
Adafruit USB Type C Power Delivery
Switchable Breakout

Created by Liz Clark

https://learn.adafruit.com/adafruit-usb-type-c-power-delivery-switchable-breakout

Last updated on 2024-08-22 10:34:25 AM EDT

©Adafruit Industries Page 1 of 25

3

7

9

14

14

23

23

Table of Contents

Overview

Pinouts
• Power Output Terminal Block
• USB Type C Port and Data Pins
• DIP Switches
• I2C
• ISet Jumper
• On/Off Switch
• Power LED and Jumper

CircuitPython and Python
• CircuitPython Microcontroller Wiring
• Python Computer Wiring
• Python Installation of HUSB238 Library
• CircuitPython Usage
• Python Usage
• Example Code

Python Docs

Arduino
• Wiring
• Library Installation
• Simple Test
• Test All Voltages Example

Arduino Docs

Downloads
• Files
• Schematic and Fab Print
• 3D Model

©Adafruit Industries Page 2 of 25

Overview

The HUSB238 USB PD sink chip is neat in that you can either use switches (really,
resistor selection) to set the desired PD voltage or use I2C for dynamic querying and
setting. We already stock a simple Adafruit USB Type C Power Delivery Dummy
Breakout (http://adafru.it/5807) board around the HUSB238, but that one requires
soldering closed jumpers to select the voltage. For folks who want a no-soldering-
required board, this Adafruit USB Type C Power Delivery Dummy - I2C or Switchable
is ready for instant gratification. No soldering required!

©Adafruit Industries Page 3 of 25

https://www.adafruit.com/product/5807
https://www.adafruit.com/product/5807

Compared to the basic Adafruit USB Type C Power Delivery Dummy Breakout (http://
adafru.it/5807) we've done a renovation to keep the same great schematic and also
add some oft-requested features:

No soldering required! Switches allow on-the-fly voltage changes. Terminal
block can be used to provide power to your robot, display, LEDs, etc.
Green LED output lets you know that the terminal block power is on - can be
disabled if you prefer
Stemma QT for I2C control plug-and-play with Qwiic/QT
USB Data lines available on solderable pads
On/Off switch - you can disconnect the internal pass FET by connecting a switch
between two onboard pads. When the switch is closed the output will
disconnect / turn off.
We use the HUSB328 PDL003A E-Marker variant of the chip, a little more
expensive, but it can request 5A power.

It's perfect for USB Type C wall adapters providing multiple voltages. The standard
offerings are 5V, 9V, 12V, 15V, 18V, and 20V. This HUSB238 breakout plugs into the
USB C cable and negotiates the PD request and commands over the CC lines. For
example, we can ask what voltages are available and pick the highest. Or if you need
a specific voltage, it will select that one.

•

•

•
•
•

•

©Adafruit Industries Page 4 of 25

https://www.adafruit.com/product/5807

This breakout will be handy for projects where you need a lot more than 5V @ 2A
power: this adapter can give up to 20V at 5A - yes you can get 100W over USB C! -
and you could buck that down to get a ton of current at 5V or 12V if that's needed. Or
use it to convert a DC or battery-powered device into a USB C powered one!

DIP switch-configured usage is simple: simply unplug the USB PD so you don't
accidentally select too high a voltage for your device. Then switch ON the voltage you
want: 5V, 9V, 12V, 15V, 18V, or 20V. You'll get that voltage and as much current as the
adapter will provide. No microcontroller or microcomputer is required!

©Adafruit Industries Page 5 of 25

I2C-configured usage is also available via a Stemma QT port. Use the Arduino library
and example code (https://adafru.it/192c) to query the USB Type C PD source for
available voltages and currents and select the desired voltage dynamically. When
configuring over I2C, the jumper settings are used on startup until the I2C commands
come over.

The STEMMA QT connector (https://adafru.it/JqB) lets you make solderless
connections between your development board and the breakout or chain it with a
wide range of other sensors and accessories using a compatible cable (https://
adafru.it/JnB). QT Cable is not included, but we have a variety in the shop (https://
adafru.it/17VE).

©Adafruit Industries Page 6 of 25

https://github.com/adafruit/Adafruit_HUSB238
https://github.com/adafruit/Adafruit_HUSB238
https://learn.adafruit.com/introducing-adafruit-stemma-qt/what-is-stemma-qt
https://www.adafruit.com/?q=stemma%20qt%20cable
https://www.adafruit.com/?q=stemma%20qt%20cable
https://www.adafruit.com/?q=stemma+qt+cable&sort=BestMatch
https://www.adafruit.com/?q=stemma+qt+cable&sort=BestMatch

Pinouts

The default I2C address is 0x08.

Power Output Terminal Block
+ - This is the voltage output pin. This pin will output the voltage selected from
the HUSB238.
- - Common ground for power and logic.

USB Type C Port and Data Pins

At the top of the board is the USB type C port. You'll use this port to plug into a USB C
PD wall adapter with a USB C cable. The USB data pins are broken out on the board:
Data Plus (labeled D+ on the board silk) and Data Minus (labeled D- on the board silk).
These pins are located to the right of the USB type C port.

DIP Switches

On the right side of the board is the 1x6 DIP switch. These switches let you select the
voltage that is requested via USB PD. The available voltages are labeled on the board
silk. To select a voltage, flip the switch to ON next to the board silk label for the
voltage you need. The following voltages are available: 5V, 9V, 12V, 15V, 18V, 20V.

If none of the switches are turned ON, then the highest voltage available from the
USB PD supply will be selected, which could be up to 20V.

•

•

©Adafruit Industries Page 7 of 25

I2C

Connect the STEMMA QT connector to a microcontroller or microcomputer board that
has a separate power supply. When configuring over I2C, the selected switch settings
are used on startup until the I2C commands come over.

STEMMA QT (https://adafru.it/Ft4) - This port is located on the left side of the
board. These connectors allow you to connect to dev boards with STEMMA QT
(Qwiic) connectors or to other things with various associated
accessories (https://adafru.it/Ft6) with connections for GND (black wire), power
(red wire), SDA (blue wire) and SCL (yellow wire).

ISet Jumper
ISet - Towards the top right corner of the board, above the DIP switches, is the
ISet jumper. This jumper is connected to the ISET pin on the HUSB238. The ISET
pin controls the current available on the board. When the jumper is closed,
1.25A is selected. If the jumper is cut (open), then 3.25A is selected.

If none of the switches are turned ON, then the highest voltage available from
the USB PD supply will be selected, which could be up to 20V.

•

When configuring over I2C, the switch settings are used on startup until the I2C
commands come over.

•

©Adafruit Industries Page 8 of 25

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=JST%20SH%204

On/Off Switch

OFF - directly below the DIP switches are
two pins that can be used as an on/off
switch. These pins are labeled OFF on the
board silk. You can disconnect the internal
pass FET by connecting a switch between
these two onboard pads. When the switch
is closed the output will disconnect / turn
off.

Power LED and Jumper
Power LED - In the lower left corner, to the left of the terminal block, on the front
of the board, is the power LED. It is a green LED.
LED jumper - This jumper is located on the front of the board, above the green
LED, and is labeled LED on the board silk. Cut the trace on this jumper to cut
power to the power LED.

CircuitPython and Python
It's easy to use the HUSB238 with Python or CircuitPython, and the
Adafruit_CircuitPython_HUSB238 (https://adafru.it/192d) module. This module allows
you to easily write Python code to control the power delivery chip.

You can use this driver with any CircuitPython microcontroller board or with a
computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-
Python compatibility library (https://adafru.it/BSN).

It's important to note that when you are controlling the breakout over I2C, the DIP
switch settings on the board are used on startup until the I2C commands come over.

•

•

When configuring over I2C, the DIP switch settings are used on startup until the
I2C commands come over.

©Adafruit Industries Page 9 of 25

https://learn.adafruit.com//assets/131489
https://learn.adafruit.com//assets/131489
https://docs.circuitpython.org/projects/husb238/en/latest/
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

CircuitPython Microcontroller Wiring

First wire up the breakout to your board exactly as follows. For testing, you can
connect the + and - outputs from the breakout to a multimeter with alligator clips.
You'll set the multimeter to read DC voltage (labeled with a "V" and one dashed and
one solid line). The following is the breakout wired to a Feather RP2040 using a
STEMMA QT cable:

USB C PD power supply to breakout USB
C port
Board STEMMA GND to breakout
STEMMA GND (black wire)
Board STEMMA SCL to breakout STEMMA
SCL (yellow wire)
Board STEMMA SDA to breakout
STEMMA SDA (blue wire)
Breakout + to multimeter positive (red
wire)
Breakout - to multimeter negative (black
wire)

Digital Multimeter - Model 9205B+
This massive multimeter has everything
but the kitchen sink included. It's a great
addition to any workbench or toolbox. It's
low cost, simple to use, and has a big
clear...
https://www.adafruit.com/product/2034

Python Computer Wiring

Since there are dozens of Linux computers/boards you can use, we will show wiring
for Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux
to see whether your platform is supported (https://adafru.it/BSN).

For testing, you can connect the + and - outputs from the breakout to a multimeter
with alligator clips. You'll set the multimeter to read DC voltage (labeled with a "V" and
one dashed and one solid line).

©Adafruit Industries Page 10 of 25

https://learn.adafruit.com//assets/131492
https://learn.adafruit.com//assets/131492
https://www.adafruit.com/product/2034
https://www.adafruit.com/product/2034
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Here's the Raspberry Pi wired with I2C using STEMMA QT cable:

USB C PD power supply to breakout USB
C port
Pi GND to breakout STEMMA GND (black
wire)
Pi 3.3V to breakout STEMMA VIN
Pi SCL to breakout STEMMA SCL (yellow
wire)
Pi SDA to breakout STEMMA SDA (blue
wire)
Breakout + to multimeter positive (red
wire)
Breakout - to multimeter negative (black
wire)

Python Installation of HUSB238 Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython
support in Python. This may also require enabling I2C on your platform and verifying
you are running Python 3. Since each platform is a little different, and Linux changes
often, please visit the CircuitPython on Linux guide to get your computer
ready (https://adafru.it/BSN)!

Once that's done, from your command line run the following command:

pip3 install adafruit-circuitpython-husb238

If your default Python is version 3 you may need to run 'pip' instead. Just make sure
you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

CircuitPython Usage

To use with CircuitPython, you need to first install the
Adafruit_CircuitPython_HUSB238 library, and its dependencies, into the lib folder on
your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file

•

©Adafruit Industries Page 11 of 25

https://learn.adafruit.com//assets/131493
https://learn.adafruit.com//assets/131493
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

in a zip file. Extract the contents of the zip file, and copy the entire lib folder and the
code.py file to your CIRCUITPY drive.

Your CIRCUITPY/lib folder should contain the following folders and file:

adafruit_bus_device/
adafruit_register/
adafruit_husb238.mpy

Python Usage

Once you have the library pip3 installed on your computer, copy or download the
following example to your computer, and run the following, replacing code.py with
whatever you named the file:

python3 code.py

Example Code

If running CircuitPython: Once everything is saved to the CIRCUITPY drive, connect
to the serial console (https://adafru.it/Bec) to see the data printed out!

If running Python: The console output will appear wherever you are running Python.

SPDX-FileCopyrightText: Copyright (c) 2023 Liz Clark for Adafruit Industries
#
SPDX-License-Identifier: MIT
"""
Simple test for the HUSB238.
Reads available voltages and then sets each available voltage.
Reads the set voltage and current from the attached PD power supply.
"""
import time
import board
import adafruit_husb238

•
•
•

©Adafruit Industries Page 12 of 25

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

i2c = board.I2C()

Initialize HUSB238
pd = adafruit_husb238.Adafruit_HUSB238(i2c)
voltages = pd.available_voltages
print("The following voltages are available:")
for i, volts in enumerate(voltages):

print(f"{volts}V")

v = 0

while True:
while pd.attached:

print(f"Setting to {voltages[v]}V!")
pd.voltage = voltages[v]
print(f"It is set to {pd.voltage}V/{pd.current}A")
print()
v = (v + 1) % len(voltages)
time.sleep(2)

For this example, it's best to test with the
output from the breakout connected to a
multimeter in DC voltage mode. DC
voltage mode is labeled with a V and two
lines, one dashed and one solid. For
information on using a multimeter, check
out this guide. (https://adafru.it/192A)

Multimeters Learn Guide
https://adafru.it/192A

In the example, the HUSB238 is instantiated over I2C. Then, the available voltages
are read from the attached USB-C PD power supply. In the loop, the available
voltages are set, one by one, by the HUSB238. You'll see these output on your
multimeter. The voltage and current are read from the PD supply and are printed to
the serial console.

©Adafruit Industries Page 13 of 25

https://learn.adafruit.com//assets/125190
https://learn.adafruit.com//assets/125190
https://learn.adafruit.com/multimeters/overview
https://learn.adafruit.com/multimeters/overview
https://learn.adafruit.com/multimeters/overview
https://learn.adafruit.com/multimeters/overview

Python Docs
Python Docs (https://adafru.it/192d)

Arduino
Using the HUSB238 breakout with Arduino involves wiring up the breakout to your
Arduino-compatible microcontroller, installing the Adafruit_HUSB238 (https://adafru.it/
192c) library, plugging in a USB C PD power supply to the breakout and running the
provided example code. It's important to note that when you are controlling the
breakout over I2C, the DIP switch settings on the board are used on startup until the
I2C commands come over.

Wiring

Here is an Adafruit Metro wired up to the breakout. For testing, you can connect the +
and - outputs from the breakout to a multimeter with alligator clips. You'll set the
multimeter to read DC voltage (labeled with a "V" and one dashed and one solid line).

When configuring over I2C, the DIP switch settings are used on startup until the
I2C commands come over.

©Adafruit Industries Page 14 of 25

https://docs.circuitpython.org/projects/husb238/en/latest/
https://github.com/adafruit/Adafruit_HUSB238

USB C PD power supply to breakout USB
C port
Board GND to breakout STEMMA GND
(black wire)
Board 5V to breakout STEMMA VIN (red
wire)
Board SCL to breakout SCL (yellow wire)
Board SDA to breakout SDA (blue wire)
Breakout + to multimeter positive (red
wire)
Breakout - to multimeter negative (black
wire)

Digital Multimeter - Model 9205B+
This massive multimeter has everything
but the kitchen sink included. It's a great
addition to any workbench or toolbox. It's
low cost, simple to use, and has a big
clear...
https://www.adafruit.com/product/2034

Library Installation

You can install the Adafruit_HUSB238 library for Arduino using the Library Manager
in the Arduino IDE.

Click the Manage Libraries ... menu item, search for Adafruit_HUSB238, and select
the Adafruit HUSB238 library:

©Adafruit Industries Page 15 of 25

https://learn.adafruit.com//assets/131494
https://learn.adafruit.com//assets/131494
https://www.adafruit.com/product/2034
https://www.adafruit.com/product/2034

If asked about dependencies, click "Install all".

If the "Dependencies" window does not come up, then you already have the
dependencies installed.

Simple Test

#include <Wire.h>
#include "Adafruit_HUSB238.h"

Adafruit_HUSB238 husb238;

void setup() {
Serial.begin(115200);
while (!Serial) delay(10);
Serial.println("Adafruit HUSB238 Test Sketch");

// Initialize the HUSB238
if (husb238.begin(HUSB238_I2CADDR_DEFAULT, &Wire)) {

Serial.println("HUSB238 initialized successfully.");
} else {

Serial.println("Couldn't find HUSB238, check your wiring?");
while (1);

}
}

If the dependencies are already installed, you must make sure you update them
through the Arduino Library Manager before loading the example!

©Adafruit Industries Page 16 of 25

void loop() {
delay(1000); // Add a delay to prevent flooding the serial output
Serial.println(F("--"));

// Determine whether attached or unattached
bool attached = husb238.isAttached();
Serial.print("Attachment Status: ");
Serial.println(attached ? "Attached" : "Unattached");

if (! attached) return;

// Test getCCStatus function
bool ccStatus = husb238.getCCdirection();
Serial.print("CC Direction: ");
Serial.println(ccStatus ? "CC1 connected" : "CC2 Connected");

// Check if we can get responses to our PD queries!
HUSB238_ResponseCodes pdResponse = husb238.getPDResponse();
Serial.print("USB PD query response: ");
switch (pdResponse) {

case NO_RESPONSE:
Serial.println("No response");
break;

case SUCCESS:
Serial.println("Success");
break;

case INVALID_CMD_OR_ARG:
Serial.println("Invalid command or argument");
break;

case CMD_NOT_SUPPORTED:
Serial.println("Command not supported");
break;

case TRANSACTION_FAIL_NO_GOOD_CRC:
Serial.println("Transaction fail");
break;

default:
Serial.println("Unknown response code");
break;

}

if (pdResponse != SUCCESS)
return;

// Is there a default 5V 'contract' voltage available
bool contractV = husb238.get5VContractV();
Serial.print("5V Contract Voltage: ");
Serial.print(contractV ? "5V" : "Other");

// How much current can we get?
HUSB238_5VCurrentContract contractA = husb238.get5VContractA();
Serial.print(" & Current: ");
switch (contractA) {

case CURRENT5V_DEFAULT:
Serial.println("Default current");
break;

case CURRENT5V_1_5_A:
Serial.println("1.5A");
break;

case CURRENT5V_2_4_A:
Serial.println("2.4A");
break;

case CURRENT5V_3_A:
Serial.println("3A");
break;

default:
Serial.println("Unknown current");
break;

}

©Adafruit Industries Page 17 of 25

// What is the actual voltage being output right now?
HUSB238_VoltageSetting srcVoltage = husb238.getPDSrcVoltage();
Serial.print("Source Voltage: ");
switch (srcVoltage) {

case UNATTACHED:
Serial.println("Unattached");
break;

case PD_5V:
Serial.println("5V");
break;

case PD_9V:
Serial.println("9V");
break;

case PD_12V:
Serial.println("12V");
break;

case PD_15V:
Serial.println("15V");
break;

case PD_18V:
Serial.println("18V");
break;

case PD_20V:
Serial.println("20V");
break;

default:
Serial.println("Unknown voltage setting");
break;

}

// What is the max current available right now?
HUSB238_CurrentSetting srcCurrent = husb238.getPDSrcCurrent();
Serial.print("Source Current: ");
printCurrentSetting(srcCurrent);
Serial.println();

// What voltages and currents are available from this adapter?
Serial.println("Available PD Voltages and Current Detection Test:");
for (int i = PD_SRC_5V; i <= PD_SRC_20V; i++) {

bool voltageDetected = husb238.isVoltageDetected((HUSB238_PDSelection)i);

switch ((HUSB238_PDSelection)i) {
case PD_SRC_5V:

Serial.print("5V");
break;

case PD_SRC_9V:
Serial.print("9V");
break;

case PD_SRC_12V:
Serial.print("12V");
break;

case PD_SRC_15V:
Serial.print("15V");
break;

case PD_SRC_18V:
Serial.print("18V");
break;

case PD_SRC_20V:
Serial.print("20V");
break;

default:
continue;

}
Serial.print(voltageDetected ? " Available" : " Unavailable");

// Loop over currents if voltage is detected
if (voltageDetected) {

HUSB238_CurrentSetting currentDetected =

©Adafruit Industries Page 18 of 25

husb238.currentDetected((HUSB238_PDSelection)i);
Serial.print(" - Max current: ");
printCurrentSetting(currentDetected);

}
Serial.println();

}

// Override whatever the jumpers on the board say, and get a specific voltage!
husb238.selectPD(PD_SRC_5V); // Select 5V
// Uncomment one of the following lines to select a different PD:
// husb238.selectPD(PD_SRC_9V); // Select 9V
// husb238.selectPD(PD_SRC_12V); // Select 12V
// husb238.selectPD(PD_SRC_15V); // Select 15V
// husb238.selectPD(PD_SRC_18V); // Select 18V
// husb238.selectPD(PD_SRC_20V); // Select 20V

// Perform the actual PD voltage request!
husb238.requestPD();

// Test getSelectedPD function
HUSB238_PDSelection selectedPD = husb238.getSelectedPD();
Serial.print("Currently Selected PD Output: ");
switch (selectedPD) {

case PD_NOT_SELECTED:
Serial.println("Not Selected");
break;

case PD_SRC_5V:
Serial.println("5V");
break;

case PD_SRC_9V:
Serial.println("9V");
break;

case PD_SRC_12V:
Serial.println("12V");
break;

case PD_SRC_15V:
Serial.println("15V");
break;

case PD_SRC_18V:
Serial.println("18V");
break;

case PD_SRC_20V:
Serial.println("20V");
break;

default:
Serial.println("Unknown");
break;

}
}

void printCurrentSetting(HUSB238_CurrentSetting srcCurrent) {
switch (srcCurrent) {

case CURRENT_0_5_A:
Serial.print("0.5A ");
break;

case CURRENT_0_7_A:
Serial.print("0.7A ");
break;

case CURRENT_1_0_A:
Serial.print("1.0A ");
break;

case CURRENT_1_25_A:
Serial.print("1.25A ");
break;

case CURRENT_1_5_A:
Serial.print("1.5A ");
break;

case CURRENT_1_75_A:

©Adafruit Industries Page 19 of 25

Serial.print("1.75A ");
break;

case CURRENT_2_0_A:
Serial.print("2.0A ");
break;

case CURRENT_2_25_A:
Serial.print("2.25A ");
break;

case CURRENT_2_50_A:
Serial.print("2.50A ");
break;

case CURRENT_2_75_A:
Serial.print("2.75A ");
break;

case CURRENT_3_0_A:
Serial.print("3.0A ");
break;

case CURRENT_3_25_A:
Serial.print("3.25A ");
break;

case CURRENT_3_5_A:
Serial.print("3.5A ");
break;

case CURRENT_4_0_A:
Serial.print("4.0A ");
break;

case CURRENT_4_5_A:
Serial.print("4.5A ");
break;

case CURRENT_5_0_A:
Serial.print("5.0A ");
break;

default:
break;

}
}

Upload the sketch to your board and open up the Serial Monitor (Tools -> Serial
Monitor) at 115200 baud. You'll see the HUSB238 recognized over I2C by the code. It
will set the voltage to 5V over I2C. Then, it will query the attached PD adapter to see
which voltage and current combinations are available and print the currently set
voltage.

©Adafruit Industries Page 20 of 25

Test All Voltages Example

For this example, it's best to test with the
output from the breakout connected to a
multimeter in DC voltage mode. DC
voltage mode is labeled with a V and two
lines, one dashed and one solid. For
information on using a multimeter, check
out this guide. (https://adafru.it/192A)

Multimeters Learn Guide
https://adafru.it/192A

#include <Wire.h>
#include "Adafruit_HUSB238.h"

Adafruit_HUSB238 husb238;

void setup() {
Serial.begin(115200);
while (!Serial) delay(10);
Serial.println("Adafruit HUSB238 Test Sketch");

// Initialize the HUSB238
if (husb238.begin(HUSB238_I2CADDR_DEFAULT, &Wire)) {

Serial.println("HUSB238 initialized successfully.");
} else {

Serial.println("Couldn't find HUSB238, check your wiring?");
while (1);

©Adafruit Industries Page 21 of 25

https://learn.adafruit.com//assets/124724
https://learn.adafruit.com//assets/124724
https://learn.adafruit.com/multimeters/overview
https://learn.adafruit.com/multimeters/overview
https://learn.adafruit.com/multimeters/overview
https://learn.adafruit.com/multimeters/overview

}
}

void loop() {
delay(1000); // Add a delay to prevent flooding the serial output
Serial.println(F("--"));

if (! husb238.isAttached())
return;

if (husb238.getPDResponse() != SUCCESS)
return;

// What voltages and currents are available from this adapter?
Serial.println("Available PD Voltages and Current Detection Test:");
for (int i = PD_SRC_5V; i <= PD_SRC_20V; i++) {

bool voltageDetected = husb238.isVoltageDetected((HUSB238_PDSelection)i);

switch ((HUSB238_PDSelection)i) {
case PD_SRC_5V:

Serial.print("5V");
break;

case PD_SRC_9V:
Serial.print("9V");
break;

case PD_SRC_12V:
Serial.print("12V");
break;

case PD_SRC_15V:
Serial.print("15V");
break;

case PD_SRC_18V:
Serial.print("18V");
break;

case PD_SRC_20V:
Serial.print("20V");
break;

default:
continue;

}
Serial.println(voltageDetected ? " Available" : " Unavailable");

Serial.println("\tSetting new PD voltage");
// Change to that voltage
husb238.selectPD((HUSB238_PDSelection)i);
// Perform the actual PD voltage request!
husb238.requestPD();

delay(2000);
}

}

Upload the sketch to your board and open up the Serial Monitor (Tools -> Serial
Monitor) at 115200 baud. You'll see the HUSB238 recognized over I2C by the code.
Then, it will try setting a new voltage one after the other. As the Serial Monitor
updates, you should see the same voltage read by your multimeter.

©Adafruit Industries Page 22 of 25

Arduino Docs
Arduino Docs (https://adafru.it/192D)

Downloads
Files

HUSB238 Datasheet (https://adafru.it/192E)
EagleCAD PCB Files on GitHub (https://adafru.it/1a4D)
Fritzing object in the Adafruit Fritzing Library (https://adafru.it/1a4E)
3D Models on GitHub (https://adafru.it/1a6i)

•
•
•
•

©Adafruit Industries Page 23 of 25

https://adafruit.github.io/Adafruit_HUSB238/html/index.html
https://cdn-learn.adafruit.com/assets/assets/000/125/150/original/husb238_datasheet_full.pdf?1697209172
https://github.com/adafruit/Adafruit-USB-Type-C-PD-Switchable-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20USB%20Type%20C%20Power%20Delivery%20Dummy%20-%20I2C%20or%20Switchable%20-%20HUSB238%20-%20STEMMA%20QT.fzpz
https://github.com/adafruit/Adafruit_CAD_Parts/tree/main/5991%20HUSB238%20USBC

Schematic and Fab Print

©Adafruit Industries Page 24 of 25

3D Model

©Adafruit Industries Page 25 of 25

	Adafruit USB Type C Power Delivery Switchable Breakout
	Table of Contents
	Overview
	Pinouts
	CircuitPython and Python
	Python Docs
	Arduino
	Arduino Docs
	Downloads

	Overview
	Pinouts
	Power Output Terminal Block
	USB Type C Port and Data Pins
	DIP Switches
	I2C
	ISet Jumper
	On/Off Switch
	Power LED and Jumper

	CircuitPython and Python
	CircuitPython Microcontroller Wiring
	Python Computer Wiring
	Python Installation of HUSB238 Library
	CircuitPython Usage
	Python Usage
	Example Code

	Python Docs
	Arduino
	Wiring
	Library Installation
	Simple Test
	Test All Voltages Example

	Arduino Docs
	Downloads
	Files
	Schematic and Fab Print
	3D Model

