
Adafruit MEMENTO Camera Board
Created by Liz Clark

https://learn.adafruit.com/adafruit-memento-camera-board

Last updated on 2025-02-24 01:44:29 PM EST

©Adafruit Industries Page 1 of 174

7

9

21

24

26

27

32

35

38

Table of Contents

Overview

Pinouts
• Microcontroller and WiFi
• OV5640 Camera Module
• TFT Screen
• Hardware UART
• GPIO Expander
• Accelerometer
• User Buttons
• Reset and Boot Buttons
• Analog MEMS Microphone
• Speaker
• JST-PH Connectors
• I2C/Stemma QT Connector
• microSD Card Slot
• NeoPixel
• Power
• On/Off Switch and Power LED

Install CircuitPython
• CircuitPython Quickstart

Installing the Mu Editor
• Download and Install Mu
• Starting Up Mu
• Using Mu

The CIRCUITPY Drive
• Boards Without CIRCUITPY

Creating and Editing Code
• Creating Code
• Editing Code
• Back to Editing Code...
• Naming Your Program File

Exploring Your First CircuitPython Program
• Imports & Libraries
• Setting Up The LED
• Loop-de-loops
• What Happens When My Code Finishes Running?
• What if I Don't Have the Loop?

Connecting to the Serial Console
• Are you using Mu?
• Serial Console Issues or Delays on Linux
• Setting Permissions on Linux
• Using Something Else?

Interacting with the Serial Console

©Adafruit Industries Page 2 of 174

41

45

56

62

64

68

70

74

80

The REPL
• Entering the REPL
• Interacting with the REPL
• Returning to the Serial Console

CircuitPython Libraries
• The Adafruit Learn Guide Project Bundle
• The Adafruit CircuitPython Library Bundle
• Downloading the Adafruit CircuitPython Library Bundle
• The CircuitPython Community Library Bundle
• Downloading the CircuitPython Community Library Bundle
• Understanding the Bundle
• Example Files
• Copying Libraries to Your Board
• Understanding Which Libraries to Install
• Example: ImportError Due to Missing Library
• Library Install on Non-Express Boards
• Updating CircuitPython Libraries and Examples
• CircUp CLI Tool

CircuitPython Documentation
• CircuitPython Core Documentation
• CircuitPython Library Documentation

Recommended Editors
• Recommended editors
• Recommended only with particular settings or add-ons
• Editors that are NOT recommended

Advanced Serial Console on Windows
• Windows 7 and 8.1
• What's the COM?
• Install Putty

Advanced Serial Console on Mac
• What's the Port?
• Connect with screen

Advanced Serial Console on Linux
• What's the Port?
• Connect with screen
• Permissions on Linux

Frequently Asked Questions
• Using Older Versions
• Python Arithmetic
• Wireless Connectivity
• Asyncio and Interrupts
• Status RGB LED
• Memory Issues
• Unsupported Hardware

Troubleshooting
• Always Run the Latest Version of CircuitPython and Libraries
• I have to continue using CircuitPython 7.x or earlier. Where can I find compatible libraries?
• macOS Sonoma before 14.4: Errors Writing to CIRCUITPYmacOS 14.4 - 15.1: Slow Writes to CIRCUITPY

©Adafruit Industries Page 3 of 174

99

107

108

109

110

121

• Bootloader (boardnameBOOT) Drive Not Present
• Windows Explorer Locks Up When Accessing boardnameBOOT Drive
• Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
• CIRCUITPY Drive Does Not Appear or Disappears Quickly
• Device Errors or Problems on Windows
• Serial Console in Mu Not Displaying Anything
• code.py Restarts Constantly
• CircuitPython RGB Status Light
• CircuitPython 7.0.0 and Later
• CircuitPython 6.3.0 and earlier
• Serial console showing ValueError: Incompatible .mpy file
• CIRCUITPY Drive Issues
• Safe Mode
• To erase CIRCUITPY: storage.erase_filesystem()
• Erase CIRCUITPY Without Access to the REPL
• For the specific boards listed below:
• For SAMD21 non-Express boards that have a UF2 bootloader:
• For SAMD21 non-Express boards that do not have a UF2 bootloader:
• Running Out of File Space on SAMD21 Non-Express Boards
• Delete something!
• Use tabs
• On macOS?
• Prevent & Remove macOS Hidden Files
• Copy Files on macOS Without Creating Hidden Files
• Other macOS Space-Saving Tips
• Device Locked Up or Boot Looping

Welcome to the Community!
• Adafruit Discord
• CircuitPython.org
• Adafruit GitHub
• Adafruit Forums
• Read the Docs

microSD Card Formatting Notes

CircuitPython MEMENTO Starter Projects

MEMENTO Camera Quick Start Guide

CircuitPython Basic Camera
• SD Card
• Download the Project Bundle
• Camera HUD
• Take a Photo
• Image Retrieval
• Change Resolution
• Effects
• LED Color
• More Camera!

Fancy Camera
• Download the Project Bundle
• Use the Camera
• Settings

©Adafruit Industries Page 4 of 174

130

135

138

141

145

146

147

151

153

159

Timelapse
• LAPS
• Focus
• Start/Stop

Animated GIF Creation
• GIF Mode
• GIF Code
• Effects
• NeoPixel Lighting
• Post Processing

Stop Motion
• Onion Skinning
• Wave

Frames to GIFs
• GIF Maker
• Select Files
• Upload Files
• Frame Order, Delay
• Make a GIF
• Save Your GIF

Arduino IDE Setup

Arduino MEMENTO Library Installation and Starter Projects
• Library Installation

PyCamera Library Test
• Factory Demo Code

Basic Camera Example

Usage with PlatformIO
• Installation
• PyCamera Library Test

Factory Reset
• Factory Reset Firmware UF2
• Factory Reset and Bootloader Repair
• Download .bin and Enter Bootloader
• Step 1. Download the factory-reset-and-bootloader.bin file
• Step 2. Enter ROM bootloader mode
• The WebSerial ESPTool Method
• Connect
• Erase the Contents
• Program the ESP32-S2/S3
• The esptool Method (for advanced users)
• Install ESPTool.py
• Test the Installation
• Connect
• Erase the Flash
• Installing the Bootloader
• Reset the board
• Older Versions of Chrome

©Adafruit Industries Page 5 of 174

172

• The Flash an Arduino Sketch Method
• Arduino IDE Setup
• Load the Blink Sketch

Downloads
• Files
• Schematic and Fab Print
• 3D Model

©Adafruit Industries Page 6 of 174

Overview

Make memories, or just a cool camera-based project, with Adafruit's MEMENTO
Camera Board. It's a development board with everything you need to create
programmable camera and vision projects: with a camera module, TFT preview
screen, buttons, SD card slot and driven by a powerful ESP32-S3 with 2 MB of PSRAM
for buffering 5 MegaPixel camera images.

This product is just the mainboard, and does not come with an enclosure, LED ring,
hardware, SD card, or battery.

©Adafruit Industries Page 7 of 174

The ESP32-S3 is a WiFi and Bluetooth LE capable, 240 MHz dual core Tensilica
processor - much like the famous ESP32. The S3 adds native USB support so it's great
for use with Arduino or CircuitPython. The S3 also has the ability to interface with raw
camera modules. The cameras require 12 GPIO pins and fast data transfer in order to
get images off the sensor, and then a lot of memory for storing 2560 x 1920 images -
which is why we picked an S3 module with 2MB of PSRAM so that we can read JPEGs
into memory for saving onto a microSD card with up to 32GB capacity.

To make the board easy to use we added a ton of supporting hardware, here's a full
list of the hardware included:

ESP32-S3 module with 4 MB Flash, 2 MB PSRAM - dual core 240MHz Tensilica
with WiFi and BTLE.
OV5640 camera module with 72 degree view and auto-focus motor (http://
adafru.it/5840) - 5MP camera sensor with JPEG encoder built in.
1.54" 240x240 Color TFT (http://adafru.it/4421) - For previewing the camera
images, or user interface design.
MicroSD card slot - Store images or animations to any SPI-capable micro SD
card. NOTE: You can use cards with up to 32GB capacity.
Two Digital/Analog Stemma Ports - JST PH-3 connectors for A0, A1 and
power+ground for adding external buttons, LEDs, or sensors. Can provide 3V or
5V power.
I2C Stemma QT Port - Connect just about any I2C sensor you please with a
Stemma QT JST SH port, provides 3.3V power and logic.
LIS3DH Accelerometer - Triple-access accelerometer can detect orientation,
shaking or movement.

•

•

•

•

•

•

•

©Adafruit Industries Page 8 of 174

https://www.adafruit.com/product/5840
https://www.adafruit.com/product/5840
https://www.adafruit.com/product/4421
https://www.adafruit.com/product/4421

LiPoly battery charging support - Use a 3.7/4.2V 350mA (http://adafru.it/4237) or
420mA battery (http://adafru.it/4236) for on-the-go snaps.
6 User Buttons - change modes, preview saved images, play DOOM (?).
Connected through a GPIO expander.
Buzzer - play tones or alerts, or indicate when a photo was successfully taken.
Analog Microphone - Can be used as a sensor to detect loud sounds, not for
recording video with audio.
Shutter button - Connected to GPIO 0 for entering the ROM bootloader.
Reset button - For entering the bootloader or starting over.
On/Off switch - Cut all power when using a battery.
USB Type C for programming the ESP32-S3, as well as REPL access in
CircuitPython and charging the optional LiPoly battery.
Breakout pads for hardware UART - for more intense debugging needs, solder
wires to the through-hole pads to connect to a console cable.
Four M3 standoffs for mounting or enclosure attachment.

We've got both Arduino and CircuitPython example code that lets you preview the
camera, adjust settings, and take photos that are saved to disk. However, we
recommend CircuitPython because the compilation time in Arduino is pretty intense
due to the huge amount of code required to run the camera. CircuitPython is fast to
develop for and our library will make it easy to start making custom camera
projects (https://adafru.it/18e3).

Pinouts

•

•

•
•

•
•
•
•

•

•

©Adafruit Industries Page 9 of 174

https://www.adafruit.com/product/4237
https://www.adafruit.com/product/4236
https://github.com/adafruit/Adafruit_CircuitPython_PyCamera
https://github.com/adafruit/Adafruit_CircuitPython_PyCamera
https://github.com/adafruit/Adafruit_CircuitPython_PyCamera

Microcontroller and WiFi

The main processor chip is the Espressif
ESP32-S3 with 3.3v logic/power. It has
4MB of Flash and 2MB of PSRAM.

The ESP32-S3 comes with WiFi and
Bluetooth LE baked right in, though
CircuitPython only supports WiFi at this
time, not BLE on the S3 chip.

OV5640 Camera Module

Be sure to peel off the protective film that covers the lens!

©Adafruit Industries Page 10 of 174

https://learn.adafruit.com//assets/126635
https://learn.adafruit.com//assets/126635

©Adafruit Industries Page 11 of 174

In the center of the board is the OV5640
camera module. It has a 72 degree view,
5MP sensor and an auto-focus motor.

Below the camera connector is a jumper
for providing 3.3V to the auto-focus motor.
You can cut the jumper to disconnect
DATA1 from 3.3V to disable auto-focus.

The camera utilizes the following pins:

VSYNC - GPIO5. Accessible in
CircuitPython with board.CAMERA_VSYNC
and Arduino with VSYNC_GPIO_NUM .
HREF - GPIO6. Accessible in CircuitPython
with board.CAMERA_HREF and Arduino
with HREF_GPIO_NUM .
XCLK - GPIO8. Accessible in CircuitPython
with board.CAMERA_XCLK and Arduino
with XCLK_GPIO_NUM .
PCLK - GPIO11. Accessible in CircuitPython
with board.CAMERA_PCLK and Arduino
with PCLK_GPIO_NUM .
PWDN - GPIO21. Accessible in
CircuitPython with board.CAMERA_PWDN
and Arduino with PWDN_GPIO_NUM .
DATA2 - GPIO13. Accessible in
CircuitPython with board.CAMERA_DATA2
and Arduino with Y2_GPIO_NUM .
DATA3 - GPIO15. Accessible in
CircuitPython with board.CAMERA_DATA3
and Arduino with Y3_GPIO_NUM .
DATA4 - GPIO16. Accessible in
CircuitPython with board.CAMERA_DATA4
and Arduino with Y4_GPIO_NUM .
DATA5 - GPIO14. Accessible in
CircuitPython with board.CAMERA_DATA5
and Arduino with Y5_GPIO_NUM .
DATA6 - GPIO12. Accessible in
CircuitPython with board.CAMERA_DATA6
and Arduino with Y6_GPIO_NUM .

©Adafruit Industries Page 12 of 174

https://learn.adafruit.com//assets/126639
https://learn.adafruit.com//assets/126639

DATA7 - GPIO10. Accessible in
CircuitPython with board.CAMERA_DATA7
and Arduino with Y7_GPIO_NUM .
DATA8 - GPIO9. Accessible in
CircuitPython with board.CAMERA_DATA8
and Arduino with Y8_GPIO_NUM .
DATA9 - GPIO7. Accessible in
CircuitPython with board.CAMERA_DATA9
and Arduino with Y9_GPIO_NUM .
RESET - GPIO47. Accessible in
CircuitPython with board.CAMERA_RESET
and Arduino with RESET_GPIO_NUM .

For more information on the OV5640 pins,
check out the Adafruit Learn Guide for the
module (https://adafru.it/18e4).

©Adafruit Industries Page 13 of 174

https://learn.adafruit.com/adafruit-ov5640-camera-breakout/pinouts
https://learn.adafruit.com/adafruit-ov5640-camera-breakout/pinouts

TFT Screen

On the front of MEMENTO is the 1.54"
240x240 Color TFT. It can be used for
previewing the camera images or user
interface design. It uses the ST7789 driver,
which has both Arduino and CircuitPython
support. It uses the following pins for SPI
communication:

MOSI - GPIO35. Accessible in
CircuitPython with board.MOSI and
Arduino with MOSI .
SCK - GPIO36. Accessible in CircuitPython
with board.SCK and Arduino with SCK .
MISO - GPIO37. Accessible in
CircuitPython with board.MISO and
Arduino with MISO .
DC - GPIO40. Accessible in CircuitPython
with board.TFT_DC and Arduino with
TFT_DC .
CS - GPIO39. Accessible in CircuitPython
with board.TFT_CS and Arduino with
TFT_CS .
Backlight - GPIO45. Accessible in
CircuitPython with
board.TFT_BACKLIGHT and Arduino with
TFT_BACKLIGHT .
Reset - GPIO38. Accessible in
CircuitPython with board.TFT_RESET and
Arduino with TFT_RESET or TFT_RST .

©Adafruit Industries Page 14 of 174

https://learn.adafruit.com//assets/126686
https://learn.adafruit.com//assets/126686

Hardware UART

To the right of the ESP32-S3 module and
above the TFT connector are the breakout
pads for hardware UART. These pins,
labeled RX and TX on the board silk, are
for more intense debugging needs. You
can solder wires to the through-hole pads
to connect to a console cable.

GPIO Expander

The MEMENTO includes an AW9523 GPIO
Expander. The IO Expander is connected
via the I2C bus. The main purpose of the
expander is to add additional pins to
communicate with the buttons

The I2C address of the GPIO expander
is 0x58.

Accelerometer

On the back of the board, to the left of the
GPIO expander, is an LIS3DH
accelerometer. It is a triple-access
accelerometer that can detect orientation,
shaking or movement. It communicates
over I2C on address 0x19. Its interrupt
(IRQ) pin is connected to GPIO3, which is
accessible in CircuitPython with
board.IRQ and Arduino with 3 .

©Adafruit Industries Page 15 of 174

https://learn.adafruit.com//assets/126667
https://learn.adafruit.com//assets/126667
https://learn.adafruit.com//assets/126636
https://learn.adafruit.com//assets/126636
https://learn.adafruit.com//assets/126655
https://learn.adafruit.com//assets/126655

User Buttons

On the front of the board are six user
buttons. They are connected through the
AW9523 GPIO expander:

OK button - pin 11
Select button - pin 1
Up button - pin 13
Down button - pin 15
Left button - pin 14
Right button - pin 12

Both the Arduino (https://adafru.it/18e5)
and CircuitPython (https://adafru.it/18e3)
PyCamera libraries have built-in support
for these buttons to easily access them.

Reset and Boot Buttons

Along the top edge of the board are two
buttons. The boot button, labeled Boot
and Shutter on the board silk, is
connected to GPIO0. It's accessible in
CircuitPython with board.BUTTON and
Arduino with SHUTTER_BUTTON . You'll hold
it while pressing reset to enter ROM
Bootloader mode.

The reset button, labeled RST on the
board silk, is connected to the ESP32-S3
reset pin. Click it once to restart your
firmware. Click it again after about a half
second to enter bootloader mode.

©Adafruit Industries Page 16 of 174

https://learn.adafruit.com//assets/126693
https://learn.adafruit.com//assets/126693
https://github.com/adafruit/Adafruit_PyCamera
https://github.com/adafruit/Adafruit_CircuitPython_PyCamera
https://learn.adafruit.com//assets/126658
https://learn.adafruit.com//assets/126658

Analog MEMS Microphone

On the front of MEMENTO, above the
cluster of four user buttons, is the analog
MEMS microphone. It is labeled Mic on the
board silk. It can be used as a sensor to
detect loud sounds. It is not for recording
video with audio. The analog input from
the microphone is connected to GPIO2. It's
accessible in CircuitPython with
board.MIC and Arduino with 2 .

Speaker

Below the TFT display is the speaker. It is
labeled Speaker on the board silk. The
output from the speaker is connected to
GPIO46. It is accessible in CircuitPython
with board.SPEAKER and Arduino with
SPEAKER .

The speaker is muted via pin 0 on the
AW9523 GPIO expander, so don't forget
to de-mute before expecting it to make
noise!

©Adafruit Industries Page 17 of 174

https://learn.adafruit.com//assets/126678
https://learn.adafruit.com//assets/126678
https://learn.adafruit.com//assets/126692
https://learn.adafruit.com//assets/126692

JST-PH Connectors

On the left side of the board are
connectors labeled A0 and A1. These are
3-pin JST connectors for sensors,
NeoPixels, or analog output or input. A0 is
connected to GPIO17 (accessible with
board.A0 in CircuitPython and A0 in
Arduino) and A1 is connected to GPIO18
(accessible with board.A1 in
CircuitPython and A1 in Arduino).

Between both connectors is a jumper
labeled 5V3. It can be cut and soldered to
use 3V instead of 5V for the VCC signal on
the JST connectors.

I2C/Stemma QT Connector

There is a 4-pin Stemma QT connector on
the left. The I2C has pullups to 3.3V power.

The I2C pins are connected to GPIO34
(SDA) and GPIO33 (SCL). In Arduino, you
can use the STEMMA connector with
Wire . In CircuitPython, you can use the
STEMMA connector with
board.SCL and board.SDA ,
board.I2C() or board.STEMMA_I2C() .

©Adafruit Industries Page 18 of 174

https://learn.adafruit.com//assets/126638
https://learn.adafruit.com//assets/126638
https://learn.adafruit.com//assets/126637
https://learn.adafruit.com//assets/126637

microSD Card Slot

Towards the bottom left corner on the
back of MEMENTO is the microSD card
slot. You can store images or animations to
any SPI-capable micro SD card.

SDCS (chip select pin) - connected to
GPIO48. It is accessible in CircuitPython
with board.CARD_CS and Arduino with
SD_CS or SD_CHIP_SELECT .
SDCD (card detect pin) - connected to pin
9 on the AW9523.

NeoPixel

At the top of the board, to the right of the
boot button, is the NeoPixel. This
addressable RGB LED works both as a
status LED (in CircuitPython and the
bootloader), and can be controlled with
code. It is connected to GPIO1 and is
available in CircuitPython as
board.NEOPIXEL and in Arduino as
PIN_NEOPIXEL or NEOPIXEL_PIN .

©Adafruit Industries Page 19 of 174

https://learn.adafruit.com//assets/126660
https://learn.adafruit.com//assets/126660
https://learn.adafruit.com//assets/126662
https://learn.adafruit.com//assets/126662

Power

USB-C port - This is used for both powering and programming the board. You
can power it with any USB C cable. When USB is plugged in it will charge the
LiPoly battery.
LiPoly connector/charger - You can plug in any 350mAh or larger 3.7/4.2V LiPoly
battery into this JST 2-PH port to both power your MEMENTO and charge the
battery. If the battery is plugged in and USB is plugged in, the MEMENTO will
power itself from USB and it will charge the battery up. There is an outline on
the board silk that is perfectly sized for the 420mAh battery in the shop.
Battery Monitor Pin - You can monitor the battery percentage via an ADC pin
accessed with board.BATTERY_MONITOR in CircuitPython or BATT_MONITOR in
Arduino.
Power Selection Jumper - Above the TFT display ribbon cable is the power
selection jumper. It selects whether the 2.8V supply is powered from 3.3V or 5V.
It can be cut and soldered to use 5V instead of 3.3V.

•

•

•

•

©Adafruit Industries Page 20 of 174

Lithium Ion Polymer Battery with Short
Cable - 3.7V 420mAh
Lithium-ion polymer (also known as 'lipo'
or 'lipoly') batteries are thin, light, and
powerful. The output ranges from 4.2V
when completely charged to 3.7V. This...
https://www.adafruit.com/product/4236

On/Off Switch and Power LED

On the top right edge of the board is the
on/off switch, labeled On on the board
silk. This sliding switch can cut all power to
the board.

To the right of the switch is the power LED.
It is a green LED and is lit up when the
board has power.

Install CircuitPython
CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)
designed to simplify experimentation and education on low-cost microcontrollers. It
makes it easier than ever to get prototyping by requiring no upfront desktop software
downloads. Simply copy and edit files on the CIRCUITPY drive to iterate.

CircuitPython Quickstart
Follow this step-by-step to quickly get CircuitPython running on your board.

Make sure you use CircuitPython 9.0.0 final or later. CircuitPython 9.0.0-beta.1
and earlier have a bug that can corrupt the fileystem.

©Adafruit Industries Page 21 of 174

https://www.adafruit.com/product/4236
https://www.adafruit.com/product/4236
https://www.adafruit.com/product/4236
https://learn.adafruit.com//assets/126659
https://learn.adafruit.com//assets/126659
https://github.com/adafruit/circuitpython
https://micropython.org

import storage
storage.erase_filesystem()

Your board will reboot after running this.

Download the latest version of
CircuitPython for this board via

circuitpython.org
https://adafru.it/18e6

Follow these steps to create the /sd
directory

https://adafru.it/19ei

Click the link above to download the
latest CircuitPython UF2 file.

Save it wherever is convenient for you.

As of CircuitPython 9, you'll need to create a folder called "sd" on your
CIRCUITPY drive to mount the microSD card, if it's not already there.

©Adafruit Industries Page 22 of 174

https://circuitpython.org/board/adafruit_esp32s3_camera/
https://learn.adafruit.com/adafruit-memento-camera-board/circuitpython-memento-starter-projects
https://learn.adafruit.com//assets/102129
https://learn.adafruit.com//assets/102129

Plug your board into your computer, using a known-good data-sync cable, directly, or
via an adapter if needed.

Double-click the reset button (highlighted in red above), and you will see the RGB
status LED(s) turn green (highlighted in green above). If you see red, try another port,
or if you're using an adapter or hub, try without the hub, or different adapter or hub.

For this board, tap reset and wait for the LED to turn purple, and as soon as it turns
purple, tap reset again. The second tap needs to happen while the LED is still purple.

If you do not see the LED turning purple, you will need to reinstall the UF2 bootloader.
See the Factory Reset page in this guide for details.

If double-clicking doesn't work the first time, try again. Sometimes it can take a few
tries to get the rhythm right!

A lot of people end up using charge-only USB cables and it is very frustrating! Make
sure you have a USB cable you know is good for data sync.

©Adafruit Industries Page 23 of 174

You will see a new disk drive appear called
CAMERABOOT. Drag the adafruit-
circuitpython-adafruit_esp32s3_camera-
etc.uf2 file to CAMERABOOT.

The BOOT drive will disappear and a new
disk drive called CIRCUITPY will appear.

That's it!

Installing the Mu Editor
Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's
written in Python and works on Windows, MacOS, Linux and Raspberry Pi. The serial
console is built right in so you get immediate feedback from your board's serial
output!

Mu is our recommended editor - please use it (unless you are an experienced
coder with a favorite editor already!).

©Adafruit Industries Page 24 of 174

https://learn.adafruit.com//assets/126740
https://learn.adafruit.com//assets/126740
https://learn.adafruit.com//assets/102130
https://learn.adafruit.com//assets/102130

Download and Install Mu

Download Mu from https://
codewith.mu (https://adafru.it/Be6).

Click the Download link for downloads and
installation instructions.

Click Start Here to find a wealth of other
information, including extensive tutorials
and and how-to's.

Starting Up Mu

The first time you start Mu, you will be
prompted to select your 'mode' - you can
always change your mind later. For now
please select CircuitPython!

The current mode is displayed in the lower
right corner of the window, next to the
"gear" icon. If the mode says "Microbit" or
something else, click the Mode button in
the upper left, and then choose
"CircuitPython" in the dialog box that
appears.

Windows users: due to the nature of MSI installers, please remove old
versions of Mu before installing the latest version.

©Adafruit Industries Page 25 of 174

https://learn.adafruit.com//assets/105677
https://learn.adafruit.com//assets/105677
https://codewith.mu/
https://codewith.mu/
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105681

Mu attempts to auto-detect your board on
startup, so if you do not have a
CircuitPython board plugged in with a
CIRCUITPY drive available, Mu will inform
you where it will store any code you save
until you plug in a board.

To avoid this warning, plug in a board and
ensure that the CIRCUITPY drive is
mounted before starting Mu.

Using Mu
You can now explore Mu! The three main sections of the window are labeled below;
the button bar, the text editor, and the serial console / REPL.

Now you're ready to code! Let's keep going...

The CIRCUITPY Drive
When CircuitPython finishes installing, or you plug a CircuitPython board into your
computer with CircuitPython already installed, the board shows up on your computer
as a USB drive called CIRCUITPY.

The CIRCUITPY drive is where your code and the necessary libraries and files will
live. You can edit your code directly on this drive and when you save, it will run
automatically. When you create and edit code, you'll save your code in a code.py file
located on the CIRCUITPY drive. If you're following along with a Learn guide, you can

©Adafruit Industries Page 26 of 174

https://learn.adafruit.com//assets/105679
https://learn.adafruit.com//assets/105679

paste the contents of the tutorial example into code.py on the CIRCUITPY drive and
save it to run the example.

With a fresh CircuitPython install, on your CIRCUITPY drive, you'll find a code.py file
containing print("Hello World!") and an empty lib folder. If your CIRCUITPY
drive does not contain a code.py file, you can easily create one and save it to the
drive. CircuitPython looks for code.py and executes the code within the file
automatically when the board starts up or resets. Following a change to the contents
of CIRCUITPY, such as making a change to the code.py file, the board will reset, and
the code will be run. You do not need to manually run the code. This is what makes it
so easy to get started with your project and update your code!

Note that all changes to the contents of CIRCUITPY, such as saving a new file,
renaming a current file, or deleting an existing file will trigger a reset of the board.

Boards Without CIRCUITPY
CircuitPython is available for some microcontrollers that do not support native USB.
Those boards cannot present a CIRCUITPY drive. This includes boards using ESP32
or ESP32-C3 microcontrollers.

On these boards, there are alternative ways to transfer and edit files. You can use the
Thonny editor (https://adafru.it/18e7), which uses hidden commands sent to the REPL
to read and write files. Or you can use the CircuitPython web workflow, introduced in
Circuitpython 8. The web workflow provides browser-based WiFi access to the
CircuitPython filesystem. These guides will help you with the web workflow:

CircuitPython on ESP32 Quick Start (https://adafru.it/10JF)
CircuitPython Web Workflow Code Editor Quick Start (https://adafru.it/18e8)

Creating and Editing Code
One of the best things about CircuitPython is how simple it is to get code up and
running. This section covers how to create and edit your first CircuitPython program.

•
•

©Adafruit Industries Page 27 of 174

https://thonny.org
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://learn.adafruit.com/getting-started-with-web-workflow-using-the-code-editor

To create and edit code, all you'll need is an editor. There are many options. Adafruit
strongly recommends using Mu! It's designed for CircuitPython, and it's really simple
and easy to use, with a built in serial console!

If you don't or can't use Mu, there are a number of other editors that work quite well.
The Recommended Editors page (https://adafru.it/Vue) has more details. Otherwise,
make sure you do "Eject" or "Safe Remove" on Windows or "sync" on Linux after
writing a file if you aren't using Mu. (This was formerly not a problem on macOS, but
see the warning below.)

Creating Code

Installing CircuitPython generates a
code.py file on your CIRCUITPY drive. To
begin your own program, open your editor,
and load the code.py file from the
CIRCUITPY drive.

If you are using Mu, click the Load button
in the button bar, navigate to the
CIRCUITPY drive, and choose code.py.

Copy and paste the following code into your editor:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

macOS Sonoma 14.1 introduced a bug that delays writes to small drives such
as CIRCUITPY drives. This caused errors when saving files to CIRCUITPY.
There is a workaround. The bug was fixed in Sonoma 14.4, but at the cost of
greatly slowed writes to drives 1GB or smaller.

©Adafruit Industries Page 28 of 174

https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#macos-sonoma-14-dot-x-disk-errors-writing-to-circuitpy-3160304
https://learn.adafruit.com//assets/105703
https://learn.adafruit.com//assets/105703

If you're using a KB2040, QT Py, Quaila, or a Trinkey, or any other board without a
single-color LED that can blink, please download the NeoPixel blink example (https://
adafru.it/UDU).

It will look like this. Note that under the
while True: line, the next four lines
begin with four spaces to indent them, and
they're indented exactly the same amount.
All the lines before that have no spaces
before the text.

Save the code.py file on your CIRCUITPY
drive.

The little LED should now be blinking. Once per half-second.

Congratulations, you've just run your first CircuitPython program!

The KB2040, QT Py , Qualia, and the Trinkeys do not have a built-in little red
LED! There is an addressable RGB NeoPixel LED. The above example will NOT
work on the KB2040, QT Py, Qualia, or the Trinkeys!

The NeoPixel blink example uses the onboard NeoPixel, but the time code is
the same. You can use the linked NeoPixel Blink example to follow along with
this guide page.

©Adafruit Industries Page 29 of 174

https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py
https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105705
https://learn.adafruit.com//assets/105705

Editing Code

To edit code, open the code.py file on your
CIRCUITPY drive into your editor.

Make the desired changes to your code.
Save the file. That's it!

Your code changes are run as soon as the file is done saving.

There's one warning before you continue...

The CircuitPython code on your board detects when the files are changed or written
and will automatically re-start your code. This makes coding very fast because you
save, and it re-runs. If you unplug or reset the board before your computer finishes
writing the file to your board, you can corrupt the drive. If this happens, you may lose
the code you've written, so it's important to backup your code to your computer
regularly.

There are a couple of ways to avoid filesystem corruption.

1. Use an editor that writes out the file completely when you save it.

Check out the Recommended Editors page (https://adafru.it/Vue) for details on
different editing options.

On most boards you'll find a tiny red LED. On the ItsyBitsy nRF52840, you'll
find a tiny blue LED. On QT Py M0, QT Py RP2040, Qualia, and the Trinkey
series, you will find only an RGB NeoPixel LED.

Don't click reset or unplug your board!

©Adafruit Industries Page 30 of 174

https://learn.adafruit.com//assets/105706
https://learn.adafruit.com//assets/105706
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make
it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually
eject, but it will force the operating system to save your file to disk. On Linux, use the
sync command in a terminal to force the write to disk.

You also need to do this if you use Windows Explorer or a Linux graphical file
manager to drag a file onto CIRCUITPY.

import supervisor
supervisor.runtime.autoreload = False

Back to Editing Code...
Now! Let's try editing the program you added to your board. Open your code.py file
into your editor. You'll make a simple change. Change the first 0.5 to 0.1 . The code
should look like this:

If you are dragging a file from your host computer onto the CIRCUITPY drive,
you still need to do step 2. Eject or Sync (below) to make sure the file is
completely written.

Don't worry! Corrupting the drive isn't the end of the world (or your
board!). If this happens, follow the steps found on the
Troubleshooting (https://adafru.it/Den) page of every board guide to get
your board up and running again.

? Oh No I Did Something Wrong and
Now The CIRCUITPY Drive Doesn't
Show Up!!!

If you are having trouble saving code on Windows 10, try including this code
snippet at the top of code.py:

©Adafruit Industries Page 31 of 174

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
led.value = True
time.sleep(0.1)
led.value = False
time.sleep(0.5)

Leave the rest of the code as-is. Save your file. See what happens to the LED on your
board? Something changed! Do you know why?

You don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 so it
looks like this:

while True:
 led.value = True
 time.sleep(0.1)
 led.value = False
 time.sleep(0.1)

Now it blinks really fast! You decreased the both time that the code leaves the LED on
and off!

Now try increasing both of the 0.1 to 1 . Your LED will blink much more slowly
because you've increased the amount of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them
to see what happens! These were simple changes, but major changes are done using
the same process. Make your desired change, save it, and get the results. That's
really all there is to it!

Naming Your Program File
CircuitPython looks for a code file on the board to run. There are four options:
code.txt, code.py, main.txt and main.py. CircuitPython looks for those files, in that
order, and then runs the first one it finds. While code.py is the recommended name
for your code file, it is important to know that the other options exist. If your program
doesn't seem to be updating as you work, make sure you haven't created another
code file that's being read instead of the one you're working on.

Exploring Your First CircuitPython Program
First, you'll take a look at the code you're editing.

©Adafruit Industries Page 32 of 174

Here is the original code again for the LED blink example (if your board doesn't have
a single-color LED to blink, look instead at the NeoPixel blink example):

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

Imports & Libraries
Each CircuitPython program you run needs to have a lot of information to work. The
reason CircuitPython is so simple to use is that most of that information is stored in
other files and works in the background. The files built into CircuitPython are called
modules, and the files you load separately are called libraries. Modules are built into
CircuitPython. Libraries are stored on your CIRCUITPY drive in a folder called lib.

import board
import digitalio
import time

The import statements tells the board that you're going to use a particular library or
module in your code. In this example, you imported three modules: board ,
digitalio , and time . All three of these modules are built into CircuitPython, so no
separate library files are needed. That's one of the things that makes this an excellent
first example. You don't need anything extra to make it work!

These three modules each have a purpose. The first one, board , gives you access to
the hardware on your board. The second, digitalio , lets you access that hardware
as inputs/outputs. The third, time , let's you control the flow of your code in multiple
ways, including passing time by 'sleeping'.

Setting Up The LED
The next two lines setup the code to use the LED.

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

Your board knows the red LED as LED . So, you initialise that pin, and you set it to
output. You set led to equal the rest of that information so you don't have to type it
all out again later in our code.

©Adafruit Industries Page 33 of 174

Loop-de-loops
The third section starts with a while statement. while True: essentially means,
"forever do the following:". while True: creates a loop. Code will loop "while" the
condition is "true" (vs. false), and as True is never False, the code will loop forever.
All code that is indented under while True: is "inside" the loop.

Inside our loop, you have four items:

while True:
led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

First, you have led.value = True . This line tells the LED to turn on. On the next
line, you have time.sleep(0.5) . This line is telling CircuitPython to pause running
code for 0.5 seconds. Since this is between turning the led on and off, the led will be
on for 0.5 seconds.

The next two lines are similar. led.value = False tells the LED to turn off, and
time.sleep(0.5) tells CircuitPython to pause for another 0.5 seconds. This occurs
between turning the led off and back on so the LED will be off for 0.5 seconds too.

Then the loop will begin again, and continue to do so as long as the code is running!

So, when you changed the first 0.5 to 0.1 , you decreased the amount of time that
the code leaves the LED on. So it blinks on really quickly before turning off!

Great job! You've edited code in a CircuitPython program!

What Happens When My Code Finishes Running?
When your code finishes running, CircuitPython resets your microcontroller board to
prepare it for the next run of code. That means any set up you did earlier no longer
applies, and the pin states are reset.

For example, try reducing the code snippet above by eliminating the loop entirely,
and replacing it with led.value = True . The LED will flash almost too quickly to
see, and turn off. This is because the code finishes running and resets the pin state,
and the LED is no longer receiving a signal.

To that end, most CircuitPython programs involve some kind of loop, infinite or
otherwise.

©Adafruit Industries Page 34 of 174

What if I Don't Have the Loop?
If you don't have the loop, the code will run to the end and exit. This can lead to some
unexpected behavior in simple programs like this since the "exit" also resets the state
of the hardware. This is a different behavior than running commands via REPL. So if
you are writing a simple program that doesn't seem to work, you may need to add a
loop to the end so the program doesn't exit.

The simplest loop would be:

while True:
pass

And remember - you can press CTRL+C to exit the loop.

See also the Behavior section in the docs (https://adafru.it/Bvz).

Connecting to the Serial Console
One of the staples of CircuitPython (and programming in general!) is something called
a "print statement". This is a line you include in your code that causes your code to
output text. A print statement in CircuitPython (and Python) looks like this:

print("Hello, world!")

This line in your code.py would result in:

Hello, world!

However, these print statements need somewhere to display. That's where the serial
console comes in!

The serial console receives output from your CircuitPython board sent over USB and
displays it so you can see it. This is necessary when you've included a print statement
in your code and you'd like to see what you printed. It is also helpful for
troubleshooting errors, because your board will send errors and the serial console will
display those too.

The serial console requires an editor that has a built in terminal, or a separate
terminal program. A terminal is a program that gives you a text-based interface to
perform various tasks.

©Adafruit Industries Page 35 of 174

https://circuitpython.readthedocs.io/en/latest/README.html#behavior

Are you using Mu?
If so, good news! The serial console is built into Mu and will autodetect your board
making using the serial console really really easy.

First, make sure your CircuitPython board
is plugged in.

If you open Mu without a board plugged
in, you may encounter the error seen here,
letting you know no CircuitPython board
was found and indicating where your code
will be stored until you plug in a board.

If you are using Windows 7, make sure you
installed the drivers (https://adafru.it/VuB).

Once you've opened Mu with your board plugged in, look for the Serial button in the
button bar and click it.

The Mu window will split in two, horizontally, and display the serial console at the
bottom.

Serial Console Issues or Delays on Linux
If you're on Linux, and are seeing multi-second delays connecting to the serial
console, or are seeing "AT" and other gibberish when you connect, then the

If nothing appears in the serial console, it may mean your code is done
running or has no print statements in it. Click into the serial console part of
Mu, and press CTRL+D to reload.

©Adafruit Industries Page 36 of 174

https://learn.adafruit.com//assets/105925
https://learn.adafruit.com//assets/105925
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers

modemmanager service might be interfering. Just remove it; it doesn't have much use
unless you're still using dial-up modems.

To remove modemmanager , type the following command at a shell:

sudo apt purge modemmanager

Setting Permissions on Linux
On Linux, if you see an error box something like the one below when you press the
Serial button, you need to add yourself to a user group to have permission to connect
to the serial console.

On Ubuntu and Debian, add yourself to the dialout group by doing:

sudo adduser $USER dialout

After running the command above, reboot your machine to gain access to the group.
On other Linux distributions, the group you need may be different. See the Advanced
Serial Console on Linux (https://adafru.it/VAO) for details on how to add yourself to
the right group.

Using Something Else?
If you're not using Mu to edit, are using or if for some reason you are not a fan of its
built in serial console, you can run the serial console from a separate program.

Windows requires you to download a terminal program. Check out the Advanced
Serial Console on Windows page for more details. (https://adafru.it/AAH)

MacOS has Terminal built in, though there are other options available for download.
Check the Advanced Serial Console on Mac page for more details. (https://adafru.it/
AAI)

Linux has a terminal program built in, though other options are available for
download. Check the Advanced Serial Console on Linux page for more
details. (https://adafru.it/VAO)

©Adafruit Industries Page 37 of 174

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

Once connected, you'll see something like the following.

Interacting with the Serial Console
Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, you're going to
edit it to create some output.

Open your code.py file into your editor, and include a print statement. You can print
anything you like! Just include your phrase between the quotation marks inside the
parentheses. For example:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
print("Hello, CircuitPython!")
led.value = True
time.sleep(1)
led.value = False
time.sleep(1)

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

Excellent! Our print statement is showing up in our console! Try changing the printed
text to something else.

import board
import digitalio

©Adafruit Industries Page 38 of 174

import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
print("Hello back to you!")
led.value = True
time.sleep(1)
led.value = False
time.sleep(1)

Keep your serial console window where you can see it. Save your file. You'll see what
the serial console displays when the board reboots. Then you'll see your new change!

The Traceback (most recent call last): is telling you the last thing your board
was doing before you saved your file. This is normal behavior and will happen every
time the board resets. This is really handy for troubleshooting. Let's introduce an error
so you can see how it is used.

Delete the e at the end of True from the line led.value = True so that it says
led.value = Tru

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
print("Hello back to you!")
led.value = Tru
time.sleep(1)
led.value = False
time.sleep(1)

Save your file. You will notice that your red LED will stop blinking, and you may have a
colored status LED blinking at you. This is because the code is no longer correct and
can no longer run properly. You need to fix it!

©Adafruit Industries Page 39 of 174

Usually when you run into errors, it's not because you introduced them on purpose.
You may have 200 lines of code, and have no idea where your error could be hiding.
This is where the serial console can help. Let's take a look!

The Traceback (most recent call last): is telling you that the last thing it was
able to run was line 10 in your code. The next line is your error: NameError: name
'Tru' is not defined . This error might not mean a lot to you, but combined with
knowing the issue is on line 10, it gives you a great place to start!

Go back to your code, and take a look at line 10. Obviously, you know what the
problem is already. But if you didn't, you'd want to look at line 10 and see if you could
figure it out. If you're still unsure, try googling the error to get some help. In this case,
you know what to look for. You spelled True wrong. Fix the typo and save your file.

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking
again.

The serial console will display any output generated by your code. Some sensors,
such as a humidity sensor or a thermistor, receive data and you can use print
statements to display that information. You can also use print statements for

©Adafruit Industries Page 40 of 174

troubleshooting, which is called "print debugging". Essentially, if your code isn't
working, and you want to know where it's failing, you can put print statements in
various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and
programming!

The REPL
The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL.
The REPL allows you to enter individual lines of code and have them run immediately.
It's really handy if you're running into trouble with a particular program and can't
figure out why. It's interactive so it's great for testing new ideas.

Entering the REPL
To use the REPL, you first need to be connected to the serial console. Once that
connection has been established, you'll want to press CTRL+C.

If there is code running, in this case code measuring distance, it will stop and you'll
see Press any key to enter the REPL. Use CTRL-D to reload. Follow those
instructions, and press any key on your keyboard.

The Traceback (most recent call last): is telling you the last thing your board
was doing before you pressed Ctrl + C and interrupted it. The KeyboardInterrupt
is you pressing CTRL+C. This information can be handy when troubleshooting, but for
now, don't worry about it. Just note that it is expected behavior.

If your code.py file is empty or does not contain a loop, it will show an empty output
and Code done running. . There is no information about what your board was
doing before you interrupted it because there is no code running.

©Adafruit Industries Page 41 of 174

If you have no code.py on your CIRCUITPY drive, you will enter the REPL immediately
after pressing CTRL+C. Again, there is no information about what your board was
doing before you interrupted it because there is no code running.

Regardless, once you press a key you'll see a >>> prompt welcoming you to the
REPL!

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

The first thing you get from the REPL is information about your board.

This line tells you the version of CircuitPython you're using and when it was released.
Next, it gives you the type of board you're using and the type of microcontroller the
board uses. Each part of this may be different for your board depending on the
versions you're working with.

This is followed by the CircuitPython prompt.

Interacting with the REPL
From this prompt you can run all sorts of commands and code. The first thing you'll do
is run help() . This will tell you where to start exploring the REPL. To run code in the
REPL, type it in next to the REPL prompt.

Type help() next to the prompt in the REPL.

©Adafruit Industries Page 42 of 174

Then press enter. You should then see a message.

First part of the message is another reference to the version of CircuitPython you're
using. Second, a URL for the CircuitPython related project guides. Then... wait. What's
this? To list built-in modules type help("modules"). Remember the modules you
learned about while going through creating code? That's exactly what this is talking
about! This is a perfect place to start. Let's take a look!

Type help("modules") into the REPL next to the prompt, and press enter.

This is a list of all the core modules built into CircuitPython, including board .
Remember, board contains all of the pins on the board that you can use in your
code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might
look like nothing happened, but that's not the case! If you recall, the import
statement simply tells the code to expect to do something with that module. In this
case, it's telling the REPL that you plan to do something with that module.

Next, type dir(board) into the REPL and press enter.

©Adafruit Industries Page 43 of 174

This is a list of all of the pins on your board that are available for you to use in your
code. Each board's list will differ slightly depending on the number of pins available.
Do you see LED ? That's the pin you used to blink the red LED!

The REPL can also be used to run code. Be aware that any code you enter into the
REPL isn't saved anywhere. If you're testing something new that you'd like to keep,
make sure you have it saved somewhere on your computer as well!

Every programmer in every programming language starts with a piece of code that
says, "Hello, World." You're going to say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

Then press enter.

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire
programs into the REPL to test them. Remember that nothing typed into the REPL is
saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to
see if a few new lines of code will work. It's fantastic for troubleshooting code by
entering it one line at a time and finding out where it fails. It lets you see what
modules are available and explore those modules.

Try typing more into the REPL to see what happens!

Returning to the Serial Console
When you're ready to leave the REPL and return to the serial console, simply press
CTRL+D. This will reload your board and reenter the serial console. You will restart the
program you had running before entering the REPL. In the console window, you'll see

Everything typed into the REPL is ephemeral. Once you reload the REPL or
return to the serial console, nothing you typed will be retained in any memory
space. So be sure to save any desired code you wrote somewhere else, or
you'll lose it when you leave the current REPL instance!

©Adafruit Industries Page 44 of 174

any output from the program you had running. And if your program was affecting
anything visual on the board, you'll see that start up again as well.

You can return to the REPL at any time!

CircuitPython Libraries

Each CircuitPython program you run needs to have a lot of information to work. The
reason CircuitPython is so simple to use is that most of that information is stored in
other files and works in the background. These files are called libraries. Some of them
are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder
called lib. Part of what makes CircuitPython so great is its ability to store code
separately from the firmware itself. Storing code separately from the firmware makes
it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If
not, simply create the folder yourself. When you first install CircuitPython, an empty lib
directory will be created for you.

CircuitPython libraries work in the same way as regular Python modules so the Python
docs (https://adafru.it/rar) are an excellent reference for how it all should work. In

As CircuitPython development continues and there are new releases, Adafruit
will stop supporting older releases. Visit https://circuitpython.org/downloads
to download the latest version of CircuitPython for your board. You must
download the CircuitPython Library Bundle that matches your version of
CircuitPython. Please update CircuitPython and then visit https://
circuitpython.org/libraries to download the latest Library Bundle.

©Adafruit Industries Page 45 of 174

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html

Python terms, you can place our library files in the lib directory because it's part of the
Python path by default.

One downside of this approach of separate libraries is that they are not built in. To
use them, one needs to copy them to the CIRCUITPY drive before they can be used.
Fortunately, there is a library bundle.

The bundle and the library releases on GitHub also feature optimized versions of the
libraries with the .mpy file extension. These files take less space on the drive and
have a smaller memory footprint as they are loaded.

Due to the regular updates and space constraints, Adafruit does not ship boards with
the entire bundle. Therefore, you will need to load the libraries you need when you
begin working with your board. You can find example code in the guides for your
board that depends on external libraries.

Either way, as you start to explore CircuitPython, you'll want to know how to get
libraries on board.

The Adafruit Learn Guide Project Bundle
The quickest and easiest way to get going with a project from the Adafruit Learn
System is by utilising the Project Bundle. Most guides now have a Download Project
Bundle button available at the top of the full code example embed. This button
downloads all the necessary files, including images, etc., to get the guide project up
and running. Simply click, open the resulting zip, copy over the right files, and you're
good to go!

The first step is to find the Download Project Bundle button in the guide you're
working on.

The Download Project Bundle button is only available on full demo code
embedded from GitHub in a Learn guide. Code snippets will NOT have the
button available.

©Adafruit Industries Page 46 of 174

The Download Project Bundle button downloads a zip file. This zip contains a series
of directories, nested within which is the code.py, any applicable assets like images
or audio, and the lib/ folder containing all the necessary libraries. The following zip
was downloaded from the Piano in the Key of Lime guide.

When you copy the contents of the Project Bundle to your CIRCUITPY drive, it
will replace all the existing content! If you don't want to lose anything, ensure
you copy your current code to your computer before you copy over the new
Project Bundle content!

The Piano in the Key of Lime guide was chosen as an example. That guide is
specific to Circuit Playground Express, and cannot be used on all boards. Do
not expect to download that exact bundle and have it work on your non-CPX
microcontroller.

©Adafruit Industries Page 47 of 174

When you open the zip, you'll find some nested directories. Navigate through them
until you find what you need. You'll eventually find a directory for your CircuitPython
version (in this case, 7.x). In the version directory, you'll find the file and directory you
need: code.py and lib/. Once you find the content you need, you can copy it all over
to your CIRCUITPY drive, replacing any files already on the drive with the files from
the freshly downloaded zip.

Once you copy over all the relevant files, the project should begin running! If you find
that the project is not running as expected, make sure you've copied ALL of the
project files onto your microcontroller board.

That's all there is to using the Project Bundle!

The Adafruit CircuitPython Library Bundle
Adafruit provides CircuitPython libraries for much of the hardware they provide,
including sensors, breakouts and more. To eliminate the need for searching for each
library individually, the libraries are available together in the Adafruit CircuitPython
Library Bundle. The bundle contains all the files needed to use each library.

Downloading the Adafruit CircuitPython Library Bundle
You can download the latest Adafruit CircuitPython Library Bundle release by clicking
the button below. The libraries are being constantly updated and improved, so you'll
always want to download the latest bundle.

Match up the bundle version with the version of CircuitPython you are running. For
example, you would download the 6.x library bundle if you're running any version of
CircuitPython 6, or the 7.x library bundle if you're running any version of CircuitPython
7, etc. If you mix libraries with major CircuitPython versions, you will get incompatible
mpy errors due to changes in library interfaces possible during major version
changes.

Click to visit circuitpython.org for
the latest Adafruit CircuitPython

Library Bundle
https://adafru.it/ENC

In some cases, there will be other files such as audio or images in the same
directory as code.py and lib/. Make sure you include all the files when you
copy things over!

©Adafruit Industries Page 48 of 174

https://circuitpython.org/libraries

Download the bundle version that matches your CircuitPython firmware version. If
you don't know the version, check the version info in boot_out.txt file on the
CIRCUITPY drive, or the initial prompt in the CircuitPython REPL. For example, if
you're running v7.0.0, download the 7.x library bundle.

There's also a py bundle which contains the uncompressed python files, you probably
don't want that unless you are doing advanced work on libraries.

The CircuitPython Community Library
Bundle
The CircuitPython Community Library Bundle is made up of libraries written and
provided by members of the CircuitPython community. These libraries are often
written when community members encountered hardware not supported in the
Adafruit Bundle, or to support a personal project. The authors all chose to submit
these libraries to the Community Bundle make them available to the community.

These libraries are maintained by their authors and are not supported by Adafruit.
As you would with any library, if you run into problems, feel free to file an issue on the
GitHub repo for the library. Bear in mind, though, that most of these libraries are
supported by a single person and you should be patient about receiving a response.
Remember, these folks are not paid by Adafruit, and are volunteering their personal
time when possible to provide support.

Downloading the CircuitPython Community Library Bundle
You can download the latest CircuitPython Community Library Bundle release by
clicking the button below. The libraries are being constantly updated and improved,
so you'll always want to download the latest bundle.

Click for the latest CircuitPython
Community Library Bundle release

https://adafru.it/VCn

The link takes you to the latest release of the CircuitPython Community Library
Bundle on GitHub. There are multiple versions of the bundle available. Download the
bundle version that matches your CircuitPython firmware version. If you don't know
the version, check the version info in boot_out.txt file on the CIRCUITPY drive, or the
initial prompt in the CircuitPython REPL. For example, if you're running v7.0.0,
download the 7.x library bundle.

©Adafruit Industries Page 49 of 174

https://github.com/adafruit/CircuitPython_Community_Bundle/releases

Understanding the Bundle
After downloading the zip, extract its contents. This is usually done by double clicking
on the zip. On Mac OSX, it places the file in the same directory as the zip.

Open the bundle folder. Inside you'll find two information files, and two folders. One
folder is the lib bundle, and the other folder is the examples bundle.

Now open the lib folder. When you open the folder, you'll see a large number of .mpy
files, and folders.

Example Files
All example files from each library are now included in the bundles in an examples
directory (as seen above), as well as an examples-only bundle. These are included for
two main reasons:

Allow for quick testing of devices.
Provide an example base of code, that is easily built upon for individualized
purposes.

•
•

©Adafruit Industries Page 50 of 174

Copying Libraries to Your Board
First open the lib folder on your CIRCUITPY drive. Then, open the lib folder you
extracted from the downloaded zip. Inside you'll find a number of folders and .mpy
files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

If the library is a directory with multiple .mpy files in it, be sure to copy the entire
folder to CIRCUITPY/lib.

This also applies to example files. Open the examples folder you extracted from the
downloaded zip, and copy the applicable file to your CIRCUITPY drive. Then, rename
it to code.py to run it.

Understanding Which Libraries to Install
You now know how to load libraries on to your CircuitPython-compatible
microcontroller board. You may now be wondering, how do you know which libraries
you need to install? Unfortunately, it's not always straightforward. Fortunately, there is
an obvious place to start, and a relatively simple way to figure out the rest. First up:
the best place to start.

When you look at most CircuitPython examples, you'll see they begin with one or
more import statements. These typically look like the following:

import library_or_module

However, import statements can also sometimes look like the following:

from library_or_module import name

from library_or_module.subpackage import name

If a library has multiple .mpy files contained in a folder, be sure to copy the
entire folder to CIRCUITPY/lib.

•

•
•

©Adafruit Industries Page 51 of 174

from library_or_module import name as local_name

They can also have more complicated formats, such as including a try / except
block, etc.

The important thing to know is that an import statement will always include the
name of the module or library that you're importing.

Therefore, the best place to start is by reading through the import statements.

Here is an example import list for you to work with in this section. There is no setup or
other code shown here, as the purpose of this section involves only the import list.

import time
import board
import neopixel
import adafruit_lis3dh
import usb_hid
from adafruit_hid.consumer_control import ConsumerControl
from adafruit_hid.consumer_control_code import ConsumerControlCode

Keep in mind, not all imported items are libraries. Some of them are almost always
built-in CircuitPython modules. How do you know the difference? Time to visit the
REPL.

In the Interacting with the REPL section (https://adafru.it/Awz) on The REPL
page (https://adafru.it/Awz) in this guide, the help("modules") command is
discussed. This command provides a list of all of the built-in modules available in
CircuitPython for your board. So, if you connect to the serial console on your board,
and enter the REPL, you can run help("modules") to see what modules are
available for your board. Then, as you read through the import statements, you can,
for the purposes of figuring out which libraries to load, ignore the statement that
import modules.

The following is the list of modules built into CircuitPython for the Feather RP2040.
Your list may look similar or be anything down to a significant subset of this list for
smaller boards.

•

©Adafruit Industries Page 52 of 174

https://learn.adafruit.com/welcome-to-circuitpython/the-repl#interacting-with-the-repl-2977486-14
https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

Now that you know what you're looking for, it's time to read through the import
statements. The first two, time and board , are on the modules list above, so they're
built-in.

The next one, neopixel , is not on the module list. That means it's your first library!
So, you would head over to the bundle zip you downloaded, and search for neopixel.
There is a neopixel.mpy file in the bundle zip. Copy it over to the lib folder on your
CIRCUITPY drive. The following one, adafruit_lis3dh , is also not on the module
list. Follow the same process for adafruit_lis3dh, where you'll find
adafruit_lis3dh.mpy, and copy that over.

The fifth one is usb_hid , and it is in the modules list, so it is built in. Often all of the
built-in modules come first in the import list, but sometimes they don't! Don't assume
that everything after the first library is also a library, and verify each import with the
modules list to be sure. Otherwise, you'll search the bundle and come up empty!

The final two imports are not as clear. Remember, when import statements are
formatted like this, the first thing after the from is the library name. In this case, the
library name is adafruit_hid . A search of the bundle will find an
adafruit_hid folder. When a library is a folder, you must copy the entire folder and its
contents as it is in the bundle to the lib folder on your CIRCUITPY drive. In this case,
you would copy the entire adafruit_hid folder to your CIRCUITPY/lib folder.

Notice that there are two imports that begin with adafruit_hid . Sometimes you will
need to import more than one thing from the same library. Regardless of how many
times you import the same library, you only need to load the library by copying over
the adafruit_hid folder once.

That is how you can use your example code to figure out what libraries to load on
your CircuitPython-compatible board!

There are cases, however, where libraries require other libraries internally. The
internally required library is called a dependency. In the event of library

©Adafruit Industries Page 53 of 174

dependencies, the easiest way to figure out what other libraries are required is to
connect to the serial console and follow along with the ImportError printed there.
The following is a very simple example of an ImportError , but the concept is the
same for any missing library.

Example: ImportError Due to Missing
Library
If you choose to load libraries as you need them, or you're starting fresh with an
existing example, you may end up with code that tries to use a library you haven't yet
loaded. This section will demonstrate what happens when you try to utilise a library
that you don't have loaded on your board, and cover the steps required to resolve the
issue.

This demonstration will only return an error if you do not have the required library
loaded into the lib folder on your CIRCUITPY drive.

Let's use a modified version of the Blink example.

import board
import time
import simpleio

led = simpleio.DigitalOut(board.LED)

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

Save this file. Nothing happens to your board. Let's check the serial console to see
what's going on.

You have an ImportError . It says there is no module named 'simpleio' . That's
the one you just included in your code!

Click the link above to download the correct bundle. Extract the lib folder from the
downloaded bundle file. Scroll down to find simpleio.mpy. This is the library file
you're looking for! Follow the steps above to load an individual library file.

©Adafruit Industries Page 54 of 174

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose
the library that matches the one you're missing.

Library Install on Non-Express Boards
If you have an M0 non-Express board such as Trinket M0, Gemma M0, QT Py M0, or
one of the M0 Trinkeys, you'll want to follow the same steps in the example above to
install libraries as you need them. Remember, you don't need to wait for an
ImportError if you know what library you added to your code. Open the library
bundle you downloaded, find the library you need, and drag it to the lib folder on your
CIRCUITPY drive.

You can still end up running out of space on your M0 non-Express board even if you
only load libraries as you need them. There are a number of steps you can use to try
to resolve this issue. You'll find suggestions on the Troubleshooting page (https://
adafru.it/Den).

Updating CircuitPython Libraries and
Examples
Libraries and examples are updated from time to time, and it's important to update the
files you have on your CIRCUITPY drive.

To update a single library or example, follow the same steps above. When you drag
the library file to your lib folder, it will ask if you want to replace it. Say yes. That's it!

A new library bundle is released every time there's an update to a library. Updates
include things like bug fixes and new features. It's important to check in every so
often to see if the libraries you're using have been updated.

CircUp CLI Tool
There is a command line interface (CLI) utility called CircUp (https://adafru.it/Tfi) that
can be used to easily install and update libraries on your device. Follow the directions
on the install page within the CircUp learn guide (https://adafru.it/-Ad). Once you've
got it installed you run the command circup update in a terminal to interactively

©Adafruit Industries Page 55 of 174

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup

update all libraries on the connected CircuitPython device. See the usage page in the
CircUp guide (https://adafru.it/-Ah) for a full list of functionality

CircuitPython Documentation
You've learned about the CircuitPython built-in modules and external libraries. You
know that you can find the modules in CircuitPython, and the libraries in the Library
Bundles. There are guides available that explain the basics of many of the modules
and libraries. However, there's sometimes more capabilities than are necessarily
showcased in the guides, and often more to learn about a module or library. So,
where can you find more detailed information? That's when you want to look at the
API documentation.

The entire CircuitPython project comes with extensive documentation available on
Read the Docs. This includes both the CircuitPython core (https://adafru.it/Beg) and
the Adafruit CircuitPython libraries (https://adafru.it/Tra).

CircuitPython Core Documentation
The CircuitPython core documentation (https://adafru.it/Beg) covers many of the
details you might want to know about the CircuitPython core and related topics. It
includes API and usage info, a design guide and information about porting
CircuitPython to new boards, MicroPython info with relation to CircuitPython, and
general information about the project.

The main page covers the basics including where to download CircuitPython, how to
contribute, differences from MicroPython, information about the project structure,
and a full table of contents for the rest of the documentation.

The list along the left side leads to more information about specific topics.

©Adafruit Industries Page 56 of 174

https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/usage
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/usage
https://circuitpython.readthedocs.io/
https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://circuitpython.readthedocs.io/

The first section is API and Usage. This is where you can find information about how
to use individual built-in core modules, such as time and digitalio , details about
the supported ports, suggestions for troubleshooting, and basic info and links to the
library bundles. The Core Modules section also includes the Support Matrix, which is
a table of which core modules are available on which boards.

The second section is Design and Porting Reference. It includes a design guide,
architecture information, details on porting, and adding module support to other
ports.

The third section is MicroPython Specific. It includes information on MicroPython and
related libraries, and a glossary of terms.

The fourth and final section is About the Project. It includes further information
including details on building, testing, and debugging CircuitPython, along with
various other useful links including the Adafruit Community Code of Conduct.

Whether you're a seasoned pro or new to electronics and programming, you'll find a
wealth of information to help you along your CircuitPython journey in the
documentation!

CircuitPython Library Documentation
The Adafruit CircuitPython libraries are documented in a very similar fashion. Each
library has its own page on Read the Docs. There is a comprehensive list available
here (https://adafru.it/Tra). Otherwise, to view the documentation for a specific library,
you can visit the GitHub repository for the library, and find the link in the README.

For the purposes of this page, the LED Animation library (https://adafru.it/O2d)
documentation will be featured. There are two links to the documentation in each
library GitHub repo. The first one is the docs badge near the top of the README.

The second place is the Documentation section of the README. Scroll down to find
it, and click on Read the Docs to get to the documentation.

Now that you know how to find it, it's time to take a look at what to expect.

©Adafruit Industries Page 57 of 174

https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LED_Animation

The Introduction page is generated from the README, so it includes all the same info,
such as PyPI installation instructions, a quick demo, and some build details. It also
includes a full table of contents for the rest of the documentation (which is not part of
the GitHub README). The page should look something like the following.

The left side contains links to the rest of the documentation, divided into three
separate sections: Examples, API Reference, and Other Links.

Examples

The Examples section (https://adafru.it/VFD) is a list of library examples. This list
contains anywhere from a small selection to the full list of the examples available for
the library.

This section will always contain at least one example - the simple test example.

The simple test example is usually a basic example designed to show your setup is
working. It may require other libraries to run. Keep in mind, it's simple - it won't
showcase a comprehensive use of all the library features.

The LED Animation simple test demonstrates the Blink animation.

Not all library documentation will look exactly the same, but this will give you
some idea of what to expect from library docs.

©Adafruit Industries Page 58 of 174

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/examples.html

In some cases, you'll find a longer list, that may include examples that explore other
features in the library. The LED Animation documentation includes a series of
examples, all of which are available in the library. These examples include
demonstrations of both basic and more complex features. Simply click on the example
that interests you to view the associated code.

You can view the rest of the examples by clicking through the list or scrolling down
the page. These examples are fully working code. Which is to say, while they may rely
on other libraries as well as the library for which you are viewing the documentation,
they should not require modification to otherwise work.

When there are multiple links in the Examples section, all of the example
content is, in actuality, on the same page. Each link after the first is an anchor
link to the specified section of the page. Therefore, you can also view all the
available examples by scrolling down the page.

©Adafruit Industries Page 59 of 174

API Reference

The API Reference section (https://adafru.it/Rqa) includes a list of the library functions
and classes. The API (Application Programming Interface) of a library is the set of
functions and classes the library provides. Essentially, the API defines how your
program interfaces with the functions and classes that you call in your code to use the
library.

There is always at least one list item included. Libraries for which the code is included
in a single Python (.py) file, will only have one item. Libraries for which the code is
multiple Python files in a directory (called subpackages) will have multiple items in this
list. The LED Animation library has a series of subpackages, and therefore, multiple
items in this list.

Click on the first item in the list to begin viewing the API Reference section.

When you click on an item in the API Reference section, you'll find details about the
classes and functions in the library. In the case of only one item in this section, all the
available functionality of the library will be contained within that first and only
subsection. However, in the case of a library that has subpackages, each item will
contain the features of the particular subpackage indicated by the link. The
documentation will cover all of the available functions of the library, including more
complex ones that may not interest you.

The first list item is the animation subpackage. If you scroll down, you'll begin to see
the available features of animation. They are listed alphabetically. Each of these
things can be called in your code. It includes the name and a description of the
specific function you would call, and if any parameters are necessary, lists those with
a description as well.

As with the Examples section, all of the API Reference content is on a single
page, and the links under API Reference are anchor links to the specified
section of the page.

©Adafruit Industries Page 60 of 174

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/api.html

You can view the other subpackages by clicking the link on the left or scrolling down
the page. You may be interested in something a little more practical. Here is an
example. To use the LED Animation library Comet animation, you would run the
following example.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""
This example animates a jade comet that bounces from end to end of the strip.

For QT Py Haxpress and a NeoPixel strip. Update pixel_pin and pixel_num to match
your wiring if
using a different board or form of NeoPixels.

This example will run on SAMD21 (M0) Express boards (such as Circuit Playground
Express or QT Py
Haxpress), but not on SAMD21 non-Express boards (such as QT Py or Trinket).
"""
import board
import neopixel

from adafruit_led_animation.animation.comet import Comet
from adafruit_led_animation.color import JADE

Update to match the pin connected to your NeoPixels
pixel_pin = board.A3
Update to match the number of NeoPixels you have connected
pixel_num = 30

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

comet = Comet(pixels, speed=0.02, color=JADE, tail_length=10, bounce=True)

while True:
comet.animate()

Note the line where you create the comet object. There are a number of items inside
the parentheses. In this case, you're provided with a fully working example. But what
if you want to change how the comet works? The code alone does not explain what
the options mean.

©Adafruit Industries Page 61 of 174

So, in the API Reference documentation list, click the
adafruit_led_animation.animation.comet link and scroll down a bit until you
see the following.

Look familiar? It is! This is the documentation for setting up the comet object. It
explains what each argument provided in the comet setup in the code meant, as well
as the other available features. For example, the code includes speed=0.02 . The
documentation clarifies that this is the "Animation speed in seconds". The code
doesn't include ring . The documentation indicates this is an available setting that
enables "Ring mode".

This type of information is available for any function you would set up in your code. If
you need clarification on something, wonder whether there's more options available,
or are simply interested in the details involved in the code you're writing, check out
the documentation for the CircuitPython libraries!

Other Links

This section is the same for every library. It includes a list of links to external sites,
which you can visit for more information about the CircuitPython Project and Adafruit.

That covers the CircuitPython library documentation! When you are ready to go
beyond the basic library features covered in a guide, or you're interested in
understanding those features better, the library documentation on Read the Docs has
you covered!

Recommended Editors
The CircuitPython code on your board detects when the files are changed or written
and will automatically re-start your code. This makes coding very fast because you
save, and it re-runs.

©Adafruit Industries Page 62 of 174

However, you must wait until the file is done being saved before unplugging or
resetting your board! On Windows using some editors this can sometimes take up to
90 seconds, on Linux it can take 30 seconds to complete because the text editor
does not save the file completely. Mac OS does not seem to have this delay, which is
nice!

This is really important to be aware of. If you unplug or reset the board before your
computer finishes writing the file to your board, you can corrupt the drive. If this
happens, you may lose the code you've written, so it's important to backup your code
to your computer regularly.

To avoid the likelihood of filesystem corruption, use an editor that writes out the file
completely when you save it. Check out the list of recommended editors below.

Recommended editors
mu (https://adafru.it/ANO) is an editor that safely writes all changes (it's also our
recommended editor!)
emacs (https://adafru.it/xNA) is also an editor that will fulIy write files on
save (https://adafru.it/Be7)
Sublime Text (https://adafru.it/xNB) safely writes all changes
Visual Studio Code (https://adafru.it/Be9) appears to safely write all changes
gedit on Linux appears to safely write all changes
IDLE (https://adafru.it/IWB), in Python 3.8.1 or later, was fixed (https://adafru.it/
IWD) to write all changes immediately
Thonny (https://adafru.it/Qb6) fully writes files on save
Notepad++ (https://adafru.it/xNf) flushes files after writes, as of several years
ago. In addition, you can change the path used for "Enable session snapshot
and periodic backup" to write somewhere else than the CIRCUITPY drive. This
will save space on CIRCUITPY and reduce writes to the drive.

Recommended only with particular settings or add-ons
vim (https://adafru.it/ek9) / vi safely writes all changes. But set up vim to not
write swapfiles (https://adafru.it/ELO) (.swp files: temporary records of your edits)
to CIRCUITPY. Run vim with vim -n , set the no swapfile option, or set the
directory option to write swapfiles elsewhere. Otherwise the swapfile
writes trigger restarts of your program.
The PyCharm IDE (https://adafru.it/xNC) is safe if "Safe Write" is turned on in
Settings->System Settings->Synchronization (true by default).
If you are using Atom (https://adafru.it/fMG), install the fsync-on-save
package (https://adafru.it/E9m) or the language-circuitpython package (https://
adafru.it/Vuf) so that it will always write out all changes to files on CIRCUITPY.

•

•

•
•
•
•

•
•

•

•

•

©Adafruit Industries Page 63 of 174

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Customize-Save.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Customize-Save.html
https://www.sublimetext.com/
https://code.visualstudio.com/
https://docs.python.org/3/library/idle.html
https://bugs.python.org/issue36807
https://thonny.org/
https://notepad-plus-plus.org/
http://www.vim.org/
http://www.vim.org/
https://vi.stackexchange.com/a/179
https://www.jetbrains.com/pycharm/
https://atom.io/
https://atom.io/
https://atom.io/packages/fsync-on-save
https://atom.io/packages/fsync-on-save
https://atom.io/packages/language-circuitpython

SlickEdit (https://adafru.it/DdP) works only if you add a macro to flush the
disk (https://adafru.it/ven).

Editors that are NOT recommended
notepad (the default Windows editor) can be slow to write, so the editors above
are recommended! If you are using notepad, be sure to eject the drive.
IDLE in Python 3.8.0 or earlier does not force out changes immediately. Later
versions do force out changes.
nano (on Linux) does not force out changes.
geany (on Linux) does not force out changes.
Anything else - Other editors have not been tested so please use a
recommended one!

Advanced Serial Console on Windows
Windows 7 and 8.1
If you're using Windows 7 (or 8 or 8.1), you'll need to install drivers. See the Windows 7
and 8.1 Drivers page (https://adafru.it/VuB) for details. You will not need to install
drivers on Mac, Linux or Windows 10.

You are strongly encouraged to upgrade to Windows 10 if you are still using Windows
7 or Windows 8 or 8.1. Windows 7 has reached end-of-life and no longer receives
security updates. A free upgrade to Windows 10 is still available (https://adafru.it/
RWc).

What's the COM?
First, you'll want to find out which serial port your board is using. When you plug your
board in to USB on your computer, it connects to a serial port. The port is like a door
through which your board can communicate with your computer using USB.

You'll use Windows Device Manager to determine which port the board is using. The
easiest way to determine which port the board is using is to first check without the
board plugged in. Open Device Manager. Click on Ports (COM & LPT). You should find
something already in that list with (COM#) after it where # is a number.

•

The editors listed below are specifically NOT recommended!

•

•

•
•
•

©Adafruit Industries Page 64 of 174

https://www.slickedit.com/
https://www.slickedit.com/
https://forums.adafruit.com/viewtopic.php?f=57&t=144412#p713290
https://forums.adafruit.com/viewtopic.php?f=57&t=144412#p713290
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://www.zdnet.com/article/heres-how-you-can-still-get-a-free-windows-10-upgrade/

Now plug in your board. The Device Manager list will refresh and a new item will
appear under Ports (COM & LPT). You'll find a different (COM#) after this item in the
list.

Sometimes the item will refer to the name of the board. Other times it may be called
something like USB Serial Device, as seen in the image above. Either way, there is a
new (COM#) following the name. This is the port your board is using.

©Adafruit Industries Page 65 of 174

Install Putty
If you're using Windows, you'll need to download a terminal program. You're going to
use PuTTY.

The first thing to do is download the latest version of PuTTY (https://adafru.it/Bf1).
You'll want to download the Windows installer file. It is most likely that you'll need the
64-bit version. Download the file and install the program on your machine. If you run
into issues, you can try downloading the 32-bit version instead. However, the 64-bit
version will work on most PCs.

Now you need to open PuTTY.

Under Connection type: choose the button next to Serial.
In the box under Serial line, enter the serial port you found that your board is
using.
In the box under Speed, enter 115200. This called the baud rate, which is the
speed in bits per second that data is sent over the serial connection. For boards
with built in USB it doesn't matter so much but for ESP8266 and other board
with a separate chip, the speed required by the board is 115200 bits per second.
So you might as well just use 115200!

If you want to save those settings for later, use the options under Load, save or delete
a stored session. Enter a name in the box under Saved Sessions, and click the Save
button on the right.

•
•

•

©Adafruit Industries Page 66 of 174

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Once your settings are entered, you're ready to connect to the serial console. Click
"Open" at the bottom of the window. A new window will open.

If no code is running, the window will either be blank or will look like the window
above. Now you're ready to see the results of your code.

Great job! You've connected to the serial console!

©Adafruit Industries Page 67 of 174

Advanced Serial Console on Mac
Connecting to the serial console on Mac does not require installing any drivers or
extra software. You'll use a terminal program to find your board, and screen to
connect to it. Terminal and screen both come installed by default.

What's the Port?
First you'll want to find out which serial port your board is using. When you plug your
board in to USB on your computer, it connects to a serial port. The port is like a door
through which your board can communicate with your computer using USB.

The easiest way to determine which port the board is using is to first check without
the board plugged in. Open Terminal and type the following:

ls /dev/tty.*

Each serial connection shows up in the /dev/ directory. It has a name that starts with
tty. . The command ls shows you a list of items in a directory. You can use * as a
wildcard, to search for files that start with the same letters but end in something
different. In this case, you're asking to see all of the listings in /dev/ that start with
tty. and end in anything. This will show us the current serial connections.

Now, plug your board. In Terminal, type:

ls /dev/tty.*

This will show you the current serial connections, which will now include your board.

©Adafruit Industries Page 68 of 174

A new listing has appeared called /dev/tty.usbmodem141441 .
The tty.usbmodem141441 part of this listing is the name the example board is using.
Yours will be called something similar.

Using Linux, a new listing has appeared called /dev/ttyACM0 . The ttyACM0 part of
this listing is the name the example board is using. Yours will be called something
similar.

Connect with screen
Now that you know the name your board is using, you're ready connect to the serial
console. You're going to use a command called screen . The screen command is
included with MacOS. To connect to the serial console, use Terminal. Type the
following command, replacing board_name with the name you found your board is
using:

screen /dev/tty.board_name 115200

The first part of this establishes using the screen command. The second part tells
screen the name of the board you're trying to use. The third part tells screen what
baud rate to use for the serial connection. The baud rate is the speed in bits per
second that data is sent over the serial connection. In this case, the speed required
by the board is 115200 bits per second.

©Adafruit Industries Page 69 of 174

Press enter to run the command. It will open in the same window. If no code is
running, the window will be blank. Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

Advanced Serial Console on Linux
Connecting to the serial console on Linux does not require installing any drivers, but
you may need to install screen using your package manager. You'll use a terminal
program to find your board, and screen to connect to it. There are a variety of
terminal programs such as gnome-terminal (called Terminal) or Konsole on KDE.

The tio program works as well to connect to your board, and has the benefit of
automatically reconnecting. You would need to install it using your package manager.

What's the Port?
First you'll want to find out which serial port your board is using. When you plug your
board in to USB on your computer, it connects to a serial port. The port is like a door
through which your board can communicate with your computer using USB.

The easiest way to determine which port the board is using is to first check without
the board plugged in. Open your terminal program and type the following:

ls /dev/ttyACM*

Each serial connection shows up in the /dev/ directory. It has a name that starts with
ttyACM. The command ls shows you a list of items in a directory. You can use * as
a wildcard, to search for files that start with the same letters but end in something
different. In this case, You're asking to see all of the listings in /dev/ that start with
ttyACM and end in anything. This will show us the current serial connections.

©Adafruit Industries Page 70 of 174

In the example below, the error is indicating that are no current serial connections
starting with ttyACM.

Now plug in your board. In your terminal program, type:

ls /dev/ttyACM*

This will show you the current serial connections, which will now include your board.

A new listing has appeared called /dev/ttyACM0. The ttyACM0 part of this listing is
the name the example board is using. Yours will be called something similar.

Connect with screen
Now that you know the name your board is using, you're ready connect to the serial
console. You'll use a command called screen . You may need to install it using the
package manager.

To connect to the serial console, use your terminal program. Type the following
command, replacing board_name with the name you found your board is using:

screen /dev/tty.board_name 115200

The first part of this establishes using the screen command. The second part tells
screen the name of the board you're trying to use. The third part tells screen what

©Adafruit Industries Page 71 of 174

baud rate to use for the serial connection. The baud rate is the speed in bits per
second that data is sent over the serial connection. In this case, the speed required
by the board is 115200 bits per second.

Press enter to run the command. It will open in the same window. If no code is
running, the window will be blank. Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

Permissions on Linux
If you try to run screen and it doesn't work, then you may be running into an issue
with permissions. Linux keeps track of users and groups and what they are allowed to
do and not do, like access the hardware associated with the serial connection for
running screen . So if you see something like this:

then you may need to grant yourself access. There are generally two ways you can do
this. The first is to just run screen using the sudo command, which temporarily
gives you elevated privileges.

Once you enter your password, you should be in:

©Adafruit Industries Page 72 of 174

The second way is to add yourself to the group associated with the hardware. To
figure out what that group is, use the command ls -l as shown below. The group
name is circled in red.

Then use the command adduser to add yourself to that group. You need elevated
privileges to do this, so you'll need to use sudo . In the example below, the group is
adm and the user is ackbar.

After you add yourself to the group, you'll need to logout and log back in, or in some
cases, reboot your machine. After you log in again, verify that you have been added
to the group using the command groups . If you are still not in the group, reboot and
check again.

And now you should be able to run screen without using sudo .

And you're in:

©Adafruit Industries Page 73 of 174

The examples above use screen , but you can also use other programs, such
as putty or picocom , if you prefer.

Frequently Asked Questions
These are some of the common questions regarding CircuitPython and CircuitPython
microcontrollers.

Using Older Versions

CP or CPy = CircuitPython (https://adafru.it/KJD)
CPC = Circuit Playground Classic (http://adafru.it/3000) (does not run
CircuitPython)
CPX = Circuit Playground Express (http://adafru.it/3333)
CPB = Circuit Playground Bluefruit (http://adafru.it/4333)

? What are some common acronyms
to know?

As CircuitPython development continues and there are new releases, Adafruit
will stop supporting older releases. Visit https://circuitpython.org/downloads
to download the latest version of CircuitPython for your board. You must
download the CircuitPython Library Bundle that matches your version of
CircuitPython. Please update CircuitPython and then visit https://
circuitpython.org/libraries to download the latest Library Bundle.

We are no longer building or supporting the CircuitPython 8.x or earlier
library bundles. We highly encourage you to update CircuitPython to the
latest version (https://adafru.it/Em8) and use the current version of the

? I have to continue using
CircuitPython 8.x or earlier. Where
can I find compatible libraries?

©Adafruit Industries Page 74 of 174

https://circuitpython.org
https://www.adafruit.com/product/3000
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/4333
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/libraries

Python Arithmetic

libraries (https://adafru.it/ENC). However, if for some reason you cannot
update, here are the last available library bundles for older versions:

2.x bundle (https://adafru.it/FJA)
3.x bundle (https://adafru.it/FJB)
4.x bundle (https://adafru.it/QDL)
5.x bundle (https://adafru.it/QDJ)
6.x bundle (https://adafru.it/Xmf)
7.x bundle (https://adafru.it/18e9)
8.x bundle (https://adafru.it/1af0)

•
•
•
•
•
•
•

All CircuitPython boards support floating point arithmetic, even if the
microcontroller chip does not support floating point in hardware. Floating
point numbers are stored in 30 bits, with an 8-bit exponent and a 22-bit
mantissa. Note that this is two bits less than standard 32-bit single-
precision floats. You will get about 5-1/2 digits of decimal precision.

(The broadcom port may provide 64-bit floats in some cases.)

? Does CircuitPython support floating-
point numbers?

Python long integers (integers of arbitrary size) are available on most
builds, except those on boards with the smallest available firmware size.
On these boards, integers are stored in 31 bits.

Boards without long integer support are mostly SAMD21 ("M0") boards
without an external flash chip, such as the Adafruit Gemma M0, Trinket
M0, QT Py M0, and the Trinkey series. There are also a number of third-
party boards in this category. There are also a few small STM third-party
boards without long integer support.

time.localtime() , time.mktime() , time.time() , and
time.monotonic_ns() are available only on builds with long integers.

? Does CircuitPython support long
integers, like regular Python?

©Adafruit Industries Page 75 of 174

https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20200707/adafruit-circuitpython-bundle-4.x-mpy-20200707.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20210129/adafruit-circuitpython-bundle-5.x-mpy-20210129.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20211213/adafruit-circuitpython-bundle-6.x-mpy-20211213.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20231003/adafruit-circuitpython-bundle-7.x-mpy-20231003.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20250213/adafruit-circuitpython-bundle-8.x-mpy-20250213.zip

Wireless Connectivity

If you'd like to include WiFi in your project, your best bet is to use a
board that is running natively on ESP32 chipsets - those have WiFi built
in!

If your development board has an SPI port and at least 4 additional pins,
you can check out this guide (https://adafru.it/F5X) on using AirLift with
CircuitPython - extra wiring is required and some boards like the
MacroPad or NeoTrellis do not have enough available pins to add the
hardware support.

For further project examples, and guides about using AirLift with specific
hardware, check out the Adafruit Learn System (https://adafru.it/VBr).

? How do I connect to the Internet
with CircuitPython?

nRF52840, nRF52833, and as of CircuitPython 9.1.0, ESP32, ESP32-C3,
and ESP32-S3 boards (with 8MB) have the most complete BLE
implementation. Your program can act as both a BLE central and
peripheral. As a central, you can scan for advertisements, and connect to
an advertising board. As a peripheral, you can advertise, and you can
create services available to a central. Pairing and bonding are supported.

Most Espressif boards with only 4MB of flash do not have enough room
to include BLE in CircuitPython 9. Check the Module Support
Matrix (https://adafru.it/-Cy) to see if your board has support for _bleio .
CircuitPython 10 is planned to support _bleio on Espressif boards with
4MB flash.

Note that the ESP32-S2 does not have Bluetooth capability.

On most other boards with adequate firmware space, BLE is available for
use with AirLift (https://adafru.it/11Av) or other NINA-FW-based co-
processors. Some boards have this coprocessor on board, such as the
PyPortal (https://adafru.it/11Aw). Currently, this implementation only

? How do I do BLE (Bluetooth Low
Energy) with CircuitPython?

©Adafruit Industries Page 76 of 174

https://learn.adafruit.com/adafruit-io-basics-airlift
https://learn.adafruit.com/search?q=airlift
https://docs.circuitpython.org/en/latest/shared-bindings/support_matrix.html
https://docs.circuitpython.org/en/latest/shared-bindings/support_matrix.html
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-pyportal/circuitpython-ble

Asyncio and Interrupts

Status RGB LED

supports acting as a BLE peripheral. Scanning and connecting as a
central are not yet implemented. Bonding and pairing are not supported.

Check out Adafruit's RFM boards (https://adafru.it/11Ay)for simple radio
communication supported by CircuitPython, which can be used over
distances of 100m to over a km, depending on the version. The RFM
SAMD21 M0 boards can be used, but they were not designed for
CircuitPython, and have limited RAM and flash space; using the RFM
breakouts or FeatherWings with more capable boards will be easier.

? Are there other ways to
communicate by radio with
CircuitPython?

There is support for asyncio starting with CircuitPython 7.1.0, on all
boards except the smallest SAMD21 builds. Read about using it in the
Cooperative Multitasking in CircuitPython (https://adafru.it/XnA) Guide.

? Is there asyncio support in
CircuitPython?

No. CircuitPython does not currently support interrupts - please use
asyncio for multitasking / 'threaded' control of your code

? Does CircuitPython support
interrupts?

?

©Adafruit Industries Page 77 of 174

https://www.adafruit.com/?q=rfm&sort=BestMatch
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython

Memory Issues

The status LED can tell you what's going on with your CircuitPython
board. Read more here for what the colors mean! (https://adafru.it/Den)

My RGB NeoPixel/DotStar LED is
blinking funny colors - what does it
mean?

Memory allocation errors happen when you're trying to store too much
on the board. The CircuitPython microcontroller boards have a limited
amount of memory available. You can have about 250 lines of code on
the M0 Express boards. If you try to import too many libraries, a
combination of large libraries, or run a program with too many lines of
code, your code will fail to run and you will receive a MemoryError in
the serial console.

? What is a MemoryError?

Try resetting your board. Each time you reset the board, it reallocates the
memory. While this is unlikely to resolve your issue, it's a simple step and
is worth trying.

Make sure you are using .mpy versions of libraries. All of the
CircuitPython libraries are available in the bundle in a .mpy format which
takes up less memory than .py format. Be sure that you're using the
latest library bundle (https://adafru.it/uap) for your version of
CircuitPython.

If that does not resolve your issue, try shortening your code. Shorten
comments, remove extraneous or unneeded code, or any other clean up
you can do to shorten your code. If you're using a lot of functions, you
could try moving those into a separate library, creating a .mpy of that
library, and importing it into your code.

? What do I do when I encounter a
MemoryError?

©Adafruit Industries Page 78 of 174

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases

You can turn your entire file into a .mpy and import that into code.py.
This means you will be unable to edit your code live on the board, but it
can save you space.

It can because the memory gets fragmented differently depending on
allocation order and the size of objects. Loading .mpy files uses less
memory so its recommended to do that for files you aren't editing.

? Can the order of my import
statements affect memory?

You can make your own .mpy versions of files with mpy-cross .

You can download mpy-cross for your operating system from
here (https://adafru.it/QDK). Builds are available for Windows, macOS,
x64 Linux, and Raspberry Pi Linux. Choose the latest mpy-cross whose
version matches the version of CircuitPython you are using.

On macOS and Linux, after you download mpy-cross, you must make the
the file executable by doing chmod +x name-of-the-mpy-cross-
executable .

To make a .mpy file, run ./mpy-cross path/to/yourfile.py to
create a yourfile.mpy in the same directory as the original file.

? How can I create my own .mpy
files?

Run the following to see the number of bytes available for use:

import gc

gc.mem_free()

? How do I check how much memory
I have free?

©Adafruit Industries Page 79 of 174

https://adafruit-circuit-python.s3.amazonaws.com/index.html?prefix=bin/mpy-cross/

Unsupported Hardware

Troubleshooting
From time to time, you will run into issues when working with CircuitPython. Here are
a few things you may encounter and how to resolve them.

We dropped ESP8266 support as of 4.x - For more information please
read about it here (https://adafru.it/CiG)!

As of CircuitPython 8.x we have started to support ESP32 and ESP32-C3
and have added a WiFi workflow for wireless coding! (https://adafru.it/
10JF)

We also support ESP32-S2 & ESP32-S3, which have native USB.

? Is ESP8266 or ESP32 supported in
CircuitPython? Why not?

No, WINC1500 will not fit into the M0 flash space.

? Does Feather M0 support
WINC1500?

No.

? Can AVRs such as ATmega328 or
ATmega2560 run CircuitPython?

As CircuitPython development continues and there are new releases, Adafruit
will stop supporting older releases. Visit https://circuitpython.org/downloads
to download the latest version of CircuitPython for your board. You must
download the CircuitPython Library Bundle that matches your version of
CircuitPython. Please update CircuitPython and then visit https://
circuitpython.org/libraries to download the latest Library Bundle.

©Adafruit Industries Page 80 of 174

https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries

Always Run the Latest Version of
CircuitPython and Libraries
As CircuitPython development continues and there are new releases, Adafruit will
stop supporting older releases. You need to update to the latest
CircuitPython. (https://adafru.it/Em8).

You need to download the CircuitPython Library Bundle that matches your version of
CircuitPython. Please update CircuitPython and then download the latest
bundle (https://adafru.it/ENC).

As new versions of CircuitPython are released, Adafruit will stop providing the
previous bundles as automatically created downloads on the Adafruit CircuitPython
Library Bundle repo. If you must continue to use an earlier version, you can still
download the appropriate version of mpy-cross from the particular release of
CircuitPython on the CircuitPython repo and create your own compatible .mpy library
files. However, it is best to update to the latest for both CircuitPython and the library
bundle.

I have to continue using CircuitPython 7.x or earlier.
Where can I find compatible libraries?
Adafruit is no longer building or supporting the CircuitPython 7.x or earlier library
bundles. You are highly encourged to update CircuitPython to the latest version (http
s://adafru.it/Em8) and use the current version of the libraries (https://adafru.it/ENC).
However, if for some reason you cannot update, links to the previous bundles are
available in the FAQ (https://adafru.it/FwY).

macOS Sonoma before 14.4: Errors Writing
to CIRCUITPY
macOS 14.4 - 15.1: Slow Writes to
CIRCUITPY
macOS Sonoma before 14.4 took many seconds to complete writes to small FAT
drives, 8MB or smaller. This causes errors when writing to CIRCUITPY. The best
solution was to remount the CIRCUITPY drive after it is automatically mounted. Or
consider downgrading back to Ventura if that works for you. This problem was
tracked in CircuitPython GitHub issue 8449 (https://adafru.it/18ea).

Below is a shell script to do this remount conveniently (courtesy @czei in
GitHub (https://adafru.it/18ea)). Copy the code here into a file named, say, remount-
CIRCUITPY.sh. Place the file in a directory on your PATH, or in some other convenient
place.

©Adafruit Industries Page 81 of 174

https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/frequently-asked-questions#faq-3105289
https://github.com/adafruit/circuitpython/issues/8449
https://github.com/adafruit/circuitpython/issues/8449#issuecomment-1779981373
https://github.com/adafruit/circuitpython/issues/8449#issuecomment-1779981373

macOS Sonoma 14.4 and versions of macOS before Sequoia 15.2 did not have the
problem above, but did take an inordinately long time to write to FAT drives of size
1GB or less (40 times longer than 2GB drives). As of macOS 15.2, writes are no longer
very slow. This problem was tracked in CircuitPython GitHub issue 8918 (https://
adafru.it/19iD).

#!/bin/sh
#
This works around bug where, by default,
macOS 14.x before 14.4 writes part of a file immediately,
and then doesn't update the directory for 20-60 seconds, causing
the file system to be corrupted.
#

disky=`df | grep CIRCUITPY | cut -d" " -f1`
sudo umount /Volumes/CIRCUITPY
sudo mkdir /Volumes/CIRCUITPY
sleep 2
sudo mount -v -o noasync -t msdos $disky /Volumes/CIRCUITPY

Then in a Terminal window, do this to make this script executable:

chmod +x remount-CIRCUITPY.sh

Place the file in a directory on your PATH , or in some other convenient place.

Now, each time you plug in or reset your CIRCUITPY board, run the file remount-
CIRCUITPY.sh. You can run it in a Terminal window or you may be able to place it on
the desktop or in your dock to run it just by double-clicking.

This will be something of a nuisance but it is the safest solution.

This problem is being tracked in this CircuitPython issue (https://adafru.it/18ea).

Bootloader (boardnameBOOT) Drive Not
Present
You may have a different board.

Only Adafruit Express boards and the SAMD21 non-Express boards ship with the UF2
bootloader (https://adafru.it/zbX)installed. The Feather M0 Basic, Feather M0
Adalogger, and similar boards use a regular Arduino-compatible bootloader, which
does not show a boardnameBOOT drive.

MakeCode

If you are running a MakeCode (https://adafru.it/zbY) program on Circuit Playground
Express, press the reset button just once to get the CPLAYBOOT drive to show up.
Pressing it twice will not work.

©Adafruit Industries Page 82 of 174

https://github.com/adafruit/circuitpython/issues/8918
https://github.com/adafruit/circuitpython/issues/8449
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/makecode/sharing-and-saving?view=all#step-1-bootloader-mode

macOS

DriveDx and its accompanything SAT SMART Driver can interfere with seeing the
BOOT drive. See this forum post (https://adafru.it/sTc) for how to fix the problem.

Windows 10 or later

Did you install the Adafruit Windows Drivers package by mistake, or did you upgrade
to Windows 10 or later with the driver package installed? You don't need to install this
package on Windows 10 or 11for most Adafruit boards. The old version (v1.5) can
interfere with recognizing your device. Go to Settings -> Apps and uninstall all the
"Adafruit" driver programs.

Windows 7 or 8.1

Windows 7 and 8.1 have reached end of life. It is recommended (https://adafru.it/Amd)
that you upgrade to Windows 10 or 11 if possible. Drivers are available for some older
CircuitPython boards, but there are no plans to release drivers for newer boards.

You should now be done! Test by unplugging and replugging the board. You should
see the CIRCUITPY drive, and when you double-click the reset button (single click on
Circuit Playground Express running MakeCode), you should see the
appropriate boardnameBOOT drive.

Let us know in the Adafruit support forums (https://adafru.it/jIf) or on the Adafruit
Discord () if this does not work for you!

Windows Explorer Locks Up When
Accessing boardnameBOOT Drive
On Windows, several third-party programs that can cause issues. The symptom is that
you try to access the boardnameBOOT drive, and Windows or Windows Explorer
seems to lock up. These programs are known to cause trouble:

AIDA64: to fix, stop the program. This problem has been reported to AIDA64.
They acquired hardware to test, and released a beta version that fixes the
problem. This may have been incorporated into the latest release. Please let us
know in the forums if you test this.
Hard Disk Sentinel

The Windows Drivers installer was last updated in November 2020 (v2.5.0.0)
. Windows 7 drivers for CircuitPython boards released since then, including
RP2040 boards, are not available. There are no plans to release drivers for
newer boards. The boards work fine on Windows 10 and later.

•

•

©Adafruit Industries Page 83 of 174

https://forums.adafruit.com/viewtopic.php?f=58&t=161917&p=799309#p799215
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://forums.adafruit.com
https://adafru.it/discord
https://adafru.it/discord

Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely.
Disabling some aspects of Kaspersky does not always solve the problem. This
problem has been reported to Kaspersky.
ESET NOD32 anti-virus: There have been problems with at least version
9.0.386.0, solved by uninstallation.

Copying UF2 to boardnameBOOT Drive
Hangs at 0% Copied
On Windows, a Western DIgital (WD) utility that comes with their external USB drives
can interfere with copying UF2 files to the boardnameBOOT drive. Uninstall that
utility to fix the problem.

CIRCUITPY Drive Does Not Appear or
Disappears Quickly
Kaspersky anti-virus can block the appearance of the CIRCUITPY drive. There has
not yet been settings change discovered that prevents this. Complete uninstallation
of Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY. A user has reported this problem on
Windows 7. The user turned off both Smart Firewall and Auto Protect, and CIRCUITPY
then appeared.

Sophos Endpoint security software can cause CIRCUITPY to disappear (https://
adafru.it/ELr) and the BOOT drive to reappear. It is not clear what causes this
behavior.

Samsung Magician can cause CIRCUITPY to disappear (reported here (https://
adafru.it/18eb) and here (https://adafru.it/18ec)).

Device Errors or Problems on Windows
Windows can become confused about USB device installations. Try cleaning up your
USB devices. Use Uwe Sieber's Device Cleanup Tool (https://adafru.it/RWd) (on that
page, scroll down to "Device Cleanup Tool"). Download and unzip the tool. Unplug all
the boards and other USB devices you want to clean up. Run the tool as
Administrator. You will see a listing like this, probably with many more devices. It is
listing all the USB devices that are not currently attached.

•

•

©Adafruit Industries Page 84 of 174

https://forums.adafruit.com/viewtopic.php?f=60&t=187629
https://forums.adafruit.com/viewtopic.php?t=205159
https://forums.adafruit.com/viewtopic.php?p=987596#p987596
https://www.uwe-sieber.de/misc_tools_e.html

Select all the devices you want to remove, and then press Delete. It is usually safe
just to select everything. Any device that is removed will get a fresh install when you
plug it in. Using the Device Cleanup Tool also discards all the COM port assignments
for the unplugged boards. If you have used many Arduino and CircuitPython boards,
you have probably seen higher and higher COM port numbers used, seemingly
without end. This will fix that problem.

Serial Console in Mu Not Displaying
Anything
There are times when the serial console will accurately not display anything, such as,
when no code is currently running, or when code with no serial output is already
running before you open the console. However, if you find yourself in a situation
where you feel it should be displaying something like an error, consider the following.

Depending on the size of your screen or Mu window, when you open the serial
console, the serial console panel may be very small. This can be a problem. A basic
CircuitPython error takes 10 lines to display!

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.
code.py output:
Traceback (most recent call last):
 File "code.py", line 7
SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

More complex errors take even more lines!

Therefore, if your serial console panel is five lines tall or less, you may only see blank
lines or blank lines followed by Press any key to enter the REPL. Use CTRL-D

©Adafruit Industries Page 85 of 174

to reload. . If this is the case, you need to either mouse over the top of the panel to
utilise the option to resize the serial panel, or use the scrollbar on the right side to
scroll up and find your message.

This applies to any kind of serial output whether it be error messages or print
statements. So before you start trying to debug your problem on the hardware side,
be sure to check that you haven't simply missed the serial messages due to serial
output panel height.

code.py Restarts Constantly
CircuitPython will restart code.py if you or your computer writes to something on the
CIRCUITPY drive. This feature is called auto-reload, and lets you test a change to your
program immediately.

Some utility programs, such as backup, anti-virus, or disk-checking apps, will write to
the CIRCUITPY as part of their operation. Sometimes they do this very frequently,
causing constant restarts.

Acronis True Image and related Acronis programs on Windows are known to cause
this problem. It is possible to prevent this by disabling the " (https://adafru.it/
XDZ)Acronis Managed Machine Service Mini" (https://adafru.it/XDZ).

If you cannot stop whatever is causing the writes, you can disable auto-reload by
putting this code in boot.py or code.py:

import supervisor

supervisor.runtime.autoreload = False

CircuitPython RGB Status Light
Nearly all CircuitPython-capable boards have a single NeoPixel or DotStar RGB LED
on the board that indicates the status of CircuitPython. A few boards designed before
CircuitPython existed, such as the Feather M0 Basic, do not.

Circuit Playground Express and Circuit Playground Bluefruit have multiple RGB
LEDs, but do NOT have a status LED. The LEDs are all green when in the bootloader.
In versions before 7.0.0, they do NOT indicate any status while running
CircuitPython.

©Adafruit Industries Page 86 of 174

https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder

CircuitPython 7.0.0 and Later
The status LED blinks were changed in CircuitPython 7.0.0 in order to save battery
power and simplify the blinks. These blink patterns will occur on single color LEDs
when the board does not have any RGB LEDs. Speed and blink count also vary for
this reason.

On start up, the LED will blink YELLOW multiple times for 1 second. Pressing the
RESET button (or on Espressif, the BOOT button) during this time will restart the board
and then enter safe mode. On Bluetooth capable boards, after the yellow blinks, there
will be a set of faster blue blinks. Pressing reset during the BLUE blinks will clear
Bluetooth information and start the device in discoverable mode, so it can be used
with a BLE code editor.

Once started, CircuitPython will blink a pattern every 5 seconds when no user code is
running to indicate why the code stopped:

1 GREEN blink: Code finished without error.
2 RED blinks: Code ended due to an exception. Check the serial console for
details.
3 YELLOW blinks: CircuitPython is in safe mode. No user code was run. Check
the serial console for safe mode reason.

When in the REPL, CircuitPython will set the status LED to WHITE. You can change the
LED color from the REPL. The status indicator will not persist on non-NeoPixel or
DotStar LEDs.

•
•

•

©Adafruit Industries Page 87 of 174

CircuitPython 6.3.0 and earlier
Here's what the colors and blinking mean:

steady GREEN: code.py (or code.txt, main.py, or main.txt) is running
pulsing GREEN: code.py (etc.) has finished or does not exist
steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is waiting
for a reset to indicate that it should start in safe mode
pulsing YELLOW: Circuit Python is in safe mode: it crashed and restarted
steady WHITE: REPL is running
steady BLUE: boot.py is running

Colors with multiple flashes following indicate a Python exception and then indicate
the line number of the error. The color of the first flash indicates the type of error:

GREEN: IndentationError
CYAN: SyntaxError
WHITE: NameError
ORANGE: OSError
PURPLE: ValueError
YELLOW: other error

These are followed by flashes indicating the line number, including place value.
WHITE flashes are thousands' place, BLUE are hundreds' place, YELLOW are tens'
place, and CYAN are one's place. So for example, an error on line 32 would flash
YELLOW three times and then CYAN two times. Zeroes are indicated by an extra-long
dark gap.

•
•
•

•
•
•

•
•
•
•
•
•

©Adafruit Industries Page 88 of 174

Serial console showing ValueError:
Incompatible .mpy file
This error occurs when importing a module that is stored as a .mpy binary file that
was generated by a different version of CircuitPython than the one its being loaded
into. In particular, the mpy binary format changed between CircuitPython versions 6.x
and 7.x, 2.x and 3.x, and 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 7.x from 6.x you’ll need to download
a newer version of the library that triggered the error on import . All libraries are
available in the Adafruit bundle (https://adafru.it/y8E).

CIRCUITPY Drive Issues
You may find that you can no longer save files to your CIRCUITPY drive. You may find
that your CIRCUITPY stops showing up in your file explorer, or shows up as
NO_NAME. These are indicators that your filesystem has issues. When the
CIRCUITPY disk is not safely ejected before being reset by the button or being
disconnected from USB, it may corrupt the flash drive. It can happen on Windows,
Mac or Linux, though it is more common on Windows.

Be aware, if you have used Arduino to program your board, CircuitPython is no longer
able to provide the USB services. You will need to reload CircuitPython to resolve this
situation.

The easiest first step is to reload CircuitPython. Double-tap reset on the board so you
get a boardnameBOOT drive rather than a CIRCUITPY drive, and copy the latest

©Adafruit Industries Page 89 of 174

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

version of CircuitPython (.uf2) back to the board. This may restore CIRCUITPY
functionality.

If reloading CircuitPython does not resolve your issue, the next step is to try putting
the board into safe mode.

Safe Mode
Whether you've run into a situation where you can no longer edit your code.py on
your CIRCUITPY drive, your board has gotten into a state where CIRCUITPY is read-
only, or you have turned off the CIRCUITPY drive altogether, safe mode can help.

Safe mode in CircuitPython does not run any user code on startup, and disables auto-
reload. This means a few things. First, safe mode bypasses any code in boot.py
(where you can set CIRCUITPY read-only or turn it off completely). Second, it does
not run the code in code.py. And finally, it does not automatically soft-reload when
data is written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state,
safe mode gives you the opportunity to correct it without losing all of the data on the
CIRCUITPY drive.

Entering Safe Mode in CircuitPython 7.x and Later

You can enter safe by pressing reset during the right time when the board boots.
Immediately after the board starts up or resets, it waits one second. On some boards,
the onboard status LED will blink yellow during that time. If you press reset during
that one second period, the board will start up in safe mode. It can be difficult to react
to the yellow LED, so you may want to think of it simply as a "slow" double click of the
reset button. (Remember, a fast double click of reset enters the bootloader.)

Entering Safe Mode in CircuitPython 6.x

You can enter safe by pressing reset during the right time when the board boots..
Immediately after the board starts up or resets, it waits 0.7 seconds. On some boards,
the onboard status LED (highlighted in green above) will turn solid yellow during this
time. If you press reset during that 0.7 seconds, the board will start up in safe mode. It
can be difficult to react to the yellow LED, so you may want to think of it simply as a
slow double click of the reset button. (Remember, a fast double click of reset enters
the bootloader.)

In Safe Mode

Once you've entered safe mode successfully in CircuitPython 6.x, the LED will pulse
yellow.

©Adafruit Industries Page 90 of 174

If you successfully enter safe mode on CircuitPython 7.x, the LED will intermittently
blink yellow three times.

If you connect to the serial console, you'll find the following message.

Auto-reload is off.
Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot.
Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not
run until you press the reset button, or unplug and plug in your board, to get out of
safe mode.

At this point, you'll want to remove any user code in code.py and, if present, the
boot.py file from CIRCUITPY. Once removed, tap the reset button, or unplug and plug
in your board, to restart CircuitPython. This will restart the board and may resolve
your drive issues. If resolved, you can begin coding again as usual.

If safe mode does not resolve your issue, the board must be completely erased and
CircuitPython must be reloaded onto the board.

To erase CIRCUITPY: storage.erase_filesystem()
CircuitPython includes a built-in function to erase and reformat the filesystem. If you
have a version of CircuitPython older than 2.3.0 on your board, you can update to the
newest version (https://adafru.it/Amd) to do this.

Connect to the CircuitPython REPL (https://adafru.it/Bec) using Mu or a terminal
program.
Type the following into the REPL:

>>> import storage
>>> storage.erase_filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

You WILL lose everything on the board when you complete the following
steps. If possible, make a copy of your code before continuing.

1.

2.

©Adafruit Industries Page 91 of 174

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

Erase CIRCUITPY Without Access to the REPL
If you can't access the REPL, or you're running a version of CircuitPython previous to
2.3.0 and you don't want to upgrade, there are options available for some specific
boards.

The options listed below are considered to be the "old way" of erasing your board.
The method shown above using the REPL is highly recommended as the best
method for erasing your board.

For the specific boards listed below:
If the board you are trying to erase is listed below, follow the steps to use the file to
erase your board.

 1. Download the correct erase file:

Circuit Playground Express
https://adafru.it/AdI

Feather M0 Express
https://adafru.it/AdJ

Feather M4 Express
https://adafru.it/EVK

Metro M0 Express
https://adafru.it/AdK

Metro M4 Express QSPI Eraser
https://adafru.it/EoM

Trellis M4 Express (QSPI)
https://adafru.it/DjD

If at all possible, it is recommended to use the REPL to erase your CIRCUITPY
drive. The REPL method is explained above.

©Adafruit Industries Page 92 of 174

https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098
https://cdn-learn.adafruit.com/assets/assets/000/076/217/original/flash_erase.ino.feather_m4.uf2
https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://cdn-learn.adafruit.com/assets/assets/000/073/820/original/Metro_M4_QSPI_Eraser.UF2?1553805937
https://cdn-learn.adafruit.com/assets/assets/000/067/535/original/Trellis_M4_QSPI_Eraser.UF2?1544719380

Grand Central M4 Express (QSPI)
https://adafru.it/DBA

PyPortal M4 Express (QSPI)
https://adafru.it/Eca

Circuit Playground Bluefruit (QSPI)
https://adafru.it/Gnc

Monster M4SK (QSPI)
https://adafru.it/GAN

PyBadge/PyGamer QSPI Eraser.UF2
https://adafru.it/GAO

CLUE_Flash_Erase.UF2
https://adafru.it/Jat

Matrix_Portal_M4_(QSPI).UF2
https://adafru.it/Q5B

RP2040 boards (flash_nuke.uf2)
https://adafru.it/18ed

 2. Double-click the reset button on the board to bring up the boardnameBOOT
drive.
 3. Drag the erase .uf2 file to the boardnameBOOT drive.
 4. The status LED will turn yellow or blue, indicating the erase has started.
 5. After approximately 15 seconds, the status LED will light up green. On the
NeoTrellis M4 this is the first NeoPixel on the grid
 6. Double-click the reset button on the board to bring up
the boardnameBOOT drive.
 7. Drag the appropriate latest release of CircuitPython (https://adafru.it/Em8) .uf2
file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer
again.

©Adafruit Industries Page 93 of 174

https://cdn-learn.adafruit.com/assets/assets/000/069/314/original/GC_M4_QSPI_Erase.UF2?1547404471
https://cdn-learn.adafruit.com/assets/assets/000/072/252/original/PYPORTAL_QSPI_Eraser.UF2?1551738305
https://cdn-learn.adafruit.com/assets/assets/000/082/950/original/CP_Bluefruit_QSPI_Erase.UF2?1572026649
https://cdn-learn.adafruit.com/assets/assets/000/083/330/original/M4SK_QSPI_Eraser.UF2?1572551433
https://cdn-learn.adafruit.com/assets/assets/000/083/331/original/PyBadge_QSPI_Eraser.UF2?1572551613
https://cdn-learn.adafruit.com/assets/assets/000/088/454/original/CLUE_Flash_Erase.UF2?1581873830
https://cdn-learn.adafruit.com/assets/assets/000/098/741/original/Matrix_Portal_M4_%28QSPI%29.UF2?1611076081
https://cdn-learn.adafruit.com/assets/assets/000/101/659/original/flash_nuke.uf2
https://circuitpython.org/downloads

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps
starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board,
check out the installation page (https://adafru.it/Amd). You'll also need to load your
code and reinstall your libraries!

For SAMD21 non-Express boards that have a UF2
bootloader:
Any SAMD21-based microcontroller that does not have external flash available is
considered a SAMD21 non-Express board. Non-Express boards that have a UF2
bootloader include Trinket M0, GEMMA M0, QT Py M0, and the SAMD21-based
Trinkey boards.

If you are trying to erase a SAMD21 non-Express board, follow these steps to erase
your board.

 1. Download the erase file:

SAMD21 non-Express Boards
https://adafru.it/VB-

 2. Double-click the reset button on the board to bring up the boardnameBOOT
drive.
 3. Drag the erase .uf2 file to the boardnameBOOT drive.
 4. The boot LED will start flashing again, and the boardnameBOOT drive will
reappear.
 5. Drag the appropriate latest release CircuitPython (https://adafru.it/Em8) .uf2
file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer
again.

If you haven't already downloaded the latest release of CircuitPython for your board,
check out the installation page (https://adafru.it/Amd) YYou'll also need to load your
code and reinstall your libraries!

For SAMD21 non-Express boards that do not have a UF2
bootloader:
Any SAMD21-based microcontroller that does not have external flash available is
considered a SAMD21 non-Express board. Non-Express boards that do not have a
UF2 bootloader include the Feather M0 Basic Proto, Feather Adalogger, or the
Arduino Zero.

©Adafruit Industries Page 94 of 174

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2
https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython

If you are trying to erase a non-Express board that does not have a UF2 bootloader,
follow these directions to reload CircuitPython using bossac (https://adafru.it/Bed),
which will erase and re-create CIRCUITPY.

Running Out of File Space on SAMD21 Non-
Express Boards
Any SAMD21-based microcontroller that does not have external flash available is
considered a SAMD21 non-Express board. This includes boards like the Trinket M0,
GEMMA M0, QT Py M0, and the SAMD21-based Trinkey boards.

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its
likely you'll run out of space but don't panic! There are a number of ways to free up
space.

Delete something!
The simplest way of freeing up space is to delete files from the drive. Perhaps there
are libraries in the lib folder that you aren't using anymore or test code that isn't in
use. Don't delete the lib folder completely, though, just remove what you don't need.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you
don't need it or have already installed it. It's ~12KiB or so.

Use tabs
One unique feature of Python is that the indentation of code matters. Usually the
recommendation is to indent code with four spaces for every indent. In general, that
is recommended too. However, one trick to storing more human-readable code is to
use a single tab character for indentation. This approach uses 1/4 of the space for
indentation and can be significant when you're counting bytes.

On macOS?
MacOS loves to generate hidden files. Luckily you can disable some of the extra
hidden files that macOS adds by running a few commands to disable search indexing

©Adafruit Industries Page 95 of 174

file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation

and create zero byte placeholders. Follow the steps below to maximize the amount of
space available on macOS.

Prevent & Remove macOS Hidden Files
First find the volume name for your board. With the board plugged in run this
command in a terminal to list all the volumes:

ls -l /Volumes

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full
path to the volume is the /Volumes/CIRCUITPY path.

Now follow the steps from this question (https://adafru.it/u1c) to run these terminal
commands that stop hidden files from being created on the board:

mdutil -i off /Volumes/CIRCUITPY
cd /Volumes/CIRCUITPY
rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}
mkdir .fseventsd
touch .fseventsd/no_log .metadata_never_index .Trashes
cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to your
board's volume if it's different. At this point all the hidden files should be cleared from
the board and some hidden files will be prevented from being created.

Alternatively, with CircuitPython 4.x and above, the special files and folders
mentioned above will be created automatically if you erase and reformat the
filesystem. WARNING: Save your files first! Do this in the REPL:

>>> import storage

>>> storage.erase_filesystem()

However there are still some cases where hidden files will be created by MacOS. In
particular if you copy a file that was downloaded from the internet it will have special
metadata that MacOS stores as a hidden file. Luckily you can run a copy command
from the terminal to copy files without this hidden metadata file. See the steps below.

Copy Files on macOS Without Creating Hidden Files
Once you've disabled and removed hidden files with the above commands on macOS
you need to be careful to copy files to the board with a special command that
prevents future hidden files from being created. Unfortunately you cannot use drag
and drop copy in Finder because it will still create these hidden extended attribute
files in some cases (for files downloaded from the internet, like Adafruit's modules).

©Adafruit Industries Page 96 of 174

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

To copy a file or folder use the -X option for the cp command in a terminal. For
example to copy a file_name.mpy file to the board use a command like:

cp -X file_name.mpy /Volumes/CIRCUITPY

(Replace file_name.mpy with the name of the file you want to copy.)

Or to copy a folder and all of the files and folders contained within, use a command
like:

cp -rX folder_to_copy /Volumes/CIRCUITPY

If you are copying to the lib folder, or another folder, make sure it exists before
copying.

if lib does not exist, you'll create a file named lib !
cp -X file_name.mpy /Volumes/CIRCUITPY/lib
This is safer, and will complain if a lib folder does not exist.
cp -X file_name.mpy /Volumes/CIRCUITPY/lib/

Other macOS Space-Saving Tips
If you'd like to see the amount of space used on the drive and manually delete hidden
files here's how to do so. First, move into the Volumes/ directory with cd /
Volumes/ , and then list the amount of space used on the CIRCUITPY drive with the
df command.

That's not very much space left! The next step is to show a list of the files currently on
the CIRCUITPY drive, including the hidden files, using the ls command. You cannot
use Finder to do this, you must do it via command line!

©Adafruit Industries Page 97 of 174

There are a few of the hidden files that MacOS loves to generate, all of which begin
with a ._ before the file name. Remove the ._ files using the rm command. You can
remove them all once by running rm CIRCUITPY/._* . The * acts as a wildcard to
apply the command to everything that begins with ._ at the same time.

Finally, you can run df again to see the current space used.

Nice! You have 12Ki more than before! This space can now be used for libraries and
code!

Device Locked Up or Boot Looping
In rare cases, it may happen that something in your code.py or boot.py files causes
the device to get locked up, or even go into a boot loop. A boot loop occurs when the
board reboots repeatedly and never fully loads. These are not caused by your
everyday Python exceptions, typically it's the result of a deeper problem within
CircuitPython. In this situation, it can be difficult to recover your device if CIRCUITPY
is not allowing you to modify the code.py or boot.py files. Safe mode is one recovery
option. When the device boots up in safe mode it will not run the code.py or boot.py
scripts, but will still connect the CIRCUITPY drive so that you can remove or modify
those files as needed.

For more information on safe mode and how to enter safe mode, see the Safe Mode
section on this page (https://adafru.it/Den).

©Adafruit Industries Page 98 of 174

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#safe-mode-3105351
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#safe-mode-3105351

Welcome to the Community!

CircuitPython is a programming language that's super simple to get started with and
great for learning. It runs on microcontrollers and works out of the box. You can plug it
in and get started with any text editor. The best part? CircuitPython comes with an
amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for
anyone to use, edit, copy and improve upon. This also means CircuitPython becomes
better because of you being a part of it. Whether this is your first microcontroller
board or you're a seasoned software engineer, you have something important to offer
the Adafruit CircuitPython community. This page highlights some of the many ways
you can be a part of it!

Adafruit Discord

The Adafruit Discord server is the best place to start. Discord is where the community
comes together to volunteer and provide live support of all kinds. From general

©Adafruit Industries Page 99 of 174

discussion to detailed problem solving, and everything in between, Discord is a digital
maker space with makers from around the world.

There are many different channels so you can choose the one best suited to your
needs. Each channel is shown on Discord as "#channelname". There's the #help-with-
projects channel for assistance with your current project or help coming up with ideas
for your next one. There's the #show-and-tell channel for showing off your newest
creation. Don't be afraid to ask a question in any channel! If you're unsure, #general is
a great place to start. If another channel is more likely to provide you with a better
answer, someone will guide you.

The help with CircuitPython channel is where to go with your CircuitPython questions.
#help-with-circuitpython is there for new users and developers alike so feel free to
ask a question or post a comment! Everyone of any experience level is welcome to
join in on the conversation. Your contributions are important! The #circuitpython-dev
channel is available for development discussions as well.

The easiest way to contribute to the community is to assist others on Discord.
Supporting others doesn't always mean answering questions. Join in celebrating
successes! Celebrate your mistakes! Sometimes just hearing that someone else has
gone through a similar struggle can be enough to keep a maker moving forward.

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your
granddaughter to.

Visit https://adafru.it/discord ()to sign up for Discord. Everyone is looking forward to
meeting you!

CircuitPython.org

Beyond the Adafruit Learn System, which you are viewing right now, the best place to
find information about CircuitPython is circuitpython.org (https://adafru.it/KJD).
Everything you need to get started with your new microcontroller and beyond is

©Adafruit Industries Page 100 of 174

https://adafru.it/discord
https://circuitpython.org

available. You can do things like download CircuitPython for your
microcontroller (https://adafru.it/Em8) or download the latest CircuitPython Library
bundle (https://adafru.it/ENC), or check out which single board computers support
Blinka (https://adafru.it/EA8). You can also get to various other CircuitPython related
things like Awesome CircuitPython or the Python for Microcontrollers newsletter. This
is all incredibly useful, but it isn't necessarily community related. So why is it included
here? The Contributing page (https://adafru.it/VD7).

CircuitPython itself is written in C. However, all of the Adafruit CircuitPython libraries
are written in Python. If you're interested in contributing to CircuitPython on the
Python side of things, check out circuitpython.org/contributing (https://adafru.it/VD7).
You'll find information pertaining to every Adafruit CircuitPython library GitHub
repository, giving you the opportunity to join the community by finding a contributing
option that works for you.

Note the date on the page next to Current Status for:

If you submit any contributions to the libraries, and do not see them reflected on the
Contributing page, it could be that the job that checks for new updates hasn't yet run
for today. Simply check back tomorrow!

Now, a look at the different options.

Pull Requests

The first tab you'll find is a list of open pull requests.

©Adafruit Industries Page 101 of 174

https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://circuitpython.org/blinka
https://circuitpython.org/blinka
https://circuitpython.org/contributing
https://circuitpython.org/contributing

GitHub pull requests, or PRs, are opened when folks have added something to an
Adafruit CircuitPython library GitHub repo, and are asking for Adafruit to add, or
merge, their changes into the main library code. For PRs to be merged, they must first
be reviewed. Reviewing is a great way to contribute! Take a look at the list of open
pull requests, and pick one that interests you. If you have the hardware, you can test
code changes. If you don't, you can still check the code updates for syntax. In the
case of documentation updates, you can verify the information, or check it for spelling
and grammar. Once you've checked out the update, you can leave a comment letting
us know that you took a look. Once you've done that for a while, and you're more
comfortable with it, you can consider joining the CircuitPythonLibrarians review team.
The more reviewers we have, the more authors we can support. Reviewing is a crucial
part of an open source ecosystem, CircuitPython included.

Open Issues

The second tab you'll find is a list of open issues.

GitHub issues are filed for a number of reasons, including when there is a bug in the
library or example code, or when someone wants to make a feature request. Issues
are a great way to find an opportunity to contribute directly to the libraries by
updating code or documentation. If you're interested in contributing code or
documentation, take a look at the open issues and find one that interests you.

If you're not sure where to start, you can search the issues by label. Labels are
applied to issues to make the goal easier to identify at a first glance, or to indicate the
difficulty level of the issue. Click on the dropdown next to "Sort by issue labels" to see
the list of available labels, and click on one to choose it.

©Adafruit Industries Page 102 of 174

If you're new to everything, new to contributing to open source, or new to
contributing to the CircuitPython project, you can choose "Good first issue". Issues
with that label are well defined, with a finite scope, and are intended to be easy for
someone new to figure out.

If you're looking for something a little more complicated, consider "Bug" or
"Enhancement". The Bug label is applied to issues that pertain to problems or failures
found in the library. The Enhancement label is applied to feature requests.

Don't let the process intimidate you. If you're new to Git and GitHub, there is a
guide (https://adafru.it/Dkh) to walk you through the entire process. As well, there are
always folks available on Discord () to answer questions.

Library Infrastructure Issues

The third tab you'll find is a list of library infrastructure issues.

This section is generated by a script that runs checks on the libraries, and then
reports back where there may be issues. It is made up of a list of subsections each
containing links to the repositories that are experiencing that particular issue. This
page is available mostly for internal use, but you may find some opportunities to
contribute on this page. If there's an issue listed that sounds like something you could
help with, mention it on Discord, or file an issue on GitHub indicating you're working

©Adafruit Industries Page 103 of 174

https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https:adafru.it/discord

to resolve that issue. Others can reply either way to let you know what the scope of it
might be, and help you resolve it if necessary.

CircuitPython Localization

The fourth tab you'll find is the CircuitPython Localization tab.

If you speak another language, you can help translate CircuitPython! The translations
apply to informational and error messages that are within the CircuitPython core. It
means that folks who do not speak English have the opportunity to have these
messages shown to them in their own language when using CircuitPython. This is
incredibly important to provide the best experience possible for all users.
CircuitPython uses Weblate to translate, which makes it much simpler to contribute
translations. You will still need to know some CircuitPython-specific practices and a
few basics about coding strings, but as with any CircuitPython contributions, folks are
there to help.

Regardless of your skill level, or how you want to contribute to the CircuitPython
project, there is an opportunity available. The Contributing page (https://adafru.it/VD7)
is an excellent place to start!

Adafruit GitHub

Whether you're just beginning or are life-long programmer who would like to
contribute, there are ways for everyone to be a part of the CircuitPython project. The
CircuitPython core is written in C. The libraries are written in Python. GitHub is the
best source of ways to contribute to the CircuitPython core (https://adafru.it/tB7), and

©Adafruit Industries Page 104 of 174

https://circuitpython.org/contributing
https://github.com/adafruit/circuitpython

the CircuitPython libraries (https://adafru.it/VFv). If you need an account, visit https://
github.com/ (https://adafru.it/d6C) and sign up.

If you're new to GitHub or programming in general, there are great opportunities for
you. For the CircuitPython core, head over to the CircuitPython repository on GitHub,
click on "Issues (https://adafru.it/tBb)", and you'll find a list that includes issues labeled
"good first issue (https://adafru.it/188e)". For the libraries, head over to the
Contributing page Issues list (https://adafru.it/VFv), and use the drop down menu to
search for "good first issue (https://adafru.it/VFw)". These issues are things that have
been identified as something that someone with any level of experience can help
with. These issues include options like updating documentation, providing feedback,
and fixing simple bugs. If you need help getting started with GitHub, there is an
excellent guide on Contributing to CircuitPython with Git and GitHub (https://adafru.it/
Dkh).

Already experienced and looking for a challenge? Checkout the rest of either issues
list and you'll find plenty of ways to contribute. You'll find all sorts of things, from new
driver requests, to library bugs, to core module updates. There's plenty of
opportunities for everyone at any level!

When working with or using CircuitPython or the CircuitPython libraries, you may find
problems. If you find a bug, that's great! The team loves bugs! Posting a detailed issue
to GitHub is an invaluable way to contribute to improving CircuitPython. For
CircuitPython itself, file an issue here (https://adafru.it/tBb). For the libraries, file an
issue on the specific library repository on GitHub. Be sure to include the steps to
replicate the issue as well as any other information you think is relevant. The more
detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of
CircuitPython or a library onto your CircuitPython hardware, and use it. Let us know
about any problems you find by posting a new issue to GitHub. Software testing on
both stable and unstable releases is a very important part of contributing
CircuitPython. The developers can't possibly find all the problems themselves! They
need your help to make CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report problems and
much more. If you have questions, remember that Discord and the Forums are both
there for help!

©Adafruit Industries Page 105 of 174

https://circuitpython.org/contributing/open-issues
https://github.com/
https://github.com/
https://github.com/adafruit/circuitpython/issues
https://github.com/adafruit/circuitpython/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues?label=good-first-issue
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https://github.com/adafruit/circuitpython/issues

Adafruit Forums

The Adafruit Forums (https://adafru.it/jIf) are the perfect place for support. Adafruit
has wonderful paid support folks to answer any questions you may have. Whether
your hardware is giving you issues or your code doesn't seem to be working, the
forums are always there for you to ask. You need an Adafruit account to post to the
forums. You can use the same account you use to order from Adafruit.

While Discord may provide you with quicker responses than the forums, the forums
are a more reliable source of information. If you want to be certain you're getting an
Adafruit-supported answer, the forums are the best place to be.

There are forum categories that cover all kinds of topics, including everything
Adafruit. The Adafruit CircuitPython (https://adafru.it/xXA) category under "Supported
Products & Projects" is the best place to post your CircuitPython questions.

Be sure to include the steps you took to get to where you are. If it involves wiring,
post a picture! If your code is giving you trouble, include your code in your post!
These are great ways to make sure that there's enough information to help you with
your issue.

You might think you're just getting started, but you definitely know something that
someone else doesn't. The great thing about the forums is that you can help others
too! Everyone is welcome and encouraged to provide constructive feedback to any of
the posted questions. This is an excellent way to contribute to the community and
share your knowledge!

©Adafruit Industries Page 106 of 174

https://forums.adafruit.com
https://forums.adafruit.com/viewforum.php?f=60

Read the Docs

Read the Docs (https://adafru.it/Beg) is a an excellent resource for a more detailed
look at the CircuitPython core and the CircuitPython libraries. This is where you'll find
things like API documentation and example code. For an in depth look at viewing and
understanding Read the Docs, check out the CircuitPython Documentation (https://
adafru.it/VFx) page!

microSD Card Formatting Notes
Even though you can/could use your SD card 'raw' - it's most convenient to format the
card to a filesystem. For the Arduino library we'll be discussing, and nearly every
other SD library, the card must be formatted FAT16 or FAT32. Some only allow one or
the other. The Arduino SD library can use either.

If you bought an SD card, chances are it's already pre-formatted with a FAT filesystem.
However you may have problems with how the factory formats the card, or if it's an
old card it needs to be reformatted. The Arduino SD library we use supports both
FAT16 and FAT32 filesystems. If you have a very small SD card, say 8-32 Megabytes
you might find it is formatted FAT12 which isn't supported. You'll have to reformat
these cards. Either way, it's always good idea to format the card before using, even if
it's new! Note that formatting will erase the card so save anything you want first.

©Adafruit Industries Page 107 of 174

https://circuitpython.readthedocs.io/
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-documentation

Download the formatter from https://www.sdcard.org/downloads/formatter/ (https://
adafru.it/FKd)

Download it and run it on your computer, there's also a manual linked from that page
for use.

CircuitPython MEMENTO Starter Projects
Now that you've setup your MEMENTO with CircuitPython, you're ready to get started
using the PyCamera CircuitPython library (https://adafru.it/18e3) for quick camera
application development.

Before you load up the example project bundles though, you'll need to create an /sd
directory on your MEMENTO CIRCUITPY drive. As of CircuitPython 9 (https://adafru.it/
19eh), this directory needs to be included on your CIRCUITPY drive when mounting
an SD card. This change was made to allow for accessing the SD cards over web
workflow.

To create this /sd directory, you'll open the
CIRCUITPY drive in your operating
system's file viewer window.

We strongly recommend you use the official SD card formatter utility - written
by the SD association it solves many problems that come with bad formatting!

©Adafruit Industries Page 108 of 174

https://www.sdcard.org/downloads/formatter/
https://www.sdcard.org/downloads/formatter/
https://github.com/adafruit/Adafruit_CircuitPython_PyCamera
https://blog.adafruit.com/2024/01/27/circuitpython-9-0-0-beta-0-released/
https://learn.adafruit.com//assets/127358
https://learn.adafruit.com//assets/127358

Then, create a new Folder on the
CIRCUITPY drive.

Rename your new folder "sd".

Your CIRCUITPY directory will look like this after following these steps. Now you'll be
able to mount SD cards with no problems in CircuitPython 9.

MEMENTO Camera Quick Start Guide
MEMENTO Camera Quick Start Guide (https://adafru.it/19Ha)

©Adafruit Industries Page 109 of 174

https://learn.adafruit.com//assets/127359
https://learn.adafruit.com//assets/127359
https://learn.adafruit.com//assets/127360
https://learn.adafruit.com//assets/127360
https://learn.adafruit.com/memento-camera-quick-start-guide

CircuitPython Basic Camera

Ready to take some photos of your favorite goat-based still life*? Nice. Here you'll
code a simple point-and-shoot camera as a way to get familiar with the MEMENTO's
basic functions. It'll be just like that Instamatic you had in the 1970s, except digital and
programmable!

* Other subjects are acceptable as well. We don't judge.

CircuitPython

Be sure you've installed CircuitPython on your MEMENTO (https://adafru.it/19ja) before
proceeding.

©Adafruit Industries Page 110 of 174

https://learn.adafruit.com/adafruit-memento-camera-board/install-circuitpython

SD Card
Format your SD card to FAT32 using the
method shown on the Formatting
Notes (https://adafru.it/18ee) page in this
guide (don't rely on your operating system
tools, the official formatter works more
reliably).

With the MEMENTO turned off, insert the
SD card into the MEMENTO's SD card
reader as shown -- note the direction of
the pins. Press it in until it bottoms out on
the spring and then release pressure so it
clicks into place.

©Adafruit Industries Page 111 of 174

https://learn.adafruit.com//assets/126824
https://learn.adafruit.com//assets/126824
https://learn.adafruit.com//assets/126825
https://learn.adafruit.com//assets/126825
https://learn.adafruit.com//assets/126826
https://learn.adafruit.com//assets/126826
https://learn.adafruit.com/adafruit-memento-camera-board/formatting-notes
https://learn.adafruit.com/adafruit-memento-camera-board/formatting-notes
https://learn.adafruit.com/adafruit-memento-camera-board/formatting-notes
https://learn.adafruit.com/adafruit-memento-camera-board/formatting-notes
https://learn.adafruit.com//assets/126827
https://learn.adafruit.com//assets/126827

Follow these steps to create the /sd
directory

https://adafru.it/19ei

Download the Project Bundle
Your project will use a specific set of CircuitPython libraries, and the code.py file. To
get everything you need, click on the Download Project Bundle button below, and
uncompress the .zip file.

Connect your computer to the board via a known good USB power+data cable. A new
flash drive should show up as CIRCUITPY.

Drag the contents of the uncompressed bundle directory onto your
board CIRCUITPY drive, replacing any existing files or directories with the same
names, and adding any new ones that are necessary.

SPDX-FileCopyrightText: Copyright (c) 2023 john park for Adafruit Industries
#
SPDX-License-Identifier: MIT
""" simple point-and-shoot camera example. No bells! Zero whistles! """

import time
import adafruit_pycamera # pylint: disable=import-error

pycam = adafruit_pycamera.PyCamera()
pycam.mode = 0 # only mode 0 (JPEG) will work in this example

User settings - try changing these:
pycam.resolution = 8 # 0-12 preset resolutions:
0: 240x240, 1: 320x240, 2: 640x480, 3: 800x600, 4: 1024x768,
5: 1280x720, 6: 1280x1024, 7: 1600x1200, 8: 1920x1080, 9:
2048x1536,
10: 2560x1440, 11: 2560x1600, 12: 2560x1920
pycam.led_level = 1 # 0-4 preset brightness levels
pycam.led_color = 0 # 0-7 preset colors: 0: white, 1: green, 2: yellow, 3: red,
4: pink, 5: blue, 6: teal, 7: rainbow
pycam.effect = 0 # 0-7 preset FX: 0: normal, 1: invert, 2: b&w, 3: red,
4: green, 5: blue, 6: sepia, 7: solarize

NOTE: You can use cards with up to 32GB capacity.

A mount point named /sd is required on the CIRCUITPY drive. Make sure to
create that directory after upgrading CircuitPython.

©Adafruit Industries Page 112 of 174

https://learn.adafruit.com/adafruit-memento-camera-board/circuitpython-memento-starter-projects

print("Simple camera ready.")
pycam.tone(800, 0.1)
pycam.tone(1200, 0.05)

while True:
pycam.blit(pycam.continuous_capture())
pycam.keys_debounce()

if pycam.shutter.short_count:
print("Shutter released")
pycam.tone(1200, 0.05)
pycam.tone(1600, 0.05)
try:

pycam.display_message("snap", color=0x00DD00)
pycam.capture_jpeg()
pycam.live_preview_mode()

except TypeError as exception:
pycam.display_message("Failed", color=0xFF0000)
time.sleep(0.5)
pycam.live_preview_mode()

except RuntimeError as exception:
pycam.display_message("Error\nNo SD Card", color=0xFF0000)
time.sleep(0.5)

if pycam.card_detect.fell:
print("SD card removed")
pycam.unmount_sd_card()
pycam.display.refresh()

if pycam.card_detect.rose:
print("SD card inserted")
pycam.display_message("Mounting\nSD Card", color=0xFFFFFF)
for _ in range(3):

try:
print("Mounting card")
pycam.mount_sd_card()
print("Success!")
break

except OSError as exception:
print("Retrying!", exception)
time.sleep(0.5)

else:
pycam.display_message("SD Card\nFailed!", color=0xFF0000)
time.sleep(0.5)

pycam.display.refresh()

Flip the "-> On" switch and you're ready to go!

Camera HUD
The PyCamera library includes a real-time
image preview and heads-up-display
(HUD). The HUD provides the following
information:

image pixel resolution
SD card status
current effect/filter
picture mode

©Adafruit Industries Page 113 of 174

https://learn.adafruit.com//assets/126823
https://learn.adafruit.com//assets/126823

Take a Photo
To snap a photo, flip the -> On switch to
the right if the camera isn't already on,
then once the camera has started and you
see the preview image and "SD OK" simply
press and release the shutter button
(labeled with "Cheese!" or the ✌ sign if
you have the back panel in place). You'll
see "snap" show on screen and hear a
beep.

The image will be saved to the SD card as
a high-quality JPEG with a unique
filename.

©Adafruit Industries Page 114 of 174

https://learn.adafruit.com//assets/126828
https://learn.adafruit.com//assets/126828

Image Retrieval
To admire your photo and send it to other goat fanciers, press and release the
microSD card to pop it out of the camera. Be careful not to fling it across the room,
that spring is pretty springy.

Put your microSD card into an SD card reader on your computer and open up the
image (you may need a microSD to SD adapter such as this (http://adafru.it/5447)).
You can copy/paste or drag the images onto your computer's hard drive, too. Be sure
to eject the microSD card drive from your computer before physically removing it.

Here you can see an 800x600 resolution image (the thumbnail of the preview and
HUD won't be there, those were added for clarity in this guide).

Change Resolution
In code you can adjust the resolution by setting a different value for
pycam.resolution .

pycam.resolution = 0
0-12 preset resolutions:
0: 240x240, 1: 320x240, 2: 640x480, 3: 800x600, 4: 1024x768,
5: 1280x720, 6: 1280x1024, 7: 1600x1200, 8: 1920x1080, 9: 2048x1536,
10: 2560x1440, 11: 2560x1600, 12: 2560x1920

Here's the 0 setting, which is a 240x240 image.

©Adafruit Industries Page 115 of 174

https://www.adafruit.com/product/5447

This is the 1920x1080 option, click the image for the option to see the original at full
size.

This is the 2560x1920 option, click the image for the option to see the original at full
size.

©Adafruit Industries Page 116 of 174

Effects
There are some built-in effects/filters you can try by adjusting the pycam.effect
value.

pycam.effect = 0 # 0-7 preset FX: 0: normal, 1: invert, 2: b&w, 3: red,
4: green, 5: blue, 6: sepia, 7: solarize

©Adafruit Industries Page 117 of 174

©Adafruit Industries Page 118 of 174

©Adafruit Industries Page 119 of 174

LED Color
If you have the LED light ring faceplate connected, you can set LED brightness and
color values using pycam.led_level and pycam.led_color .

pycam.led_level = 1 # 0-4 preset brightness levels
pycam.led_color = 0 # 0-7 preset colors: 0: white, 1: green, 2: yellow, 3: red,
4: pink, 5: blue, 6: teal, 7: rainbow

©Adafruit Industries Page 120 of 174

Here are some examples of colored
lighting on the scene. There is a lot of
ambient light here, so the color is
reasonably subtle. With less ambient light
the color will be more intense.

More Camera!
Want to see an example with even more features? Check out the example on the next
page!

Fancy Camera
This example from the Adafruit CircuitPython PyCamera library is similar to the Basic
Camera, but adds autofocus and on-camera user interaction via the MEMENTO's
buttons to give you more of a point-and-shoot camera experience.

©Adafruit Industries Page 121 of 174

https://learn.adafruit.com//assets/126832
https://learn.adafruit.com//assets/126832
https://learn.adafruit.com//assets/126833
https://learn.adafruit.com//assets/126833
https://learn.adafruit.com//assets/126834
https://learn.adafruit.com//assets/126834

You can use the buttons to adjust:

resolutions
effects
modes
optional NeoPixel LED colors

Format your SD card if necessary and insert it in the MEMENTO SD card reader as
shown on the Basic Camera page (https://adafru.it/18ef).

CircuitPython

Be sure you've installed CircuitPython on your MEMENTO (https://adafru.it/19ja) before
proceeding.

Download the Project Bundle
Your project will use a specific set of CircuitPython libraries, and the code.py file. To
get everything you need, click on the Download Project Bundle button below, and
uncompress the .zip file.

Connect your computer to the board via a known good USB power+data cable. A new
flash drive should show up as CIRCUITPY.

Drag the contents of the uncompressed
bundle directory for the version of
CircuitPython you're running (e.g., /
examples/camera/CircuitPython 9.x/) onto
your board's CIRCUITPY drive, replacing
any existing files or directories with the
same names, and adding any new ones
that are necessary.

SPDX-FileCopyrightText: 2023 Jeff Epler for Adafruit Industries
SPDX-FileCopyrightText: 2023 Limor Fried for Adafruit Industries
#
SPDX-License-Identifier: Unlicense
import ssl
import os
import time
import socketpool
import adafruit_requests
import rtc
import adafruit_ntp
import wifi
import bitmaptools
import displayio

•
•
•
•

©Adafruit Industries Page 122 of 174

https://learn.adafruit.com/adafruit-memento-camera-board/basic-camera
https://learn.adafruit.com/adafruit-memento-camera-board/install-circuitpython
https://learn.adafruit.com//assets/128015
https://learn.adafruit.com//assets/128015

import gifio
import ulab.numpy as np

import adafruit_pycamera

Wifi details are in settings.toml file, also,
timezone info should be included to allow local time and DST adjustments
UTC_OFFSET, if present, will override TZ and DST and no API query will be done
UTC_OFFSET=-25200
TZ="America/Phoenix"

UTC_OFFSET = os.getenv("UTC_OFFSET")
TZ = os.getenv("TZ")

print(f"Connecting to {os.getenv('CIRCUITPY_WIFI_SSID')}")
SSID = os.getenv("CIRCUITPY_WIFI_SSID")
PASSWORD = os.getenv("CIRCUITPY_WIFI_PASSWORD")

if SSID and PASSWORD:
wifi.radio.connect(

os.getenv("CIRCUITPY_WIFI_SSID"), os.getenv("CIRCUITPY_WIFI_PASSWORD")
)
if wifi.radio.connected:

print(f"Connected to {os.getenv('CIRCUITPY_WIFI_SSID')}!")
print("My IP address is", wifi.radio.ipv4_address)
pool = socketpool.SocketPool(wifi.radio)

if UTC_OFFSET is None:
requests = adafruit_requests.Session(pool, ssl.create_default_context())
response = requests.get("http://worldtimeapi.org/api/timezone/" + TZ)
response_as_json = response.json()
UTC_OFFSET = response_as_json["raw_offset"] +

response_as_json["dst_offset"]
print(f"UTC_OFFSET: {UTC_OFFSET}")

ntp = adafruit_ntp.NTP(
pool, server="pool.ntp.org", tz_offset=UTC_OFFSET // 3600

)

print(f"ntp time: {ntp.datetime}")
rtc.RTC().datetime = ntp.datetime

else:
print("Wifi failed to connect. Time not set.")

else:
print("Wifi config not found in settintgs.toml. Time not set.")

pycam = adafruit_pycamera.PyCamera()
pycam.live_preview_mode()

settings = (
None,
"resolution",
"effect",
"mode",
"led_level",
"led_color",
"timelapse_rate",

)
curr_setting = 0

print("Starting!")
pycam.tone(200, 0.1)
last_frame = displayio.Bitmap(pycam.camera.width, pycam.camera.height, 65535)
onionskin = displayio.Bitmap(pycam.camera.width, pycam.camera.height, 65535)
timelapse_remaining = None
timelapse_timestamp = None

while True:
if pycam.mode_text == "STOP" and pycam.stop_motion_frame != 0:

©Adafruit Industries Page 123 of 174

alpha blend
new_frame = pycam.continuous_capture()
bitmaptools.alphablend(

onionskin, last_frame, new_frame, displayio.Colorspace.RGB565_SWAPPED
)
pycam.blit(onionskin)

elif pycam.mode_text == "GBOY":
bitmaptools.dither(

last_frame, pycam.continuous_capture(),
displayio.Colorspace.RGB565_SWAPPED

)
pycam.blit(last_frame)

elif pycam.mode_text == "LAPS":
if timelapse_remaining is None:

pycam.timelapsestatus_label.text = "STOP"
else:

timelapse_remaining = timelapse_timestamp - time.time()
pycam.timelapsestatus_label.text = f"{timelapse_remaining}s / "

Manually updating the label text a second time ensures that the label
is re-painted over the blitted preview.
pycam.timelapse_rate_label.text = pycam.timelapse_rate_label.text
pycam.timelapse_submode_label.text = pycam.timelapse_submode_label.text

only in high power mode do we continuously preview
if (timelapse_remaining is None) or (

pycam.timelapse_submode_label.text == "HiPwr"
):

pycam.blit(pycam.continuous_capture())
if pycam.timelapse_submode_label.text == "LowPwr" and (

timelapse_remaining is not None
):

pycam.display.brightness = 0.05
else:

pycam.display.brightness = 1
pycam.display.refresh()

if timelapse_remaining is not None and timelapse_remaining <= 0:
no matter what, show what was just on the camera
pycam.blit(pycam.continuous_capture())
pycam.tone(200, 0.1) # uncomment to add a beep when a photo is taken
try:

pycam.display_message("Snap!", color=0x0000FF)
pycam.capture_jpeg()

except TypeError as e:
pycam.display_message("Failed", color=0xFF0000)
time.sleep(0.5)

except RuntimeError as e:
pycam.display_message("Error\nNo SD Card", color=0xFF0000)
time.sleep(0.5)

pycam.live_preview_mode()
pycam.display.refresh()
pycam.blit(pycam.continuous_capture())
timelapse_timestamp = (

time.time() + pycam.timelapse_rates[pycam.timelapse_rate] + 1
)

else:
pycam.blit(pycam.continuous_capture())

print("\t\t", capture_time, blit_time)

pycam.keys_debounce()
test shutter button
if pycam.shutter.long_press:

print("FOCUS")
print(pycam.autofocus_status)
pycam.autofocus()
print(pycam.autofocus_status)

if pycam.shutter.short_count:
print("Shutter released")
if pycam.mode_text == "STOP":

©Adafruit Industries Page 124 of 174

pycam.capture_into_bitmap(last_frame)
pycam.stop_motion_frame += 1
try:

pycam.display_message("Snap!", color=0x0000FF)
pycam.capture_jpeg()

except TypeError as e:
pycam.display_message("Failed", color=0xFF0000)
time.sleep(0.5)

except RuntimeError as e:
pycam.display_message("Error\nNo SD Card", color=0xFF0000)
time.sleep(0.5)

pycam.live_preview_mode()

if pycam.mode_text == "GBOY":
try:

f = pycam.open_next_image("gif")
except RuntimeError as e:

pycam.display_message("Error\nNo SD Card", color=0xFF0000)
time.sleep(0.5)
continue

with gifio.GifWriter(
f,
pycam.camera.width,
pycam.camera.height,
displayio.Colorspace.RGB565_SWAPPED,
dither=True,

) as g:
g.add_frame(last_frame, 1)

if pycam.mode_text == "GIF":
try:

f = pycam.open_next_image("gif")
except RuntimeError as e:

pycam.display_message("Error\nNo SD Card", color=0xFF0000)
time.sleep(0.5)
continue

i = 0
ft = []
pycam._mode_label.text = "RECORDING" # pylint: disable=protected-access

pycam.display.refresh()
with gifio.GifWriter(

f,
pycam.camera.width,
pycam.camera.height,
displayio.Colorspace.RGB565_SWAPPED,
dither=True,

) as g:
t00 = t0 = time.monotonic()
while (i < 15) or not pycam.shutter_button.value:

i += 1
_gifframe = pycam.continuous_capture()
g.add_frame(_gifframe, 0.12)
pycam.blit(_gifframe)
t1 = time.monotonic()
ft.append(1 / (t1 - t0))
print(end=".")
t0 = t1

pycam._mode_label.text = "GIF" # pylint: disable=protected-access
print(f"\nfinal size {f.tell()} for {i} frames")
print(f"average framerate {i / (t1 - t00)}fps")
print(f"best {max(ft)} worst {min(ft)} std. deviation {np.std(ft)}")
f.close()
pycam.display.refresh()

if pycam.mode_text == "JPEG":
pycam.tone(200, 0.1)
try:

©Adafruit Industries Page 125 of 174

pycam.display_message("Snap!", color=0x0000FF)
pycam.capture_jpeg()
pycam.live_preview_mode()

except TypeError as e:
pycam.display_message("Failed", color=0xFF0000)
time.sleep(0.5)
pycam.live_preview_mode()

except RuntimeError as e:
pycam.display_message("Error\nNo SD Card", color=0xFF0000)
time.sleep(0.5)

if pycam.card_detect.fell:
print("SD card removed")
pycam.unmount_sd_card()
pycam.display.refresh()

if pycam.card_detect.rose:
print("SD card inserted")
pycam.display_message("Mounting\nSD Card", color=0xFFFFFF)
for _ in range(3):

try:
print("Mounting card")
pycam.mount_sd_card()
print("Success!")
break

except OSError as e:
print("Retrying!", e)
time.sleep(0.5)

else:
pycam.display_message("SD Card\nFailed!", color=0xFF0000)
time.sleep(0.5)

pycam.display.refresh()

if pycam.up.fell:
print("UP")
key = settings[curr_setting]
if key:

print("getting", key, getattr(pycam, key))
setattr(pycam, key, getattr(pycam, key) + 1)

if pycam.down.fell:
print("DN")
key = settings[curr_setting]
if key:

setattr(pycam, key, getattr(pycam, key) - 1)
if pycam.right.fell:

print("RT")
curr_setting = (curr_setting + 1) % len(settings)
if pycam.mode_text != "LAPS" and settings[curr_setting] == "timelapse_rate":

curr_setting = (curr_setting + 1) % len(settings)
print(settings[curr_setting])
new_res = min(len(pycam.resolutions)-1, pycam.get_resolution()+1)
pycam.set_resolution(pycam.resolutions[new_res])
pycam.select_setting(settings[curr_setting])

if pycam.left.fell:
print("LF")
curr_setting = (curr_setting - 1 + len(settings)) % len(settings)
if pycam.mode_text != "LAPS" and settings[curr_setting] == "timelaps_rate":

curr_setting = (curr_setting + 1) % len(settings)
print(settings[curr_setting])
pycam.select_setting(settings[curr_setting])
new_res = max(1, pycam.get_resolution()-1)
pycam.set_resolution(pycam.resolutions[new_res])

if pycam.select.fell:
print("SEL")
if pycam.mode_text == "LAPS":

pycam.timelapse_submode += 1
pycam.display.refresh()

if pycam.ok.fell:
print("OK")
if pycam.mode_text == "LAPS":

©Adafruit Industries Page 126 of 174

if timelapse_remaining is None: # stopped
print("Starting timelapse")
timelapse_remaining = pycam.timelapse_rates[pycam.timelapse_rate]
timelapse_timestamp = time.time() + timelapse_remaining + 1
dont let the camera take over auto-settings
saved_settings = pycam.get_camera_autosettings()
print(f"Current exposure {saved_settings=}")
pycam.set_camera_exposure(saved_settings["exposure"])
pycam.set_camera_gain(saved_settings["gain"])
pycam.set_camera_wb(saved_settings["wb"])

else: # is running, turn off
print("Stopping timelapse")

timelapse_remaining = None
pycam.camera.exposure_ctrl = True
pycam.set_camera_gain(None) # go back to autogain
pycam.set_camera_wb(None) # go back to autobalance
pycam.set_camera_exposure(None) # go back to auto shutter

Use the Camera
Taking pictures is just as simple as with the Basic Camera -- you could say it's a snap
-- simply follow these two steps:

point the MEMENTO at a subject while framing it in the display
press-and-release the shutter button fairly quickly

Autofocus

However, now you can use the autofocus feature to help keep closer subjects looking
sharp:

point the MEMENTO at a subject while framing it in the display
press-and-hold the shutter button until you hear the beep (you should also see
the focus change if there is a close subject in frame)
release the shutter button to finish enabling autofocus
press-and-release the shutter button to snap your pic!

I ate the banana. So now we have a can of Liquid Wrench to take its place. Which is
great, because it is still yellow, but has a lot more detail on which to focus!

In the first photo, the MEMENTO's default distant focus is shown. Note how the Droid
Builders patch is in focus but the mid and foreground objects aren't.

1.
2.

1.
2.

3.
4.

©Adafruit Industries Page 127 of 174

For this second shot I pointed the camera at the can of Liquid Wrench, held the
shutter button to set the MEMENTO's autofocus, released it, then aimed it back at the
patch and snapped the pic. Such nice close-up focus!

Settings
While the Basic Camera example settings could only be changed directly in code, in
the Fancy Camera example you can use the MEMENTO's four directional buttons to
change settings on the fly.

©Adafruit Industries Page 128 of 174

press Right button to pick a menu category Resolution, Effect, or Mode
the category will be highlighted
press Up or Down buttons to select the choices within the mode:

Resolution will page through the different available resolutions
Effect picks the different effects, such as Normal, Invert, B&W, Reddish,
Sepia, Solarize, etc.
Mode will flip between JPEG, GIF, GBOY, STOP, LAPS (we'll cover stop
motion mode and timelapse modes elsewhere in this guide)

•
•
•

◦
◦

◦

©Adafruit Industries Page 129 of 174

Timelapse

A sprout growing quickly from the soil. Clouds racing across the sky. A building
constructed from scratch in a matter of minutes. Jigsaw puzzles coming together in
moments. These are some of the things you can do with timelapse photography. All

©Adafruit Industries Page 130 of 174

you need is a camera and an intervalometer. Luckily for us, the MEMENTO can be
both!

The camera part is straightforward, but what about this so-called "intervalometer"?
That's a fancy term for a gizmo that can press the shutter for you (hardware or
software) at a pre-set interval until you tell it to stop. It never gets tired, so you can set
it to shoot once per second or per hour or even just once per day, to capture a long
event.

Then, you'll play back those individual still frames rapidly as a movie or GIF. Time flies
when you're having fun!

CircuitPython

Be sure you've installed CircuitPython on your MEMENTO (https://adafru.it/19ja) before
proceeding.

LAPS
No, we won't be hitting the track -- we just abbreviated "timelapse" to "LAPS" in the
menu system.

To switch to timelapse mode, you'll use the right or left button to get to
the mode menu, then press up or down to switch to the LAPS selection.

©Adafruit Industries Page 131 of 174

https://learn.adafruit.com/adafruit-memento-camera-board/install-circuitpython

Intervals
You'll see a new menu set show up for
adjusting the timelapse settings. Press the
right button until the timelapse interval
item is highlighted. You can then press up
or down to increase or decrease the
preset intervals, from 5 seconds up to an
hour between shots.

©Adafruit Industries Page 132 of 174

https://learn.adafruit.com//assets/127380
https://learn.adafruit.com//assets/127380
https://learn.adafruit.com//assets/127381
https://learn.adafruit.com//assets/127381

Power
Press the Select button to choose the
High, Medium, or Low power timelapse
modes. These are helpful if you are
running off of the MEMENTO battery --

high power mode shows a live preview
medium power mode only updates the
display once per shot based on the
selected time interval
low power mode dims the display as well
as limiting updates to once per shot

Focus
You may wish to long-press the shutter button to focus on your subject when shooting
a timelapse. All of the other automatic camera settings, such as exposure/gain, will

Note: in timelapse mode you can still select your other settings, such as
resolution, effects, and LED color and brightness as usual

©Adafruit Industries Page 133 of 174

https://learn.adafruit.com//assets/127377
https://learn.adafruit.com//assets/127377
https://learn.adafruit.com//assets/127378
https://learn.adafruit.com//assets/127378
https://learn.adafruit.com//assets/127379
https://learn.adafruit.com//assets/127379

lock onto their first frame settings, to prevent flickering in the final timelapse movie
you'll create from your frames.

Start/Stop
Once you've got your settings dialed in, point the MEMENTO at your subject (a tripod
case or other mounting is helpful to prevent accidental bumps) and then press the
MEMENTO OK button.

The on-screen display will show a countdown timer and then snap a photo. This
repeats until you press OK again to stop it (or until you run out of SD card space or
battery!) So you can capture the clouds moving across the sky all day long, or an hour
long house-of-cards building session, it's up to you!

After shooting your frames, bring the files into your computer and convert them into
an animation using your favorite editing software, such as Photoshop, or a GIF
creation web page. This page (https://adafru.it/19ev) shows you how to do this step-
by-step using ezgif.com/maker

©Adafruit Industries Page 134 of 174

https://learn.adafruit.com/adafruit-memento-camera-board/frames-to-gifs

Animated GIF Creation

You can create short animated GIFs with the MEMENTO, perfect for sharing in text
chats!

The Fancy Camera example will record a 15 frame, 240x176 pixel GIF* of about two
seconds in duration each time you press and release the shutter button.

CircuitPython

Be sure you've installed CircuitPython on your MEMENTO (https://adafru.it/19ja) before
proceeding.

GIF Mode
To enter GIF mode, press the right button three times, you'll see the mode text
highlight. By default it will be in JPEG mode.

Press the up button to cycle modes and choose GIF mode.

Make a GIF

Now, simply press and release the shutter button to record a two-second GIF
animation. The GIF is saved automatically to the SD card. There is no on-camera
preview, so you'll need to put the SD card in your computer's SD card reader to view
it.

GIF mode is locked at 240x176 pixels, so you won't see the resolution
selection option that is present in JPEG mode

©Adafruit Industries Page 135 of 174

https://learn.adafruit.com/adafruit-memento-camera-board/install-circuitpython

GIF Code
Here's the code snippet from the Fancy Camera code used for GIF creation -- you can
use this to incorporate GIF recording into your own custom code:

if pycam.mode_text == "GIF":
 try:
 f = pycam.open_next_image("gif")
 except RuntimeError as e:
 pycam.display_message("Error\nNo SD Card", color=0xFF0000)
 time.sleep(0.5)
 continue
 i = 0
 ft = []
 pycam._mode_label.text = "RECORDING" # pylint: disable=protected-access

 pycam.display.refresh()
 with gifio.GifWriter(
 f,
 pycam.camera.width,
 pycam.camera.height,
 displayio.Colorspace.RGB565_SWAPPED,
 dither=True,
) as g:
 t00 = t0 = time.monotonic()
 while (i < 15) or not pycam.shutter_button.value:
 i += 1
 _gifframe = pycam.continuous_capture()
 g.add_frame(_gifframe, 0.12)
 pycam.blit(_gifframe)
 t1 = time.monotonic()
 ft.append(1 / (t1 - t0))
 print(end=".")
 t0 = t1
 pycam._mode_label.text = "GIF" # pylint: disable=protected-access
 print(f"\nfinal size {f.tell()} for {i} frames")
 print(f"average framerate {i/(t1-t00)}fps")
 print(f"best {max(ft)} worst {min(ft)} std. deviation {np.std(ft)}")
 f.close()
 pycam.display.refresh()

Effects
The default GIF is created without effects applied, but you can get creative by picking
built-in effects before shooting a GIF.

Press the right button to highlight the effect menu item, by default it is the Normal
effect. Press up/down to cycle between the effects:

Invert
B&W
Reddish
Greenish
Blueish
Sepia
Solarize

•
•
•
•
•
•
•

©Adafruit Industries Page 136 of 174

Then, shoot your GIF by pressing the shutter button as usual. Here are some
examples:

NeoPixel Lighting
You can also add some NeoPixel lighting to your GIFs if you have the MEMENTO
Camera Enclosure kit attached and connected over the JST cable.

Press the right button until LED LV is highlighted, then press up to pick a pre-set
lighting level.

Press the right button again to highlight LED CLR, then press the up button so pick a
pre-set color.

Here's an example of a weird guy with some magenta lighting highlights that look
particularly odd inside his mouth. Freaky.

©Adafruit Industries Page 137 of 174

Post Processing
You can also use GIF editing tools (online or applications) to further edit your GIFs.
Here's an example of creating a looping version of the basketball animation by
doubling and re-ordering the frames:

* Pronounced GHIF as in. "Good grief, give me a break, go get some peanut butter for
your graphics if you wanna say 'JIF'."

Don't @ me bro.

Stop Motion
You can use the MEMENTO to create simple stop motion animations. By taking a
series of still pictures and stitching them together, you can create an animation!

Persistence of Vision

The key principal to understand for any kind of animation, including stop motion, is
persistence of vision. Our brains are very good at filling in the blanks and imagining
continuous motion when we see a series of still images displayed in quick succession.

This is how motion pictures work, as well as mechanical illusions, such as zoetropes
and flipbooks. Traditional animation methods such as hand drawn animation, and
puppet- or clay-based stop motion animation work the same way. Create a single
frame by drawing a pose, or posing a figure, and then shoot a frame of the image

©Adafruit Industries Page 138 of 174

onto film, or, more likely these days, a digital photograph. Then, create a new pose,
shoot a second frame, and repeat this on and on.

When you then rapidly review those images you photographed, suddenly your
subject starts moving and comes to life!

For more in-depth info on creating stop
motion animation, check out this
guide (https://adafru.it/18es).

CircuitPython

Be sure you've installed CircuitPython on your MEMENTO (https://adafru.it/19ja) before
proceeding.

Onion Skinning
One feature of the MEMENTO camera that's helpful for stop motion is the onion
skinning, a.k.a. ghosting feature. This is an overlay you'll see on the screen of your
previously shot frame while you're composing your current frame. It lets you see
where your character was so you can gauge how far to move it.

In the Fancy Camera application on the MEMENTO, press the right button to highlight
the mode item and then press up to change from JPEG, GIF, or GBOY to STOP mode.

At first the viewer will appear as usual, but after you shoot one frame you'll then see a
semi-transparent overlay of the previously saved image on top of the live view.

©Adafruit Industries Page 139 of 174

https://learn.adafruit.com//assets/126968
https://learn.adafruit.com//assets/126968
https://learn.adafruit.com/stop-motion-animation/overview
https://learn.adafruit.com/stop-motion-animation/overview
https://learn.adafruit.com/adafruit-memento-camera-board/install-circuitpython

Wave
Try creating a hand waving animation with a mannequin or other figure. You can try
moving straight ahead with the poses, referencing the previous pose overlay to see
where you were.

You can take multiple photos at one pose to hold the pose and to slow down the
action.

After shooting your frames, bring the files into your computer and convert them into
an animation using your favorite editing software, such as Photoshop, or a GIF
creation web page. This page (https://adafru.it/19ev) shows you how to do this step-
by-step using ezgif.com/maker

©Adafruit Industries Page 140 of 174

https://learn.adafruit.com/adafruit-memento-camera-board/frames-to-gifs

Frames to GIFs

When you shoot stop motion frames or
timelapse sessions you'll end up with a
sequence of .jpg images on your SD card.
That's rad and all, but how do you stitch
them into a single GIF animation so
everyone can enjoy them easily when you
share them in text messages or on social
media?

One simple way is to use ezgif.com (https://adafru.it/18et) It allows you to upload a
sequence of images, adjust things like timing, crop, and size, and then convert them
into a single animated GIF you can download.

©Adafruit Industries Page 141 of 174

https://learn.adafruit.com//assets/127414
https://learn.adafruit.com//assets/127414
https://ezgif.com/maker

GIF Maker
Go to https://ezgif.com/maker (https://
adafru.it/18et) in your web browser.

Click on the Choose Files button to open
your file browser.

Select Files
Use your file browser to select the
sequence of .jpg frames on your
MEMENTO SD card that you've put in your
computer's SD card reader, then click
Open in the file browser window.

You can hover over the Choose Files
button to see the list of images.

skylapse.zip
https://adafru.it/19ew

If you'd like to try out this process using some existing frames, the .zip file
below contains the original sky timelapse photos taken with the MEMENTO
camera.

©Adafruit Industries Page 142 of 174

https://learn.adafruit.com//assets/127395
https://learn.adafruit.com//assets/127395
https://ezgif.com/maker
https://learn.adafruit.com//assets/127398
https://learn.adafruit.com//assets/127398
https://learn.adafruit.com//assets/127399
https://learn.adafruit.com//assets/127399
https://cdn-learn.adafruit.com/assets/assets/000/127/422/original/skylapse.zip?1706736810

Upload Files
Click the Upload files button to upload the
image sequence to the ezgif server in the
sky. The button will gray out and display
"Uploading files" while it is transferring
images.

Frame Order, Delay
Once your frames have been uploaded the
thumbnail view will appear. Here you can
re-order frames by drag-dropping them,
adjust delay timing, skip, and copy frames.

©Adafruit Industries Page 143 of 174

https://learn.adafruit.com//assets/127396
https://learn.adafruit.com//assets/127396
https://learn.adafruit.com//assets/127400
https://learn.adafruit.com//assets/127400
https://learn.adafruit.com//assets/127402
https://learn.adafruit.com//assets/127402

Make a GIF
When you're ready to have the GIF
created, click the Make a GIF button.

Save Your GIF
Once the GIF is ready it will play back for
you in the browser window to review. You
can make changes at this point, just check
out the icons at the bottom, they're very
cool and pretty self-explanatory.

When you want to download your GIF,
click the save button with the floppy disc
icon. This will download to your system/
browser default download location.

©Adafruit Industries Page 144 of 174

https://learn.adafruit.com//assets/127403
https://learn.adafruit.com//assets/127403
https://learn.adafruit.com//assets/127404
https://learn.adafruit.com//assets/127404

Arduino IDE Setup

Install Arduino IDE

The first thing you will need to do is to download the latest release of the Arduino
IDE. You will need to be using version 1.8 or higher for this guide.

Arduino IDE Download
https://adafru.it/f1P

Install ESP32 Board Support Package from GitHub

For this board, we recommend you don't use 'release' version of Espressif's board
support package because the current release doesn't include board support.

Instead we will install the "very latest" by following these instructions (https://adafru.it/
YYB) (scroll down for Mac and Linux as well

Basically, install by git clone-ing the Espressif ESP32 board support to get the very
latest version of the code.

In the Tools → Board submenu you should see ESP32 Arduino (in sketchbook) and in
that dropdown it should contain the ESP32 boards along with all the latest ESP32
boards.

Look for the board called Adafruit pyCamera S3.

The ESP32-S2/S3 bootloader does not have USB serial support for Windows 7
or 8. (See https://github.com/espressif/arduino-esp32/issues/5994) please
update to version 10 which is supported by espressif! Alternatively you can try
this community-crafted Windows 7 driver (https://github.com/kutukvpavel/
Esp32-Win7-VCP-drivers)

©Adafruit Industries Page 145 of 174

https://github.com/espressif/arduino-esp32/issues/5994
https://github.com/kutukvpavel/Esp32-Win7-VCP-drivers
https://github.com/kutukvpavel/Esp32-Win7-VCP-drivers
http://www.arduino.cc/en/Main/Software
https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html#windows-manual-installation

The upload speed can be changed: faster speed makes uploads take less time but
sometimes can cause upload issues. 921600 should work fine, but if you're having
issues, you can drop down lower.

Arduino MEMENTO Library Installation and
Starter Projects
Using the MEMENTO with Arduino involves installing the Adafruit_PyCamera (https://
adafru.it/18e5) library and running the provided example code.

Library Installation
You can install the Adafruit_PyCamera library using the Library Manager in the
Arduino IDE.

Click the Manage Libraries ... menu item, search for Adafruit_PyCamera, and select
the Adafruit PyCamera Library:

©Adafruit Industries Page 146 of 174

https://github.com/adafruit/Adafruit_PyCamera

If asked about dependencies, click "Install all".

If the "Dependencies" window does not come up, then you already have the
dependencies installed.

The following examples will use this library to access all of the hardware features on
the MEMENTO.

PyCamera Library Test
This example is included in the Adafruit PyCamera Arduino library. It is the fully
featured Factory Demo that ships on the MEMENTO board. You can either drag and

If the dependencies are already installed, you must make sure you update
them through the Arduino Library Manager before loading the example!

©Adafruit Industries Page 147 of 174

drop the example UF2 file to the MEMENTO or compile and upload the code with the
Arduino IDE.

memento_factory_test.ino.uf2
https://adafru.it/18eg

Factory Demo Code
// SPDX-FileCopyrightText: 2023 Limor Fried for Adafruit Industries
//
// SPDX-License-Identifier: MIT

#include "Adafruit_PyCamera.h"
#include <Arduino.h>

Adafruit_PyCamera pycamera;
framesize_t validSizes[] = {FRAMESIZE_QQVGA, FRAMESIZE_QVGA, FRAMESIZE_HVGA,

FRAMESIZE_VGA, FRAMESIZE_SVGA, FRAMESIZE_XGA,
FRAMESIZE_HD, FRAMESIZE_SXGA, FRAMESIZE_UXGA,
FRAMESIZE_QXGA, FRAMESIZE_QSXGA};

// A colection of possible ring light colors
uint32_t ringlightcolors_RGBW[] = {0x00000000, 0x00FF0000, 0x00FFFF00,

0x0000FF00, 0x0000FFFF, 0x000000FF,
0x00FF00FF, 0xFF000000};

uint8_t ringlight_i = 0;
uint8_t ringlightBrightness = 100;

#define IRQ 3

void setup() {
Serial.begin(115200);
// while (!Serial) yield();
delay(100);

if (!pycamera.begin()) {
Serial.println("Failed to initialize pyCamera interface");
while (1)

yield();
}
Serial.println("pyCamera hardware initialized!");

pinMode(IRQ, INPUT_PULLUP);
attachInterrupt(

IRQ, [] { Serial.println("IRQ!"); }, FALLING);
}

void loop() {
static uint8_t loopn = 0;
pycamera.setNeopixel(pycamera.Wheel(loopn));
loopn += 8;

pycamera.readButtons();
// Serial.printf("Buttons: 0x%08X\n\r", pycamera.readButtons());

// pycamera.timestamp();
pycamera.captureFrame();

// once the frame is captured we can draw ontot he framebuffer
if (pycamera.justPressed(AWEXP_SD_DET)) {

Serial.println(F("SD Card removed"));
pycamera.endSD();
pycamera.fb->setCursor(0, 32);

©Adafruit Industries Page 148 of 174

https://cdn-learn.adafruit.com/assets/assets/000/126/810/original/memento_factory_test.ino.uf2?1703194246

pycamera.fb->setTextSize(2);
pycamera.fb->setTextColor(pycamera.color565(255, 0, 0));
pycamera.fb->print(F("SD Card removed"));
delay(200);

}
if (pycamera.justReleased(AWEXP_SD_DET)) {

Serial.println(F("SD Card inserted!"));
pycamera.initSD();
pycamera.fb->setCursor(0, 32);
pycamera.fb->setTextSize(2);
pycamera.fb->setTextColor(pycamera.color565(255, 0, 0));
pycamera.fb->print(F("SD Card inserted"));
delay(200);

}

float A0_voltage = analogRead(A0) / 4096.0 * 3.3;
if (loopn == 0) {

Serial.printf("A0 = %0.1f V, Battery = %0.1f V\n\r", A0_voltage,
pycamera.readBatteryVoltage());

}
pycamera.fb->setCursor(0, 0);
pycamera.fb->setTextSize(2);
pycamera.fb->setTextColor(pycamera.color565(255, 255, 255));
pycamera.fb->print("A0 = ");
pycamera.fb->print(A0_voltage, 1);
pycamera.fb->print("V\nBattery = ");
pycamera.fb->print(pycamera.readBatteryVoltage(), 1);
pycamera.fb->print(" V");

// print the camera frame size
pycamera.fb->setCursor(0, 200);
pycamera.fb->setTextSize(2);
pycamera.fb->setTextColor(pycamera.color565(255, 255, 255));
pycamera.fb->print("Size:");
switch (pycamera.photoSize) {
case FRAMESIZE_QQVGA:

pycamera.fb->print("160x120");
break;

case FRAMESIZE_QVGA:
pycamera.fb->print("320x240");
break;

case FRAMESIZE_HVGA:
pycamera.fb->print("480x320");
break;

case FRAMESIZE_VGA:
pycamera.fb->print("640x480");
break;

case FRAMESIZE_SVGA:
pycamera.fb->print("800x600");
break;

case FRAMESIZE_XGA:
pycamera.fb->print("1024x768");
break;

case FRAMESIZE_HD:
pycamera.fb->print("1280x720");
break;

case FRAMESIZE_SXGA:
pycamera.fb->print("1280x1024");
break;

case FRAMESIZE_UXGA:
pycamera.fb->print("1600x1200");
break;

case FRAMESIZE_QXGA:
pycamera.fb->print("2048x1536");
break;

case FRAMESIZE_QSXGA:
pycamera.fb->print("2560x1920");
break;

default:

©Adafruit Industries Page 149 of 174

pycamera.fb->print("Unknown");
break;

}

float x_ms2, y_ms2, z_ms2;
if (pycamera.readAccelData(&x_ms2, &y_ms2, &z_ms2)) {

// Serial.printf("X=%0.2f, Y=%0.2f, Z=%0.2f\n\r", x_ms2, y_ms2, z_ms2);
pycamera.fb->setCursor(0, 220);
pycamera.fb->setTextSize(2);
pycamera.fb->setTextColor(pycamera.color565(255, 255, 255));
pycamera.fb->print("3D: ");
pycamera.fb->print(x_ms2, 1);
pycamera.fb->print(", ");
pycamera.fb->print(y_ms2, 1);
pycamera.fb->print(", ");
pycamera.fb->print(z_ms2, 1);

}

pycamera.blitFrame();

if (pycamera.justPressed(AWEXP_BUTTON_UP)) {
Serial.println("Up!");
for (int i = 0; i < sizeof(validSizes) / sizeof(framesize_t) - 1; ++i) {

if (pycamera.photoSize == validSizes[i]) {
pycamera.photoSize = validSizes[i + 1];
break;

}
}

}
if (pycamera.justPressed(AWEXP_BUTTON_DOWN)) {

Serial.println("Down!");
for (int i = sizeof(validSizes) / sizeof(framesize_t) - 1; i > 0; --i) {

if (pycamera.photoSize == validSizes[i]) {
pycamera.photoSize = validSizes[i - 1];
break;

}
}

}

if (pycamera.justPressed(AWEXP_BUTTON_RIGHT)) {
pycamera.specialEffect = (pycamera.specialEffect + 1) % 7;
pycamera.setSpecialEffect(pycamera.specialEffect);
Serial.printf("set effect: %d\n\r", pycamera.specialEffect);

}
if (pycamera.justPressed(AWEXP_BUTTON_LEFT)) {

pycamera.specialEffect = (pycamera.specialEffect + 6) % 7;
pycamera.setSpecialEffect(pycamera.specialEffect);
Serial.printf("set effect: %d\n\r", pycamera.specialEffect);

}

if (pycamera.justPressed(AWEXP_BUTTON_OK)) {
// iterate through all the ring light colors
ringlight_i =

(ringlight_i + 1) % (sizeof(ringlightcolors_RGBW) / sizeof(uint32_t));
pycamera.setRing(ringlightcolors_RGBW[ringlight_i]);
Serial.printf("set ringlight: 0x%08X\n\r",

(unsigned int)ringlightcolors_RGBW[ringlight_i]);
}
if (pycamera.justPressed(AWEXP_BUTTON_SEL)) {

// iterate through brightness levels, incrementing 25 at a time
if (ringlightBrightness >= 250)

ringlightBrightness = 0;
else

ringlightBrightness += 50;
pycamera.ring.setBrightness(ringlightBrightness);
pycamera.setRing(ringlightcolors_RGBW[ringlight_i]);
Serial.printf("set ringlight brightness: %d\n\r", ringlightBrightness);

}

©Adafruit Industries Page 150 of 174

if (pycamera.justPressed(SHUTTER_BUTTON)) {
Serial.println("Snap!");
if (pycamera.takePhoto("IMAGE", pycamera.photoSize)) {

pycamera.fb->setCursor(120, 100);
pycamera.fb->setTextSize(2);
pycamera.fb->setTextColor(pycamera.color565(255, 255, 255));
pycamera.fb->print("Snap!");
pycamera.speaker_tone(100, 50); // tone1 - B5
// pycamera.blitFrame();

}
}

delay(100);
}

Upload the sketch to your board and open up the Serial Monitor (Tools -> Serial
Monitor) at 115200 baud. On the MEMENTO display, you'll see a preview of what the
camera module is seeing. You'll be able to change the resolution and filter for the
camera. If you insert a microSD card, you'll be able to take pictures using the BOOT
button.

Basic Camera Example
This example is a basic camera script for the MEMENTO. With it you can insert a
microSD card and take a photo at 800x640 resolution by pressing the BOOT button.

After uploading the sketch, you will need to press the reset button on
MEMENTO to run the new code.

©Adafruit Industries Page 151 of 174

You can either drag and drop the example UF2 file to the MEMENTO or compile and
upload the code with the Arduino IDE.

espressif.esp32.adafruit_camera_esp32s3-
Arduino_Basic_Camera.ino.uf2

https://adafru.it/18eh

// SPDX-FileCopyrightText: 2023 Limor Fried for Adafruit Industries
//
// SPDX-License-Identifier: MIT

#include "Adafruit_PyCamera.h"
#include <Arduino.h>

Adafruit_PyCamera pycamera;
framesize_t validSizes[] = {FRAMESIZE_QQVGA, FRAMESIZE_QVGA, FRAMESIZE_HVGA,

FRAMESIZE_VGA, FRAMESIZE_SVGA, FRAMESIZE_XGA,
FRAMESIZE_HD, FRAMESIZE_SXGA, FRAMESIZE_UXGA,
FRAMESIZE_QXGA, FRAMESIZE_QSXGA};

void setup() {
Serial.begin(115200);
// while (!Serial) yield();
// delay(1000);

// Serial.setDebugOutput(true);
Serial.println("PyCamera Basic Example");
if (!pycamera.begin()) {

Serial.println("Failed to initialize PyCamera interface");
while (1)

yield();
}
Serial.println("PyCamera hardware initialized!");

pycamera.photoSize = FRAMESIZE_SVGA;
}

void loop() {

pycamera.readButtons();
// Serial.printf("Buttons: 0x%08X\n\r", pycamera.readButtons());

// pycamera.timestamp();
pycamera.captureFrame();

// once the frame is captured we can draw ontot he framebuffer
if (pycamera.justPressed(AWEXP_SD_DET)) {

Serial.println(F("SD Card removed"));
pycamera.endSD();
pycamera.fb->setCursor(0, 32);
pycamera.fb->setTextSize(2);
pycamera.fb->setTextColor(pycamera.color565(255, 0, 0));
pycamera.fb->print(F("SD Card removed"));
delay(200);

}
if (pycamera.justReleased(AWEXP_SD_DET)) {

Serial.println(F("SD Card inserted!"));
pycamera.initSD();
pycamera.fb->setCursor(0, 32);
pycamera.fb->setTextSize(2);
pycamera.fb->setTextColor(pycamera.color565(255, 0, 0));
pycamera.fb->print(F("SD Card inserted"));
delay(200);

}

©Adafruit Industries Page 152 of 174

https://cdn-learn.adafruit.com/assets/assets/000/126/842/original/espressif.esp32.adafruit_camera_esp32s3-Arduino_Basic_Camera.ino.uf2?1703348158

pycamera.blitFrame();

if (pycamera.justPressed(SHUTTER_BUTTON)) {
Serial.println("Snap!");
if (pycamera.takePhoto("IMAGE", pycamera.photoSize)) {

pycamera.fb->setCursor(120, 100);
pycamera.fb->setTextSize(2);
pycamera.fb->setTextColor(pycamera.color565(255, 255, 255));
pycamera.fb->print("Snap!");
pycamera.speaker_tone(100, 50); // tone1 - B5
// pycamera.blitFrame();

}
}

delay(100);
}

Upload the sketch to your board and open up the Serial Monitor (Tools -> Serial
Monitor) at 115200 baud. On the MEMENTO display, you'll see a preview of what the
camera module is seeing. If you insert a microSD card, you'll be able to take pictures
using the BOOT button. This is a basic example that you can build on with your own
code.

Usage with PlatformIO

The PyCamera Arduino library brings in a considerable number of dependencies and
takes a looong time to compile using Arduino IDE.

If you're working on an advanced MEMENTO project that requires additional
dependencies, such as a component from the ESP-IDF component registry, you'll want
to compile the PyCamera Arduino project using PlatformIO rather than Arduino IDE.

How fast is it? Very! Using PlatformIO compiles the PyCamera Library Test example in
~4.10 seconds.

After uploading the sketch, you will need to press the reset button on
MEMENTO to run the new code.

This page is for advanced users only. For beginner users, we recommend
using either CircuitPython or Arduino IDE.

©Adafruit Industries Page 153 of 174

Installation
Follow this page's instructions to install PlatformIO and Visual Studio Code (the IDE of
choice for using PlatformIO).

Download PlatformIO
https://adafru.it/19cu

The ZIP file below includes a pre-configured workspace for using PlatformIO.
Download and unzip this file. Then, save it somewhere safe, like your desktop.

memento_platformio.zip
https://adafru.it/19cv

Open Visual Studio Code (VSCode). To ensure you have installed the PlatformIO
extension properly, look for the alien symbol in your VSCode sidebar.

Underneath Start, click Open...

©Adafruit Industries Page 154 of 174

https://platformio.org/install/ide?install=vscode
https://cdn-learn.adafruit.com/assets/assets/000/127/077/original/memento_platformio.zip?1705435502

Navigate to the folder created when you unzipped the zip file. Then, Click Open to
open the workspace.

A large amount of configuration files and directories will appear in your VSCode
instance.

To compile this code, we are only going to discuss the following files and directories:

platformio.ini - This is the project configuration file used to build the demo
code. More documentation about this file is located here (https://adafru.it/19cw).
lib directory - This directory is intended for project-specific (private) libraries.
PlatformIO will compile them to static libraries and link them into executable
files.

For our project, the specific library within this directory is the Adafruit_PyC
amera (https://adafru.it/19cx) library.

src directory - The directory where the source code of the project is located, m
ain.cpp . When code in PlatformIO is built or uploaded, files from this directory
are used.

•

•

◦

•

©Adafruit Industries Page 155 of 174

https://docs.platformio.org/en/latest/projectconf/index.html
https://github.com/adafruit/Adafruit_PyCamera/
https://github.com/adafruit/Adafruit_PyCamera/

PyCamera Library Test
Before the code is compiled, you'll need to make two changes to the platformio.ini
file:

Change upload_port to reflect the MEMENTO's upload port.

Don't know the desired port? We have steps to find them for Windows (http
s://adafru.it/19cy), MacOS (https://adafru.it/19cz), and Linux (https://adafru.it/
19cA).

The monitor_port is different from the upload_port , and will only appear on
your computer when you've uploaded the test code. For now, leave this alone.

After uploading the test code, change monitor_port to reflect the
MEMENTO's monitor/serial port.

Navigate to src/main.cpp to open the example code.

•

◦

•

◦

©Adafruit Industries Page 156 of 174

https://learn.adafruit.com/adafruit-memento-camera-board/advanced-serial-console-on-windows#whats-the-com-2977217
https://learn.adafruit.com/adafruit-memento-camera-board/advanced-serial-console-on-mac-and-linux#whats-the-port-2977243
https://learn.adafruit.com/adafruit-memento-camera-board/advanced-serial-console-on-linux

With this file open, click the Alien symbol on the VSCode sidebar to open the
PlatformIO Project Explorer.

Underneath PlatformIO's Project Tasks, click Build.

Once the build task is completed, the terminal will show SUCCESS along with the time
it took to compile the project.

Before uploading this project to the board, put the board into ROM Bootloader
Mode (https://adafru.it/19cB).

From the PlatformIO Project Tasks menu, click Upload.

©Adafruit Industries Page 157 of 174

https://learn.adafruit.com/adafruit-memento-camera-board/factory-reset?preview_token=4voYBMZdO8AtkFcVdydTUA#step-2-enter-rom-bootloader-mode-3106832
https://learn.adafruit.com/adafruit-memento-camera-board/factory-reset?preview_token=4voYBMZdO8AtkFcVdydTUA#step-2-enter-rom-bootloader-mode-3106832

Once the upload completes, the terminal should look like the following screenshot
and show SUCCESS .

Press the RST (Reset) button on the MEMENTO to run the uploaded code.

After the board resets, you'll see a preview of what the camera module is seeing on
the MEMENTO display. You'll be able to change the resolution and filter for the

©Adafruit Industries Page 158 of 174

camera. If you insert a microSD card, you'll be able to take pictures using the BOOT
button.

Factory Reset
The MEMENTO board ships running a PyCamera demo. It's lovely, but you probably
had other plans for the board. As you start working with your board, you may want to
return to the original code to begin again, or you may find your board gets into a bad
state. Either way, this page has you covered.

You're probably used to seeing the CAMERABOOT drive when loading CircuitPython
or Arduino. The CAMERABOOT drive is part of the UF2 bootloader, and allows you to
drag and drop files, such as CircuitPython. However, on the ESP32-S3 the UF2
bootloader can become damaged.

Factory Reset Firmware UF2
If you have a bootloader still installed - which means you can double-click to get the
CAMERABOOT drive to appear, then you can simply drag this UF2 file over to the
CAMERABOOT drive.

To enter bootloader mode, plug in the board into a USB cable with data/sync
capability. Press the reset button once, wait till the RGB LED turns purple, then press
the reset button again. Then drag this file over:

Adafruit MEMENTO Factory Reset
UF2

©Adafruit Industries Page 159 of 174

https://github.com/adafruit/Adafruit-MEMENTO-PCB/raw/main/factory-reset/Adafruit_MEMENTO_Factory_Reset.uf2

https://adafru.it/18ei

Your board is now back to its factory-shipped state! You can now begin again with
your plans for your board.

Factory Reset and Bootloader Repair
What if you tried double-tapping the reset button, and you still can't get into the UF2
bootloader? Whether your board shipped without the UF2 bootloader, or something
damaged it, this section has you covered.

It turns out, however, the ESP32-S2/S3 comes with a second bootloader: the ROM
bootloader. Thanks to the ROM bootloader, you don't have to worry about damaging
the UF2 bootloader. The ROM bootloader can never be disabled or erased, so its
always there if you need it! You can simply re-load the UF2 bootloader from the ROM
bootloader.

There are two ways to do a factory reset and bootloader repair. The first is using
WebSerial through a Chromium-based browser, and the second is using esptool via
command line. We highly recommend using WebSerial through Chrome/Chromium.

The next section walks you through the prerequisite steps needed for both methods.

Download .bin and Enter Bootloader
Step 1. Download the factory-reset-and-bootloader.bin file
Save the following file wherever is convenient for you. You will need to access it from
the WebSerial ESPTool.

There is no bootloader protection for the UF2 bootloader. That means it is
possible to erase or damage the UF2 bootloader, especially if you upload an
Arduino sketch to an ESP32-S2/S3 board that doesn't "know" there's a
bootloader it should not overwrite!

Completing a factory reset will erase your board's firmware which is also used
for storing CircuitPython/Arduino/Files! Be sure to back up your data first.

©Adafruit Industries Page 160 of 174

Click to download MEMENTO
Factory Reset .BIN

https://adafru.it/18ej

Step 2. Enter ROM bootloader mode
Entering the ROM bootloader is easy. Complete the following steps.

Before you start, make sure your ESP32-S2/S3 is plugged into USB port to your
computer using a data/sync cable. Charge-only cables will not work!

Turn on the On/Off switch - check that you see the green power light on so you know
the board is powered, a prerequisite!

To enter the bootloader:

Press and hold the BOOT/DFU button down. Don't let go of it yet!
Press and release the Reset button. You should still have the BOOT/DFU button
pressed while you do this.
Now you can release the BOOT/DFU button.

No USB drive will appear when you've entered the ROM bootloader. This is normal!

Note that this file is approximately 3MB. This is not because the bootloader is
3MB, it is because the bootloader is near the end of the available flash. Most
of the file is empty but its easier to program if you use a combined file.

1.
2.

3.

©Adafruit Industries Page 161 of 174

https://github.com/adafruit/Adafruit-MEMENTO-PCB/raw/main/factory-reset/Adafruit_MEMENTO_Factory_Reset.bin

Now that you've downloaded the .bin file and entered the bootloader, you're ready to
continue with the factory reset and bootloader repair process. The next two sections
walk you through using WebSerial and esptool .

The WebSerial ESPTool Method

This method uses the WebSerial ESPTool through Chrome or a Chromium-based
browser. The WebSerial ESPTool was designed to be a web-capable option for
programming ESP32-S2/S3 boards. It allows you to erase the contents of the
microcontroller and program up to four files at different offsets.

You will have to use a Chromium browser (like Chrome, Opera, Edge...) for this to
work, Safari and Firefox, etc. are not supported because we need Web Serial and only
Chromium is supporting it to the level needed.

Follow the steps to complete the factory reset.

Connect
You should have plugged in only the ESP32-S2/S3 that you intend to flash. That way
there's no confusion in picking the proper port when it's time!

We highly recommend using WebSerial ESPTool method to perform a factory
reset and bootloader repair. However, if you'd rather use esptool via
command line, you can skip this section.

If you're using Chrome 88 or older, see the Older Versions of Chrome section
at the end of this page for instructions on enabling Web Serial.

©Adafruit Industries Page 162 of 174

In the Chrome browser visit https://
adafruit.github.io/
Adafruit_WebSerial_ESPTool/ (https://
adafru.it/PMB). You should see something
like the image shown.

Press the Connect button in the top right
of the web browser. You will get a pop up
asking you to select the COM or Serial
port.

Remember, you should remove all other
USB devices so only the ESP32-S2/S3
board is attached, that way there's no
confusion over multiple ports!

On some systems, such as MacOS, there
may be additional system ports that
appear in the list.

The JavaScript code will now try to
connect to the ROM bootloader. It may
timeout for a bit until it succeeds. On
success, you will see that it is Connected
and will print out a unique MAC address
identifying the board along with other
information that was detected.

©Adafruit Industries Page 163 of 174

https://learn.adafruit.com//assets/116445
https://learn.adafruit.com//assets/116445
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://learn.adafruit.com//assets/116446
https://learn.adafruit.com//assets/116446
https://learn.adafruit.com//assets/110503
https://learn.adafruit.com//assets/110503

Once you have successfully connected,
the command toolbar will appear.

Erase the Contents

To erase the contents, click the Erase
button. You will be prompted whether you
want to continue. Click OK to continue or if
you changed your mind, just click cancel.

You'll see "Erasing flash memory. Please
wait..." This will eventually be followed by
"Finished." and the amount of time it took
to erase.

Do not disconnect! Immediately continue
on to programming the ESP32-S2/S3.

This will erase everything on your board! If you have access, and wish to keep
any code, now is the time to ensure you've backed up everything.

©Adafruit Industries Page 164 of 174

https://learn.adafruit.com//assets/116447
https://learn.adafruit.com//assets/116447
https://learn.adafruit.com//assets/116448
https://learn.adafruit.com//assets/116448
https://learn.adafruit.com//assets/106947
https://learn.adafruit.com//assets/106947

Program the ESP32-S2/S3
Programming the microcontroller can be done with up to four files at different
locations, but with the board-specific factory-reset.bin file, which you should have
downloaded under Step 1 on this page, you only need to use one file.

Click on the first Choose a file.... (The tool
will only attempt to program buttons with a
file and a unique location.) Then, select the
*-factory-reset.bin file you downloaded in
Step 1 that matches your board.

Verify that the Offset box next to the file
location you used is (0x) 0.

Once you choose a file, the button text will
change to match your filename. You can
then select the Program button to begin
flashing.

Do not disconnect after erasing! Immediately continue on to the next step!

©Adafruit Industries Page 165 of 174

https://learn.adafruit.com//assets/101574
https://learn.adafruit.com//assets/101574
https://learn.adafruit.com//assets/116449
https://learn.adafruit.com//assets/116449

A progress bar will appear and after a
minute or two, you will have written the
firmware.

Once completed, you can skip down to the section titled Reset the Board.

The esptool Method (for advanced users)

Once you have entered ROM bootloader mode, you can then use Espressif's esptool
program (https://adafru.it/E9p) to communicate with the chip! esptool is the 'official'
programming tool and is the most common/complete way to program an ESP chip.

Install ESPTool.py
You will need to use the command line / Terminal to install and run esptool .

You will also need to have pip and Python installed (any version!).

Install the latest version using pip (you may be able to run pip without
the 3 depending on your setup):

pip3 install --upgrade esptool

Then, you can run:

esptool.py

If you used WebSerial ESPTool, you do not need to complete the steps in this
section!

©Adafruit Industries Page 166 of 174

https://learn.adafruit.com//assets/116450
https://learn.adafruit.com//assets/116450
https://github.com/espressif/esptool
https://github.com/espressif/esptool

Test the Installation
Run esptool.py in a new terminal/command line and verify you get something like
the below:

Connect
Run the following command, replacing the identifier after --port with the COMxx , /

dev/cu.usbmodemxx or /dev/ttySxx you found above.

esptool.py --port COM88 chip_id

You should get a notice that it connected over that port and found an ESP32-S2/S3.

Erase the Flash
Before programming the board, it is a good idea to erase the flash. Run the following
command.

esptool.py erase_flash

You must be connected (by running the command in the previous section) for this
command to work as shown.

Make sure you are running esptool v3.0 or higher, which adds ESP32-S2/S3
support.

©Adafruit Industries Page 167 of 174

Installing the Bootloader
Run this command and replace the serial port name with your matching port and the
file you just downloaded

esptool.py --port COM88 write_flash 0x0 tinyuf2_combo.bin

Don't forget to change the --port name to match.

There might be a bit of a 'wait' when programming, where it doesn't seem like it's
working. Give it a minute, it has to erase the old flash code which can cause it to
seem like it's not running.

You'll finally get an output like this:

Once completed, you can continue to the next section.

Adjust the bootloader filename accordingly if it differs from
tinyuf2_combo.bin.

©Adafruit Industries Page 168 of 174

Reset the board
Now that you've reprogrammed the board, you need to reset it to continue. Click the
reset button to launch the new firmware.

The MEMENTO will launch the PyCamera demo. You'll be able to preview the camera
view on the TFT, change modes with the buttons and take photos by pressing the
BOOT button that save to the microSD card.

You've successfully returned your board to a factory reset state!

Older Versions of Chrome

We suggest updating to Chrome 89 or newer, as Web Serial is enabled by default.

If you must continue using an older version of Chrome, follow these steps to enable
Web Serial.

If you receive an error like the one shown
when you visit the WebSerial ESPTool site,
you're likely running an older version of
Chrome.

You must be using Chrome 78 or later to
use Web Serial.

As of chrome 89, Web Serial is already enabled, so this step is only necessary
on older browsers.

©Adafruit Industries Page 169 of 174

https://learn.adafruit.com//assets/106929
https://learn.adafruit.com//assets/106929

To enable Web Serial in Chrome versions
78 through 88:

Visit chrome://flags from within Chrome.
Find and enable the Experimental Web
Platform features
Restart Chrome

The Flash an Arduino Sketch Method
This section outlines flashing an Arduino sketch onto your ESP32-S2/S3 board, which
automatically installs the UF2 bootloader as well.

Arduino IDE Setup
If you don't already have the Arduino IDE installed, the first thing you will need to do
is to download the latest release of the Arduino IDE. ESP32-S2/S3 requires version
1.8 or higher. Click the link to download the latest.

Arduino IDE Download
https://adafru.it/Pd5

After you have downloaded and installed the latest version of Arduino IDE, you will
need to start the IDE and navigate to the Preferences menu. You can access it from
the File > Preferences menu in Windows or Linux, or the Arduino > Preferences menu
on OS X.

The Preferences window will open.

In the Additional Boards Manager URLs field, you'll want to add a new URL. The list of
URLs is comma separated, and you will only have to add each URL once. The URLs
point to index files that the Board Manager uses to build the list of available &
installed boards.

Copy the following URL.

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/

package_esp32_dev_index.json

Add the URL to the the Additional Boards Manager URLs field (highlighted in red
below).

©Adafruit Industries Page 170 of 174

https://learn.adafruit.com//assets/101562
https://learn.adafruit.com//assets/101562
https://www.arduino.cc/en/software

Click OK to save and close Preferences.

In the Tools > Boards menu you should see the ESP32 Arduino menu. In the
expanded menu, it should contain the ESP32 boards along with all the latest ESP32-
S2 boards.

Now that your IDE is setup, you can continue on to loading the sketch.

Load the Blink Sketch
In the Tools > Boards menu you should see the ESP32 Arduino menu. In the
expanded menu, look for the menu option for the Adafruit pyCamera S3, and click on
it to choose it.

Open the Blink sketch by clicking through File > Examples > 01.Basics > Blink.

Once open, click Upload from the sketch window.

©Adafruit Industries Page 171 of 174

Once successfully uploaded, the little red LED will begin blinking once every second.
At that point, you can now enter the bootloader.

Downloads
Files

ESP32-S3 product page with resources (https://adafru.it/ZAS)
ESP32-S3 datasheet (https://adafru.it/18ek)
ESP32-S3 Technical Reference (https://adafru.it/18el)
OV5640 Datasheet (https://adafru.it/18em)
OV5640 Register Datasheet (https://adafru.it/18en)
OV5640 Firmware User Guide (https://adafru.it/18eo)
EagleCAD PCB files on GitHub (https://adafru.it/18ep)
3D Models on GitHub (https://adafru.it/18eq)
Fritzing object in the Adafruit Fritzing Library (https://adafru.it/18er)
Factory Test Firmware Code (https://adafru.it/19gC)

The MEMENTO does not have a red LED, but the NeoPixel pin is defined as
LED_BUILTIN to be compatible. As a result, you'll see the NeoPixel blink white
after loading this sketch.

•
•
•
•
•
•
•
•
•
•

©Adafruit Industries Page 172 of 174

https://www.espressif.com/en/products/socs/esp32-s3
https://cdn-learn.adafruit.com/assets/assets/000/119/042/original/esp32-s3_datasheet_en.pdf?1677679796
https://cdn-learn.adafruit.com/assets/assets/000/119/043/original/esp32-s3_technical_reference_manual_en.pdf?1677679919
https://cdn-learn.adafruit.com/assets/assets/000/118/306/original/ov5640_datasheet.pdf?1675869959
https://cdn-learn.adafruit.com/assets/assets/000/118/994/original/OV5640_datasheet.pdf?1677598686
https://cdn-learn.adafruit.com/assets/assets/000/126/084/original/ov5640-firmware-user-guide.pdf?1700151367
https://github.com/adafruit/Adafruit-MEMENTO-PCB
https://github.com/adafruit/Adafruit_CAD_Parts/tree/main/5420%20MEMENTO
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20MEMENTO%20Camera%20Board.fzpz
https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/main/Factory_Tests/Adafruit_MEMENTO_Factory_Test

Schematic and Fab Print

©Adafruit Industries Page 173 of 174

3D Model

©Adafruit Industries Page 174 of 174

	Adafruit MEMENTO Camera Board
	Table of Contents
	Overview
	Pinouts
	Install CircuitPython
	Installing the Mu Editor
	The CIRCUITPY Drive
	Creating and Editing Code
	Exploring Your First CircuitPython Program
	Connecting to the Serial Console
	Interacting with the Serial Console
	The REPL
	CircuitPython Libraries
	CircuitPython Documentation
	Recommended Editors
	Advanced Serial Console on Windows
	Advanced Serial Console on Mac
	Advanced Serial Console on Linux
	Frequently Asked Questions
	Troubleshooting
	Welcome to the Community!
	microSD Card Formatting Notes
	CircuitPython MEMENTO Starter Projects
	MEMENTO Camera Quick Start Guide
	CircuitPython Basic Camera
	Fancy Camera
	Timelapse
	Animated GIF Creation
	Stop Motion
	Frames to GIFs
	Arduino IDE Setup
	Arduino MEMENTO Library Installation and Starter Projects
	PyCamera Library Test
	Basic Camera Example
	Usage with PlatformIO
	Factory Reset
	Downloads

	Overview
	Pinouts
	Microcontroller and WiFi
	OV5640 Camera Module
	TFT Screen
	Hardware UART
	GPIO Expander
	Accelerometer
	User Buttons
	Reset and Boot Buttons
	Analog MEMS Microphone
	Speaker
	JST-PH Connectors
	I2C/Stemma QT Connector
	microSD Card Slot
	NeoPixel
	Power
	On/Off Switch and Power LED

	Install CircuitPython
	CircuitPython Quickstart

	Installing the Mu Editor
	Download and Install Mu
	Starting Up Mu
	Using Mu

	The CIRCUITPY Drive
	Boards Without CIRCUITPY

	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.
	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing

	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!
	Back to Editing Code...

	Naming Your Program File
	Exploring Your First CircuitPython Program
	Imports & Libraries
	Setting Up The LED
	Loop-de-loops
	What Happens When My Code Finishes Running?
	What if I Don't Have the Loop?

	Connecting to the Serial Console
	Are you using Mu?
	Serial Console Issues or Delays on Linux
	Setting Permissions on Linux

	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Entering the REPL
	Interacting with the REPL

	Returning to the Serial Console
	CircuitPython Libraries
	The Adafruit Learn Guide Project Bundle
	The Adafruit CircuitPython Library Bundle
	Downloading the Adafruit CircuitPython Library Bundle

	The CircuitPython Community Library Bundle
	Downloading the CircuitPython Community Library Bundle

	Understanding the Bundle
	Example Files
	Copying Libraries to Your Board

	Understanding Which Libraries to Install
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries and Examples
	CircUp CLI Tool

	CircuitPython Documentation
	CircuitPython Core Documentation
	CircuitPython Library Documentation
	Examples
	API Reference
	Other Links

	Recommended Editors
	Recommended editors
	Recommended only with particular settings or add-ons
	Editors that are NOT recommended

	Advanced Serial Console on Windows
	Windows 7 and 8.1
	What's the COM?
	Install Putty
	Advanced Serial Console on Mac
	What's the Port?
	Connect with screen

	Advanced Serial Console on Linux
	What's the Port?
	Connect with screen
	Permissions on Linux

	Frequently Asked Questions
	What are some common acronyms to know?
	Using Older Versions
	I have to continue using CircuitPython 8.x or earlier. Where can I find compatible libraries?
	Python Arithmetic
	Does CircuitPython support floating-point numbers?
	Does CircuitPython support long integers, like regular Python?
	Wireless Connectivity
	How do I connect to the Internet with CircuitPython?
	How do I do BLE (Bluetooth Low Energy) with CircuitPython?
	Are there other ways to communicate by radio with CircuitPython?
	Asyncio and Interrupts
	Is there asyncio support in CircuitPython?
	Does CircuitPython support interrupts?
	Status RGB LED
	My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?
	Memory Issues
	What is a MemoryError?
	What do I do when I encounter a MemoryError?
	Can the order of my import statements affect memory?
	How can I create my own .mpy files?
	How do I check how much memory I have free?
	Unsupported Hardware
	Is ESP8266 or ESP32 supported in CircuitPython? Why not?
	Does Feather M0 support WINC1500?
	Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?

	Troubleshooting
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 7.x or earlier. Where can I find compatible libraries?

	macOS Sonoma before 14.4: Errors Writing to CIRCUITPYmacOS 14.4 - 15.1: Slow Writes to CIRCUITPY
	Bootloader (boardnameBOOT) Drive Not Present
	You may have a different board.
	MakeCode
	macOS
	Windows 10 or later
	Windows 7 or 8.1

	Windows Explorer Locks Up When Accessing boardnameBOOT Drive
	Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
	CIRCUITPY Drive Does Not Appear or Disappears Quickly
	Device Errors or Problems on Windows
	Serial Console in Mu Not Displaying Anything
	code.py Restarts Constantly
	CircuitPython RGB Status Light
	CircuitPython 7.0.0 and Later
	CircuitPython 6.3.0 and earlier

	Serial console showing ValueError: Incompatible .mpy file
	CIRCUITPY Drive Issues
	Safe Mode
	Entering Safe Mode in CircuitPython 7.x and Later
	Entering Safe Mode in CircuitPython 6.x
	In Safe Mode

	To erase CIRCUITPY: storage.erase_filesystem()
	Erase CIRCUITPY Without Access to the REPL
	For the specific boards listed below:
	For SAMD21 non-Express boards that have a UF2 bootloader:
	For SAMD21 non-Express boards that do not have a UF2 bootloader:

	Running Out of File Space on SAMD21 Non-Express Boards
	Delete something!
	Use tabs
	On macOS?
	Prevent & Remove macOS Hidden Files
	Copy Files on macOS Without Creating Hidden Files
	Other macOS Space-Saving Tips

	Device Locked Up or Boot Looping
	Welcome to the Community!
	Adafruit Discord
	CircuitPython.org
	Pull Requests
	Open Issues
	Library Infrastructure Issues
	CircuitPython Localization

	Adafruit GitHub
	Adafruit Forums
	Read the Docs

	microSD Card Formatting Notes
	CircuitPython MEMENTO Starter Projects
	MEMENTO Camera Quick Start Guide
	CircuitPython Basic Camera
	CircuitPython
	SD Card
	Download the Project Bundle
	Camera HUD
	Take a Photo
	Image Retrieval
	Change Resolution
	Effects
	LED Color
	More Camera!

	Fancy Camera
	CircuitPython
	Download the Project Bundle
	Use the Camera
	Autofocus

	Settings

	Timelapse
	CircuitPython
	LAPS
	Intervals
	Power

	Focus
	Start/Stop

	Animated GIF Creation
	CircuitPython
	GIF Mode
	Make a GIF

	GIF Code
	Effects
	NeoPixel Lighting
	Post Processing

	Stop Motion
	Persistence of Vision
	CircuitPython
	Onion Skinning
	Wave

	Frames to GIFs
	GIF Maker
	Select Files
	Upload Files
	Frame Order, Delay
	Make a GIF
	Save Your GIF

	Arduino IDE Setup
	Install Arduino IDE
	Install ESP32 Board Support Package from GitHub

	Arduino MEMENTO Library Installation and Starter Projects
	Library Installation

	PyCamera Library Test
	Factory Demo Code

	Basic Camera Example
	Usage with PlatformIO
	Installation
	PyCamera Library Test

	Factory Reset
	Factory Reset Firmware UF2
	Factory Reset and Bootloader Repair
	Download .bin and Enter Bootloader
	Step 1. Download the factory-reset-and-bootloader.bin file
	Step 2. Enter ROM bootloader mode

	The WebSerial ESPTool Method
	Connect
	Erase the Contents
	Program the ESP32-S2/S3

	The esptool Method (for advanced users)
	Install ESPTool.py
	Test the Installation
	Connect
	Erase the Flash
	Installing the Bootloader

	Reset the board
	Older Versions of Chrome
	The Flash an Arduino Sketch Method
	Arduino IDE Setup
	Load the Blink Sketch

	Downloads
	Files
	Schematic and Fab Print
	3D Model

