
Adafruit S-35710 Low-Power Wake Up
Timer Breakout

Created by Liz Clark

https://learn.adafruit.com/adafruit-s-35710-low-power-wake-up-timer-breakout

Last updated on 2024-06-11 12:12:46 PM EDT

©Adafruit Industries Page 1 of 16

3

5

7

11

11

15

15

Table of Contents

Overview

Pinouts
• Power Pins
• I2C Logic Pins
• Other Pins
• Output Inverter Switch
• I2C Pullup Jumpers
• Power LED and LED Jumper
• Output LED and LED Jumper

CircuitPython & Python
• CircuitPython Microcontroller Wiring
• Python Computer Wiring
• Python Installation of S-35710 Library
• CircuitPython Usage
• Python Usage
• Example Code

Python Docs

Arduino
• Wiring
• Library Installation
• Example Code

Arduino Docs

Downloads
• Files
• Schematic and Fab Print

©Adafruit Industries Page 2 of 16

Overview

The Adafruit S-35710 Wake Up Timer is a low power 'watchdog timer' chip that can
be programmed to alert with a digitally-configurable alarm from 1 second up to 194
days, thanks to a 24-bit seconds counter.

It's an interesting alternative to a real time clock or internal sleep timer and might be
useful for some ultra-low-power projects that want to have a separate (and possibly
separately-powered) chip to handle time-keeping and alarms. We covered this
component on EYE ON NPI and thought it would make for a nice breakout in the
shop (https://adafru.it/1a0c).

©Adafruit Industries Page 3 of 16

https://www.youtube.com/watch?v=htl2uyHUViM
https://www.youtube.com/watch?v=htl2uyHUViM
https://www.youtube.com/watch?v=htl2uyHUViM

Usage is pretty simple: on I2C write of the timer register, the chip starts counting from
0 seconds up and the OUT pin goes high. When the count matches the timer register,
the OUT pin goes low.

Simple, and like we mentioned, it's very low power, drawing only 0.2uA. The output is
open-drain, and if you want to have it be inverted, there's a switch that will put the
signal through an N-channel FET so the polarity goes the other way.

One thing to note is that on power-up the OUT line is default low, which means its not
good for a low-power sleep manager, only for watch-dog-like timings. That is to say,
you cannot connect this to your microcontroller's reset or enable line to self-depower
because it will be disabled/reset when powered up.

Still, maybe a useful chip for some folks who want to signal after a long delay or have
a more complex power management scheme.

©Adafruit Industries Page 4 of 16

To get you going fast, we spun up a custom-made PCB in the STEMMA QT form
factor (https://adafru.it/LBQ), making it easy to interface with. The STEMMA QT
connectors (https://adafru.it/JqB) on either side are compatible with the SparkFun
Qwiic (https://adafru.it/Fpw) I2C connectors. This allows you to make solderless
connections between your development board and the S-35710 or to chain it with a
wide range of other sensors and accessories using a compatible cable (https://
adafru.it/JnB).

Pinouts

The default I2C address is 0x32.

Power Pins
VIN - this is the power pin. To power the board, give it the same power as the
logic level of your microcontroller - e.g. for a 5V micro like Arduino, use 5V.
GND - common ground for power and logic.

•

•

©Adafruit Industries Page 5 of 16

https://www.adafruit.com/?q=stemma%20qt%20sensor
https://www.adafruit.com/?q=stemma%20qt%20sensor
https://www.adafruit.com/?q=stemma%20qt%20sensor
https://learn.adafruit.com/introducing-adafruit-stemma-qt/what-is-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt/what-is-stemma-qt
https://www.sparkfun.com/qwiic
https://www.sparkfun.com/qwiic
https://www.adafruit.com/?q=stemma%20qt%20cable
https://www.adafruit.com/?q=stemma%20qt%20cable

I2C Logic Pins
SCL - I2C clock pin, connect to your microcontroller's I2C clock line. This pin can
use 3-5V logic, and there's a 10K pullup on this pin.
SDA - I2C data pin, connect to your microcontroller's I2C data line. This pin can
use 3-5V logic, and there's a 10K pullup on this pin.
STEMMA QT (https://adafru.it/Ft4) - These connectors allow you to connect to
to dev boards with STEMMA QT (Qwiic) connectors or to other things with
various associated accessories (https://adafru.it/Ft6).

Other Pins
OUT - This is the output pin from the S-35710. When the S-35710 is actively
counting, the pin is high. When the count matches the timer register, the pin
goes low. One thing to note, is that on power-up OUT is default low, which
means it's not good for a low-power sleep manager, only for watch-dog-like
timings.
!RST - This is the reset pin. If this pin is pulled low, it will reset the timer.

Output Inverter Switch

At the top of the board is a slide switch. This switch determines whether the OUT pin
is the default open-drain (high when counting, low otherwise) or open-collector (low
when counting, high otherwise).

To keep the OUT as the default, select NOR on the switch for normal. To change the
OUT to inverted (still open-drain), select INV for inverted on the switch.

I2C Pullup Jumpers

On the back of the board are three connected jumper pads labeled Pullups on the
board silk. These jumpers connect the 10K pullups to the SDA and SCL lines. Cut
these jumpers if you want to disconnect the 10K pullups from the I2C clock and data
pins.

•

•

•

•

•

©Adafruit Industries Page 6 of 16

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/?q=JST%20SH%204

Power LED and LED Jumper

Power LED - In the upper left corner,
above the STEMMA connector, on the front
of the board, is the power LED, labeled on.
It is a green LED.
LED jumper - This jumper is located on the
back of the board, to the right of the
Adafruit logo on the board silk. Cut the
trace on this jumper to cut power to the
"on" LED.

Output LED and LED Jumper

Output LED - In the upper right corner,
behind the STEMMA connector, on the
front of the board, is the output LED,
labeled out. It is a red LED. This LED will
be on when the OUT pin is low and off
when the OUT pin is high.
LED jumper - This jumper is located on the
back of the board, to the left of the
Adafruit logo on the board silk. Cut the
trace on this jumper to cut power to the
"out" LED.

CircuitPython & Python
It's easy to use the S-35710 with Python or CircuitPython, and the
Adafruit_CircuitPython_S35710 (https://adafru.it/1a2m) module. This module allows
you to easily write Python code to set and monitor the timer alarm.

You can use this driver with any CircuitPython microcontroller board or with a
computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-
Python compatibility library (https://adafru.it/BSN).

©Adafruit Industries Page 7 of 16

https://learn.adafruit.com//assets/129912
https://learn.adafruit.com//assets/129912
https://learn.adafruit.com//assets/129913
https://learn.adafruit.com//assets/129913
https://github.com/adafruit/Adafruit_CircuitPython_S35710
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

CircuitPython Microcontroller Wiring

First wire up the breakout to your board exactly as follows. The following is the
breakout wired to a Feather RP2040 using the STEMMA connector:

Board STEMMA 3V to breakout VIN (red
wire)
Board STEMMA GND to breakout GND
(black wire)
Board STEMMA SCL to breakout SCL
(yellow wire)
Board STEMMA SDA to breakout SDA
(blue wire)

The following is the breakout wired to a Feather RP2040 using a solderless
breadboard:

Board 3V to breakout VIN (red wire)
Board GND to breakout GND (black wire)
Board SCL to breakout SCL (yellow wire)
Board SDA to breakout SDA (blue wire)

Python Computer Wiring

Since there are dozens of Linux computers/boards you can use, we will show wiring
for Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux
to see whether your platform is supported (https://adafru.it/BSN).

Here's the Raspberry Pi wired with I2C using the STEMMA connector:

©Adafruit Industries Page 8 of 16

https://learn.adafruit.com//assets/129926
https://learn.adafruit.com//assets/129926
https://learn.adafruit.com//assets/129927
https://learn.adafruit.com//assets/129927
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Pi 3V to breakout VIN (red wire)
Pi GND to breakout GND (black wire)
Pi SCL to breakout SCL (yellow wire)
Pi SDA to breakout SDA (blue wire)

Here's the Raspberry Pi wired with I2C using a solderless breadboard:

Pi 3V to breakout VIN (red wire)
Pi GND to breakout GND (black wire)
Pi SCL to breakout SCL (yellow wire)
Pi SDA to breakout SDA (blue wire)

Python Installation of S-35710 Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython
support in Python. This may also require enabling I2C on your platform and verifying
you are running Python 3. Since each platform is a little different, and Linux changes
often, please visit the CircuitPython on Linux guide to get your computer
ready (https://adafru.it/BSN)!

Once that's done, from your command line run the following command:

pip3 install adafruit-circuitpython-s35710

If your default Python is version 3 you may need to run 'pip' instead. Just make sure
you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

•

©Adafruit Industries Page 9 of 16

https://learn.adafruit.com//assets/129928
https://learn.adafruit.com//assets/129928
https://learn.adafruit.com//assets/129929
https://learn.adafruit.com//assets/129929
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

CircuitPython Usage

To use with CircuitPython, you need to first install the Adafruit_CircuitPython_S35710
library, and its dependencies, into the lib folder on your CIRCUITPY drive. Then you
need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file
in a zip file. Extract the contents of the zip file, and copy the entire lib folder and the
code.py file to your CIRCUITPY drive.

Your CIRCUITPY/lib folder should contain the following folders and file:

adafruit_bus_device/
adafruit_s35710.mpy

Python Usage

Once you have the library pip3 installed on your computer, copy or download the
following example to your computer, and run the following, replacing code.py with
whatever you named the file:

python3 code.py

Example Code

If running CircuitPython: Once everything is saved to the CIRCUITPY drive, connect
to the serial console (https://adafru.it/Bec) to see the data printed out!

If running Python: The console output will appear wherever you are running Python.

•
•

©Adafruit Industries Page 10 of 16

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

SPDX-FileCopyrightText: Copyright (c) 2024 Liz Clark for Adafruit Industries
#
SPDX-License-Identifier: MIT

import time
import board
import adafruit_s35710

i2c = board.I2C()

timer = adafruit_s35710.Adafruit_S35710(i2c)

timer.alarm = 5
print(f"The S-35710 alarm is set for {timer.alarm} seconds")

countdown = timer.alarm - timer.clock

while True:
print(f"The S-35710 clock is {timer.clock}")
countdown = timer.alarm - timer.clock
if countdown == 0:

timer.alarm = 5
print("Alarm reached! Resetting..")

else:
print(f"The alarm will expire in {countdown} seconds")

time.sleep(1)

First, the timer is instantiated over I2C. The alarm is set for 5 seconds. Then, in the
loop, the clock from the timer is printed to the serial monitor, followed by the time
remaining until the alarm ends. When the alarm is reached, it is reset to begin again
for 5 seconds.

Python Docs
Python Docs (https://adafru.it/1a03)

Arduino
Using the S-35710 breakout with Arduino involves wiring up the breakout to your
Arduino-compatible microcontroller, installing the Adafruit_S-35710 (https://adafru.it/
1a0e) library, and running the provided example code.

©Adafruit Industries Page 11 of 16

https://adafruit-circuitpython-s-35710.readthedocs.io/en/latest/
https://github.com/adafruit/Adafruit_S-35710

Wiring

Wire as shown for a 5V board like an Uno. If you are using a 3V board, like an Adafruit
Feather, wire the board's 3V pin to the breakout VIN.

Here is an Adafruit Metro wired up to the breakout using the STEMMA QT connector:

Board 5V to breakout VIN (red wire)
Board GND to breakout GND (black wire)
Board SCL to breakout SCL (yellow wire)
Board SDA to breakout SDA (blue wire)

Here is an Adafruit Metro wired up using a solderless breadboard:

Board 5V to breakout VIN (red wire)
Board GND to breakout GND (black wire)
Board SCL to breakout SCL (yellow wire)
Board SDA to breakout SDA (blue wire)

Library Installation

You can install the Adafruit_S-35710 library for Arduino using the Library Manager in
the Arduino IDE.

©Adafruit Industries Page 12 of 16

https://learn.adafruit.com//assets/129918
https://learn.adafruit.com//assets/129918
https://learn.adafruit.com//assets/129919
https://learn.adafruit.com//assets/129919

Click the Manage Libraries ... menu item, search for Adafruit_S-35710, and select the
Adafruit S-35710 library:

If asked about dependencies, click "Install all".

If the "Dependencies" window does not come up, then you already have the
dependencies installed.

Example Code

#include "Adafruit_S35710.h"
#include <Wire.h>

// Optional reset pin connected to the S35710
const uint8_t RESET_PIN = -1;

// Create the S35710 with the reset pin
Adafruit_S35710 s35710 = Adafruit_S35710(RESET_PIN);

If the dependencies are already installed, you must make sure you update them
through the Arduino Library Manager before loading the example!

©Adafruit Industries Page 13 of 16

void setup() {
// Start the serial communication
Serial.begin(115200);
while (!Serial)

; // Wait for serial port to connect

Serial.println("Adafruit S-35710 Test!");

if (!s35710.begin(&Wire, S35710_I2C_ADDRESS)) {
Serial.println("Failed to initialize S-35710!");
while (1)

;
}
Serial.println("S35710 initialized!");

uint32_t wakeupTimeValue = 3; // 3 seconds

Serial.print("Setting wake-up time to ");
Serial.print(wakeupTimeValue);
Serial.println(" seconds");
if (!s35710.setWakeUpTimeRegister(wakeupTimeValue)) {

Serial.println("Failed to set wake-up time register!");
while (1)

;
}

// Test getting the wake-up time register
int32_t readWakeupTimeValue = s35710.getWakeUpTimeRegister();
if (readWakeupTimeValue == -1) {

Serial.println("Failed to read wake-up time register!");
while (1)

;
}
Serial.print("Wake-up time set to ");
Serial.print(readWakeupTimeValue);
Serial.println(" seconds");

Serial.println();
}

void loop() {
int32_t readTimeValue = s35710.getTimeRegister();
int32_t readWakeupTimeValue = s35710.getWakeUpTimeRegister();
if (readTimeValue == -1 || readWakeupTimeValue == -1) {

// Hmm failed to read? wait & retry
delay(1000);
return;

}

Serial.print("Internal timer: ");
Serial.print(readTimeValue);
Serial.print(" s, alarm set: ");
Serial.print(readWakeupTimeValue);
Serial.println(" s");

delay(1000);
}

Upload the sketch to your board and open up the Serial Monitor (Tools -> Serial
Monitor) at 115200 baud. You'll see the S-35710 recognized over I2C. Then, an alarm
is set for 3 seconds. In the loop, the internal timer is printed out every second along
with the alarm. Once the internal timer reaches 3 seconds, the alarm expires.

©Adafruit Industries Page 14 of 16

Arduino Docs
Arduino Docs (https://adafru.it/1a02)

Downloads
Files

S-35710 Datasheet (https://adafru.it/1a0f)
EagleCAD PCB Files on GitHub (https://adafru.it/1a0g)
Fritzing object in the Adafruit Fritzing Library (https://adafru.it/1a0h)

Schematic and Fab Print

•
•
•

©Adafruit Industries Page 15 of 16

https://adafruit.github.io/Adafruit_S-35710/html/index.html
https://cdn-learn.adafruit.com/assets/assets/000/129/902/original/S35710_I_E.pdf?1715181906
https://github.com/adafruit/Adafruit-S-35710-Breakout-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20S-35710%20Low-Power%20Wake%20Up%20Timer%20Breakout.fzpz

©Adafruit Industries Page 16 of 16

	Adafruit S-35710 Low-Power Wake Up Timer Breakout
	Table of Contents
	Overview
	Pinouts
	CircuitPython & Python
	Python Docs
	Arduino
	Arduino Docs
	Downloads

	Overview
	Pinouts
	Power Pins
	I2C Logic Pins
	Other Pins
	Output Inverter Switch
	I2C Pullup Jumpers
	Power LED and LED Jumper
	Output LED and LED Jumper

	CircuitPython & Python
	CircuitPython Microcontroller Wiring
	Python Computer Wiring
	Python Installation of S-35710 Library
	CircuitPython Usage
	Python Usage
	Example Code

	Python Docs
	Arduino
	Wiring
	Library Installation
	Example Code

	Arduino Docs
	Downloads
	Files
	Schematic and Fab Print

