave trailing characters empty)

After a keycode sequence is sent with the AT+BLEKEYBOARDCODE command, you
must send a second AT+BLEKEYBOARDCODE command with at least two 00
characters to indicate the keys were released!

Modifier Values

The modifier byte can have one or more of the following bits set:

Bit 0 (0x01): Left Control
Bit 1 (0x02): Left Shift
Bit 2 (0x04): Left Alt
Bit 3 (0x08): Left Window
Bit 4 (0x10): Right Control
Bit 5 (0x20): Right Shift

•
•
•

•
•
•
•
•
•

©Adafruit Industries Page 53 of 131

Bit 6 (0x40): Right Alt
Bit 7 (0x80): Right Window

Codebase Revision: 0.5.0

Parameters: A set of hexadecimal values separated by a hyphen ('-'). Note that these
are HID scan code values, not standard ASCII values!

Output: None

HID Keyboard Codes

A list of hexademical-format HID keyboard codes can be found here (https://adafru.it/
cQV) (see section 7), and are listed below for convenience sake:

0x00Reserved (no event indicated)
0x01Keyboard ErrorRollOver
0x02Keyboard POSTFail
0x03Keyboard ErrorUndefined
0x04Keyboard a and A
0x05Keyboard b and B
0x06Keyboard c and C
0x07Keyboard d and D
0x08Keyboard e and E
0x09Keyboard f and F
0x0AKeyboard g and G
0x0BKeyboard h and H
0x0CKeyboard i and I
0x0DKeyboard j and J
0x0EKeyboard k and K
0x0FKeyboard l and L
0x10Keyboard m and M
0x11Keyboard n and N
0x12Keyboard o and O
0x13Keyboard p and P
0x14Keyboard q and Q
0x15Keyboard r and R
0x16Keyboard s and S
0x17Keyboard t and T
0x18Keyboard u and U
0x19Keyboard v and V
0x1AKeyboard w and W
0x1BKeyboard x and X
0x1CKeyboard y and Y
0x1DKeyboard z and Z
0x1EKeyboard 1 and !
0x1FKeyboard 2 and @
0x20Keyboard 3 and #
0x21Keyboard 4 and $

•
•

HID key code values don't correspond to ASCII key codes! For example, 'a' has
an HID keycode value of '04', and there is no keycode for an upper case 'A' since
you use the modifier to set upper case values. For details, google 'usb hid
keyboard scan codes', and see the example below.

©Adafruit Industries Page 54 of 131

http://www.freebsddiary.org/APC/usb_hid_usages.php

0x22Keyboard 5 and %
0x23Keyboard 6 and ^
0x24Keyboard 7 and &
0x25Keyboard 8 and *
0x26Keyboard 9 and (
0x27Keyboard 0 and)
0x28Keyboard Return (ENTER)
0x29Keyboard ESCAPE
0x2AKeyboard DELETE (Backspace)
0x2BKeyboard Tab
0x2CKeyboard Spacebar
0x2DKeyboard - and (underscore)
0x2EKeyboard = and +
0x2FKeyboard [and {
0x30Keyboard] and }
0x31Keyboard \ and |
0x32Keyboard Non-US # and ~
0x33Keyboard ; and :
0x34Keyboard ' and "
0x35Keyboard Grave Accent and Tilde
0x36Keyboard, and <
0x37Keyboard . and >
0x38Keyboard / and ?
0x39Keyboard Caps Lock
0x3AKeyboard F1
0x3BKeyboard F2
0x3CKeyboard F3
0x3DKeyboard F4
0x3EKeyboard F5
0x3FKeyboard F6
0x40Keyboard F7
0x41Keyboard F8
0x42Keyboard F9
0x43Keyboard F10
0x44Keyboard F11
0x45Keyboard F12
0x46Keyboard PrintScreen
0x47Keyboard Scroll Lock
0x48Keyboard Pause
0x49Keyboard Insert
0x4AKeyboard Home
0x4BKeyboard PageUp
0x4CKeyboard Delete Forward
0x4DKeyboard End
0x4EKeyboard PageDown
0x4FKeyboard RightArrow
0x50Keyboard LeftArrow
0x51Keyboard DownArrow
0x52Keyboard UpArrow
0x53Keypad Num Lock and Clear
0x54Keypad /
0x55Keypad *
0x56Keypad -
0x57Keypad +
0x58Keypad ENTER
0x59Keypad 1 and End
0x5AKeypad 2 and Down Arrow
0x5BKeypad 3 and PageDn
0x5CKeypad 4 and Left Arrow
0x5DKeypad 5
0x5EKeypad 6 and Right Arrow
0x5FKeypad 7 and Home
0x60Keypad 8 and Up Arrow
0x61Keypad 9 and PageUp
0x62Keypad 0 and Insert
0x63Keypad . and Delete
0x64Keyboard Non-US \ and |
0x65Keyboard Application
0x66Keyboard Power

©Adafruit Industries Page 55 of 131

0x67Keypad =
0x68Keyboard F13
0x69Keyboard F14
0x6AKeyboard F15
0x6BKeyboard F16
0x6CKeyboard F17
0x6DKeyboard F18
0x6EKeyboard F19
0x6FKeyboard F20
0x70Keyboard F21
0x71Keyboard F22
0x72Keyboard F23
0x73Keyboard F24
0x74Keyboard Execute
0x75Keyboard Help
0x76Keyboard Menu
0x77Keyboard Select
0x78Keyboard Stop
0x79Keyboard Again
0x7AKeyboard Undo
0x7BKeyboard Cut
0x7CKeyboard Copy
0x7DKeyboard Paste
0x7EKeyboard Find
0x7FKeyboard Mute
0x80Keyboard Volume Up
0x81Keyboard Volume Down
0x82Keyboard Locking Caps Lock
0x83Keyboard Locking Num Lock
0x84Keyboard Locking Scroll Lock
0x85Keypad Comma
0x86Keypad Equal Sign
0x87Keyboard International1
0x88Keyboard International2
0x89Keyboard International3
0x8AKeyboard International4
0x8BKeyboard International5
0x8CKeyboard International6
0x8DKeyboard International7
0x8EKeyboard International8
0x8FKeyboard International9
0x90Keyboard LANG1
0x91Keyboard LANG2
0x92Keyboard LANG3
0x93Keyboard LANG4
0x94Keyboard LANG5
0x95Keyboard LANG6
0x96Keyboard LANG7
0x97Keyboard LANG8
0x98Keyboard LANG9
0x99Keyboard Alternate Erase
0x9AKeyboard SysReq/Attention
0x9BKeyboard Cancel
0x9CKeyboard Clear
0x9DKeyboard Prior
0x9EKeyboard Return
0x9FKeyboard Separator
0xA0Keyboard Out
0xA1Keyboard Oper
0xA2Keyboard Clear/Again
0xA3Keyboard CrSel/Props
0xA4Keyboard ExSel
0xE0Keyboard LeftControl
0xE1Keyboard LeftShift
0xE2Keyboard LeftAlt
0xE3Keyboard Left GUI
0xE4Keyboard RightControl
0xE5Keyboard RightShift

©Adafruit Industries Page 56 of 131

0xE6Keyboard RightAlt
0xE7Keyboard Right GUI

The following example shows how you can use this command:

send 'abc' with left shift key (0x02) --> 'ABC'
AT+BLEKEYBOARDCODE=02-00-04-05-06-00-00
OK
Indicate that the keys were released (mandatory!)
AT+BLEKEYBOARDCODE=00-00
OK

AT+BLEHIDEN
This command will enable GATT over HID (GoH) support, which allows you to emulate
a keyboard, mouse or media controll on supported iOS, Android, OSX and Windows
10 devices. By default HID support is disabled, so you need to set BLEHIDEN to 1 and
then perform a system reset before the HID devices will be enumerated and appear in
on your central device.

Codebase Revision: 0.6.6

Parameters: 1 or 0 (1 = enable, 0 = disable)

Output: None

Enable GATT over HID support on the Bluefruit LE module
AT+BLEHIDEN=1
OK

Reset so that the changes take effect
ATZ
OK

You normally need to 'bond' the Bluefruit LE peripheral to use the HID
commands, and the exact bonding process will change from one operating
system to another.

If you have previously bonded to a device and need to clear the bond, you can
run the AT+FACTORYRESET command which will erase all stored bond data on
the Bluefruit LE module.

©Adafruit Industries Page 57 of 131

AT+BLEHIDMOUSEMOVE
Moves the HID mouse or scroll wheen position the specified number of ticks.

All parameters are signed 8-bit values (-128 to +127). Positive values move to the right
or down, and origin is the top left corner.

Codebase Revision: 0.6.6

Parameters: X Ticks (+/-), Y Ticks (+/-), Scroll Wheel (+/-), Pan Wheel (+/-)

Output: None

Move the mouse 100 ticks right and 100 ticks down
AT+BLEHIDMOUSEMOVE=100,100
OK

Scroll down 20 pixels or lines (depending on context)
AT+BLEHIDMOUSEMOVE=,,20,
OK

Pan (horizontal scroll) to the right (exact behaviour depends on OS)
AT+BLEHIDMOUSEMOVE=0,0,0,100

AT+BLEHIDMOUSEBUTTON
Manipulates the HID mouse buttons via the specific string(s).

Codebase Revision: 0.6.6

Parameters: Button Mask String [L][R][M][B][F], Action [PRESS][CLICK][DOUBLECLICK]
[HOLD]

L = Left Button
R = Right Button
M = Middle Button
B = Back Button
F = Forward Button
If the second parameter (Action) is "HOLD", an optional third parameter can be
passed specifying how long the button should be held in milliseconds.

Output: None

•
•
•
•
•
•

©Adafruit Industries Page 58 of 131

Double click the left mouse button
AT+BLEHIDMOUSEBUTTON=L,doubleclick
OK

Press the left mouse button down, move the mouse, then release L
This is required to perform 'drag' then stop type operations
AT+BLEHIDMOUSEBUTTON=L
OK
AT+BLEHIDMOUSEMOVE=-100,50
OK
AT+BLEHIDMOUSEBUTTON=0
OK

Hold the backward mouse button for 200 milliseconds (OS dependent)
AT+BLEHIDMOUSEBUTTON=B,hold,200
OK

AT+BLEHIDCONTROLKEY
Sends HID media control commands for the bonded device (adjust volume, screen
brightness, song selection, etc.).

Codebase Revision: 0.6.6

Parameters: The HID control key to send, followed by an optional delay in ms to hold
the button

The control key string can be one of the following values:

System Controls (works on most systems)

BRIGHTNESS+
BRIGHTNESS-

Media Controls (works on most systems)

PLAYPAUSE
MEDIANEXT
MEDIAPREVIOUS
MEDIASTOP

Sound Controls (works on most systems)

VOLUME
MUTE
BASS
TREBLE
BASS_BOOST
VOLUME+

•

◦
◦

•

◦
◦
◦
◦

•

◦
◦
◦
◦
◦
◦

©Adafruit Industries Page 59 of 131

VOLUME-
BASS+
BASS-
TREBLE+
TREBLE-

Application Launchers (Windows 10 only so far)

EMAILREADER
CALCULATOR
FILEBROWSER

Browser/File Explorer Controls (Firefox on Windows/Android only)

SEARCH
HOME
BACK
FORWARD
STOP
REFRESH
BOOKMARKS

You can also send a raw 16-bit hexadecimal value in the '0xABCD' format. A full list of
16-bit 'HID Consumer Control Key Codes' can be found here (https://adafru.it/cQV)
(see section 12).

Output: Normally none.

Toggle the sound on the bonded central device
AT+BLEHIDCONTROLKEY=MUTE
OK

Hold the VOLUME+ key for 500ms
AT+BLEHIDCONTROLKEY=VOLUME+,500
OK

Send a raw 16-bit Consumer Key Code (0x006F = Brightness+)
AT+BLEHIDCONTROLKEY=0x006F
OK

◦
◦
◦
◦
◦

•

◦
◦
◦

•

◦
◦
◦
◦
◦
◦
◦

If you are not bonded and connected to a central device, this command will
return ERROR. Make sure you are connected and HID support is enabled before
running these commands.

©Adafruit Industries Page 60 of 131

http://www.freebsddiary.org/APC/usb_hid_usages.php

AT+BLEHIDGAMEPADEN
Enables HID gamepad support in the HID service. By default the gamepad is disabled
as of version 0.7.6 of the firmware since it causes problems on iOS and OS X and
should only be used on Android and Windows based devices.

Codebase Revision: 0.7.6

Parameters: Whether the gamepad service should be enabled via one of the
following values:

on
off
1
0

Output: If executed with no parameters, a numeric value will be returned indicating
whether the battery service is enabled (1) or disabled (0).

AT+BLEHIDGAMEPAD
Sends a specific HID gamepad payload out over BLE

Codebase Revision: 0.7.0

Parameters: The following comma-separated parameters are available:

x: LEFT, RIGHT: If X=-1 then 'LEFT' is pressed, if X=1 then 'RIGHT' is pressed, if
X=0 then neither left nor right are pressed
y: UP, DOWN: If Y=-1 then 'UP' is pressed, if Y=1 then 'DOWN' is pressed, if Y=0
then neither up nor down are pressed
buttons: 0x00-0xFF, which is a bit mask for 8 button 0-7

Output: Nothing

•
•
•
•

This command requires a system reset to take effect.

•

•

•

©Adafruit Industries Page 61 of 131

Press 'RIGHT' and 'Button0' at the same time
AT+BLEHIDGAMEPAD=1,0,0x01

Press 'UP' and 'Button1' + 'Button0' at the same time
AT+BLEHIDGAMEPAD=0,-1,0x03

AT+BLEMIDIEN
Enables or disables the BLE MIDI service.

Codebase Revision: 0.7.0

Parameters: State, which can be one of:

on
off
0
1

Output: If executed with no parameters, it will return the current state of the MIDI
service as an integer indicating if it is enabled (1) or disabled (0).

Check the current state of the MIDI service
AT+BLEMIDIEN
1
OK

Enable the MIDI Service
AT+BLEMIDIEN=1
OK

HID gamepad is disabled by default as of version 0.7.6, and must first be enabled
via AT+BLEHIDGAMEPADEN=1 before it can be used.

Note: You need to send both 'press' and 'release' events for each button,
otherwise the system will think that the button is still pressed until a release state
is received.

•
•
•
•

Note: This command will require a reset to take effect.

©Adafruit Industries Page 62 of 131

AT+BLEMIDIRX
Reads an incoming MIDI character array from the buffer.

Codebase Revision: 0.7.0

Parameters: None

Output: The midi event in byte array format

AT+BLEMIDIRX
90-3C-7F
OK

AT+BLEMIDITX
Sends a MIDI event to host.

Codebase Revision: 0.7.0

Parameters: The MIDI event in hex array format, which can be either:

A series of full MIDI events (up to 4 events)
Exactly 1 full MIDI event + several running events without status (up to 7)

Output: None

Send 1 event (middle C with max velocity)
AT+BLEMIDITX=90-3C-7F
OK

Send 2 events
AT+BLEMIDITX=90-3C-7F-A0-3C-7F
OK

Send 1 full event + running event
AT+BLEMIDITX=90-3C-7F-3C-7F
OK

AT+BLEBATTEN
Enables the Battery Service following the definition from the Bluetooth SIG.

•
•

©Adafruit Industries Page 63 of 131

Codebase Revision: 0.7.0

Parameters: Whether the battery service should be enabled, via on of the following
values:

on
off
1
0

Output: If executed with no parameters, a numeric value will be returned indicating
whether the battery service is enabled (1) or disabled (0).

Enable the Battery Service
AT+BLEBATTEN=1
OK

AT+BLEBATTVAL
Sets the current battery level in percentage (0..100) for the Battery Service (if
enabled).

Codebase Revision: 0.7.0

Parameters: The percentage for the battery in the range of 0..100.

Output: If executed with no parameters, the current battery level stored in the
characteristic.

Set the battery level to 72%
AT+BLEBATTVAL=72
OK

BLE GAP
GAP (https://adafru.it/iCo), which stands for the Generic Access Profile, governs
advertising and connections with Bluetooth Low Energy devices.

•
•
•
•

This command requires a system reset to take effect.

©Adafruit Industries Page 64 of 131

file:///home/introduction-to-bluetooth-low-energy/gap

The following commands can be used to configure the GAP settings on the BLE
module.

You can use these commands to modify the advertising data (for ex. the device name
that appears during the advertising process), to retrieve information about the
connection that has been established between two devices, or the disconnect if you
no longer wish to maintain a connection.

AT+GAPCONNECTABLE
This command can be used to prevent the device from being 'connectable'.

Codebase Revision: 0.7.0

Parameters: Whether or not the device should advertise itself as connectable, using
one of the following values:

yes
no
1
0

Output: The 'connectable' state of the device if no parameter is provided

Make the device non-connectable (advertising only)
AT+GAPCONNECTABLE=0
OK

Check the current connectability status
AT+GAPCONNECTABLE
1
OK

AT+GAPGETCONN
Diplays the current connection status (if we are connected to another BLE device or
not).

Codebase Revision: 0.3.0

Parameters: None

•
•
•
•

©Adafruit Industries Page 65 of 131

Output: 1 if we are connected, otherwise 0

Connected
AT+GAPGETCONN
1
OK

Not connected
AT+GAPGETCONN
0
OK

AT+GAPDISCONNECT
Disconnects to the external device if we are currently connected.

Codebase Revision: 0.3.0

Parameters: None

Output: None

AT+GAPDISCONNECT
OK

AT+GAPDEVNAME
Gets or sets the device name, which is included in the advertising payload for the
Bluefruit LE module

Codebase Revision: 0.3.0

Parameters:

None to read the current device name
The new device name if you want to change the value

Output: The device name if the command is executed in read mode

•
•

Updating the device name will persist the new value to non-volatile memory, and
the updated name will be used when the device is reset. To reset the device to

©Adafruit Industries Page 66 of 131

Read the current device name
AT+GAPDEVNAME
UART
OK

Update the device name to 'BLEFriend'
AT+GAPDEVNAME=BLEFriend
OK
Reset to take effect
ATZ
OK

AT+GAPDELBONDS
Deletes and bonding information stored on the Bluefruit LE module.

Codebase Revision: 0.3.0

Parameters: None

Output: None

AT+GAPDELBONDS
OK

AT+GAPINTERVALS
Gets or sets the various advertising and connection intervals for the Bluefruit LE
module.

Be extremely careful with this command since it can be easy to cause problems
changing the intervals, and depending on the values selected some mobile devices
may no longer recognize the module or refuse to connect to it.

Codebase Revision: 0.3.0

Parameters: If updating the GAP intervals, the following comma-separated values can
be entered:

Minimum connection interval (in milliseconds)
Maximum connection interval (in milliseconds)

factory settings and clean the config data from memory run the
AT+FACTORYRESET command.

•
•

©Adafruit Industries Page 67 of 131

Fast Advertising interval (in milliseconds)
Fast Advertising timeout (in seconds)
>= 0.7.0: Low power advertising interval (in milliseconds), default = 417.5 ms

Please note the following min and max limitations for the GAP parameters:

Absolute minimum connection interval: 10ms
Absolute maximum connection interval: 4000ms
Absolute minimum fast advertising interval: 20ms
Absolute maximum fast advertisting interval: 10240ms
Absolute minimum low power advertising interval: 20ms
Absolute maximum low power advertising interval: 10240ms

Output: If reading the current GAP interval settings, the following comma-separated
information will be displayed:

Minimum connection interval (in milliseconds)
Maximum connection interval (in milliseconds)
Advertising interval (in milliseconds)
Advertising timeout (in milliseconds)

Read the current GAP intervals
AT+GAPINTERVALS
20,100,100,30

Update all values
AT+GAPINTERVALS=20,200,200,30
OK

•
•
•

To save power, the Bluefruit modules automatically drop to a lower advertising
rate after 'fast advertising timeout' seconds. The default value is 30 seconds
('Fast Advertising Timeout'). The low power advertising interval is hard-coded to
approximately 0.6s in firmware < 0.7.0. Support to control the low power interval
was added in the 0.7.0 firmware release via an optional fifth parameter.

•
•
•
•
•
•

If you only wish to update one interval value, leave the other comma-separated
values empty (ex. ',,110,' will only update the third value, advertising interval).

•
•
•
•

Updating the GAP intervals will persist the new values to non-volatile memory,
and the updated values will be used when the device is reset. To reset the
device to factory settings and clean the config data from memory run the
AT+FACTORYRESET command.

©Adafruit Industries Page 68 of 131

Update only the advertising interval
AT+GAPINTERVALS=,,150,
OK

AT+GAPSTARTADV
Causes the Bluefruit LE module to start transmitting advertising packets if this isn't
already the case (assuming we aren't already connected to an external device).

Codebase Revision: 0.3.0

Parameters: None

Output: None

Command results when advertising data is not being sent
AT+GAPSTARTADV
OK

Command results when we are already advertising
AT+GAPSTARTADV
ERROR

Command results when we are connected to another device
AT+GAPSTARTADV
ERROR

AT+GAPSTOPADV
Stops advertising packets from being transmitted by the Bluefruit LE module.

Codebase Revision: 0.3.0

Parameters: None

Output: None

AT+GAPSTOPADV
OK

©Adafruit Industries Page 69 of 131

AT+GAPSETADVDATA
Sets the raw advertising data payload to the specified byte array (overriding the
normal advertising data), following the guidelines in the Bluetooth 4.0 or 4.1 Core
Specification (https://adafru.it/ddd).

In particular, Core Specification Supplement (CSS) v4 contains the details on common
advertising data fields like 'Flags' (Part A, Section 1.3) and the various Service UUID
lists (Part A, Section 1.1). A list of all possible GAP Data Types is available on the
Bluetooth SIG's Generic Access Profile (https://adafru.it/cYs) page.

The Advertising Data payload consists of Generic Access Profile (https://adafru.it/
cYs) data that is inserted into the advertising packet in the following format: [U8:LEN]
[U8:Data Type Value] [n:Value]

For example, to insert the 'Flags' Data Type (Data Type Value 0x01), and set the value
to 0x06/0b00000110 (BR/EDR Not Supported and LE General Discoverable Mode) we
would use the following byte array:

02-01-06

0x02 indicates the number of bytes in the entry
0x01 is the 'Data Type Value (https://adafru.it/cYs)' and indicates that this is a
'Flag'
0x06 (0b00000110) is the Flag value, and asserts the following fields (see Core
Specification 4.0, Volume 3, Part C, 18.1):

LE General Discoverable Mode (i.e. anyone can discover this device)

WARNING: This command requires a degree of knowledge about the low level
details of the Bluetooth 4.0 or 4.1 Core Specification, and should only be used by
expert users. Misuse of this command can easily cause your device to be
undetectable by central devices in radio range.

WARNING: This command will override the normal advertising payload and may
prevent some services from acting as expected.

To restore the advertising data to the normal default values use the
AT+FACTORYRESET command.

•
•

•

◦

©Adafruit Industries Page 70 of 131

https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile
https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile
https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile

BR/EDR Not Supported (i.e. this is a Bluetooth Low Energy only device)

If we also want to include two 16-bit service UUIDs in the advertising data (so that
listening devices know that we support these services) we could append the
following data to the byte array:

05-02-0D-18-0A-18

0x05 indicates that the number of bytes in the entry (5)
0x02 is the 'Data Type Value (https://adafru.it/cYs)' and indicates that this is an
'Incomplete List of 16-bit Service Class UUIDs'
0x0D 0x18 is the first 16-bit UUID (which translates to 0x180D, corresponding to
the Heart Rate Service (https://adafru.it/ddB)).
0x0A 0x18 is another 16-bit UUID (which translates to 0x180A, corresponding to
the Device Information Service (https://adafru.it/ecj)).

Codebase Revision: 0.3.0

Parameters: The raw byte array that should be inserted into the advertising data
section of the advertising packet, being careful to stay within the space limits defined
by the Bluetooth Core Specification.

Response: None

Advertise as Discoverable and BLE only with 16-bit UUIDs 0x180D and 0x180A
AT+GAPSETADVDATA=02-01-06-05-02-0d-18-0a-18
OK

The results of this command can be seen in the screenshot below, taken from a
sniffer analyzing the advertising packets in Wireshark. The advertising data payload is
higlighted in blue in the raw byte array at the bottom of the image, and the packet
analysis is in the upper section:

◦

•
•

•

•

Including the service UUIDs is important since some mobile applications will only
work with devices that advertise a specific service UUID in the advertising
packet. This is true for most apps from Nordic Semiconductors, for example.

©Adafruit Industries Page 71 of 131

https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.heart_rate.xml
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml

BLE GATT
GATT (https://adafru.it/iCp), which standards for the Generic ATTribute Profile, governs
data organization and data exchanges between connected devices. One device (the
peripheral) acts as a GATT Server, which stores data in Attribute records, and the
second device in the connection (the central) acts as a GATT Client, requesting data
from the server whenever necessary.

The following commands can be used to create custom GATT services and
characteristics on the BLEFriend, which are used to store and exchange data.

Please note that any characteristics that you define here will automatically be saved
to non-volatile FLASH config memory on the device and re-initialised the next time
the device starts.

GATT Limitations
The commands below have the following limitations due to SRAM and resource
availability, which should be kept in mind when creating or working with customer
GATT services and characteristics.

These values apply to firmware 0.7.0 and higher:

Maximum number of services: 10
Maximum number of characteristics: 30

You need to perform a system reset via 'ATZ' before EACH of most of the
commands below will take effect!

•
•

©Adafruit Industries Page 72 of 131

file:///home/introduction-to-bluetooth-low-energy/gatt

Maximum buffer size for each characteristic: 32 bytes
Maximum number of CCCDs: 16

If you want to clear any previous config value, enter the 'AT+FACTORYRESET'
command before working on a new peripheral configuration.

AT+GATTCLEAR
Clears any custom GATT services and characteristics that have been defined on the
device.

Codebase Revision: 0.3.0

Parameters: None

Response: None

AT+GATTCLEAR
OK

AT+GATTADDSERVICE
Adds a new custom service definition to the device.

Codebase Revision: 0.3.0

Parameters: This command accepts a set of comma-separated key-value pairs that
are used to define the service properties. The following key-value pairs can be used:

UUID: The 16-bit UUID to use for this service. 16-bit values should be in
hexadecimal format (0x1234).
UUID128: The 128-bit UUID to use for this service. 128-bit values should be in
the following format: 00-11-22-33-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF

Response: The index value of the service in the custom GATT service lookup table.
(It's important to keep track of these index values to work with the service later.)

This value must be unique, and should not conflict with bytes 3+4 of the parent
service's 128-bit UUID.

•
•

•

•

©Adafruit Industries Page 73 of 131

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a battery service (UUID = 0x180F) to the peripheral
AT+GATTADDSERVICE=UUID=0x180F
1
OK

Add a battery measurement characteristic (UUID = 0x2A19), notify enabled
AT+GATTADDCHAR=UUID=0x2A19,PROPERTIES=0x10,MIN_LEN=1,VALUE=100
1
OK

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a custom service to the peripheral
AT+GATTADDSERVICE=UUID128=00-11-00-11-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF
1
OK

Add a custom characteristic to the above service (making sure that there
is no conflict between the 16-bit UUID and bytes 3+4 of the 128-bit service UUID)
AT+GATTADDCHAR=UUID=0x0002,PROPERTIES=0x02,MIN_LEN=1,VALUE=100
1
OK

AT+GATTADDCHAR
Adds a custom characteristic to the last service that was added to the peripheral (via
AT+GATTADDSERVICE).

Codebase Revision: 0.3.0

Note: Key values are not case-sensitive

Only one UUID type can be entered for the service (either UUID or UUID128)

AT+GATTADDCHAR must be run AFTER AT+GATTADDSERVICE, and will add the
new characteristic to the last service definition that was added.

As of version 0.6.6 of the Bluefruit LE firmware you can now use custom 128-bit
UUIDs with this command. See the example at the bottom of this command
description.

©Adafruit Industries Page 74 of 131

Parameters: This command accepts a set of comma-separated key-value pairs that
are used to define the characteristic properties. The following key-value pais can be
used:

UUID: The 16-bit UUID to use for the characteristic (which will be insert in the
3rd and 4th bytes of the parent services 128-bit UUID). This value should be
entered in hexadecimal format (ex. 'UUID=0x1234'). This value must be unique,
and should not conflict with bytes 3+4 of the parent service's 128-bit UUID.
PROPERTIES: The 8-bit characteristic properties field, as defined by the
Bluetooth SIG. The following values can be used:

0x02 - Read
0x04 - Write Without Response
0x08 - Write
0x10 - Notify
0x20 - Indicate

MIN_LEN: The minimum size of the values for this characteristic (in bytes, min =
1, max = 20, default = 1)
MAX_LEN: The maximum size of the values for the characteristic (in bytes, min =
1, max = 20, default = 1)
VALUE: The initial value to assign to this characteristic (within the limits of
'MIN_LEN' and 'MAX_LEN'). Value can be an integer ("-100", "27"), a hexadecimal
value ("0xABCD"), a byte array ("aa-bb-cc-dd") or a string ("GATT!").
>=0.7.0 - DATATYPE: This argument indicates the data type stored in the
characteristic, and is used to help parse data properly. It can be one of the
following values:

AUTO (0, default)
STRING (1)
BYTEARRAY (2)
INTEGER (3)

>=0.7.0 - DESCRIPTION: Adds the specified string as the characteristic
description entry
>=0.7.0 - PRESENTATION: Adds the specified value as the characteristic
presentation format entry

Response: The index value of the characteristic in the custom GATT characteristic
lookup table. (It's important to keep track of these characteristic index values to work
with the characteristic later.)

•

•

◦
◦
◦
◦
◦

•

•

•

•

◦
◦
◦
◦

•

•

Note: Key values are not case-sensitive

©Adafruit Industries Page 75 of 131

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a battery service (UUID = 0x180F) to the peripheral
AT+GATTADDSERVICE=UUID=0x180F
1
OK

Add a battery measurement characteristic (UUID = 0x2A19), notify enabled
AT+GATTADDCHAR=UUID=0x2A19,PROPERTIES=0x10,MIN_LEN=1,VALUE=100
1
OK

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a custom service to the peripheral
AT+GATTADDSERVICE=UUID128=00-11-00-11-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF
1
OK

Add a custom characteristic to the above service (making sure that there
is no conflict between the 16-bit UUID and bytes 3+4 of the 128-bit service UUID)
AT+GATTADDCHAR=UUID=0x0002,PROPERTIES=0x02,MIN_LEN=1,VALUE=100
1
OK

Version 0.6.6 of the Bluefruit LE firmware added the ability to use a new 'UUID128'
flag to add custom 128-bit UUIDs that aren't related to the parent service UUID (which
is used when passing the 16-bit 'UUID' flag).

To specify a 128-bit UUID for your customer characteristic, enter a value resembling
the following syntax:

Add a custom characteristic to the above service using a
custom 128-bit UUID
AT+GATTADDCHAR=UUID128=00-11-22-33-44-55-66-77-88-99-AA-BB-CC-DD-EE-
FF,PROPERTIES=0x02,MIN_LEN=1,VALUE=100
1
OK

Version 0.7.0 of the Bluefruit LE firmware added the new DESCRIPTION
and PRESENTATION keywoards, corresponding the the GATT Characteristic User
Description (https://adafru.it/oIA) and the GATT Characteristic Presentation
Format (https://adafru.it/oIB) Descriptors.

Make sure that the 16-bit UUID is unique and does not conflict with bytes 3+4 of
the 128-bit service UUID

©Adafruit Industries Page 76 of 131

https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?u=org.bluetooth.descriptor.gatt.characteristic_user_description.xml
https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?u=org.bluetooth.descriptor.gatt.characteristic_user_description.xml
https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?u=org.bluetooth.descriptor.gatt.characteristic_presentation_format.xml
https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?u=org.bluetooth.descriptor.gatt.characteristic_presentation_format.xml

The DESCRIPTION field is a string that contains a short text description of the
characteristic. Some apps may not display this data, but it should be visible using
something like the Master Control Panel application from Nordic on iOS and Android.

The PRESENTATION field contains a 7-byte payload that encapsulates the
characteristic presentation format data. It requires a specific set of bytes and values
to work properly. See the following link for details on how to format the
payload: https://developer.bluetooth.org/gatt/descriptors/Pages/
DescriptorViewer.aspx?
u=org.bluetooth.descriptor.gatt.characteristic_presentation_format.xml (https://
adafru.it/oIB)

The following example shows how you might use both of these new fields:

AT+GATTADDCHAR=UUID=0x2A37, PROPERTIES=0x10, MIN_LEN=2, MAX_LEN=3, VALUE=00-40,
 DESCRIPTION=HRM Measurement, PRESENTATION=17-00-AC-27-01-00-00

For the Characteristic Presentation Format we have:

Format = IEEE-11073 32-bit FLOAT (Decimal 23, Hex 0x17)
Exponent = 0/None
Unit = Thermodynamic temperature: Degrees Fahrenheit (0x27AC) - Bluetooth
LE Unit List (https://adafru.it/oID)
Namespace = Bluetooth SIG Assigned Number (0x01)
Description = None (0x0000)

The results from Nordic's Master Control Panel app can be seen below:

•
•
•

•
•

©Adafruit Industries Page 77 of 131

https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?u=org.bluetooth.descriptor.gatt.characteristic_presentation_format.xml
https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?u=org.bluetooth.descriptor.gatt.characteristic_presentation_format.xml
https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?u=org.bluetooth.descriptor.gatt.characteristic_presentation_format.xml
https://www.bluetooth.com/specifications/assigned-numbers/units
https://www.bluetooth.com/specifications/assigned-numbers/units

AT+GATTCHAR
Gets or sets the value of the specified custom GATT characteristic (based on the
index ID returned when the characteristic was added to the system via
AT+GATTADDCHAR).

Codebase Revision: 0.3.0

Parameters: This function takes one or two comma-separated functions (one
parameter = read, two parameters = write).

The first parameter is the characteristic index value, as returned from the
AT+GATTADDCHAR function. This parameter is always required, and if no
second parameter is entered the current value of this characteristic will be
returned.
The second (optional) parameter is the new value to assign to this characteristic
(within the MIN_SIZE and MAX_SIZE limits defined when creating it).

Response: If the command is used in read mode (only the characteristic index is
provided as a value), the response will display the current value of the characteristics.
 If the command is used in write mode (two comma-separated values are provided),
the characteristics will be updated to use the provided value.

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a battery service (UUID = 0x180F) to the peripheral
AT+GATTADDSERVICE=UUID=0x180F
1
OK

Add a battery measurement characteristic (UUID = 0x2A19), notify enabled
AT+GATTADDCHAR=UUID=0x2A19,PROPERTIES=0x10,MIN_LEN=1,VALUE=100
1
OK

Read the battery measurement characteristic (index ID = 1)
AT+GATTCHAR=1
0x64
OK

Update the battery measurement characteristic to 32 (hex 0x20)
AT+GATTCHAR=1,32
OK

Verify the previous write attempt
AT+GATTCHAR=1
0x20
OK

•

•

©Adafruit Industries Page 78 of 131

AT+GATTLIST
Lists all custom GATT services and characteristics that have been defined on the
device.

Codebase Revision: 0.3.0

Parameters: None

Response: A list of all custom services and characteristics defined on the device.

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a battery service (UUID = 0x180F) to the peripheral
AT+GATTADDSERVICE=UUID=0x180F
1
OK

Add a battery measurement characteristic (UUID = 0x2A19), notify enabled
AT+GATTADDCHAR=UUID=0x2A19,PROPERTIES=0x10,MIN_LEN=1,VALUE=100
1
OK

Add a custom service to the peripheral
AT+GATTADDSERVICE=UUID128=00-11-00-11-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF
2
OK

Add a custom characteristic to the above service (making sure that there
is no conflict between the 16-bit UUID and bytes 3+4 of the 128-bit service UUID)
AT+GATTADDCHAR=UUID=0x0002,PROPERTIES=0x02,MIN_LEN=1,VALUE=100
2
OK

Get a list of all custom GATT services and characteristics on the device
AT+GATTLIST
ID=01,UUID=0x180F
 ID=01,UUID=0x2A19,PROPERTIES=0x10,MIN_LEN=1,MAX_LEN=1,VALUE=0x64
ID=02,UUID=0x11, UUID128=00-11-00-11-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF
 ID=02,UUID=0x02,PROPERTIES=0x02,MIN_LEN=1,MAX_LEN=1,VALUE=0x64
OK

AT+GATTCHARRAW
This read only command reads binary (instead of ASCII) data from a characteristic. It is
non-printable but has less overhead and is easier when writing libraries in Arduino.

Codebase Revision: 0.7.0

Parameters: The numeric ID of the characteristic to display the data for

©Adafruit Industries Page 79 of 131

Output: Binary data corresponding to the specified characteristic.

Debug
The following debug commands are available on Bluefruit LE modules:

AT+DBGMEMRD
Displays the raw memory contents at the specified address.

Codebase Revision: 0.3.0

Parameters: The following comma-separated parameters can be used with this
command:

The starting address to read memory from (in hexadecimal form, with or without
the leading '0x')
The word size (can be 1, 2, 4 or 8)
The number of words to read

Output: The raw memory contents in hexadecimal format using the specified length
and word size (see examples below for details)

Read 12 1-byte values starting at 0x10000009
AT+DBGMEMRD=0x10000009,1,12
FF FF FF FF FF FF FF 00 04 00 00 00
OK

Try to read 2 4-byte values starting at 0x10000000
AT+DBGMEMRD=0x10000000,4,2
55AA55AA 55AA55AA
OK

Try to read 2 4-byte values starting at 0x10000009
This will fail because the Cortex M0 can't perform misaligned
reads, and any non 8-bit values must start on an even address
AT+DBGMEMRD=0x10000009,4,2
MISALIGNED ACCESS

Note: This is a specialized command and no NEWLINE is present at the end of
the command!

Use these commands with care since they can easily lead to a HardFault error on
the ARM core, which will cause the device to stop responding.

•

•
•

©Adafruit Industries Page 80 of 131

ERROR

AT+DBGNVMRD
Displays the raw contents of the config data section of non-volatile memory

Codebase Revision: 0.3.0

Properties: None

Output: The raw config data from non-volatile memory

AT+DBGNVMRD
FE CA 38 05 00 03 00 00 01 12 01 00 55 41 52 54 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 14 00 64 00 64 00 1E 00 00 00 00 00
00
00 01 00 00 00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

©Adafruit Industries Page 81 of 131

00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 BA FF 00 00
OK

AT+DBGSTACKSIZE
Returns the current stack size, to help detect stack overflow or detect stack memory
usage when optimising memory usage on the system.

Codebase Revision: 0.4.7

Parameters: None

Output: The current size of stack memory in bytes

AT+DBGSTACKSIZE
1032
OK

AT+DBGSTACKDUMP
Dumps the current stack contents. Unused sections of stack memory are filled with
'0xCAFEFOOD' to help determine where stack usage stops.

This command is purely for debug and development purposes.

Codebase Revision: 0.4.7

Parameters: None

Output: The memory contents of the entire stack region

AT+DBGSTACKDUMP
0x20003800: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003810: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003820: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003830: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003840: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003850: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003860: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003870: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003880: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003890: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200038A0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200038B0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200038C0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200038D0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200038E0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D

©Adafruit Industries Page 82 of 131

0x200038F0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003900: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003910: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003920: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003930: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003940: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003950: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003960: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003970: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003980: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003990: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200039A0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200039B0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200039C0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200039D0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200039E0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200039F0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A00: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A10: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A20: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A30: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A40: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A50: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A60: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A70: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A80: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A90: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003AA0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003AB0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003AC0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003AD0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003AE0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003AF0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B00: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B10: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B20: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B30: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B40: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B50: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B60: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B70: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B80: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B90: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003BA0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003BB0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003BC0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003BD0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003BE0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003BF0: CAFEF00D CAFEF00D 00000000 CAFEF00D
0x20003C00: 00000004 20001D04 CAFEF00D FFFFEF68
0x20003C10: CAFEF00D 00001098 CAFEF00D CAFEF00D
0x20003C20: CAFEF00D CAFEF00D 00001006 200018D8
0x20003C30: 00000001 200018D8 20001C50 00000004
0x20003C40: 20001BB0 000134A5 0000100D 20001D28
0x20003C50: 00000006 00000006 20001C38 20001D44
0x20003C60: 20001C6C 20001D44 00000006 00000005
0x20003C70: 20001D38 00000005 20001D38 00000000
0x20003C80: 00000001 00012083 200018C8 000013D3
0x20003C90: 00550000 00000001 80E80000 4FC40000
0x20003CA0: 000080E8 00000009 60900000 000080E8
0x20003CB0: 60140000 20002764 0009608F 000080E8
0x20003CC0: 80000000 000080E8 00000000 00129F5F
0x20003CD0: 00000000 0001E4D9 80E80000 200018C8
0x20003CE0: 200018D4 00000000 80E80000 000000FF
0x20003CF0: 0000011C 0001BCE1 0000203A 0001BC1D
0x20003D00: 00000000 0001BC1D 80E80000 0001BCE1
0x20003D10: 0000011C 0001BDA9 80E80000 0001BDA9
0x20003D20: 0000011C FFFFFFF9 008B8000 0001BC1D
0x20003D30: 00000048 00000010 0000A000 00000009

©Adafruit Industries Page 83 of 131

0x20003D40: 0001E326 00000001 80E80000 51538000
0x20003D50: 000080E8 0001E9CF 00000000 00000009
0x20003D60: 61C78000 000080E8 00000048 00000504
0x20003D70: 0000A1FC 0002125C 00000000 000080E8
0x20003D80: 00000000 0012A236 00000000 0001E4D9
0x20003D90: 000080E8 00000009 00004998 000080E8
0x20003DA0: 622C8000 0012A29B 00000042 0001E479
0x20003DB0: 40011000 000185EF 00006E10 00000000
0x20003DC0: 00000000 00000004 0000000C 00000000
0x20003DD0: 62780000 00018579 2000311B 0001ACDF
0x20003DE0: 00000000 20003054 20002050 00000001
0x20003DF0: 20003DF8 0002085D 00000001 200030D4
0x20003E00: 00000200 0001F663 00000001 200030D4
0x20003E10: 00000001 2000311B 0001F631 00020A6D
0x20003E20: 00000001 00000000 0000000C 200030D4
0x20003E30: 2000311B 00000042 200030D4 00020AD7
0x20003E40: 20002050 200030D4 20002050 00020833
0x20003E50: 20002050 20003F1B 20002050 0001FF89
0x20003E60: 20002050 0001FFA3 00000005 20003ED8
0x20003E70: 20002050 0001FF8B 00000010 00020491
0x20003E80: 00000001 0012A54E 00000020 00022409
0x20003E90: 00000000 20002050 200030D4 0001FF8B
0x20003EA0: 00021263 00000005 0000000C 20003F74
0x20003EB0: 20003ED8 20002050 200030D4 00020187
0x20003EC0: 20003ED4 20003054 00000000 20003F75
0x20003ED0: 00000008 20003F64 00000084 FFFFFFFF
0x20003EE0: FFFFFFFF 00000008 00000001 00000008
0x20003EF0: 20302058 2000311B 0001F631 00020A6D
0x20003F00: 20002050 00000000 0000000C 200030D4
0x20003F10: 32002050 32303032 00323330 000258D7
0x20003F20: 20002050 200030D4 20002050 00020833
0x20003F30: 00000000 20002050 00000020 000001CE
0x20003F40: 20003F40 200030D4 00000004 0001ED83
0x20003F50: 200030D4 20003F60 000001D6 000001D7
0x20003F60: 000001D8 00016559 0000000C 00000000
0x20003F70: 6C383025 00000058 200030D4 FFFFFFFF
0x20003F80: 1FFF4000 00000028 00000028 000217F8
0x20003F90: 200020C7 000166C5 000166AD 00017ED9
0x20003FA0: FFFFFFFF 200020B8 2000306C 200030D4
0x20003FB0: 200020B4 000180AD 1FFF4000 200020B0
0x20003FC0: 200020B0 200020B0 1FFF4000 0001A63D
0x20003FD0: CAFEF00D CAFEF00D 200020B4 00000002
0x20003FE0: FFFFFFFF FFFFFFFF 1FFF4000 00000000
0x20003FF0: 00000000 00000000 00000000 00016113
OK

History
This page tracks additions or changes to the AT command set based on the firmware
version number (which you can obtain via the 'ATI' command):

Version 0.7.7
The following AT commands and features were added in the 0.7.7 release:

Added AT+BLEUARTTXF (F for force) to immediately send the specified data
out in an BLE UART packet (max 20 bytes), bypassing any FIFO delays and
avoiding packets potentially being transmitted in two transactions.

•

©Adafruit Industries Page 84 of 131

Adjusted BLE UART service to use min connection interval as the tx interval
Added AT+DFUIRQ to enable using the DFU Pin for IRQ purposes when there is
a supported event on the nRF51822
Enabled the internal pullup resistor on the CS pin for Bluefruit SPI boards
Added AT+MODESWITCHEN to enable/disable +++ mode switching from the
local (serial or SPI) or BLE UART side. By default local = enabled, ble = disabled,
meaning commands can only be executed via the local interface by default.
Implemented a '\+' escape code to immediately send '+' chars without trigger the
+++ delay waiting for further similar input
Added AT+BLEHIDGAMEPADEN to separately enable HID Gamepad, since iOS/
OSX has a conflict with gamepad devices causing HID keyboard to not work
properly.

The following bugs were fixed in release 0.7.7:

Fixed a factory reset issue when a long delay occurs in app_error_handler()
Fixed an issue where strings were being truncated at 64 chars in UART
Fixed HID keyboard support not working with iOS 9 & 10

Version 0.7.0
The following AT commands were added in the 0.7.0 release:

AT+BAUDRATE
Change the HW UART baudrate
AT+UARTFLOW
Enable or disable HW UART flow control
AT+BLEMIDIEN=on/off/0/1
Enable/disable MIDI service, requires a reset to take effect
AT+BLEMIDITX
Send a MIDI event
AT+BLEMIDIRX
Receive an available MIDI event
AT+GATTCHARRAW
Added this read only command to read binary (instead of ASCII) data from a
characteristic. It is non-printable but less overhead and easier for writing library
in Arduino
AT+NVMWRITE=offset,datatype,data
Writes data to 256 byte user NVM. Datatype must be STRING (1), BYTEARRAY
(2), or INTEGER (3)

•
•

•
•

•

•

•
•
•

•

•

•

•

•

•

•

©Adafruit Industries Page 85 of 131

AT+NVMREAD=offset,size,datatype
Reads data back from 256 bytes user NVM
AT+NVMREADRAW=offset,size binary data
Binary data (instead of ASCII) is returned, ending with "OK\r\n". It is non-printable
but less overhead and easier to use in some situations.
AT+BLEHIDGAMEPAD=x,y,buttons

X is LEFT, RIGHT: X=-1 LEFT is pressed, X=1 RIGHT is pressed, X=0 no
pressed
Y is UP, DOWN: Y=-1 i UP, Y=1 is DOWN, Y=0 no pressed
Button [0x00-0xFF] is a bit mask for 8 button 0-7

AT+GAPCONNECTABLE=on/off/1/0
Allow/disallow connection to the device
AT+EDDYSTONESERVICEEN
Add/remove EddyStone service to GATT table (requires reset)
AT+EDDYSTONEBROADCAST=on/off/0/1
Start/stop broadcasting url using settings from NVM
AT+BLEBATTEN=on/off/1/0
Enable battery service. Reset required due to the service change.
AT+BLEBATTVAL=percent
Updates the Battery level, percent is 0 to 100

The following commands were changed in the 0.7.0 release:

AT+GATTADDCHAR

Added a DATATYPE option to indicate the data type for the GATT
characteristic's payload. Valid option are: AUTO (0, default), STRING (1),
BYTEARRAY (2), INTEGER (3)
Added characteristic user description option via the DESCRIPTION flag
Added characteristic presentation format support via the PRESENTATION
flag

AT+GAPINTERVALS
Added a new 'adv_lowpower_interval' parameter, default value is 417.5 ms.
Current arguments are now: min_conn, max_conn, adv_interval, adv_timeout,
adv_lowpower_interval

Key bug fixes and changes in this release:

Significant BTLE UART speed and reliability improvements

•

•

•

◦

◦
◦

•

•

•

•

•

•

◦

◦
◦

•

•

©Adafruit Industries Page 86 of 131

Added callback support (work in progress) for:

BLE UART RX
GATT Characteristic(s) RX
MIDI RX
Connect/Disconnect

Increased MAX_LEN for each characteristic from 20 to 32 bytes
Changed the default GAP parameters:

Advertising interval = 20ms
Min connection interval = 20 ms
Max connection interval = 40 ms

Increased the maximum number of CCCDs saved to flash from 8 to 16
Eddystone config service disabled by default
Removed AT+EDDYSTONEENABLE to avoid confusion
Changed advertising timeout for Eddystone to 'unlimited'
Fixed Write-No-Response characteristic property, which wasn't being handled
properly
Fixed timing constraints to meet Apple design guidelines
Fixed systick to ms calculation
Fixed all tests with google eddystone validator except for writing tx_power = 1
dB (not valid on nrf51)
Fixed a bug where writing from the central does not update the value on the
characteristic correctly
Fixed an issue with HID examples, where when paired with Central, a disconnect
then reconnect could not send HID reports anymore

Version 0.6.7
The following AT commands were added in the 0.6.7 release:

AT+BLEUARTFIFO
Returns the number of free bytes available in the TX and RX FIFOs for the
Bluetooth UART Service.

The following commands were changed in the 0.6.7 release:

AT+BLEUARTTX
If the TX FIFO is full, the command will wait up to 200ms to see if the FIFO size

•

◦
◦
◦
◦

•
•

◦
◦
◦

•
•
•
•
•

•
•
•

•

•

•

•

©Adafruit Industries Page 87 of 131

decreases before exiting and returning an ERROR response due to the FIFO
being full.
AT+BLEURIBEACON
This command will go back to using the old (deprecated) UriBeacon UUID
(0xFED8), and only the AT+EDDYSTONEURL command will use the newer
Eddystone UUID (0xFEAA).
AT+BLEKEYBOARD and AT+BLEUARTTX
These commands now accept '\?' as an escape code since
'AT+BLEKEYBOARD=?' has another meaning for the AT parser. To send a single
question mark the following command should be used: 'AT+BLEKEYBOARD=\?'
or 'AT+BLEUARTTX=\?'
AT+EDDYSTONEURL
This command now accepts an optional third parameter for RSSI at 0m value
(default is -18dBm).
Running this command with no parameters ('AT+EDDYSTONEURL\r\n') will now
return the current URL.

Key bug fixes in this release:

The FIFO handling for the Bluetooth UART Service was improved for speed and
stability, and the TX and RF FIFOs were increased to 1024 bytes each.
An issue where a timer overflow was causing factory resets every 4 hours or so
has been resolved.
Fixed a problem with the GATT server where 'value_len' was being incorrectly
parsed for integer values in characteristics where 'max_len' >4

Version 0.6.6
The following AT commands were added in the 0.6.6 release:

AT+EDDYSTONEURL
Update the URL for the beacon and switch to beacon mode
AT+EDDYSTONEENABLE
Enable/disable beacon mode using the configured url
AT+EDDYSTONECONFIGEN
Enable advertising for the the Eddystone configuration service for the specified
number of seconds
AT+HWMODELED
Allows the user to override the default MODE LED behaviour with one of the
following options: DISABLE, MODE, HWUART, BLEUART, SPI, MANUAL

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 88 of 131

AT+BLECONTROLKEY
Allows HID media control values to be sent to a bonded central device (volume,
screen brightness, etc.)
AT+BLEHIDEN
Enables or disables BLE HID support in the Bluefruit LE firmware (mouse,
keyboard and media control)
AT+BLEMOUSEMOVE
To move the HID mouse
AT+BLEMOUSEBUTTON
To set the state of the HID mouse buttons

The following commands were changed in the 0.6.6 release:

AT+BLEKEYBOARDEN - Now an alias for AT+BLEHIDEN
AT+GATTADDCHAR - Added a new UUID128 field to allow custom UUIDs

Key bug fixes in this release:

Fixed issues with long beacon URLs
Fixed big endian issue in at+blebeacon for major & minor number

Known issues with this release:

Windows 10 seems to support a limited number of characteristics for the DIS
service. We had to disable the Serial Number characteristic to enable HID
support with windows 10.

Version 0.6.5
The following AT commands were added in the 0.6.5 release:

AT+BLEGETPEERADDR (https://adafru.it/iCq)

The following commands were changed in the 0.6.5 release:

Increased the UART buffer size (on the nRF51) from 128 to 256 bytes
+++ now responds with the current operating mode
Fixed a bug with AT+GATTCHAR values sometimes not being saved to NVM

•

•

•

•

•
•

•
•

•

•

•
•
•

©Adafruit Industries Page 89 of 131

file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/ble-generic#at-plus-blegetpeeraddr

Fixed a bug with AT+GATTCHAR max_len value not being taken into account
after a reset (min_len was always used when repopulating the value)

Version 0.6.2
This is the first release targetting 32KB SRAM parts (QFAC). 16KB SRAM parts can't
be used with this firmware due to memory management issues, and should use the
earlier 0.5.0 firmware.

The following AT commands were changed in the 0.6.2 release:

AT+BLEUARTTX (https://adafru.it/iCr)
Basic escape codes were added for new lines, tabs and backspace
AT+BLEKEYBOARD (https://adafru.it/iCr)
Also works with OS X now, and may function with other operating systems that
support BLE HID keyboards

Version 0.5.0
The following AT commands were added in the 0.5.0 release:

AT+BLEKEYBOARDEN (https://adafru.it/iCr)
AT+BLEKEYBOARD (https://adafru.it/iCr)
AT+BLEKEYBOARDCODE (https://adafru.it/iCr)

The following AT commands were changed in the 0.5.0 release:

ATI (https://adafru.it/iCs)
The SoftDevice, SoftDevice version and bootloader version were added as a
new (7th) record. For Ex: "S110 7.1.0, 0.0" indicates version 7.1.0 of the S110
softdevice is used with the 0.0 bootloader (future boards will use a newer 0.1
bootloader).

Other notes concerning 0.5.0:

Starting with version 0.5.0, you can execute the AT+FACTORYRESET command at any
point (and without a terminal emulator) by holding the DFU button down for 10

•

•

•

•
•
•

•

©Adafruit Industries Page 90 of 131

file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/ble-services#at-plus-bleuartrx
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/ble-services#at-plus-blekeyboard
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/ble-services#at-plus-blekeyboarden
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/ble-services#at-plus-blekeyboard
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/ble-services#at-plus-blekeyboardcode
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/standard-at#ati

seconds until the blue CONNECTED LED starts flashing, then releasing it.

Version 0.4.7
The following AT commands were added in the 0.4.7 release:

+++ (https://adafru.it/iCs)
AT+HWRANDOM (https://adafru.it/iCt)
AT+BLEURIBEACON (https://adafru.it/iCu)
AT+DBGSTACKSIZE (https://adafru.it/iCv)
AT+DBGSTACKDUMP (https://adafru.it/iCv)

The following commands were changed in the 0.4.7 release:

ATI
 (https://adafru.it/iCs)The chip revision was added after the chip name. Whereas
ATI would previously report 'nRF51822', it will now add the specific HW revision
if it can be detected (ex 'nRF51822 QFAAG00')

Version 0.3.0
First public release

Command Examples
The following code snippets can be used when operating in Command Mode to
perform specific tasks.

Heart Rate Monitor Service
The command list below will add a Heart Rate (https://adafru.it/ddB) service to the
BLEFriend's attribute table, with two characteristics:

Heart Rate Measurement (https://adafru.it/ddD)
Body Sensor Location (https://adafru.it/eck)

•
•
•
•
•

•

•

•
•

©Adafruit Industries Page 91 of 131

file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/standard-at#plus-plus-plus
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/hardware#at-plus-hwrandom
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/beacon#at-plus-bleuribeacon
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/debug#at-plus-dbgstacksize
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/debug#at-plus-dbgstackdump
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/standard-at#ati
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/standard-at#ati
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/standard-at#ati
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.heart_rate.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.heart_rate_measurement.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.body_sensor_location.xml

Perform a factory reset to make sure we get a clean start
AT+FACTORYRESET
OK

Add the Heart Rate service entry
AT+GATTADDSERVICE=UUID=0x180D
1
OK

Add the Heart Rate Measurement characteristic
AT+GATTADDCHAR=UUID=0x2A37, PROPERTIES=0x10, MIN_LEN=2, MAX_LEN=3, VALUE=00-40
1
OK

Add the Body Sensor Location characteristic
AT+GATTADDCHAR=UUID=0x2A38, PROPERTIES=0x02, MIN_LEN=1, VALUE=3
2
OK

Create a custom advertising packet that includes the Heart Rate service UUID
AT+GAPSETADVDATA=02-01-06-05-02-0d-18-0a-18
OK

Reset the device to start advertising with the custom payload
ATZ
OK

Update the value of the heart rate measurement (set it to 0x004A)
AT+GATTCHAR=1,00-4A
OK

Python Script

The following code performs the same function, but has been placed inside a Python
wrapper using PySerial (https://adafru.it/cLU) to show how you can script actions for
the AT parser.

import io
import sys
import serial
import random
from time import sleep

filename = "hrm.py"
ser = None
serio = None
verbose = True # Set this to True to see all of the incoming serial data

def usage():
 """Displays information on the command-line parameters for this script"""
 print "Usage: " + filename + " <serialPort>\n"
 print "For example:\n"
 print " Windows : " + filename + " COM14"
 print " OS X : " + filename + " /dev/tty.usbserial-DN009WNO"
 print " Linux : " + filename + " /dev/ttyACM0"
 return

def checkargs():
 """Validates the command-line arguments for this script"""
 if len(sys.argv) < 2:

©Adafruit Industries Page 92 of 131

http://pyserial.sourceforge.net/

 print "ERROR: Missing serialPort"
 usage()
 sys.exit(-1)
 if len(sys.argv) > 2:
 print "ERROR: Too many arguments (expected 1)."
 usage()
 sys.exit(-2)

def errorhandler(err, exitonerror=True):
 """Display an error message and exit gracefully on "ERROR\r\n" responses"""
 print "ERROR: " + err.message
 if exitonerror:
 ser.close()
 sys.exit(-3)

def atcommand(command, delayms=0):
 """Executes the supplied AT command and waits for a valid response"""
 serio.write(unicode(command + "\n"))
 if delayms:
 sleep(delayms/1000)
 rx = None
 while rx != "OK\r\n" and rx != "ERROR\r\n":
 rx = serio.readline(2000)
 if verbose:
 print unicode(rx.rstrip("\r\n"))
 # Check the return value
 if rx == "ERROR\r\n":
 raise ValueError("AT Parser reported an error on '" + command.rstrip() +
"'")

if __name__ == '__main__':
 # Make sure we received a single argument (comPort)
 checkargs()

 # This will automatically open the serial port (no need for ser.open)
 ser = serial.Serial(port=sys.argv[1], baudrate=9600, rtscts=True)
 serio = io.TextIOWrapper(io.BufferedRWPair(ser, ser, 1),
 newline='\r\n',
 line_buffering=True)

 # Add the HRM service and characteristic definitions
 try:
 atcommand("AT+FACTORYRESET", 1000) # Wait 1s for this to complete
 atcommand("AT+GATTCLEAR")
 atcommand("AT+GATTADDSERVICE=UUID=0x180D")
 atcommand("AT+GATTADDCHAR=UUID=0x2A37, PROPERTIES=0x10, MIN_LEN=2,
MAX_LEN=3, VALUE=00-40")
 atcommand("AT+GATTADDCHAR=UUID=0x2A38, PROPERTIES=0x02, MIN_LEN=1, VALUE=3")
 atcommand("AT+GAPSETADVDATA=02-01-06-05-02-0d-18-0a-18")
 # Perform a system reset and wait 1s to come back online
 atcommand("ATZ", 1000)
 # Update the value every second
 while True:
 atcommand("AT+GATTCHAR=1,00-%02X" % random.randint(50, 100), 1000)
 except ValueError as err:
 # One of the commands above returned "ERROR\n"
 errorhandler(err)
 except KeyboardInterrupt:
 # Close gracefully on CTRL+C
 ser.close()
 sys.exit()

The results of this script can be seen below in the 'HRM' app of Nordic's nRF Toolbox
application:

©Adafruit Industries Page 93 of 131

Field Updates
The BLEFriend module includes a special 'DFU' bootloader that allows you to update
the firmware over the air using a compatible device (such as a recent iPhone or iPod
or a BLE-enabled Android device running Android 4.3 or later).

The benefit of this bootloader is that you can reprogram the flash contents of the
MCU without having to purchase a HW debugger, using nothing but your tablet or
phone to update the flash memory contents of the BLEFriend.

Please note that nRF Toolbox will only display HRM data if the value changes, so
you will need to update the Heart Rate Measurement characteristic at least once
after opening the HRM app and connecting to the BLEFriend

©Adafruit Industries Page 94 of 131

Requirements
In order to perform over the air field updates of the firmware on the nRF51822 based
Bluefruit LE modules, you will need access to the following resources:

A Bluetooth Low Energy enabled iOS device (iPad 3rd generation or later,
iPhone 5 or later, or a recent iPod Touch) or a BLE enabled Android device
(running Android 4.3 or higher, for example the Nexus 4, Nexus 5, and the Nexus
7 2013)
The Bluefruit LE Connect app for Android (https://adafru.it/f4G) (for Android
devices)
The Bluefruit LE Connect app for iOS (https://adafru.it/f4H) (for iOS devices)

To update using your Android or iOS device, continue on to the appropriate page in
this guide.

Forcing DFU Mode
Performing firmware updates from within the Bluefruit LE Connect app will
automatically cause the board to reset into DFU mode, but there may be situations
where you need to force the device into DFU mode as well.

To force the device into DFU mode (to enable firmare updates on devices that are
locked up from a bad Arduino sketch, for example) press and hold the DFU button
when inserting the device if a button is available, or by setting hte DFU pin to GND
when powering the device up (depending on the exact board you are using).

You can update the Firmware over the air but not over the USB/UART connection!

•

•

•

While the DFU (Device Firmware Update) code running on the modules has
several safety feature (CRC packet checks, caching and testing the entire
firmware image before writing it, etc.) this procedure isn't without risk, however
small. There is a small possibility you can brick your device in DFU mode,
requiring access to a HW debugger like the J-Link to recover it.

©Adafruit Industries Page 95 of 131

https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect&hl=fr
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8

DFU Mode Confirmation
You will know that you are in DFU mode because the MODE LED will blink at a
constant rate:

DFU Timeout
By default, the DFU code has a 5-minute timeout. After 5 minutes in DFU mode, the
device will revert back to the normal user code if any user code is present on the
device. To return back to DFU mode, you will need to hold down the DFU button and
reset the device via a power cycle.

Once you're in DFU mode, continue on to the iOS or Android pages ahead.

Firmware Images
Bluefruit LE Connect will automatically download the appropriate firmware image for
you, but if you need direct access to them the latest Bluefruit LE firmware images are
always available in our Github repo at https://github.com/adafruit/
Adafruit_BluefruitLE_Firmware (https://adafru.it/edX)

DFU on iOS

Install Bluefruit LE Connect
The first step to enable DFU support on your iOS device is to install our free Bluefruit
LE Connect (https://adafru.it/f4H) application, available in the App Store.

This should work on an iPhone or iPad less than a few years old since Apple was very
early in adding Bluetooth Low Energy support to their devices.

©Adafruit Industries Page 96 of 131

https://github.com/adafruit/Adafruit_BluefruitLE_Firmware
https://github.com/adafruit/Adafruit_BluefruitLE_Firmware
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8

The Bluefruit LE Connect application will manage the firmware updates for you,
including downloading the appropriate firmware image from our Github firmware
repo, resetting the board into DFU mode, and displaying the version number once the
update is complete (as detailed in the video below).

Update Process
Follow the video below to update your nRF51822 based Bluefruit LE module in a few
simple clicks:

DFU on Android (4.3+)

Install Bluefruit LE Connect
The first step to enable DFU support on your Android device is to install our free
Bluefruit LE Connect (https://adafru.it/f4G) application, available in the Play Store.

This application will manage the firmware updates for you, including downloading the
appropriate firmware image from our Github firmware repo.

Verified Devices
You can perform a field update of your nRF51822 based Bluefruit LE module on most
recent Android devices, though Bluetooth Low Energy support was only added to
version 4.3, with some important stability updates in 4.4.

Make sure you are running at least Android 4.4 or higher and have a BLE radio inside
your phone.

We've tested DFU updates with the following devices:

Nexus 6 (Android 6.0.1)
Nexus 4 (Android 4.4.4)
Nexus 7 - 2013 (Android 4.4.4)
LG G4 (Android 5.1)

Note: The 2012 edition of the Nexus 7 won't work since it doesn't support BLE.

•
•
•
•

©Adafruit Industries Page 97 of 131

https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect&hl=fr

Update Process
Follow the video below to see how to update the firmware on your device via a few
easy clicks!

BLE Sniffer
Using a special firmware image provided by Nordic Semiconductors and the open
source network analysis tool Wireshark, the BLEFriend can be converted into a low
cost Bluetooth Low Energy sniffer.

Select the Sniffer Target
The nRF-Sniffer can only sniff one device at a time, so the first step is getting the
sniffer running and then selecting the device that you want to debug.

Start nRF-Sniffer by running the ble-sniffer_win executable (for example: ble-
sniffer_win_1.0.1_1111_Sniffer.exe).

This will try to detect the device running the nRF-Sniffer firmware over a UART COM
port.

If the board isn't detected right away type 'f' to erase any previous com port settings,
or try removing and then re-inserting the sniffer while the console application is
running.

Once the sniffer is found, you should see a list of all BLE devices that were detected
in listening range:

Since nRF-Sniffer is a passive solution that is simply scanning packets over the
air, there is the possibility of missing packets using this tool (or any other passive
sniffing solution). In order to capture as many packets as possible, be sure to run
the sniffer on a USB bus that isn't busy and avoid running it in a virtual machine
since this can introduce significant latency over USB.

©Adafruit Industries Page 98 of 131

In this particular case, we'll select device number 2, which is a BLEFriend running the
standard UART firmware.

Type the device number you want to sniffer (in this case '2'), and you should see the
device highlighted in the list, similar to the image below:

At this point you can type 'w', which will try to open wireshark and start pushing data
out via a dedicate pipe created by the nRF-Sniffer utility.

Working with Wireshark
Once Wireshark has loaded, you should see the advertising packets streaming out
from the selected BLE device at a regular intercal, as shown in the image below:

©Adafruit Industries Page 99 of 131

One of the key benefits of WireShark as an analysis tool is that it understands the raw
packet formats and provides human-readable displays of the raw packet data.

The main way to interact with BLE data packets is to select one of the packets in the
main window, and then expand the Bluetooth Low Energy Link Layer treeview item in
the middle of the UI, as shown below:

Clicking on the Advertising Data entry in the treeview will highlight the relevant
section of the raw payload at the bottom of the screen, but also provides human

©Adafruit Industries Page 100 of 131

readable information about the payload that can save you a lot of time trying to
debug or reverse engineer a device.

We can see, for example, that the device is advertising itself as a Bluetooth Low
Energy only device ('BR/EDR Not Supported'), with a TX Power Level of 0dBm, and a
single service is being advertised using a 128-bit UUID (the UART service in this case).

Capturing Exchanges Between Two
Devices
If you wish to sniff data being exchanged between two BLE devices, you will need to
establish a connection between the original device we selected above and a second
BLE device (such as an iPhone or an Android tablet with BLE capabilities).

The nRF-Sniffer firmware is capable is listening the all of the exchanges that happen
between these devices, but can not connect with a BLE peripheral or central device
itself (it's a purely passive device).

Scan Response Packets

If you open up nRF UART on an Android or iOS device, and click the Connect button,
the phone or tablet will start scanning for devices in range. One of the side effects of
this scanning process is that you may spot a new packet in Wireshark on an irregular
basis, the 'SCAN_REQ' and 'SCAN_RSP' packets:

©Adafruit Industries Page 101 of 131

The Scan Response is an optional second advertising packet that some Bluetooth
Low Energy periperhals use to provide additional information during the advertising
phase. The normal mandatory advertising packet is limited to 31 bytes, so the
Bluetooth SIG includes the possibility to request a second advertising payload via
the Scan Request.

You can see both of these transactions in the image above, and the Device Name that
is included in the Scan Response payload (since the 128-bit UART Service UUID takes
up most of the free space in the main advertising packet).

For more information on Scan Responses and the advertising process in Bluetooth
Low Energy see our Introduction to Bluetooth Low Energy Guide (https://adafru.it/iCo).

Connection Request

Once we click on the UART device in nRF UART, the two device will attempt to
connect to each other by means of a Connection Request, which is initiated by the
central device (the phone or tablet).

We can see this CONNECT_REQ in the timeline in the image below:

Write Request

Once the connection has been established, we can see that the nRF
UART application tries to write data to the BLEFriend via a Write Request to handle

©Adafruit Industries Page 102 of 131

file:///home/introduction-to-bluetooth-low-energy/gap

'0x001E' (which is the location of an entry in the attribute table since everything in
BLE is made up of attributes).

What this write request is trying to do is enable the 'notify' bit on the UART service's
TX characteristic (https://adafru.it/iCn) (0x001E is the handle for the CCCD or 'Client
Characteristic Configuration Descriptor (https://adafru.it/ecl)'). This bit enables
an 'interrupt' of sorts to tell the BLEFriend that we want to be alerted every time there
is new data available on the characteristic that transmits data from the BLEFriend to
the phone or tablet.

Regular Data Requests

At this point you will start to see a lot of regular Empty PDU requests. This is part of
the way that Bluetooth Low Energy works.

Similar to USB, all BLE transaction are initiated by the bus 'Main', which is the central
device (the tablet or phone).

In order to receive data from the bus secondary (the peripheral device, or the
BLEFriend in this particular case) the central device sends a 'ping' of sorts to the
peripheral at a delay known as the 'connection interval' (not to be confused with the
one-time connection highlighted earlier in this tutorial).

We can see pairs of transaction that happen at a reasonably consistent interval, but
no data is exchanged since the BLEFriend (the peripheral) is saying 'sorry, I don't have
any data for you':

©Adafruit Industries Page 103 of 131

file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/uart-service
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/uart-service
https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?u=org.bluetooth.descriptor.gatt.client_characteristic_configuration.xml
https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?u=org.bluetooth.descriptor.gatt.client_characteristic_configuration.xml

Notify Event Data

To see an actual data transaction, we simply need to enter some text in our terminal
emulator SW which will cause the BLEFriend to send the data to nRF UART using the
UART service.

Entering the string 'This is a test' in the terminal emulator, we can see the first packet
being sent below (only the 'T' character is transmitted because the packets are sent
out faster than we enter the characters into the terminal emulator):

©Adafruit Industries Page 104 of 131

What this 4-byte 'Bluetooth Attribute Protocol' packet is actually saying is that
attribute 0x001C (the location of the TX characteristic in the attribute table) has been
updated, and the new value is '0x54', which corresponds to the letter 'T'.

Scrolling a bit further down we can see an example where more than one character
was sent in a single transction ('te' in this case):

©Adafruit Industries Page 105 of 131

The results of this transaction in the nRF UART application can be seen below:

Closing Wireshark and nRF-Sniffer
When you're done debugging, you can save the session to a file for later analysis, or
just close Wireshark right away and then close the nRF-Sniffer console window to end
the debug session.

Moving Forward
A sniffer is an incredibly powerful and valuable tool debugging your own hardware,
reverse engineering existing BLE peripherals, or just to learn the ins and outs of how
Bluetooth Low Energy actually works on the a packet by packet level.

©Adafruit Industries Page 106 of 131

You won't learn everything there is to know about BLE in a day, but a good book on
BLE, a copy of the Bluetooth 4.1 Core Specification and a sniffer will go a long way to
teaching you most of the important things there is to know about BLE in the real
world.

GATT Service Details
Data in Bluetooth Low Energy is organized around units called 'GATT
Services (https://adafru.it/iCp)' and 'GATT Characteristics'. To expose data to another
device, you must instantiate at least one service on your device.

Adafruit's Bluefruit LE Pro modules support some 'standard' services, described below
(more may be added in the future).

UART Service

The UART Service is the standard means of sending and receiving data between
connected devices, and simulates a familiar two-line UART interface (one line to
transmit data, another to receive it).

The service is described in detail on the dedicated UART Service (https://adafru.it/
iCn) page.

UART Service
Base UUID: 6E400001-B5A3-F393-E0A9-E50E24DCCA9E

This service simulates a basic UART connection over two lines, TXD and RXD.

It is based on a proprietary UART service specification by Nordic Semiconductors.
Data sent to and from this service can be viewed using the nRFUART apps from
Nordic Semiconductors for Android and iOS.

Characteristics
Nordic’s UART Service includes the following characteristics:

This service is available on every Bluefruit LE module and is automatically started
during the power-up sequence.

©Adafruit Industries Page 107 of 131

file:///home/introduction-to-bluetooth-low-energy/gatt#services-and-characteristics
file:///home/introduction-to-bluetooth-low-energy/gatt#services-and-characteristics
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/uart-service

R = Read; W = Write; N = Notify; I = Indicate

TX (0x0002)

This characteristic is used to send data back to the sensor node, and can be written
to by the connected Central device (the mobile phone, tablet, etc.).

RX (0x0003)

This characteristic is used to send data out to the connected Central device. Notify
can be enabled by the connected device so that an alert is raised every time the TX
channel is updated.

Software Resources
To help you get your Bluefruit LE module talking to other Central devices, we've put
together a number of open source tools for most of the major platforms supporting
Bluetooth Low Energy.

Bluefruit LE Client Apps and Libraries
Adafruit has put together the following mobile or desktop apps and libraries to make
it as easy as possible to get your Bluefruit LE module talking to your mobile device or
laptop, with full source available where possible:

Bluefruit LE Connect (https://adafru.it/f4G) (Android/Java)

Bluetooth Low Energy support was added to Android starting with Android 4.3
(though it was only really stable starting with 4.4), and we've already
released Bluefruit LE Connect to the Play Store (https://adafru.it/f4G).

Name
TX
RX

Mandatory
Yes
Yes

UUID
0x0002
0x0003

Type
U8[20]
U8[20]

R

X

W
X

N

X

I

Characteristic names are assigned from the point of view of the Central device

©Adafruit Industries Page 108 of 131

https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect

The full source code (https://adafru.it/fY9) for Bluefruit LE Connect for Android is also
available on Github to help you get started with your own Android apps. You'll need a
recent version of Android Studio (https://adafru.it/fYa) to use this project.

Bluefruit LE Connect (https://adafru.it/f4H) (iOS/Swift)

Apple was very early to adopt Bluetooth Low Energy, and we also have an iOS
version of the Bluefruit LE Connect (https://adafru.it/f4H) app available in Apple's app
store.

The full swift source code for Bluefruit LE Connect for iOS is also available on Github.
You'll need XCode and access to Apple's developper program to use this project:

Version 1.x source code: https://github.com/adafruit/
Bluefruit_LE_Connect (https://adafru.it/ddv)
Version 2.x source code: https://github.com/adafruit/
Bluefruit_LE_Connect_v2 (https://adafru.it/o9E)

•

•

Version 2.x of the app is a complete rewrite that includes iOS, OS X GUI and OS
X command-line tools in a single codebase.

©Adafruit Industries Page 109 of 131

https://github.com/adafruit/Bluefruit_LE_Connect_Android
https://developer.android.com/sdk/index.html
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://github.com/adafruit/Bluefruit_LE_Connect
https://github.com/adafruit/Bluefruit_LE_Connect
https://github.com/adafruit/Bluefruit_LE_Connect_v2
https://github.com/adafruit/Bluefruit_LE_Connect_v2

Bluefruit LE Connect for OS X (https://
adafru.it/o9F) (Swift)
This OS X desktop application is based on the same V2.x codebase as the iOS app,
and gives you access to BLE UART, basic Pin I/O and OTA DFU firmware updates from
the convenience of your laptop or mac.

This is a great choice for logging sensor data locally and exporting it as a CSV, JSON
or XML file for parsing in another application, and uses the native hardware on your
computer so no BLE dongle is required on any recent mac.

The full source is also available on Github (https://adafru.it/o9E).

Bluefruit LE Command Line Updater for OS
X (https://adafru.it/pLF) (Swift)
This experimental command line tool is unsupported and provided purely as a proof
of concept, but can be used to allow firmware updates for Bluefruit devices from the
command line.

This utility performs automatic firmware updates similar to the way that the GUI
application does, by checking the firmware version on your Bluefruit device (via the
Device Information Service), and comparing this against the firmware versions
available online, downloading files in the background if appropriate.

©Adafruit Industries Page 110 of 131

https://itunes.apple.com/us/app/adafruit-bluefruit-le-connect/id1082414600?mt=12
https://github.com/adafruit/Bluefruit_LE_Connect_v2
https://github.com/adafruit/Bluefruit_LE_Connect_v2/releases/tag/OSXcommandline_0.3
https://github.com/adafruit/Bluefruit_LE_Connect_v2/releases/tag/OSXcommandline_0.3

Simply install the pre-compiled tool via the DMG file (https://adafru.it/pLF) and place it
somewhere in the system path, or run the file locally via './bluefruit' to see the help
menu:

$./bluefruit
bluefruit v0.3
Usage:

bluefruit <command> [options...]

Commands:
Scan peripherals: scan
Automatic update: update [--enable-beta] [--uuid <uuid>]
Custom firmware: dfu --hex <filename> [--init <filename>] [--

uuid <uuid>]
Show this screen: --help
Show version: --version

Options:
--uuid <uuid> If present the peripheral with that uuid is used. If not

present a list of peripherals is displayed
--enable-beta If not present only stable versions are used

Short syntax:
-u = --uuid, -b = --enable-beta, -h = --hex, -i = --init, -v = --version, -? =

--help

Deprecated: Bluefruit Buddy (https://adafru.it/mCn) (OS X)

This native OS X application is a basic proof of concept app that allows you to
connect to your Bluefruit LE module using most recent macbooks or iMacs. You can
get basic information about the modules and use the UART service to send and
receive data.

The full source for the application is available in the github repo at
Adafruit_BluefruitLE_OSX (https://adafru.it/mCo).

©Adafruit Industries Page 111 of 131

https://github.com/adafruit/Bluefruit_LE_Connect_v2/releases/tag/OSXcommandline_0.3
https://itunes.apple.com/us/app/bluefruit-buddy/id1042412646?mt=12
https://github.com/adafruit/Adafruit_BluefruitLE_OSX

ABLE (https://adafru.it/ijB) (Cross Platform/Node+Electron)

ABLE (https://adafru.it/ijB) (Adafruit Bluefruit LE Desktop) is a cross-platform desktop
application based on Sandeep Misty's noble library (https://adafru.it/ijC) and the
Electron (https://adafru.it/ijD) project from Github (used by Atom).

It runs on OS X, Windows 7+ and select flavours of Linux (Ubuntu tested locally).
 Windows 7 support is particularly interesting since Windows 7 has no native support
for Bluetooth Low Energy but the noble library talks directly to supported Bluetooth
4.0 USB dongles (http://adafru.it/1327) to emulate BLE on the system (though at this
stage it's still in early BETA and drops the connection and takes more care to work
with).

This app allows you to collect sensor data or perform many of the same functionality
offered by the mobile Bluefruit LE Connect apps, but on the desktop.

The app is still in BETA, but full source (https://adafru.it/ijE) is available in addition to
the easy to use pre-compiled binaries (https://adafru.it/ijB).

Bluefruit LE Python Wrapper (https://adafru.it/fQF)

As a proof of concept, we've played around a bit with getting Python working with the
native Bluetooth APIs on OS X and the latest version of Bluez on certain Linux targets.

©Adafruit Industries Page 112 of 131

https://github.com/adafruit/adafruit-bluefruit-le-desktop/releases
https://github.com/adafruit/adafruit-bluefruit-le-desktop/releases
https://github.com/sandeepmistry/noble
https://github.com/atom/electron
https://www.adafruit.com/products/1327
https://www.adafruit.com/products/1327
https://github.com/adafruit/adafruit-bluefruit-le-desktop
https://github.com/adafruit/adafruit-bluefruit-le-desktop/releases
https://github.com/adafruit/Adafruit_Python_BluefruitLE

There are currently example sketches showing how to retreive BLE UART data as well
as some basic details from the Device Information Service (DIS).

This isn't an actively support project and was more of an experiment, but if you have a
recent Macbook or a Raspberry Pi and know Python, you might want to look at
Adafruit_Python_BluefruitLE (https://adafru.it/fQF) in our github account.

Debug Tools
If your sense of adventure gets the better of you, and your Bluefruit LE module
goes off into the weeds, the following tools might be useful to get it back from
unknown lands.

AdaLink (https://adafru.it/fPq) (Python)

This command line tool is a python-based wrapper for programming ARM MCUs using
either a Segger J-Link (https://adafru.it/fYU) or an STLink/V2 (http://adafru.it/
2548). You can use it to reflash your Bluefruit LE module using the latest firmware
from the Bluefruit LE firmware repo (https://adafru.it/edX).

Details on how to use the tool are available in the readme.md file on the main
Adafruit_Adalink (https://adafru.it/fPq) repo on Github.

Completely reprogramming a Bluefruit LE module with AdaLink would require four
files, and would look something like this (using a JLink):

adalink nrf51822 --programmer jlink --wipe
 --program-hex "Adafruit_BluefruitLE_Firmware/softdevice/
s110_nrf51_8.0.0_softdevice.hex"
 --program-hex "Adafruit_BluefruitLE_Firmware/bootloader/bootloader_0002.hex"
 --program-hex "Adafruit_BluefruitLE_Firmware/0.6.7/blefriend32/
blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex"
 --program-hex "Adafruit_BluefruitLE_Firmware/0.6.7/blefriend32/
blefriend32_s110_xxac_0_6_7_150917_blefriend32_signature.hex"

You can also use the AdaLink tool to get some basic information about your module,
such as which SoftDevice is currently programmed or the IC revision (16KB SRAM or
32KB SRAM) via the --info command:

These debug tools are provided purely as a convenience for advanced users for
device recovery purposes, and are not recommended unless you're OK with
potentially bricking your board. Use them at your own risk.

©Adafruit Industries Page 113 of 131

https://github.com/adafruit/Adafruit_Python_BluefruitLE
https://github.com/adafruit/Adafruit_Adalink
https://www.adafruit.com/search?q=J-Link
https://www.adafruit.com/product/2548
https://github.com/adafruit/Adafruit_BluefruitLE_Firmware
https://github.com/adafruit/Adafruit_Adalink

$ adalink nrf51822 -p jlink --info
Hardware ID : QFACA10 (32KB)
Segger ID : nRF51822_xxAC
SD Version : S110 8.0.0
Device Addr : **:**:**:**:**:**
Device ID : ****************

Adafruit nRF51822 Flasher (https://adafru.it/fVL) (Python)

Adafruit's nRF51822 Flasher is an internal Python tool we use in production to flash
boards as they go through the test procedures and off the assembly line, or just
testing against different firmware releases when debugging.

It relies on AdaLink or OpenOCD beneath the surface (see above), but you can use
this command line tool to flash your nRF51822 with a specific SoftDevice, Bootloader
and Bluefruit firmware combination.

It currently supports using either a Segger J-Link or STLink/V2 via AdaLink, or GPIO
on a Raspberry Pi (https://adafru.it/fVL) if you don't have access to a traditional ARM
SWD debugger. (A pre-built version of OpenOCD for the RPi is included in the repo
since building it from scratch takes a long time on the original RPi.)

We don't provide active support for this tool since it's purely an internal project, but
made it public just in case it might help an adventurous customer debrick a board on
their own.

$ python flash.py --jtag=jlink --board=blefriend32 --softdevice=8.0.0 --
bootloader=2 --firmware=0.6.7
jtag : jlink
softdevice : 8.0.0
bootloader : 2
board : blefriend32
firmware : 0.6.7
Writing Softdevice + DFU bootloader + Application to flash memory
adalink -v nrf51822 --programmer jlink --wipe --program-hex
"Adafruit_BluefruitLE_Firmware/softdevice/s110_nrf51_8.0.0_softdevice.hex" --
program-hex "Adafruit_BluefruitLE_Firmware/bootloader/bootloader_0002.hex" --
program-hex "Adafruit_BluefruitLE_Firmware/0.6.7/blefriend32/
blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex" --program-hex
"Adafruit_BluefruitLE_Firmware/0.6.7/blefriend32/
blefriend32_s110_xxac_0_6_7_150917_blefriend32_signature.hex"
...

Device Recovery
Sometimes, bad things unfortunately happen. Thankfully, 99% of the time it's purely a
SW issue and the Bluefruit devices have a robust bootloader with some fail safes that
can almost always recover your device.

©Adafruit Industries Page 114 of 131

https://github.com/adafruit/Adafruit_nRF51822_Flasher
https://github.com/adafruit/Adafruit_nRF51822_Flasher#rpi-gpio-requirements
https://github.com/adafruit/Adafruit_nRF51822_Flasher#rpi-gpio-requirements

How to Recover a Bluefruit Board
1. Force DFU Mode at Startup

The first step is to force your board into a special bootloader mode, which will
prevent any faulty user sketches or corrupted config data from causing problems.

Connect the DFU pin to GND with a jumper cable, or if your board has a DFU
button hold the button down when adding power to your board (connecting the
USB cable, etc.)
Once the device is powered, you should see a faster DFU MODE blinky pattern
that lets you know you are in bootloader mode.
Now remove the jumper cable between DFU and GND (to prevent going into
DFU mode when you reset)

2. Update the Bluefruit Firmware

Next, update your device to the latest Bluefruit firmware using the Bluefruit LE
Connect app. We regularly fix bugs, and it's always a good idea to be on the latest
release.

You can perform a firmware update in DFU mode, although the Bluefruit board may
appear as DfuTarg in the Bluefruit LE Connect app, and you will will need to select the
right firmware 'family' for you board.

Because bootloader mode is a fail safe mode and has a small subset of Bluefruit's
features, we can't tell the Bluefruit LE Connect app very many details about our HW.
As such, you will need to indicate which firmware type to flash ... specifically, whether
to flash the UART of SPI based firmware. Be sure to select the right one, based on
your product and the table below:

BLEFRIEND32 Firmware (UART, 32KB SRAM)

Bluefruit UART Friend V2 (http://adafru.it/2267)
Bluefruit LE UART Friend (https://adafru.it/tYD)

•

•

•

Remove the jumper cable between DFU and GND once you are in DFU mode so
that you exit it during the next reset!

•
•

©Adafruit Industries Page 115 of 131

https://www.adafruit.com/product/2267
file:///home/deploy/learn/releases/20240603170442/Bluefruit%20LE%20UART%20Friend

BLESPIFRIEND Firmware (SPI)

Bluefruit LE SPI Friend (http://adafru.it/2633)
Bluefruit LE Shield (http://adafru.it/2746)
Bluefruit LE Micro (https://adafru.it/tYE)
Feather 32u4 Bluefruit LE (https://adafru.it/tYF)
Feather M0 Bluefruit LE (http://adafru.it/2995)

3. Flash a Test Sketch

Once the core Bluefruit firmware has been updated, flash a test sketch to the device
from the Arduino IDE, such as the following blinky code:

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin LED_BUILTIN as an output.
 pinMode(LED_BUILTIN, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

4. Perform a Factory Reset

Once the core Bluefruit firmware has been updated, the final step is to perform a
factory reset.

With the board still powered up, connect the DFU pin to GND
Leave the pin set to GND (or hold the DFU button down) for >5 seconds until the
BLUE status LED starts to blink
Remove the DFU jumper cable or release the DFU button

This will cause a factory reset which will wipe all config data, and should restore your
board, getting you back to a normal state in most situations!

•
•
•
•
•

•
•

•

©Adafruit Industries Page 116 of 131

https://www.adafruit.com/product/2633
https://www.adafruit.com/products/2746
file:///home/deploy/learn/releases/20240603170442/Bluefruit%20LE%20Micro
file:///home/deploy/learn/releases/20240603170442/Feather%2032u4%20Bluefruit%20LE
https://www.adafruit.com/products/2995

Still Having Problems?
Hop on over to our support forums (https://adafru.it/dYq) clearly explaining your
problem along with the following information, and, we'll be happy to help:

You product name and ideally the product ID
The Bluefruit firmware version you are using (available at the top of the Serial
Monitor output on most example sketches)
The Operating System your are using
The Arduino IDE version you are using

Providing the above information in your first post will skip a round of two of back and
forth and you'll get an answer from us quicker, saving everyone time and effort!

BLE FAQ
Can I talk to Classic Bluetooth devices with a Bluefruit LE
modules?

No. Bluetooth Low Energy and 'Classic' Bluetooth are both part of the same
Bluetooth Core Specification -- defined and maintained by the Bluetooth SIG -- but
they are completely different protocols operating with different physical constraints
and requirements. The two protocols can't talk to each other directly.

Can my Bluefruit LE module connect to other Bluefruit LE
peripherals

No, the Bluefruit LE firmware from Adafruit is currently peripheral only, and doesn't
run in Central mode, which would cause the module to behave similar to your
mobile phone or BLE enabled laptop.

If you required Central support, you should look at the newer nRF52832 or
nRF52840 based products like the Adafruit Feather nRF52840 (http://adafru.it/
4062) which contains a SoftDevice which is capable of running in either Central or
Peripheral mode. The nRF518322 based products (such as the one used in this
learning guide) are not capable of running in Central mode because it isn't

•
•

•
•

Be sure to see the FAQ section of this learning guide as well, which has answer
to many common problems!

©Adafruit Industries Page 117 of 131

https://forums.adafruit.com/
https://www.adafruit.com/product/4062

supported by the SoftDevice they use, and it isn't possible to update the
SoftDevice safely without special hardware.

I just got my Bluefruit board and when I run a sketch it
hangs forever on the 'Connecting...' stage!

There are several possible explanations here, but the first thing to try is to:

Disconnect and close the Bluefruit LE Connect app if it's open
Disable BLE on your mobile device
Restart your Bluefruit sketch and HW
Turn BLE back on again (on the mobile device)
Open the Bluefruit LE Connect mobile app again and try to connect again

If problems persist, try performing a Factory Reset of your device (see the
appropriate learning guide for details on how to do this since it varies from one
board to another).

Why are none of my changes persisting when I reset with
the sample sketches?

In order to ensure that the Bluefruit LE modules are in a known state for the
Adafruit demo sketches, most of them perform a factory reset at the start of the
sketch.

This is useful to ensure that the sketch functions properly, but has the side effect of
erasing any custom user data in NVM and setting everything back to factory
defaults every time your board comes out of reset and the sketch runs.

To disable factory reset, open the demo sketch and find
the FACTORYRESET_ENABLE flag and set this to '0', which will prevent the factory
reset from happening at startup.

If you don't see the 'FACTORYRESET_ENABLE' flag in your .ino sketch file, you
probably have an older version of the sketches and may need to update to the
latest version via the Arduino library manager.

1.
2.
3.
4.
5.

©Adafruit Industries Page 118 of 131

Do I need CTS and RTS on my UART based Bluefruit LE
Module?

Using CTS and RTS isn't strictly necessary when using HW serial, but they should
both be used with SW serial, or any time that a lot of data is being transmitted.

The reason behind the need for CTS and RTS is that the UART block on the
nRF51822 isn't very robust, and early versions of the chip had an extremely small
FIFO meaning that the UART peripheral was quickly overwhelmed.

Using CTS and RTS significantly improves the reliability of the UART connection
since these two pins tell the device on the other end when they need to wait while
the existing buffered data is processed.

To enable CTS and RTS support, go into the BluefruitConfig.h file in your sketch
folder and simply assign an appropriate pin to the macros dedicated to those
functions (they may be set to -1 if they aren't currently being used).

Enabling both of these pins should solve any data reliability issues you are having
with large commands, or when transmitting a number of commands in a row.

How can I update to the latest Bluefruit LE Firmware?
The easiest way to keep your Bluefruit LE modules up to date is with our Bluefruit
LE Connect app for Android (https://adafru.it/f4G) or Bluefruit LE Connect for
iOS (https://adafru.it/f4H). Both of these apps include a firmware update feature
that allows you to automatically download the latest firmware and flash your
Bluefruit LE device in as safe and painless a manner as possible. You can also roll
back to older versions of the Bluefruit LE firmware using these apps if you need to
do some testing on a previous version.

Which firmware version supports 'xxx'?
We regularly release Bluefruit LE firmware images (https://adafru.it/edX) with bug
fixes and new features. Each AT command in this learning guide lists the minimum
firmware version required to use that command, but for a higher level overview of
the changes from one firmware version to the next, consult the firmware history
page (https://adafru.it/iCw).

©Adafruit Industries Page 119 of 131

https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://github.com/adafruit/Adafruit_BluefruitLE_Firmware
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/history
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/history

Does my Bluefruit LE device support ANCS?
ANCS is on the roadmap for us (most likely in the 0.7.x release family), but we don't
currently support it since there are some unusual edge cases when implementing it
as a service.

My Bluefruit LE device is stuck in DFU mode ... what can I
do?

If your device is stuck in DFU mode for some reason and the firmware was
corrupted, you have several options.

First, try a factory reset by holding down the DFU button for about 10 seconds until
the CONN LED starts flashing, then release the DFU button to perform a factory
reset.

If this doesn't work, you may need to reflash your firmware starting from DFU
mode, which can be done in one of the following ways:

Bluefruit LE Connect (Android)
Place the module in DFU mode (constant LED blinky)
Open Bluefruit LE Connect
Connect to the 'DfuTarg' device
Once connected, you will see a screen with some basic device information.
Click the '...' in the top-right corner and select Firmware Updates
Click the Use Custom Firmware button
Select the appropriate .hex and .init files (copied from the Bluefruit LE
Firmware repo (https://adafru.it/edX)) ... for the BLEFRIEND32 firmware
version 0.6.7, this would be:

Hex File: blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex
Init File: blefriend32_s110_xxac_0_6_7_150917_blefriend32_init.dat

Click Start Update

Unfortunately, the iOS app doesn't yet support custom firmware updates from DFU
mode yet, but we will get this into the next release.

Nordic nRF Toolbox

You can also use Nordic's nRF Toolbox application to update the firmware using the
OTA bootloader.

On Android:

Open nRF Toolbox (using the latest version)

•
•
•
•

•
•

◦
◦

•

•

©Adafruit Industries Page 120 of 131

https://github.com/adafruit/Adafruit_BluefruitLE_Firmware
https://github.com/adafruit/Adafruit_BluefruitLE_Firmware

Click the DFU icon
Click the Select File button
Select Application from the radio button list, then click OK
Find the appropriate .hex file
(ex. 'blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex')
When asked about the 'Init packet', indicate Yes, and select the appropriate
*_init.dat file (for example:
'blefriend32_s110_xxac_0_6_7_150917_blefriend32_init.dat').
Click the Select Device button at the bottom of the main screen and find
the DfuTarg device, clicking on it
Click the Upload button, which should now be enabled on the home screen
This will begin the DFU update process which should cause the firmware to
be updated or restored on your Bluefruit LE module

On iOS:

Create a .zip file containing the .hex file and init.dat file that you will use for
the firmware update. For example:

Rename
'blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex' to application.hex
Rename 'blefriend32_s110_xxac_0_6_7_150917_blefriend32_init.dat'
to application.dat

Upload the .zip file containing the application.hex and application.dat files to
your iPhone using uTunes, as described here (https://adafru.it/iCx)
Open the nRF Toolbox app (using the latest version)
Click the DFU icon
Click the Select File text label
Switch to User Files to see the .zip file you uploaded above
Select the .zip file (ex. blefriend32_065.zip)
On the main screen select Select File Type
Select application
On the main screen select SELECT DEVICE
Select DfuTarg
Click the Upload button which should now be enabled
This will begin the DFU process and your Bluefruit LE module will reset when
the update is complete
If you get the normal 2 or 3 pulse blinky pattern, the update worked!

Adafruit_nRF51822_Flasher

As a last resort, if you have access to a Raspberry Pi, a Segger J-Link or a STLink/
V2, you can also try manually reflashing the entire device, as described in the FAQ

•
•
•
•

•

•

•
•

•

◦

◦

•

•
•
•
•
•
•
•
•
•
•
•

•

©Adafruit Industries Page 121 of 131

file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/dfu-on-ios#adding-custom-firmware
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/faq#faq-7

above (https://adafru.it/iCy), with further details on the Software Resources (https://
adafru.it/iCz) page.

How do I reflash my Bluefruit LE module over SWD?
Reflashing Bluefruit LE modules over SWD (ex. switching to the sniffer firmware and
back) is at your own risk and can lead to a bricked device, and we can't offer any
support for this operation! You're on your own here, and there are
unfortunately 1,000,000 things that can go wrong, which is why we offer two
separate Bluefruit LE Friend boards -- the sniffer and the normal Bluefruit LE Friend
board with the non-sniffer firmware, which provides a bootloader with fail safe
features that prevents you from ever bricking boards via OTA updates.

AdaLink (SWD/JTAG Debugger Wrapper)

Transitioning between the two board types (sniffer and Bluefruit LE module) is
unfortunately not a risk-free operation, and requires external hardware, software
and know-how to get right, which is why it isn't covered by our support team.

That said ... if you're determined to go down that lonely road, and you have a
Segger J-Link (https://adafru.it/fYU) (which is what we use internally for production
and development), or have already erased your Bluefruit LE device, you
should have a look at AdaLink (https://adafru.it/fPq), which is the tool we use
internally to flash the four files required to restore a Bluefruit LE module. (Note:
recent version of AdaLink also support the cheaper STLink/V2 (http://adafru.it/
2548), though the J-Link is generally more robust if you are going to purchase a
debugger for long term use.)

The mandatory Intel Hex files are available in the Bluefruit LE Firmware
repo (https://adafru.it/edX). You will need to flash:

An appropriate bootloader image
An appropriate SoftDevice image
The Bluefruit LE firmware image
The matching signature file containing a CRC check so that the bootloader
accepts the firmware image above (located in the same folder as the firmware
image)

The appropriate files are generally listed in the version control .xml file (https://
adafru.it/fPr) in the firmware repository.

If you are trying to flash the sniffer firmware (at your own risk!), you only need to
flash a single .hex file, which you can find here (https://adafru.it/fYV). The sniffer

•
•
•
•

©Adafruit Industries Page 122 of 131

file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/faq#faq-7
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/software-resources#adafruit-nrf51822-flasher-python
https://www.adafruit.com/search?q=J-Link
https://github.com/adafruit/Adafruit_Adalink
https://www.adafruit.com/products/2548
https://github.com/adafruit/Adafruit_BluefruitLE_Firmware
https://github.com/adafruit/Adafruit_BluefruitLE_Firmware
https://github.com/adafruit/Adafruit_BluefruitLE_Firmware/blob/master/releases.xml
https://github.com/adafruit/Adafruit_BluefruitLE_Firmware/tree/master/sniffer/1.0.1

doesn't require a SoftDevice image, and doesn't use the fail-safe bootloader --
which is why changing is a one way and risky operation if you don't have a
supported SWD debugger.

Adafruit_nF51822_Flasher

We also have an internal python tool available that sits one level higher than
AdaLink (referenced above), and makes it easier to flash specific versions of the
official firmware to a Bluefruit LE module. For details, see the
Adafruit_nRF51822_Flasher (https://adafru.it/fVL) repo.

Can I access BETA firmware releases?
The latest versions of the Bluefruit LE Connect applications for iOS and Android
allow you to optionally update your Bluefruit LE modules with pre-release or BETA
firmware.

This functionality is primarilly provided as a debug and testing mechanism for
support issues in the forum, and should only be used when trying to identify and
resolve specific issues with your modules!

Enabling BETA Releases on iOS

Make sure you have at least version 1.7.1 of Bluefruit LE Connect
Go to the Settings page
Scroll to the bottom of the Settings page until you find Bluefruit LE
Click on the Bluefruit LE icon and enable the Show beta releases switch
You should be able to see any BETA releases available in the firmware repo
now when you use Bluefruit LE Connect

Enabling BETA Releases on Android

Make sure you have the latest version of Bluefruit LE Connect
Open the Bluefruit LE Connect application
Click the "..." icon in the top-right corner of the app's home screen
Select Settings
Scroll down to the Software Updates section and enable Show beta releases
You should be able to see any BETA releases available in the firmware repo
now when you use Bluefruit LE Connect

•
•
•
•
•

•
•
•
•
•
•

©Adafruit Industries Page 123 of 131

https://github.com/adafruit/Adafruit_nRF51822_Flasher

Why can't I see my Bluefruit LE device after upgrading to
Android 6.0?

In Android 6.0 there were some important security changes (https://adafru.it/
jcU) that affect Bluetooth Low Energy devices. If location services are unavailable
(meaning the GPS is turned off) you won't be able to see Bluetooth Low Energy
devices advertising either. See this issue (https://adafru.it/jcV) for details.

Be sure to enable location services on your Android 6.0 device when using
Bluefruit LE Connect or other Bluetooth Low Energy applications with your Bluefruit
LE modules.

What is the theoretical speed limit for BLE?
This depends on a variety of factors, and is determined by the capabilities of the
central device (the mobile phone, etc.) as much as the peripheral.

Taking the HW limits on the nR51822 into account (max 6 packets per connection
interval, and a minimum connection interval of 7.5ms) you end up with the following
theoretical limits on various mobile operating systems:

iPhone 5/6 + IOS 8.0/8.1
6 packets * 20 bytes * 1/0.030 s = 4 kB/s = 32 kbps
iPhone 5/6 + IOS 8.2/8.3
3 packets * 20 bytes * 1/0.030 s = 2 kB/s = 16 kbps
iPhone 5/6 + IOS 8.x with nRF8001
1 packet * 20 bytes * 1/0.030 s = 0.67 kB/s = 5.3 kbps
Nexus 4
4 packets * 20 bytes * 1/0.0075 s = 10.6 kB/s = 84 kbps
Nordic Master Emulator Firmware (MEFW) with nRF51822 0.9.0
1 packet * 20 bytes * 1/0.0075 = 2.67 kB/s = 21.33 kbps
Nordic Master Emulator Firmware (MEFW) with nRF51822 0.11.0
6 packets * 20 bytes * 1/0.0075 = 16 kB/s = 128 kbps

There are also some limits imposed by the Bluefruit LE firmware, but we are
actively working to significantly improve the throughput in the upcoming 0.7.0
release, which will be available Q2 2016. The above figures are useful as a
theoretical maximum to decide if BLE is appropriate for you project or not.

UPDATE: For more specific details on the limitations of various Android versions
and phones, see this helpful post from Nordic Semiconductors (https://adafru.it/
sKc).

•

•

•

•

•

•

©Adafruit Industries Page 124 of 131

http://developer.android.com/about/versions/marshmallow/android-6.0-changes.html#behavior-hardware-id
https://code.google.com/p/android/issues/detail?id=190372&q=GPS&colspec=ID%20Type%20Status%20Owner%20Summary%20Stars
https://devzone.nordicsemi.com/blogs/1046/what-to-keep-in-mind-when-developing-your-ble-andr/

Can my Bluefruit board detect other Bluefruit boards or
Central devices?

No. All of our Bluefruit LE modules currently operate in peripheral mode, which
means they can only advertise their own existence via the advertising payload. The
central device (usually your phone or laptop) is responsible for listening for these
advertising packets, starting the connection process, and inititating any
transactions between the devices. There is no way for a Bluefruit module to detect
other Bluefruit modules or central devices in range, they can only send their own
advertising data out and wait for a connection request to come in.

How can I determine the distance between my Bluefruit
module and my phone in m/ft?

The short answer is: you can't.

RF devices normally measure signal strength using RSSI, which stands for
Received Signal Strength Indicator, which is measured in dBm. The closer the
devices are the strong the RSSI value generally is (-90dBm is much weaker than
-60dBm, for example), but there is no reliable relationship between RSSI values in
dBm and distance in the real world. If there is a wall between devices, RSSI will
fall. If there is a lot of interference on the same 2.4GHz band, RSSI will fall.
Depending on the device, if you simply change the antenna orientation, RSSI will
fall. You can read the RSSI value between two connected devices with
the AT+BLEGETRSSI command, but there are no meaningful and repeatable
conclusions that can be drawn from this value about distance other than perhaps
'farther' or 'closer' in a very loose sense of the terms.

How far away from my phone can I have my Bluefruit LE
module?

This depends on a number of factors beyond the module itself such as antenna
orientation, the antenna design on the phone, transmit power on the sending node,
competing traffic in the same 2.4GHz bandwidth, obstacles between end points,
etc.

It could be as low as a couple meters up to about 10 meters line of sight, but
generally Bluetooth Low Energy is designed for very short range and will work best
in the 5-6 meter or less range for reliable communication, assuming normal
Bluefruit firmware settings.

©Adafruit Industries Page 125 of 131

How many GATT services and characteristics can I
create?

For firmware 0.7.0 and higher, the following limitations are present:

Maximum number of services: 10
Maximum number of characteristics: 30
Maximum buffer size for each characteristic: 32 bytes
Maximum number of CCCDs: 16

Is it possible to modify or disable the built in GATT
services and characteristics (DIS, DFU, etc.)?

No, unfortunately you can't. We rely on the Device Information Service (https://
adafru.it/q9E) (DIS) contents to know which firmware and bootloader version you
are running, and wouldn't be able to provide firmware updates without being able
to trust this information, which i why it's both mandatory and read only.

Similarly, the DFU service is mandatory to maintain over the air updates and
disabling it would create more problems that it's presence would cause.

How can I use BlueZ and gatttool with Bluefruit modules?
BlueZ has a bit of a learning curve associated with it, but you can find some notes
below on one option to send and receive data using the BLE UART Service built
into all of our Bluefruit LE modules and boards.

These commands may change with different versions of BlueZ. Version 5.21 was
used below.

Initialise the USB dongle
$ sudo hciconfig hci0 up

Scan for the UART BLE device
$ sudo hcitool lescan
 D6:4E:06:4F:72:86 UART

Start gatttool, pointing to the UART device found above
$ sudo gatttool -b D6:4E:06:4F:72:86 -I -t random --sec-level=high

 [D6:4E:06:4F:72:86][LE]> connect
 Attempting to connect to D6:4E:06:4F:72:86
 Connection successful

Scan for primary GATT Services
 [D6:4E:06:4F:72:86][LE]> primary
 attr handle: 0x0001, end grp handle: 0x0007 uuid:
00001800-0000-1000-8000-00805f9b34fb
 attr handle: 0x0008, end grp handle: 0x0008 uuid:
00001801-0000-1000-8000-00805f9b34fb
 attr handle: 0x0009, end grp handle: 0x000e uuid: 6e400001-b5a3-f393-e0a9-

•
•
•
•

©Adafruit Industries Page 126 of 131

https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.device_information.xml

e50e24dcca9e
 attr handle: 0x000f, end grp handle: 0xffff uuid:
0000180a-0000-1000-8000-00805f9b34fb

Get the handles for the entries in the UART service (handle 0x0009)
 [D6:4E:06:4F:72:86][LE]> char-desc
 handle: 0x0001, uuid: 00002800-0000-1000-8000-00805f9b34fb
 handle: 0x0002, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x0003, uuid: 00002a00-0000-1000-8000-00805f9b34fb
 handle: 0x0004, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x0005, uuid: 00002a01-0000-1000-8000-00805f9b34fb
 handle: 0x0006, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x0007, uuid: 00002a04-0000-1000-8000-00805f9b34fb
 handle: 0x0008, uuid: 00002800-0000-1000-8000-00805f9b34fb
 handle: 0x0009, uuid: 00002800-0000-1000-8000-00805f9b34fb
 handle: 0x000a, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x000b, uuid: 6e400002-b5a3-f393-e0a9-e50e24dcca9e
 handle: 0x000c, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x000d, uuid: 6e400003-b5a3-f393-e0a9-e50e24dcca9e
 handle: 0x000e, uuid: 00002902-0000-1000-8000-00805f9b34fb
 handle: 0x000f, uuid: 00002800-0000-1000-8000-00805f9b34fb
 handle: 0x0010, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x0011, uuid: 00002a27-0000-1000-8000-00805f9b34fb

6e400002 (handle 0x000b) = TX characteristic
6e400003 (handle 0x000d) = RX characteristic

Optional (but maybe helpful) ... scan for CCCD entries
 [D6:4E:06:4F:72:86][LE]> char-read-uuid 2902
 handle: 0x000e value: 00 00

Enable notifications on the RX characteristic (CCCD handle = 0x000e)
0100 = get notifications
0200 = get indications
0300 = get notifications + indications
0000 = disable notifications + indications
 [D6:4E:06:4F:72:86][LE]> char-write-req 0x000e 0100
 Characteristic value was written successfully

Just to make sure it was updated
 [D6:4E:06:4F:72:86][LE]> char-read-hnd 0x000e
 Characteristic value/descriptor: 01 00

Writing "test" in the Serial Monitor of the Arduino sketch should
cause this output not that notifications are enabled:
 Notification handle = 0x000d value: 74 65 73 74

Write something to the TX characteristic (handle = 0x000b)
This should cause E F G H to appear in the Serial Monitor
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000b 45
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000b 46
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000b 47
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000b 48

To send multiple bytes
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000B 707172737475

If you are running the callbackEcho sketch and notifications
are enabled you should get this response after the above cmd:
 Notification handle = 0x000d value: 70 71 72 73 74 75

If you just want to enable constant listening, enter the following command from
the CLI:
$ sudo gatttool -b D6:4E:06:4F:72:86 -t random --char-write-req -a 0x000e -n 0100 --
listen

This should give us the following output as data is written on the Uno,

©Adafruit Industries Page 127 of 131

though we can't send anything back:
 Characteristic value was written successfully
 Notification handle = 0x000d value: 74 65 73 74
 Notification handle = 0x000d value: 6d 6f 72 65 20 74 65 73 74

Can I use the IRQ pin to wake my MCU up from sleep
when BLE UART data is available?

No, on SPI-based boards the IRQ pin is used to indicate that an SDEP response is
available to an SDEP command. For example, when you sent the `AT+BLEUARTRX`
command as an SDEP message, the Bluefruit firmware running on the nRF51822
will parse the message, prepare an SDEP response, and trigger the IRQ pin to tell
the MCU that the response is ready. This is completely independant from the BLE
UART service, which doesn't have interrupt capability at present.

Can I also update the sketch running on the device using
Bluefruit LE Connect?

No, only the core firmware can be updated over the air. Sketches need to be
loaded using the Arduino IDE and serial bootloader.

Downloads

Files
EagleCAD PCB files on GitHub (https://adafru.it/oYD)
Bluetooth LE module Datasheet (http://adafru.it/226740256)
v3.0: Uses a CP2104 USB-to-Serial converter chip, drivers available here (https://
adafru.it/vrf)
v2.0: Uses an FT231x (FTDI) USB-to-Serial converter chip, drivers are available
for all operating systems here (https://adafru.it/aJv)

Schematics
Click to embiggen

•
•
•

•

©Adafruit Industries Page 128 of 131

https://github.com/adafruit/Adafruit-Bluefruit-LE-USB-Friend-and-Sniffer
https://cdn-shop.adafruit.com/product-files/2267/MDBT40-P256R.pdf
http://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
http://www.ftdichip.com/Drivers/VCP.htm
http://www.ftdichip.com/Drivers/VCP.htm

Schematic and Fab Print for CP2102N
Version

©Adafruit Industries Page 129 of 131

©Adafruit Industries Page 130 of 131

v3.0 Schematic (CP2104 Based)

v2.0 Schematic (FTDI Based)

©Adafruit Industries Page 131 of 131

	Introducing the Adafruit Bluefruit LE Friend
	Table of Contents
	Overview
	QuickStart Guide
	HW Setup
	Operating Modes
	Terminal Settings
	UART Test
	Factory Reset
	Command Mode
	Standard AT
	General Purpose
	Hardware
	Beacon
	BLE Generic
	BLE Services
	BLE GAP
	BLE GATT
	Debug
	History
	Command Examples
	Field Updates
	DFU on iOS
	DFU on Android (4.3+)
	BLE Sniffer
	GATT Service Details
	UART Service
	Software Resources
	Device Recovery
	BLE FAQ
	Downloads

	Overview
	Why Not Just Use a BLE USB Dongle?
	So it's a Fancy Pants Wireless UART Adapter?
	Why Use Adafruit's Module?
	Getting Started
	QuickStart Guide
	HW Setup
	v3.0 Software Requirements
	v1.0 and v2.0 Software Requirements
	HW Layout
	Mode Selection Switch
	TXD/RXD Status LEDs
	DFU Mode Switch
	Mode Indicator LED
	Connection Status LED

	Operating Modes
	Data Mode
	Command Mode
	DFU Mode
	Terminal Settings
	TerraTerm (Windows)
	CoolTerm (OS X)
	Testing the Terminal Config
	UART Test
	BLEFriend Configuration
	nRF UART Configuration
	Sample Video
	Factory Reset
	Command Mode
	Hayes/AT Commands
	Test Command Mode '=?'
	Write Command Mode '=xxx'
	Execute Mode
	Read Command Mode '?'
	Standard AT
	AT
	ATI
	ATZ
	ATE
	+++
	General Purpose
	AT+FACTORYRESET
	AT+DFU
	AT+HELP
	AT+NVMWRITE
	AT+NVMREAD
	AT+MODESWITCHEN
	Hardware
	AT+BAUDRATE
	AT+HWADC
	AT+HWGETDIETEMP
	AT+HWGPIO
	AT+HWGPIOMODE
	AT+HWI2CSCAN
	AT+HWVBAT
	AT+HWRANDOM
	AT+HWMODELED
	AT+UARTFLOW
	Beacon
	AT+BLEBEACON
	AT+BLEURIBEACON
	Deprecated: AT+EDDYSTONEENABLE
	AT+EDDYSTONEURL
	AT+EDDYSTONECONFIGEN
	AT+EDDYSTONESERVICEEN
	AT+EDDYSTONEBROADCAST
	BLE Generic
	AT+BLEPOWERLEVEL
	AT+BLEGETADDRTYPE
	AT+BLEGETADDR
	AT+BLEGETPEERADDR
	AT+BLEGETRSSI
	BLE Services
	AT+BLEUARTTX
	TX FIFO Buffer Handling

	AT+BLEUARTTXF
	AT+BLEUARTRX
	AT+BLEUARTFIFO
	AT+BLEKEYBOARDEN
	AT+BLEKEYBOARD
	AT+BLEKEYBOARDCODE
	Modifier Values
	HID Keyboard Codes

	AT+BLEHIDEN
	AT+BLEHIDMOUSEMOVE
	AT+BLEHIDMOUSEBUTTON
	AT+BLEHIDCONTROLKEY
	AT+BLEHIDGAMEPADEN
	AT+BLEHIDGAMEPAD
	AT+BLEMIDIEN
	AT+BLEMIDIRX
	AT+BLEMIDITX
	AT+BLEBATTEN
	AT+BLEBATTVAL
	BLE GAP
	AT+GAPCONNECTABLE
	AT+GAPGETCONN
	AT+GAPDISCONNECT
	AT+GAPDEVNAME
	AT+GAPDELBONDS
	AT+GAPINTERVALS
	AT+GAPSTARTADV
	AT+GAPSTOPADV
	AT+GAPSETADVDATA
	BLE GATT
	GATT Limitations
	AT+GATTCLEAR
	AT+GATTADDSERVICE
	AT+GATTADDCHAR
	AT+GATTCHAR
	AT+GATTLIST
	AT+GATTCHARRAW
	Debug
	AT+DBGMEMRD
	AT+DBGNVMRD
	AT+DBGSTACKSIZE
	AT+DBGSTACKDUMP
	History
	Version 0.7.7
	Version 0.7.0
	Version 0.6.7
	Version 0.6.6
	Version 0.6.5
	Version 0.6.2
	Version 0.5.0
	Version 0.4.7
	Version 0.3.0
	Command Examples
	Heart Rate Monitor Service
	Python Script

	Field Updates
	Requirements
	Forcing DFU Mode
	DFU Mode Confirmation
	DFU Timeout
	Firmware Images
	DFU on iOS
	Install Bluefruit LE Connect
	Update Process
	DFU on Android (4.3+)
	Install Bluefruit LE Connect
	Verified Devices
	Update Process
	BLE Sniffer
	Select the Sniffer Target
	Working with Wireshark
	Capturing Exchanges Between Two Devices
	Scan Response Packets
	Connection Request
	Write Request
	Regular Data Requests
	Notify Event Data

	Closing Wireshark and nRF-Sniffer
	Moving Forward
	GATT Service Details
	UART Service

	UART Service
	Characteristics
	TX (0x0002)
	RX (0x0003)

	Software Resources
	Bluefruit LE Client Apps and Libraries
	Bluefruit LE Connect (https://adafru.it/f4G) (Android/Java)
	Bluefruit LE Connect (https://adafru.it/f4H) (iOS/Swift)

	Bluefruit LE Connect for OS X (https://adafru.it/o9F) (Swift)
	Bluefruit LE Command Line Updater for OS X (https://adafru.it/pLF) (Swift)
	Deprecated: Bluefruit Buddy (https://adafru.it/mCn) (OS X)
	ABLE (https://adafru.it/ijB) (Cross Platform/Node+Electron)
	Bluefruit LE Python Wrapper (https://adafru.it/fQF)

	Debug Tools
	AdaLink (https://adafru.it/fPq) (Python)
	Adafruit nRF51822 Flasher (https://adafru.it/fVL) (Python)

	Device Recovery
	How to Recover a Bluefruit Board
	1. Force DFU Mode at Startup
	2. Update the Bluefruit Firmware
	BLEFRIEND32 Firmware (UART, 32KB SRAM)
	BLESPIFRIEND Firmware (SPI)
	3. Flash a Test Sketch
	4. Perform a Factory Reset

	Still Having Problems?
	BLE FAQ
	Can I talk to Classic Bluetooth devices with a Bluefruit LE modules?
	Can my Bluefruit LE module connect to other Bluefruit LE peripherals
	I just got my Bluefruit board and when I run a sketch it hangs forever on the 'Connecting...' stage!
	Why are none of my changes persisting when I reset with the sample sketches?
	Do I need CTS and RTS on my UART based Bluefruit LE Module?
	How can I update to the latest Bluefruit LE Firmware?
	Which firmware version supports 'xxx'?
	Does my Bluefruit LE device support ANCS?
	My Bluefruit LE device is stuck in DFU mode ... what can I do?
	Bluefruit LE Connect (Android)
	Nordic nRF Toolbox
	Adafruit_nRF51822_Flasher

	How do I reflash my Bluefruit LE module over SWD?
	Can I access BETA firmware releases?
	Why can't I see my Bluefruit LE device after upgrading to Android 6.0?
	What is the theoretical speed limit for BLE?
	Can my Bluefruit board detect other Bluefruit boards or Central devices?
	How can I determine the distance between my Bluefruit module and my phone in m/ft?
	How far away from my phone can I have my Bluefruit LE module?
	How many GATT services and characteristics can I create?
	Is it possible to modify or disable the built in GATT services and characteristics (DIS, DFU, etc.)?
	How can I use BlueZ and gatttool with Bluefruit modules?
	Can I use the IRQ pin to wake my MCU up from sleep when BLE UART data is available?
	Can I also update the sketch running on the device using Bluefruit LE Connect?

	Downloads
	Files
	Schematics
	Schematic and Fab Print for CP2102N Version
	v3.0 Schematic (CP2104 Based)
	v2.0 Schematic (FTDI Based)

