
Adafruit Feather RP2040 Adalogger
Created by Liz Clark

https://learn.adafruit.com/adafruit-feather-rp2040-adalogger

Last updated on 2025-02-24 01:45:39 PM EST

©Adafruit Industries Page 1 of 157

7

10

19

23

27

29

30

35

38

41

Table of Contents

Overview

Pinouts
• Power Pins, Connections, and Charge LED
• Logic Pins
• GPIO Pins by Pin Functionality
• microSD Card Slot
• Microcontroller and Flash
• Buttons and RST Pin
• NeoPixel and Red LED
• STEMMA QT

Power Management
• Battery + USB Power
• Power Supplies
• Measuring Battery
• ENable pin
• Alternative Power Options

Install CircuitPython
• CircuitPython Quickstart
• Safe Mode
• Flash Resetting UF2

Installing the Mu Editor
• Download and Install Mu
• Starting Up Mu
• Using Mu

The CIRCUITPY Drive
• Boards Without CIRCUITPY

Creating and Editing Code
• Creating Code
• Editing Code
• Back to Editing Code...
• Naming Your Program File

Exploring Your First CircuitPython Program
• Imports & Libraries
• Setting Up The LED
• Loop-de-loops
• What Happens When My Code Finishes Running?
• What if I Don't Have the Loop?

Connecting to the Serial Console
• Are you using Mu?
• Serial Console Issues or Delays on Linux
• Setting Permissions on Linux
• Using Something Else?

Interacting with the Serial Console

©Adafruit Industries Page 2 of 157

44

48

59

65

67

71

73

77

83

The REPL
• Entering the REPL
• Interacting with the REPL
• Returning to the Serial Console

CircuitPython Libraries
• The Adafruit Learn Guide Project Bundle
• The Adafruit CircuitPython Library Bundle
• Downloading the Adafruit CircuitPython Library Bundle
• The CircuitPython Community Library Bundle
• Downloading the CircuitPython Community Library Bundle
• Understanding the Bundle
• Example Files
• Copying Libraries to Your Board
• Understanding Which Libraries to Install
• Example: ImportError Due to Missing Library
• Library Install on Non-Express Boards
• Updating CircuitPython Libraries and Examples
• CircUp CLI Tool

CircuitPython Documentation
• CircuitPython Core Documentation
• CircuitPython Library Documentation

Recommended Editors
• Recommended editors
• Recommended only with particular settings or add-ons
• Editors that are NOT recommended

Advanced Serial Console on Windows
• Windows 7 and 8.1
• What's the COM?
• Install Putty

Advanced Serial Console on Mac
• What's the Port?
• Connect with screen

Advanced Serial Console on Linux
• What's the Port?
• Connect with screen
• Permissions on Linux

Frequently Asked Questions
• Using Older Versions
• Python Arithmetic
• Wireless Connectivity
• Asyncio and Interrupts
• Status RGB LED
• Memory Issues
• Unsupported Hardware

Troubleshooting
• Always Run the Latest Version of CircuitPython and Libraries
• I have to continue using CircuitPython 7.x or earlier. Where can I find compatible libraries?
• macOS Sonoma before 14.4: Errors Writing to CIRCUITPYmacOS 14.4 - 15.1: Slow Writes to CIRCUITPY

©Adafruit Industries Page 3 of 157

102

110

112

113

115

121

• Bootloader (boardnameBOOT) Drive Not Present
• Windows Explorer Locks Up When Accessing boardnameBOOT Drive
• Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
• CIRCUITPY Drive Does Not Appear or Disappears Quickly
• Device Errors or Problems on Windows
• Serial Console in Mu Not Displaying Anything
• code.py Restarts Constantly
• CircuitPython RGB Status Light
• CircuitPython 7.0.0 and Later
• CircuitPython 6.3.0 and earlier
• Serial console showing ValueError: Incompatible .mpy file
• CIRCUITPY Drive Issues
• Safe Mode
• To erase CIRCUITPY: storage.erase_filesystem()
• Erase CIRCUITPY Without Access to the REPL
• For the specific boards listed below:
• For SAMD21 non-Express boards that have a UF2 bootloader:
• For SAMD21 non-Express boards that do not have a UF2 bootloader:
• Running Out of File Space on SAMD21 Non-Express Boards
• Delete something!
• Use tabs
• On macOS?
• Prevent & Remove macOS Hidden Files
• Copy Files on macOS Without Creating Hidden Files
• Other macOS Space-Saving Tips
• Device Locked Up or Boot Looping

Welcome to the Community!
• Adafruit Discord
• CircuitPython.org
• Adafruit GitHub
• Adafruit Forums
• Read the Docs

CircuitPython Essentials

Blink
• LED Location
• Blinking an LED

Digital Input
• LED and Button
• Controlling the LED with a Button

NeoPixel
• NeoPixel Location
• NeoPixel Color and Brightness
• RGB LED Colors
• NeoPixel Rainbow

I2C
• I2C and CircuitPython
• Necessary Hardware
• Wiring the MCP9808
• Find Your Sensor
• I2C Sensor Data

©Adafruit Industries Page 4 of 157

128

132

135

137

145

150

153

156

• Where's my I2C?

SD Card
• MicroSD Card Slot
• CircuitPython Usage
• SD Card Read Test
• SD Card Write Test

Arduino
• Arduino IDE Download
• Adding the Philhower Board Manager URL
• Add Board Support Package
• Choose Your Board

Arduino Usage
• RP2040 Arduino Pins
• Choose Your Board
• Load the Blink Sketch
• Manually Enter the Bootloader

Blink
• Pre-Flight Check: Get Arduino IDE & Hardware Set Up
• Start up Arduino IDE and Select Board/Port
• New Blink Sketch
• Verify (Compile) Sketch
• Upload Sketch
• Native USB and manual bootloading
• Enter Manual Bootload Mode
• Finally, a Blink!

I2C
• Common I2C Connectivity Issues
• Perform an I2C scan!
• Wiring the MCP9808

SD Card
• MicroSD Card Slot
• Library Installation
• Read/Write Example

Factory Reset
• Step 1. Download the factory-reset.uf2 file
• Step 2. Enter RP2040 bootloader mode
• Step 3. Drag UF2 file to RPI-RP2
• Flash Resetting UF2

Downloads
• Schematic and Fab Print

©Adafruit Industries Page 5 of 157

©Adafruit Industries Page 6 of 157

Overview

This is the Adafruit Feather RP2040 Adalogger - our take on an 'all-in-one' RP2040
data-logger (or data-reader) with built-in USB, battery charging, and a microSD holder
ready to rock! We have other boards in the Feather family, check'em out here (https://
adafru.it/l7B).

The RP2040 Adalogger is the same size and shape as a Feather and is intended to
make your next data logging or data reading project super easy. Micro SD card socket
wired for SPI or SDIO? Yes! STEMMA QT / Qwiic connector for fast I2C? Of course!

©Adafruit Industries Page 7 of 157

https://www.adafruit.com/feather

Neopixel? It's a-glowin' This board will work excellently with Arduino or CircuitPython
/ MicroPython for any data recording / retrieving projects.

At the Feather's heart is an RP2040 chip, clocked at 133 MHz and at 3.3V logic, the
same one used in the Raspberry Pi Pico (http://adafru.it/4864). This chip has a
whopping 8MB of onboard QSPI FLASH and 264K of RAM! This makes it great for
buffering and processing data before writing it to the SD card.

To make it easy to use for portable projects, we added a connector for any of our 3.7V
Lithium polymer batteries and built-in battery charging. You don't need a battery, it will
run just fine straight from the USB Type C connector. But, if you do have a battery, you

©Adafruit Industries Page 8 of 157

https://www.adafruit.com/product/4864

can take it on the go, then plug in the USB to recharge. The Feather will automatically
switch over to USB power when it's available.

Here're some handy specs! You get:

Measures 2.0" x 0.9" x 0.28" (50.8mm x 22.8mm x 7mm) without headers
soldered in
Light as a (large?) feather - 6.3 grams
RP2040 32-bit Cortex M0+ dual core running at ~133 MHz @ 3.3V logic and
power
264 KB RAM
8 MB SPI FLASH chip for storing files and CircuitPython/MicroPython code
storage. No EEPROM
Tons of GPIO! 21 x GPIO pins with following capabilities:

Four 12-bit ADCs (one more than Pico)
Two I2C, Two SPI, and two UART peripherals, we label one for the 'main'
interface in standard Feather locations
16 x PWM outputs - for servos, LEDs, etc

Built-in 200mA+ lipoly charger with charging status indicator LED
Pin #13 red LED for general purpose blinking
RGB NeoPixel for full-color indication.
MicroSD card holder for adding as much storage as you could possibly want for
reading or writing. Connected to the 'second' SPI port on pins 18, 19, 20 and
card select on 23. Optional card detect line can be connected to pin 15. For
advanced hackers who want to use 4-bit SDIO, we connect DAT1 and DAT2 to 21
and 22 - note we do not have Arduino or CircuitPython code for this mode.

•

•
•

•
•

•

◦
◦

◦

•
•
•
•

©Adafruit Industries Page 9 of 157

On-board STEMMA QT connector that lets you quickly connect any Qwiic,
STEMMA QT or Grove I2C devices with no soldering!
Both Reset button and Bootloader select button for quick restarts (no
unplugging-replugging to relaunch code)
USB Type C connector lets you access built-in ROM USB bootloader and serial
port debugging
3.3V Power/enable pin
4 mounting holes
12 MHz crystal for perfect timing.
3.3V regulator with 500mA peak current output

Comes assembled and tested, with some header. You'll need a soldering iron to
attach the header for installing onto your Feather. Stacking headers will let you put
another FeatherWing on top. Lipoly battery, MicroSD card, and USB cable not
included (but we do have lots of options in the shop if you'd like!)

Pinouts

•

•

•

•
•
•
•

©Adafruit Industries Page 10 of 157

PrettyPins PDF on GitHub (https://adafru.it/1a3p).

Power Pins, Connections, and Charge LED

USB C connector - This is used for power and data. Connect to your computer
via a USB C cable to update firmware and edit code.
LiPoly Battery connector - This 2-pin JST PH connector allows you to plug in
LiPoly batteries to power the Feather. The Feather is also capable of charging
batteries plugged into this port via USB.
chg LED - This small LED is located below the USB C connector. This indicates
the charge status of a connected LiPoly battery when charging over USB. Note,
it's normal for this LED to flicker when no battery is in place, that's the charge
circuitry trying to detect whether a battery is there or not.
GND - This is the common ground for all power and logic.
BAT - This is the positive voltage to/from the 2-pin JST PH jack for the optional
LiPoly battery.

•

•

•

•
•

©Adafruit Industries Page 11 of 157

https://github.com/adafruit/Adafruit-Feather-RP2040-Adalogger-PCB/blob/main/Adafruit%20Feather%20RP2040%20Adalogger%20PrettyPins.pdf

USB - This is the positive voltage to/from the USB C connector, if USB is
connected.
EN - This is the 3.3V regulator's enable pin. It's pulled up, so connect to ground
to disable the 3.3V regulator.
3.3V - These pins are the output from the 3.3V regulator, they can supply
500mA peak.

Logic Pins

I2C and SPI on RP2040

The RP2040 is capable of handling I2C, SPI and UART on many pins. However, there
are really only two peripherals each of I2C, SPI and UART: I2C0 and I2C1, SPI0 and
SPI1, and UART0 and UART1. So while many pins are capable of I2C, SPI and UART,
you can only do two at a time, and only on separate peripherals, 0 and 1. I2C, SPI and
UART peripherals are included and numbered below.

PWM on RP2040

The RP2040 supports PWM on all pins. However, it is not capable of PWM on all pins
at the same time. There are 8 PWM "slices", each with two outputs, A and B. Each pin
on the Feather is assigned a PWM slice and output. For example, A0 is PWM5 A,
which means it is the first output of the fifth slice. You can have up to 15 PWM objects
on this Feather. The important thing to know is that you cannot use the same slice
and output more than once at the same time. So, if you have a PWM object on pin
A0, you cannot also put a PWM object on D10, because they are both PWM5 A. The
PWM slices and outputs are indicated below. Note that PWM3 B is not available on
this Feather because the pin is not broken out.

•

•

•

©Adafruit Industries Page 12 of 157

Analog Pins

The RP2040 has four ADCs. These pins are the only pins capable of handling analog,
and they can also do digital.

A0/GPIO26 - This pin is ADC0. It is also SPI1 SCK, I2C1 SDA and PWM5 A.
A1/GPIO27 - This pin is ADC1. It is also SPI1 MOSI, I2C1 SCL and PWM5 B.
A2/GPIO28 - This pin is ADC2. It is also SPI1 MISO, I2C0 SDA and PWM6 A.
A3/GPIO29 - This pin is ADC3. It is also SPI1 CS, I2C0 SCL and PWM6 B.

Digital Pins

These are the digital I/O pins. They all have multiple capabilities.

D24/GPIO24 - Digital I/O pin 24. It is also UART1 TX, I2C0 SDA, and PWM4 A.
D25/GPIO25 - Digital I/O pin 25. It is also UART1 RX, I2C0 SCL, and PWM4 B.
SCK/GPIO14 - The main SPI1 SCK. It is also I2C1 SDA, and PWM7 A.
MO/GPIO15 - The main SPI1 MOSI. It is also I2C1 SCL, and PWM7 B.
MI/GPIO8 - The main SPI1 MISO. It is also UART1 TX, I2C0 SDA, and PWM4 A.
RX/GPIO1 - The main UART0 RX pin. It is also I2C0 SDA, SPI0 CS and PWM0 B.
TX/GPIO0 - The main UART0 TX pin. It is also I2C0 SCL, SPI0 MISO and PWM0
A.
D4/GPIO4 - Digital I/O pin 4. It is also RX0, TX1, SDA0 and PWM2A.
D13/GPIO13 - Digital I/O pin 13. It is also SPI1 CS, UART0 RX, I2C0 SCL and
PWM6 B.
D12/GPIO12 - Digital I/O pin 12. It is also SPI1 MISO, UART0 TX, I2C0 SDA and
PWM6 A.
D11/GPIO11 - Digital I/O pin 11. It is also SPI1 MOSI, I2C1 SCL and PWM5 B.
D10/GPIO10 - Digital I/O pin 10. It is also SPI1 SCK, I2C1 SDA and PWM5 A.
D9/GPIO9 - Digital I/O pin 9. It is also SPI1 CS, UART1 RX, I2C0 SCL and PWM4
B.
D6/GPIO6 - Digital I/O pin 6. It is also SPI0 SCK, I2C1 SDA, and PWM3 A.
D5/GPIO5 - Digital I/O pin 5. It is also SPI0 CS, UART1 RX, I2C0 SCL, and PWM2
B.
D4/GPIO4 - Digital I/O pin 4. It is also RX0, TX1, SDA0 and PWM2 A.
SCL/GPIO3 - The main I2C1 clock pin. It is also SPI0 MOSI, I2C1 SCL and PWM1
B.
SDA/GPIO2 - The main I2C1 data pin. It is also SPI0 SCK, I2C1 SDA and PWM1 A.

•
•
•
•

•
•
•
•
•
•
•

•
•

•

•
•
•

•
•

•
•

•

©Adafruit Industries Page 13 of 157

CircuitPython I2C, SPI and UART

Note that in CircuitPython, there is a board object each for STEMMA QT, I2C, SPI and
UART that use the connector and pins labeled on the Feather. You can use these
objects to initialize these peripherals in your code.

board.STEMMA_I2C() uses the STEMMA QT connector (in this case, SCL/SDA
pins)
board.I2C() uses SCL/SDA pins (GPIO2 and GPIO3)
board.SPI() uses SCK/MO/MI pins (GPIO14, GPIO15 and GPIO8)
board.UART() uses RX/TX pins (GPIO0 and GPIO1)

The microSD card uses the secondary SPI port and does not use board.SPI() . You
can instantiate using busio :

sd_spi = busio.SPI(board.SD_CLK, board.SD_MOSI, board.SD_MISO)

Arduino I2C, SPI and UART

I2C, SPI and UART can be accessed with these objects in Arduino:

Wire is used for the default I2C and STEMMA QT connector (GPIO2 and
GPIO3).
SPI is used for the default SPI pins (GPIO14, GPIO15 and GPIO8) and SPI1 is
used for the secondary SPI pins (GPIO18, GPIO19 and GPIO20), which are used
for the microSD card slot on this Feather.
Serial1 is used for the default UART pins (GPIO0 and GPIO1).

The peripheral order is defined in the board support definition for Arduino. For
example, you'll notice that even though the default I2C (GPIO2 and GPIO3) is located
on I2C1, it is defined as Wire rather than Wire1 .

GPIO Pins by Pin Functionality
Primary pins based on the silkscreen pin labels are bold.

I2C Pins
I2C0 SCL: A3, D25, RX, D13, D9, D5
I2C0 SDA: A2, D24, MISO, TX, D12, D4
I2C1 SCL: SCL, A1, MOSI, D11
I2C1 SDA: SDA, A0, SCK, D10, D6

SPI Pins
SPI0 SCK: D6, SDA

•

•
•
•

•

•

•

•
•
•
•

•

©Adafruit Industries Page 14 of 157

SPI0 MOSI: SCL
SPI0 MISO: TX
SPI0 CS: RX, D5
SPI1 SCK: SCK, A0, D10
SPI1 MOSI: MOSI, A1, D11
SPI1 MISO: MISO, A2, D24, D12
SPI1 CS: A3, D25, D13, D9

UART Pins
UART0 TX: TX, A2, D12
UART0 RX: RX, A3, D13, D4
UART1 TX: D24, MISO, D4
UART1 RX: D25, D9, D5

PWM Pins
PWM0 A: TX
PWM0 B: RX
PWM1 A: SDA
PWM1 B: SCL
PWM2 A: D4
PWM2 B: D5
PWM3 A: D6
PWM3 B: (none)
PWM4 A: D24, MISO
PWM4 B: D25, D9
PWM5 A: A0, D10
PWM5 B: A1, D11
PWM6 A: A2, D12
PWM6 B: A3, D13
PWM7 A: SCK
PWM7 B: MOSI

•
•
•
•
•
•
•

•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

©Adafruit Industries Page 15 of 157

microSD Card Slot

The star of the RP2040 Adalogger is the microSD card slot for adding as much
storage as you could possibly want for reading or writing. It is connected to one of the
two available SPI ports (SPI0) on the Feather with an optional card detect line that can
be connected to GPIO15. For advanced hackers who want to use 4-bit SDIO, we
connect DAT1 and DAT2 to GPIO21 and GPIO22 - note we do not have Arduino or
CircuitPython code for this mode.

These are the pins for the microSD card slot:

SD_CARD_DETECT/GPIO16 - This is the card detect pin. It is also SPI1 MISO,
I2C0 SDA, and PWM0 A.
SD_SCK/GPIO18 - This is the SPI0 SCK pin. It is also I2C1 SDA, and PWM1 A.
SD_MOSI/GPIO19 - This is the SPI0 MOSI pin. It is also I2C1 SCL, and PWM1 B.
SD_MISO/GPIO20 - This is the SPI0 MISO pin. It is also UART1 TX, I2C0 SDA,
and PWM2 A.
SD_DAT1/GPIO21 - This is the SDIO data1 pin. It is also SPI0 CS, UART1 RX, I2C0
SCL and PWM2 B.
SD_DAT2/GPIO22 - This is the SDIO data2 pin. It is also SPI0 SCK, I2C1 SDA,
and PWM3 A.
SD_CS/GPIO23 - This is the chip select pin. It is also SPI0 MOSI, I2C1 SCL, and
PWM3 B.

•

•
•
•

•

•

•

There is no Arduino or CircuitPython code for 4-bit SDIO.

©Adafruit Industries Page 16 of 157

Microcontroller and Flash

The large square towards the middle is the RP2040 microcontroller, the "brains" of
this Feather board.

The square towards the top-middle is the QSPI Flash. It is connected to 6 pins that
are not brought out on the GPIO pads. It is used for program and data storage in
Arduino and CircuitPython.

Buttons and RST Pin

The Boot button is the button on the right, located on GPIO7. It is available as
board.BUTTON in CircuitPython and PIN_BUTTON in Arduino. It is also used to enter
the bootloader. To enter the bootloader, press and hold Boot and then power up the
board (either by plugging it into USB or pressing Reset). The bootloader is used to
install/update CircuitPython.

The Reset button is on the left. It restarts the board and helps enter the bootloader.
You can click it to reset the board without unplugging the USB cable or battery.

The Rst pin can be used to reset the board. Tie to ground manually to reset the
board.

©Adafruit Industries Page 17 of 157

NeoPixel and Red LED

Above the silkscreen label for pin 24 is the status NeoPixel LED. It is connected to
GPIO17. In CircuitPython, the NeoPixel is available at board.NEOPIXEL and the
library for it is available in the bundle (https://adafru.it/ENC). In Arduino, it is
accessible at PIN_NEOPIXEL . The NeoPixel is powered by the 3.3V power supply but
that hasn't shown to make a big difference in brightness or color. In CircuitPython, the
LED is used to indicate the runtime status.

Above the USB C connector is the D13 LED. This little red LED is controllable in
CircuitPython code using board.LED , and in Arduino as PIN_LED .

STEMMA QT

In the middle of the board, to the left of the microSD card slot, is the STEMMA QT
connector! This means you can connect up all sorts of I2C sensors and
breakouts (https://adafru.it/18fV), no soldering required! This connector uses the SCL
and SDA pins for I2C, which end up being the RP2040's I2C1 peripheral. In
CircuitPython, you can initialize the STEMMA connector with board.STEMMA_I2C()
(as well as with board.SCL board.SDA). In Arduino it is Wire .

©Adafruit Industries Page 18 of 157

https://circuitpython.org/libraries
https://www.adafruit.com/?q=stemma+qt
https://www.adafruit.com/?q=stemma+qt

STEMMA QT / Qwiic JST SH 4-pin Cable -
100mm Long
This 4-wire cable is a little over 100mm /
4" long and fitted with JST-SH female 4-
pin connectors on both ends. Compared
with the chunkier JST-PH these are 1mm
pitch instead of...
https://www.adafruit.com/product/4210

Power Management

Battery + USB Power
We wanted to make our Feather boards easy to power both when connected to a
computer as well as via battery.

There's two ways to power a Feather:

You can connect with a USB cable (just plug into the jack) and the Feather will
regulate the 5V USB down to 3.3V.
You can also connect a 4.2/3.7V Lithium Polymer (LiPo/LiPoly) or Lithium Ion
(LiIon) battery to the JST jack. This will let the Feather run on a rechargeable
battery.

1.

2.

©Adafruit Industries Page 19 of 157

https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210

When the USB power is powered, it will automatically switch over to USB for power,
as well as start charging the battery (if attached). This happens 'hot-swap' style so
you can always keep the LiPoly connected as a 'backup' power that will only get used
when USB power is lost.

The above shows the USB C connector (left center), the LiPoly JST connector (top
left), as well as the changeover diode (to the right of the JST jack), the 3.3V regulators
(to the left of the JST connector and the USB C connector) and the charging circuitry
(below the JST connector).

There's also a CHG LED next to the USB jack, which will light up while the battery is
charging. This LED might also flicker if the battery is not connected, it's normal.

Power Supplies
You have a lot of power supply options here! We bring out the BAT pin, which is tied
to the LiPoly JST connector, as well as USB which is the +5V from USB if connected.
We also have the 3V pin which has the output from the 3.3V regulator. We use a
500mA peak regulator. While you can get 500mA from it, you can't do it continuously
from 5V as it will overheat the regulator.

The JST connector polarity is matched to Adafruit LiPoly batteries. Using
wrong polarity batteries can destroy your Feather. Many customers try to save
money by purchasing Lipoly batteries from Amazon only to find that they plug
them in and the Feather is destroyed!

The charge LED is automatically driven by the LiPoly charger circuit. It will try
to detect a battery and is expecting one to be attached. If there isn't one it
may flicker once in a while when you use power because it's trying to charge
a (non-existent) battery. It's not harmful, and it's totally normal!

©Adafruit Industries Page 20 of 157

Measuring Battery
If you're running off of a battery, chances are you wanna know what the voltage is at!
That way you can tell when the battery needs recharging. LiPoly batteries are 'maxed
out' at 4.2V and stick around 3.7V for much of the battery life, then slowly sink down
to 3.2V or so before the protection circuitry cuts it off. By measuring the voltage you
can quickly tell when you're heading below 3.7V.

Other Feather boards sometimes have battery monitoring built in…but with few analog
inputs on the RP2040 chip, this is optionally handled with extra components: two
100KΩ resistors and one of the analog pins…

The two 100KΩ resistors are connected in
series. One end goes to the BAT pin, other
end to GND, and then the center point
between the two resistors goes to any
analog pin you’d like to use (A0 through
A3). The diagram shows A3.

The two resistors form a voltage divider;
the center point will be one half the
battery voltage. It’s done this way because
the raw BAT voltage would exceed the
chip’s 3.3V operating voltage.

In Arduino, you can read this pin’s voltage, then double it, to get the battery voltage:

// Arduino Example Code

#define VBATPIN A3

float measuredvbat = analogRead(VBATPIN);
measuredvbat /= 1023; // Scale down to 0.0 to 1.0
measuredvbat *= 3.3; // Multiply by 3.3V, our reference voltage

©Adafruit Industries Page 21 of 157

https://learn.adafruit.com//assets/130938
https://learn.adafruit.com//assets/130938

measuredvbat *= 2; // Resistors divide by 2, so multiply back
Serial.print("VBat: "); Serial.println(measuredvbat);

For CircuitPython, here’s a get_voltage() helper function to do the math for you.
All you have to do is call the function, provide the pin and print the results:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

import board
import analogio

vbat_voltage = analogio.AnalogIn(board.A3)

def get_voltage(pin):
return pin.value / 65535 * 3.3 * 2

battery_voltage = get_voltage(vbat_voltage)
print("VBat voltage: {:.2f}".format(battery_voltage))

ENable pin
If you'd like to turn off the 3.3V regulator, you can do that with the EN(able) pin. Simply
tie this pin to Ground and it will disable the 3V regulator. The BAT and USB pins will
still be powered.

Alternative Power Options
The two primary ways for powering a feather are a 3.7/4.2V LiPo battery plugged into
the JST port or a USB power cable.

If you need other ways to power the Feather, here's what we recommend:

For permanent installations, a 5V 1A USB wall adapter (http://adafru.it/501) will
let you plug in a USB cable for reliable power
For mobile use, where you don't want a LiPoly, use a USB battery pack! (http://
adafru.it/1959)

•

•

©Adafruit Industries Page 22 of 157

https://www.adafruit.com/product/501
https://www.adafruit.com/product/1959

If you have a higher voltage power supply, use a 5V buck converter (https://
adafru.it/DHs) and wire it to a USB cable's 5V and GND input (http://adafru.it/
3972)

Here's what you cannot do:

Do not use alkaline or NiMH batteries and connect to the battery port - this will
destroy the LiPoly charger
Do not use 7.4V RC batteries on the battery port - this will destroy the board

The Feather is not designed for external power supplies - this is a design decision to
make the board compact and low cost. It is not recommended, but technically
possible:

Connect an external 3.3V power supply to the 3V and GND pins. Not
recommended, this may cause unexpected behavior and the EN pin will no
longer work. Also this doesn't provide power on BAT or USB and some
Feathers/Wings use those pins for high current usages. You may end up
damaging your Feather.
Connect an external 5V power supply to the USB and GND pins. Not
recommended, this may cause unexpected behavior when plugging in the USB
port because you will be back-powering the USB port, which could confuse or
damage your computer.

Install CircuitPython
CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)
designed to simplify experimentation and education on low-cost microcontrollers. It
makes it easier than ever to get prototyping by requiring no upfront desktop software
downloads. Simply copy and edit files on the CIRCUITPY drive to iterate.

CircuitPython Quickstart
Follow this step-by-step to quickly get CircuitPython running on your board.

Download the latest version of
CircuitPython for this board via

circuitpython.org
https://adafru.it/1a3q

•

•

•

•

•

©Adafruit Industries Page 23 of 157

https://www.adafruit.com/?q=5V%20buck
https://www.adafruit.com/product/3972
https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/adafruit_feather_rp2040_adalogger/

Click the link above to download the
latest CircuitPython UF2 file.

Save it wherever is convenient for you.

To enter the bootloader, hold down the BOOT/BOOTSEL button (highlighted in red
above), and while continuing to hold it (don't let go!), press and release the reset
button (highlighted in red or blue above). Continue to hold the BOOT/BOOTSEL
button until the RPI-RP2 drive appears!

If the drive does not appear, release all the buttons, and then repeat the process
above.

You can also start with your board unplugged from USB, press and hold the BOOTSEL
button (highlighted in red above), continue to hold it while plugging it into USB, and
wait for the drive to appear before releasing the button.

A lot of people end up using charge-only USB cables and it is very frustrating! Make
sure you have a USB cable you know is good for data sync.

©Adafruit Industries Page 24 of 157

https://learn.adafruit.com//assets/101655
https://learn.adafruit.com//assets/101655

You will see a new disk drive appear called
RPI-RP2.

Drag the adafruit_circuitpython_etc.uf2
file to RPI-RP2.

The RPI-RP2 drive will disappear and a
new disk drive called CIRCUITPY will
appear.

That's it, you're done! :)

Safe Mode
You want to edit your code.py or modify the files on your CIRCUITPY drive, but find
that you can't. Perhaps your board has gotten into a state where CIRCUITPY is read-
only. You may have turned off the CIRCUITPY drive altogether. Whatever the reason,
safe mode can help.

Safe mode in CircuitPython does not run any user code on startup, and disables auto-
reload. This means a few things. First, safe mode bypasses any code in boot.py
(where you can set CIRCUITPY read-only or turn it off completely). Second, it does

©Adafruit Industries Page 25 of 157

https://learn.adafruit.com//assets/101656
https://learn.adafruit.com//assets/101656
https://learn.adafruit.com//assets/101657
https://learn.adafruit.com//assets/101657
https://learn.adafruit.com//assets/101658
https://learn.adafruit.com//assets/101658

not run the code in code.py. And finally, it does not automatically soft-reload when
data is written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state,
safe mode gives you the opportunity to correct it without losing all of the data on the
CIRCUITPY drive.

Entering Safe Mode

To enter safe mode when using CircuitPython, plug in your board or hit reset
(highlighted in red above). Immediately after the board starts up or resets, it waits
1000ms. On some boards, the onboard status LED (highlighted in green above) will
blink yellow during that time. If you press reset during that 1000ms, the board will
start up in safe mode. It can be difficult to react to the yellow LED, so you may want to
think of it simply as a slow double click of the reset button. (Remember, a fast double
click of reset enters the bootloader.)

In Safe Mode

If you successfully enter safe mode on CircuitPython, the LED will intermittently blink
yellow three times.

If you connect to the serial console, you'll find the following message.

Auto-reload is off.
Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot.
Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not
run until you press the reset button, or unplug and plug in your board, to get out of
safe mode.

Flash Resetting UF2
If your board ever gets into a really weird state and CIRCUITPY doesn't show up as a
disk drive after installing CircuitPython, try loading this 'nuke' UF2 to RPI-RP2. which
will do a 'deep clean' on your Flash Memory. You will lose all the files on the board,
but at least you'll be able to revive it! After loading this UF2, follow the steps above to
re-install CircuitPython.

Download flash erasing "nuke" UF2
https://adafru.it/RLE

©Adafruit Industries Page 26 of 157

https://cdn-learn.adafruit.com/assets/assets/000/101/659/original/flash_nuke.uf2?1618945856

Installing the Mu Editor
Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's
written in Python and works on Windows, MacOS, Linux and Raspberry Pi. The serial
console is built right in so you get immediate feedback from your board's serial
output!

Download and Install Mu

Download Mu from https://
codewith.mu (https://adafru.it/Be6).

Click the Download link for downloads and
installation instructions.

Click Start Here to find a wealth of other
information, including extensive tutorials
and and how-to's.

Mu is our recommended editor - please use it (unless you are an experienced
coder with a favorite editor already!).

Windows users: due to the nature of MSI installers, please remove old
versions of Mu before installing the latest version.

©Adafruit Industries Page 27 of 157

https://learn.adafruit.com//assets/105677
https://learn.adafruit.com//assets/105677
https://codewith.mu/
https://codewith.mu/

Starting Up Mu

The first time you start Mu, you will be
prompted to select your 'mode' - you can
always change your mind later. For now
please select CircuitPython!

The current mode is displayed in the lower
right corner of the window, next to the
"gear" icon. If the mode says "Microbit" or
something else, click the Mode button in
the upper left, and then choose
"CircuitPython" in the dialog box that
appears.

Mu attempts to auto-detect your board on
startup, so if you do not have a
CircuitPython board plugged in with a
CIRCUITPY drive available, Mu will inform
you where it will store any code you save
until you plug in a board.

To avoid this warning, plug in a board and
ensure that the CIRCUITPY drive is
mounted before starting Mu.

Using Mu
You can now explore Mu! The three main sections of the window are labeled below;
the button bar, the text editor, and the serial console / REPL.

©Adafruit Industries Page 28 of 157

https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105679
https://learn.adafruit.com//assets/105679

Now you're ready to code! Let's keep going...

The CIRCUITPY Drive
When CircuitPython finishes installing, or you plug a CircuitPython board into your
computer with CircuitPython already installed, the board shows up on your computer
as a USB drive called CIRCUITPY.

The CIRCUITPY drive is where your code and the necessary libraries and files will
live. You can edit your code directly on this drive and when you save, it will run
automatically. When you create and edit code, you'll save your code in a code.py file
located on the CIRCUITPY drive. If you're following along with a Learn guide, you can
paste the contents of the tutorial example into code.py on the CIRCUITPY drive and
save it to run the example.

With a fresh CircuitPython install, on your CIRCUITPY drive, you'll find a code.py file
containing print("Hello World!") and an empty lib folder. If your CIRCUITPY
drive does not contain a code.py file, you can easily create one and save it to the
drive. CircuitPython looks for code.py and executes the code within the file
automatically when the board starts up or resets. Following a change to the contents
of CIRCUITPY, such as making a change to the code.py file, the board will reset, and
the code will be run. You do not need to manually run the code. This is what makes it
so easy to get started with your project and update your code!

Note that all changes to the contents of CIRCUITPY, such as saving a new file,
renaming a current file, or deleting an existing file will trigger a reset of the board.

©Adafruit Industries Page 29 of 157

Boards Without CIRCUITPY
CircuitPython is available for some microcontrollers that do not support native USB.
Those boards cannot present a CIRCUITPY drive. This includes boards using ESP32
or ESP32-C3 microcontrollers.

On these boards, there are alternative ways to transfer and edit files. You can use the
Thonny editor (https://adafru.it/18e7), which uses hidden commands sent to the REPL
to read and write files. Or you can use the CircuitPython web workflow, introduced in
Circuitpython 8. The web workflow provides browser-based WiFi access to the
CircuitPython filesystem. These guides will help you with the web workflow:

CircuitPython on ESP32 Quick Start (https://adafru.it/10JF)
CircuitPython Web Workflow Code Editor Quick Start (https://adafru.it/18e8)

Creating and Editing Code
One of the best things about CircuitPython is how simple it is to get code up and
running. This section covers how to create and edit your first CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options. Adafruit
strongly recommends using Mu! It's designed for CircuitPython, and it's really simple
and easy to use, with a built in serial console!

If you don't or can't use Mu, there are a number of other editors that work quite well.
The Recommended Editors page (https://adafru.it/Vue) has more details. Otherwise,
make sure you do "Eject" or "Safe Remove" on Windows or "sync" on Linux after
writing a file if you aren't using Mu. (This was formerly not a problem on macOS, but
see the warning below.)

•
•

©Adafruit Industries Page 30 of 157

https://thonny.org
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://learn.adafruit.com/getting-started-with-web-workflow-using-the-code-editor
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

Creating Code

Installing CircuitPython generates a
code.py file on your CIRCUITPY drive. To
begin your own program, open your editor,
and load the code.py file from the
CIRCUITPY drive.

If you are using Mu, click the Load button
in the button bar, navigate to the
CIRCUITPY drive, and choose code.py.

Copy and paste the following code into your editor:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

If you're using a KB2040, QT Py, Quaila, or a Trinkey, or any other board without a
single-color LED that can blink, please download the NeoPixel blink example (https://
adafru.it/UDU).

macOS Sonoma 14.1 introduced a bug that delays writes to small drives such
as CIRCUITPY drives. This caused errors when saving files to CIRCUITPY.
There is a workaround. The bug was fixed in Sonoma 14.4, but at the cost of
greatly slowed writes to drives 1GB or smaller.

The KB2040, QT Py , Qualia, and the Trinkeys do not have a built-in little red
LED! There is an addressable RGB NeoPixel LED. The above example will NOT
work on the KB2040, QT Py, Qualia, or the Trinkeys!

©Adafruit Industries Page 31 of 157

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#macos-sonoma-14-dot-x-disk-errors-writing-to-circuitpy-3160304
https://learn.adafruit.com//assets/105703
https://learn.adafruit.com//assets/105703
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py

It will look like this. Note that under the
while True: line, the next four lines
begin with four spaces to indent them, and
they're indented exactly the same amount.
All the lines before that have no spaces
before the text.

Save the code.py file on your CIRCUITPY
drive.

The little LED should now be blinking. Once per half-second.

Congratulations, you've just run your first CircuitPython program!

The NeoPixel blink example uses the onboard NeoPixel, but the time code is
the same. You can use the linked NeoPixel Blink example to follow along with
this guide page.

On most boards you'll find a tiny red LED. On the ItsyBitsy nRF52840, you'll
find a tiny blue LED. On QT Py M0, QT Py RP2040, Qualia, and the Trinkey
series, you will find only an RGB NeoPixel LED.

©Adafruit Industries Page 32 of 157

https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105705
https://learn.adafruit.com//assets/105705

Editing Code

To edit code, open the code.py file on your
CIRCUITPY drive into your editor.

Make the desired changes to your code.
Save the file. That's it!

Your code changes are run as soon as the file is done saving.

There's one warning before you continue...

The CircuitPython code on your board detects when the files are changed or written
and will automatically re-start your code. This makes coding very fast because you
save, and it re-runs. If you unplug or reset the board before your computer finishes
writing the file to your board, you can corrupt the drive. If this happens, you may lose
the code you've written, so it's important to backup your code to your computer
regularly.

There are a couple of ways to avoid filesystem corruption.

1. Use an editor that writes out the file completely when you save it.

Check out the Recommended Editors page (https://adafru.it/Vue) for details on
different editing options.

Don't click reset or unplug your board!

If you are dragging a file from your host computer onto the CIRCUITPY drive,
you still need to do step 2. Eject or Sync (below) to make sure the file is
completely written.

©Adafruit Industries Page 33 of 157

https://learn.adafruit.com//assets/105706
https://learn.adafruit.com//assets/105706
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make
it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually
eject, but it will force the operating system to save your file to disk. On Linux, use the
sync command in a terminal to force the write to disk.

You also need to do this if you use Windows Explorer or a Linux graphical file
manager to drag a file onto CIRCUITPY.

import supervisor
supervisor.runtime.autoreload = False

Back to Editing Code...
Now! Let's try editing the program you added to your board. Open your code.py file
into your editor. You'll make a simple change. Change the first 0.5 to 0.1 . The code
should look like this:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
led.value = True
time.sleep(0.1)

Don't worry! Corrupting the drive isn't the end of the world (or your
board!). If this happens, follow the steps found on the
Troubleshooting (https://adafru.it/Den) page of every board guide to get
your board up and running again.

? Oh No I Did Something Wrong and
Now The CIRCUITPY Drive Doesn't
Show Up!!!

If you are having trouble saving code on Windows 10, try including this code
snippet at the top of code.py:

©Adafruit Industries Page 34 of 157

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

led.value = False
time.sleep(0.5)

Leave the rest of the code as-is. Save your file. See what happens to the LED on your
board? Something changed! Do you know why?

You don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 so it
looks like this:

while True:
 led.value = True
 time.sleep(0.1)
 led.value = False
 time.sleep(0.1)

Now it blinks really fast! You decreased the both time that the code leaves the LED on
and off!

Now try increasing both of the 0.1 to 1 . Your LED will blink much more slowly
because you've increased the amount of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them
to see what happens! These were simple changes, but major changes are done using
the same process. Make your desired change, save it, and get the results. That's
really all there is to it!

Naming Your Program File
CircuitPython looks for a code file on the board to run. There are four options:
code.txt, code.py, main.txt and main.py. CircuitPython looks for those files, in that
order, and then runs the first one it finds. While code.py is the recommended name
for your code file, it is important to know that the other options exist. If your program
doesn't seem to be updating as you work, make sure you haven't created another
code file that's being read instead of the one you're working on.

Exploring Your First CircuitPython Program
First, you'll take a look at the code you're editing.

Here is the original code again for the LED blink example (if your board doesn't have
a single-color LED to blink, look instead at the NeoPixel blink example):

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

©Adafruit Industries Page 35 of 157

while True:
led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

Imports & Libraries
Each CircuitPython program you run needs to have a lot of information to work. The
reason CircuitPython is so simple to use is that most of that information is stored in
other files and works in the background. The files built into CircuitPython are called
modules, and the files you load separately are called libraries. Modules are built into
CircuitPython. Libraries are stored on your CIRCUITPY drive in a folder called lib.

import board
import digitalio
import time

The import statements tells the board that you're going to use a particular library or
module in your code. In this example, you imported three modules: board ,
digitalio , and time . All three of these modules are built into CircuitPython, so no
separate library files are needed. That's one of the things that makes this an excellent
first example. You don't need anything extra to make it work!

These three modules each have a purpose. The first one, board , gives you access to
the hardware on your board. The second, digitalio , lets you access that hardware
as inputs/outputs. The third, time , let's you control the flow of your code in multiple
ways, including passing time by 'sleeping'.

Setting Up The LED
The next two lines setup the code to use the LED.

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

Your board knows the red LED as LED . So, you initialise that pin, and you set it to
output. You set led to equal the rest of that information so you don't have to type it
all out again later in our code.

Loop-de-loops
The third section starts with a while statement. while True: essentially means,
"forever do the following:". while True: creates a loop. Code will loop "while" the
condition is "true" (vs. false), and as True is never False, the code will loop forever.
All code that is indented under while True: is "inside" the loop.

©Adafruit Industries Page 36 of 157

Inside our loop, you have four items:

while True:
led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

First, you have led.value = True . This line tells the LED to turn on. On the next
line, you have time.sleep(0.5) . This line is telling CircuitPython to pause running
code for 0.5 seconds. Since this is between turning the led on and off, the led will be
on for 0.5 seconds.

The next two lines are similar. led.value = False tells the LED to turn off, and
time.sleep(0.5) tells CircuitPython to pause for another 0.5 seconds. This occurs
between turning the led off and back on so the LED will be off for 0.5 seconds too.

Then the loop will begin again, and continue to do so as long as the code is running!

So, when you changed the first 0.5 to 0.1 , you decreased the amount of time that
the code leaves the LED on. So it blinks on really quickly before turning off!

Great job! You've edited code in a CircuitPython program!

What Happens When My Code Finishes Running?
When your code finishes running, CircuitPython resets your microcontroller board to
prepare it for the next run of code. That means any set up you did earlier no longer
applies, and the pin states are reset.

For example, try reducing the code snippet above by eliminating the loop entirely,
and replacing it with led.value = True . The LED will flash almost too quickly to
see, and turn off. This is because the code finishes running and resets the pin state,
and the LED is no longer receiving a signal.

To that end, most CircuitPython programs involve some kind of loop, infinite or
otherwise.

What if I Don't Have the Loop?
If you don't have the loop, the code will run to the end and exit. This can lead to some
unexpected behavior in simple programs like this since the "exit" also resets the state
of the hardware. This is a different behavior than running commands via REPL. So if
you are writing a simple program that doesn't seem to work, you may need to add a
loop to the end so the program doesn't exit.

The simplest loop would be:

©Adafruit Industries Page 37 of 157

while True:
pass

And remember - you can press CTRL+C to exit the loop.

See also the Behavior section in the docs (https://adafru.it/Bvz).

Connecting to the Serial Console
One of the staples of CircuitPython (and programming in general!) is something called
a "print statement". This is a line you include in your code that causes your code to
output text. A print statement in CircuitPython (and Python) looks like this:

print("Hello, world!")

This line in your code.py would result in:

Hello, world!

However, these print statements need somewhere to display. That's where the serial
console comes in!

The serial console receives output from your CircuitPython board sent over USB and
displays it so you can see it. This is necessary when you've included a print statement
in your code and you'd like to see what you printed. It is also helpful for
troubleshooting errors, because your board will send errors and the serial console will
display those too.

The serial console requires an editor that has a built in terminal, or a separate
terminal program. A terminal is a program that gives you a text-based interface to
perform various tasks.

Are you using Mu?
If so, good news! The serial console is built into Mu and will autodetect your board
making using the serial console really really easy.

©Adafruit Industries Page 38 of 157

https://circuitpython.readthedocs.io/en/latest/README.html#behavior

First, make sure your CircuitPython board
is plugged in.

If you open Mu without a board plugged
in, you may encounter the error seen here,
letting you know no CircuitPython board
was found and indicating where your code
will be stored until you plug in a board.

If you are using Windows 7, make sure you
installed the drivers (https://adafru.it/VuB).

Once you've opened Mu with your board plugged in, look for the Serial button in the
button bar and click it.

The Mu window will split in two, horizontally, and display the serial console at the
bottom.

Serial Console Issues or Delays on Linux
If you're on Linux, and are seeing multi-second delays connecting to the serial
console, or are seeing "AT" and other gibberish when you connect, then the
modemmanager service might be interfering. Just remove it; it doesn't have much use
unless you're still using dial-up modems.

To remove modemmanager , type the following command at a shell:

If nothing appears in the serial console, it may mean your code is done
running or has no print statements in it. Click into the serial console part of
Mu, and press CTRL+D to reload.

©Adafruit Industries Page 39 of 157

https://learn.adafruit.com//assets/105925
https://learn.adafruit.com//assets/105925
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers

sudo apt purge modemmanager

Setting Permissions on Linux
On Linux, if you see an error box something like the one below when you press the
Serial button, you need to add yourself to a user group to have permission to connect
to the serial console.

On Ubuntu and Debian, add yourself to the dialout group by doing:

sudo adduser $USER dialout

After running the command above, reboot your machine to gain access to the group.
On other Linux distributions, the group you need may be different. See the Advanced
Serial Console on Linux (https://adafru.it/VAO) for details on how to add yourself to
the right group.

Using Something Else?
If you're not using Mu to edit, are using or if for some reason you are not a fan of its
built in serial console, you can run the serial console from a separate program.

Windows requires you to download a terminal program. Check out the Advanced
Serial Console on Windows page for more details. (https://adafru.it/AAH)

MacOS has Terminal built in, though there are other options available for download.
Check the Advanced Serial Console on Mac page for more details. (https://adafru.it/
AAI)

Linux has a terminal program built in, though other options are available for
download. Check the Advanced Serial Console on Linux page for more
details. (https://adafru.it/VAO)

Once connected, you'll see something like the following.

©Adafruit Industries Page 40 of 157

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

Interacting with the Serial Console
Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, you're going to
edit it to create some output.

Open your code.py file into your editor, and include a print statement. You can print
anything you like! Just include your phrase between the quotation marks inside the
parentheses. For example:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
print("Hello, CircuitPython!")
led.value = True
time.sleep(1)
led.value = False
time.sleep(1)

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

Excellent! Our print statement is showing up in our console! Try changing the printed
text to something else.

import board
import digitalio
import time

©Adafruit Industries Page 41 of 157

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
print("Hello back to you!")
led.value = True
time.sleep(1)
led.value = False
time.sleep(1)

Keep your serial console window where you can see it. Save your file. You'll see what
the serial console displays when the board reboots. Then you'll see your new change!

The Traceback (most recent call last): is telling you the last thing your board
was doing before you saved your file. This is normal behavior and will happen every
time the board resets. This is really handy for troubleshooting. Let's introduce an error
so you can see how it is used.

Delete the e at the end of True from the line led.value = True so that it says
led.value = Tru

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
print("Hello back to you!")
led.value = Tru
time.sleep(1)
led.value = False
time.sleep(1)

Save your file. You will notice that your red LED will stop blinking, and you may have a
colored status LED blinking at you. This is because the code is no longer correct and
can no longer run properly. You need to fix it!

Usually when you run into errors, it's not because you introduced them on purpose.
You may have 200 lines of code, and have no idea where your error could be hiding.
This is where the serial console can help. Let's take a look!

©Adafruit Industries Page 42 of 157

The Traceback (most recent call last): is telling you that the last thing it was
able to run was line 10 in your code. The next line is your error: NameError: name
'Tru' is not defined . This error might not mean a lot to you, but combined with
knowing the issue is on line 10, it gives you a great place to start!

Go back to your code, and take a look at line 10. Obviously, you know what the
problem is already. But if you didn't, you'd want to look at line 10 and see if you could
figure it out. If you're still unsure, try googling the error to get some help. In this case,
you know what to look for. You spelled True wrong. Fix the typo and save your file.

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking
again.

The serial console will display any output generated by your code. Some sensors,
such as a humidity sensor or a thermistor, receive data and you can use print
statements to display that information. You can also use print statements for
troubleshooting, which is called "print debugging". Essentially, if your code isn't
working, and you want to know where it's failing, you can put print statements in
various places to see where it stops printing.

©Adafruit Industries Page 43 of 157

The serial console has many uses, and is an amazing tool overall for learning and
programming!

The REPL
The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL.
The REPL allows you to enter individual lines of code and have them run immediately.
It's really handy if you're running into trouble with a particular program and can't
figure out why. It's interactive so it's great for testing new ideas.

Entering the REPL
To use the REPL, you first need to be connected to the serial console. Once that
connection has been established, you'll want to press CTRL+C.

If there is code running, in this case code measuring distance, it will stop and you'll
see Press any key to enter the REPL. Use CTRL-D to reload. Follow those
instructions, and press any key on your keyboard.

The Traceback (most recent call last): is telling you the last thing your board
was doing before you pressed Ctrl + C and interrupted it. The KeyboardInterrupt
is you pressing CTRL+C. This information can be handy when troubleshooting, but for
now, don't worry about it. Just note that it is expected behavior.

If your code.py file is empty or does not contain a loop, it will show an empty output
and Code done running. . There is no information about what your board was
doing before you interrupted it because there is no code running.

©Adafruit Industries Page 44 of 157

If you have no code.py on your CIRCUITPY drive, you will enter the REPL immediately
after pressing CTRL+C. Again, there is no information about what your board was
doing before you interrupted it because there is no code running.

Regardless, once you press a key you'll see a >>> prompt welcoming you to the
REPL!

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

The first thing you get from the REPL is information about your board.

This line tells you the version of CircuitPython you're using and when it was released.
Next, it gives you the type of board you're using and the type of microcontroller the
board uses. Each part of this may be different for your board depending on the
versions you're working with.

This is followed by the CircuitPython prompt.

Interacting with the REPL
From this prompt you can run all sorts of commands and code. The first thing you'll do
is run help() . This will tell you where to start exploring the REPL. To run code in the
REPL, type it in next to the REPL prompt.

Type help() next to the prompt in the REPL.

Then press enter. You should then see a message.

©Adafruit Industries Page 45 of 157

First part of the message is another reference to the version of CircuitPython you're
using. Second, a URL for the CircuitPython related project guides. Then... wait. What's
this? To list built-in modules type help("modules"). Remember the modules you
learned about while going through creating code? That's exactly what this is talking
about! This is a perfect place to start. Let's take a look!

Type help("modules") into the REPL next to the prompt, and press enter.

This is a list of all the core modules built into CircuitPython, including board .
Remember, board contains all of the pins on the board that you can use in your
code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might
look like nothing happened, but that's not the case! If you recall, the import
statement simply tells the code to expect to do something with that module. In this
case, it's telling the REPL that you plan to do something with that module.

Next, type dir(board) into the REPL and press enter.

©Adafruit Industries Page 46 of 157

This is a list of all of the pins on your board that are available for you to use in your
code. Each board's list will differ slightly depending on the number of pins available.
Do you see LED ? That's the pin you used to blink the red LED!

The REPL can also be used to run code. Be aware that any code you enter into the
REPL isn't saved anywhere. If you're testing something new that you'd like to keep,
make sure you have it saved somewhere on your computer as well!

Every programmer in every programming language starts with a piece of code that
says, "Hello, World." You're going to say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

Then press enter.

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire
programs into the REPL to test them. Remember that nothing typed into the REPL is
saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to
see if a few new lines of code will work. It's fantastic for troubleshooting code by
entering it one line at a time and finding out where it fails. It lets you see what
modules are available and explore those modules.

Try typing more into the REPL to see what happens!

Returning to the Serial Console
When you're ready to leave the REPL and return to the serial console, simply press
CTRL+D. This will reload your board and reenter the serial console. You will restart the
program you had running before entering the REPL. In the console window, you'll see
any output from the program you had running. And if your program was affecting
anything visual on the board, you'll see that start up again as well.

Everything typed into the REPL is ephemeral. Once you reload the REPL or
return to the serial console, nothing you typed will be retained in any memory
space. So be sure to save any desired code you wrote somewhere else, or
you'll lose it when you leave the current REPL instance!

©Adafruit Industries Page 47 of 157

You can return to the REPL at any time!

CircuitPython Libraries

Each CircuitPython program you run needs to have a lot of information to work. The
reason CircuitPython is so simple to use is that most of that information is stored in
other files and works in the background. These files are called libraries. Some of them
are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder
called lib. Part of what makes CircuitPython so great is its ability to store code
separately from the firmware itself. Storing code separately from the firmware makes
it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If
not, simply create the folder yourself. When you first install CircuitPython, an empty lib
directory will be created for you.

CircuitPython libraries work in the same way as regular Python modules so the Python
docs (https://adafru.it/rar) are an excellent reference for how it all should work. In
Python terms, you can place our library files in the lib directory because it's part of the
Python path by default.

As CircuitPython development continues and there are new releases, Adafruit
will stop supporting older releases. Visit https://circuitpython.org/downloads
to download the latest version of CircuitPython for your board. You must
download the CircuitPython Library Bundle that matches your version of
CircuitPython. Please update CircuitPython and then visit https://
circuitpython.org/libraries to download the latest Library Bundle.

©Adafruit Industries Page 48 of 157

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html

One downside of this approach of separate libraries is that they are not built in. To
use them, one needs to copy them to the CIRCUITPY drive before they can be used.
Fortunately, there is a library bundle.

The bundle and the library releases on GitHub also feature optimized versions of the
libraries with the .mpy file extension. These files take less space on the drive and
have a smaller memory footprint as they are loaded.

Due to the regular updates and space constraints, Adafruit does not ship boards with
the entire bundle. Therefore, you will need to load the libraries you need when you
begin working with your board. You can find example code in the guides for your
board that depends on external libraries.

Either way, as you start to explore CircuitPython, you'll want to know how to get
libraries on board.

The Adafruit Learn Guide Project Bundle
The quickest and easiest way to get going with a project from the Adafruit Learn
System is by utilising the Project Bundle. Most guides now have a Download Project
Bundle button available at the top of the full code example embed. This button
downloads all the necessary files, including images, etc., to get the guide project up
and running. Simply click, open the resulting zip, copy over the right files, and you're
good to go!

The first step is to find the Download Project Bundle button in the guide you're
working on.

The Download Project Bundle button is only available on full demo code
embedded from GitHub in a Learn guide. Code snippets will NOT have the
button available.

©Adafruit Industries Page 49 of 157

The Download Project Bundle button downloads a zip file. This zip contains a series
of directories, nested within which is the code.py, any applicable assets like images
or audio, and the lib/ folder containing all the necessary libraries. The following zip
was downloaded from the Piano in the Key of Lime guide.

When you copy the contents of the Project Bundle to your CIRCUITPY drive, it
will replace all the existing content! If you don't want to lose anything, ensure
you copy your current code to your computer before you copy over the new
Project Bundle content!

The Piano in the Key of Lime guide was chosen as an example. That guide is
specific to Circuit Playground Express, and cannot be used on all boards. Do
not expect to download that exact bundle and have it work on your non-CPX
microcontroller.

©Adafruit Industries Page 50 of 157

When you open the zip, you'll find some nested directories. Navigate through them
until you find what you need. You'll eventually find a directory for your CircuitPython
version (in this case, 7.x). In the version directory, you'll find the file and directory you
need: code.py and lib/. Once you find the content you need, you can copy it all over
to your CIRCUITPY drive, replacing any files already on the drive with the files from
the freshly downloaded zip.

Once you copy over all the relevant files, the project should begin running! If you find
that the project is not running as expected, make sure you've copied ALL of the
project files onto your microcontroller board.

That's all there is to using the Project Bundle!

The Adafruit CircuitPython Library Bundle
Adafruit provides CircuitPython libraries for much of the hardware they provide,
including sensors, breakouts and more. To eliminate the need for searching for each
library individually, the libraries are available together in the Adafruit CircuitPython
Library Bundle. The bundle contains all the files needed to use each library.

Downloading the Adafruit CircuitPython Library Bundle
You can download the latest Adafruit CircuitPython Library Bundle release by clicking
the button below. The libraries are being constantly updated and improved, so you'll
always want to download the latest bundle.

Match up the bundle version with the version of CircuitPython you are running. For
example, you would download the 6.x library bundle if you're running any version of
CircuitPython 6, or the 7.x library bundle if you're running any version of CircuitPython
7, etc. If you mix libraries with major CircuitPython versions, you will get incompatible
mpy errors due to changes in library interfaces possible during major version
changes.

Click to visit circuitpython.org for
the latest Adafruit CircuitPython

Library Bundle
https://adafru.it/ENC

In some cases, there will be other files such as audio or images in the same
directory as code.py and lib/. Make sure you include all the files when you
copy things over!

©Adafruit Industries Page 51 of 157

https://circuitpython.org/libraries

Download the bundle version that matches your CircuitPython firmware version. If
you don't know the version, check the version info in boot_out.txt file on the
CIRCUITPY drive, or the initial prompt in the CircuitPython REPL. For example, if
you're running v7.0.0, download the 7.x library bundle.

There's also a py bundle which contains the uncompressed python files, you probably
don't want that unless you are doing advanced work on libraries.

The CircuitPython Community Library
Bundle
The CircuitPython Community Library Bundle is made up of libraries written and
provided by members of the CircuitPython community. These libraries are often
written when community members encountered hardware not supported in the
Adafruit Bundle, or to support a personal project. The authors all chose to submit
these libraries to the Community Bundle make them available to the community.

These libraries are maintained by their authors and are not supported by Adafruit.
As you would with any library, if you run into problems, feel free to file an issue on the
GitHub repo for the library. Bear in mind, though, that most of these libraries are
supported by a single person and you should be patient about receiving a response.
Remember, these folks are not paid by Adafruit, and are volunteering their personal
time when possible to provide support.

Downloading the CircuitPython Community Library Bundle
You can download the latest CircuitPython Community Library Bundle release by
clicking the button below. The libraries are being constantly updated and improved,
so you'll always want to download the latest bundle.

Click for the latest CircuitPython
Community Library Bundle release

https://adafru.it/VCn

The link takes you to the latest release of the CircuitPython Community Library
Bundle on GitHub. There are multiple versions of the bundle available. Download the
bundle version that matches your CircuitPython firmware version. If you don't know
the version, check the version info in boot_out.txt file on the CIRCUITPY drive, or the
initial prompt in the CircuitPython REPL. For example, if you're running v7.0.0,
download the 7.x library bundle.

©Adafruit Industries Page 52 of 157

https://github.com/adafruit/CircuitPython_Community_Bundle/releases

Understanding the Bundle
After downloading the zip, extract its contents. This is usually done by double clicking
on the zip. On Mac OSX, it places the file in the same directory as the zip.

Open the bundle folder. Inside you'll find two information files, and two folders. One
folder is the lib bundle, and the other folder is the examples bundle.

Now open the lib folder. When you open the folder, you'll see a large number of .mpy
files, and folders.

Example Files
All example files from each library are now included in the bundles in an examples
directory (as seen above), as well as an examples-only bundle. These are included for
two main reasons:

Allow for quick testing of devices.
Provide an example base of code, that is easily built upon for individualized
purposes.

•
•

©Adafruit Industries Page 53 of 157

Copying Libraries to Your Board
First open the lib folder on your CIRCUITPY drive. Then, open the lib folder you
extracted from the downloaded zip. Inside you'll find a number of folders and .mpy
files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

If the library is a directory with multiple .mpy files in it, be sure to copy the entire
folder to CIRCUITPY/lib.

This also applies to example files. Open the examples folder you extracted from the
downloaded zip, and copy the applicable file to your CIRCUITPY drive. Then, rename
it to code.py to run it.

Understanding Which Libraries to Install
You now know how to load libraries on to your CircuitPython-compatible
microcontroller board. You may now be wondering, how do you know which libraries
you need to install? Unfortunately, it's not always straightforward. Fortunately, there is
an obvious place to start, and a relatively simple way to figure out the rest. First up:
the best place to start.

When you look at most CircuitPython examples, you'll see they begin with one or
more import statements. These typically look like the following:

import library_or_module

However, import statements can also sometimes look like the following:

from library_or_module import name

from library_or_module.subpackage import name

If a library has multiple .mpy files contained in a folder, be sure to copy the
entire folder to CIRCUITPY/lib.

•

•
•

©Adafruit Industries Page 54 of 157

from library_or_module import name as local_name

They can also have more complicated formats, such as including a try / except
block, etc.

The important thing to know is that an import statement will always include the
name of the module or library that you're importing.

Therefore, the best place to start is by reading through the import statements.

Here is an example import list for you to work with in this section. There is no setup or
other code shown here, as the purpose of this section involves only the import list.

import time
import board
import neopixel
import adafruit_lis3dh
import usb_hid
from adafruit_hid.consumer_control import ConsumerControl
from adafruit_hid.consumer_control_code import ConsumerControlCode

Keep in mind, not all imported items are libraries. Some of them are almost always
built-in CircuitPython modules. How do you know the difference? Time to visit the
REPL.

In the Interacting with the REPL section (https://adafru.it/Awz) on The REPL
page (https://adafru.it/Awz) in this guide, the help("modules") command is
discussed. This command provides a list of all of the built-in modules available in
CircuitPython for your board. So, if you connect to the serial console on your board,
and enter the REPL, you can run help("modules") to see what modules are
available for your board. Then, as you read through the import statements, you can,
for the purposes of figuring out which libraries to load, ignore the statement that
import modules.

The following is the list of modules built into CircuitPython for the Feather RP2040.
Your list may look similar or be anything down to a significant subset of this list for
smaller boards.

•

©Adafruit Industries Page 55 of 157

https://learn.adafruit.com/welcome-to-circuitpython/the-repl#interacting-with-the-repl-2977486-14
https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

Now that you know what you're looking for, it's time to read through the import
statements. The first two, time and board , are on the modules list above, so they're
built-in.

The next one, neopixel , is not on the module list. That means it's your first library!
So, you would head over to the bundle zip you downloaded, and search for neopixel.
There is a neopixel.mpy file in the bundle zip. Copy it over to the lib folder on your
CIRCUITPY drive. The following one, adafruit_lis3dh , is also not on the module
list. Follow the same process for adafruit_lis3dh, where you'll find
adafruit_lis3dh.mpy, and copy that over.

The fifth one is usb_hid , and it is in the modules list, so it is built in. Often all of the
built-in modules come first in the import list, but sometimes they don't! Don't assume
that everything after the first library is also a library, and verify each import with the
modules list to be sure. Otherwise, you'll search the bundle and come up empty!

The final two imports are not as clear. Remember, when import statements are
formatted like this, the first thing after the from is the library name. In this case, the
library name is adafruit_hid . A search of the bundle will find an
adafruit_hid folder. When a library is a folder, you must copy the entire folder and its
contents as it is in the bundle to the lib folder on your CIRCUITPY drive. In this case,
you would copy the entire adafruit_hid folder to your CIRCUITPY/lib folder.

Notice that there are two imports that begin with adafruit_hid . Sometimes you will
need to import more than one thing from the same library. Regardless of how many
times you import the same library, you only need to load the library by copying over
the adafruit_hid folder once.

That is how you can use your example code to figure out what libraries to load on
your CircuitPython-compatible board!

There are cases, however, where libraries require other libraries internally. The
internally required library is called a dependency. In the event of library

©Adafruit Industries Page 56 of 157

dependencies, the easiest way to figure out what other libraries are required is to
connect to the serial console and follow along with the ImportError printed there.
The following is a very simple example of an ImportError , but the concept is the
same for any missing library.

Example: ImportError Due to Missing
Library
If you choose to load libraries as you need them, or you're starting fresh with an
existing example, you may end up with code that tries to use a library you haven't yet
loaded. This section will demonstrate what happens when you try to utilise a library
that you don't have loaded on your board, and cover the steps required to resolve the
issue.

This demonstration will only return an error if you do not have the required library
loaded into the lib folder on your CIRCUITPY drive.

Let's use a modified version of the Blink example.

import board
import time
import simpleio

led = simpleio.DigitalOut(board.LED)

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

Save this file. Nothing happens to your board. Let's check the serial console to see
what's going on.

You have an ImportError . It says there is no module named 'simpleio' . That's
the one you just included in your code!

Click the link above to download the correct bundle. Extract the lib folder from the
downloaded bundle file. Scroll down to find simpleio.mpy. This is the library file
you're looking for! Follow the steps above to load an individual library file.

©Adafruit Industries Page 57 of 157

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose
the library that matches the one you're missing.

Library Install on Non-Express Boards
If you have an M0 non-Express board such as Trinket M0, Gemma M0, QT Py M0, or
one of the M0 Trinkeys, you'll want to follow the same steps in the example above to
install libraries as you need them. Remember, you don't need to wait for an
ImportError if you know what library you added to your code. Open the library
bundle you downloaded, find the library you need, and drag it to the lib folder on your
CIRCUITPY drive.

You can still end up running out of space on your M0 non-Express board even if you
only load libraries as you need them. There are a number of steps you can use to try
to resolve this issue. You'll find suggestions on the Troubleshooting page (https://
adafru.it/Den).

Updating CircuitPython Libraries and
Examples
Libraries and examples are updated from time to time, and it's important to update the
files you have on your CIRCUITPY drive.

To update a single library or example, follow the same steps above. When you drag
the library file to your lib folder, it will ask if you want to replace it. Say yes. That's it!

A new library bundle is released every time there's an update to a library. Updates
include things like bug fixes and new features. It's important to check in every so
often to see if the libraries you're using have been updated.

CircUp CLI Tool
There is a command line interface (CLI) utility called CircUp (https://adafru.it/Tfi) that
can be used to easily install and update libraries on your device. Follow the directions
on the install page within the CircUp learn guide (https://adafru.it/-Ad). Once you've
got it installed you run the command circup update in a terminal to interactively

©Adafruit Industries Page 58 of 157

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup

update all libraries on the connected CircuitPython device. See the usage page in the
CircUp guide (https://adafru.it/-Ah) for a full list of functionality

CircuitPython Documentation
You've learned about the CircuitPython built-in modules and external libraries. You
know that you can find the modules in CircuitPython, and the libraries in the Library
Bundles. There are guides available that explain the basics of many of the modules
and libraries. However, there's sometimes more capabilities than are necessarily
showcased in the guides, and often more to learn about a module or library. So,
where can you find more detailed information? That's when you want to look at the
API documentation.

The entire CircuitPython project comes with extensive documentation available on
Read the Docs. This includes both the CircuitPython core (https://adafru.it/Beg) and
the Adafruit CircuitPython libraries (https://adafru.it/Tra).

CircuitPython Core Documentation
The CircuitPython core documentation (https://adafru.it/Beg) covers many of the
details you might want to know about the CircuitPython core and related topics. It
includes API and usage info, a design guide and information about porting
CircuitPython to new boards, MicroPython info with relation to CircuitPython, and
general information about the project.

The main page covers the basics including where to download CircuitPython, how to
contribute, differences from MicroPython, information about the project structure,
and a full table of contents for the rest of the documentation.

The list along the left side leads to more information about specific topics.

©Adafruit Industries Page 59 of 157

https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/usage
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/usage
https://circuitpython.readthedocs.io/
https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://circuitpython.readthedocs.io/

The first section is API and Usage. This is where you can find information about how
to use individual built-in core modules, such as time and digitalio , details about
the supported ports, suggestions for troubleshooting, and basic info and links to the
library bundles. The Core Modules section also includes the Support Matrix, which is
a table of which core modules are available on which boards.

The second section is Design and Porting Reference. It includes a design guide,
architecture information, details on porting, and adding module support to other
ports.

The third section is MicroPython Specific. It includes information on MicroPython and
related libraries, and a glossary of terms.

The fourth and final section is About the Project. It includes further information
including details on building, testing, and debugging CircuitPython, along with
various other useful links including the Adafruit Community Code of Conduct.

Whether you're a seasoned pro or new to electronics and programming, you'll find a
wealth of information to help you along your CircuitPython journey in the
documentation!

CircuitPython Library Documentation
The Adafruit CircuitPython libraries are documented in a very similar fashion. Each
library has its own page on Read the Docs. There is a comprehensive list available
here (https://adafru.it/Tra). Otherwise, to view the documentation for a specific library,
you can visit the GitHub repository for the library, and find the link in the README.

For the purposes of this page, the LED Animation library (https://adafru.it/O2d)
documentation will be featured. There are two links to the documentation in each
library GitHub repo. The first one is the docs badge near the top of the README.

The second place is the Documentation section of the README. Scroll down to find
it, and click on Read the Docs to get to the documentation.

Now that you know how to find it, it's time to take a look at what to expect.

©Adafruit Industries Page 60 of 157

https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LED_Animation

The Introduction page is generated from the README, so it includes all the same info,
such as PyPI installation instructions, a quick demo, and some build details. It also
includes a full table of contents for the rest of the documentation (which is not part of
the GitHub README). The page should look something like the following.

The left side contains links to the rest of the documentation, divided into three
separate sections: Examples, API Reference, and Other Links.

Examples

The Examples section (https://adafru.it/VFD) is a list of library examples. This list
contains anywhere from a small selection to the full list of the examples available for
the library.

This section will always contain at least one example - the simple test example.

The simple test example is usually a basic example designed to show your setup is
working. It may require other libraries to run. Keep in mind, it's simple - it won't
showcase a comprehensive use of all the library features.

The LED Animation simple test demonstrates the Blink animation.

Not all library documentation will look exactly the same, but this will give you
some idea of what to expect from library docs.

©Adafruit Industries Page 61 of 157

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/examples.html

In some cases, you'll find a longer list, that may include examples that explore other
features in the library. The LED Animation documentation includes a series of
examples, all of which are available in the library. These examples include
demonstrations of both basic and more complex features. Simply click on the example
that interests you to view the associated code.

You can view the rest of the examples by clicking through the list or scrolling down
the page. These examples are fully working code. Which is to say, while they may rely
on other libraries as well as the library for which you are viewing the documentation,
they should not require modification to otherwise work.

When there are multiple links in the Examples section, all of the example
content is, in actuality, on the same page. Each link after the first is an anchor
link to the specified section of the page. Therefore, you can also view all the
available examples by scrolling down the page.

©Adafruit Industries Page 62 of 157

API Reference

The API Reference section (https://adafru.it/Rqa) includes a list of the library functions
and classes. The API (Application Programming Interface) of a library is the set of
functions and classes the library provides. Essentially, the API defines how your
program interfaces with the functions and classes that you call in your code to use the
library.

There is always at least one list item included. Libraries for which the code is included
in a single Python (.py) file, will only have one item. Libraries for which the code is
multiple Python files in a directory (called subpackages) will have multiple items in this
list. The LED Animation library has a series of subpackages, and therefore, multiple
items in this list.

Click on the first item in the list to begin viewing the API Reference section.

When you click on an item in the API Reference section, you'll find details about the
classes and functions in the library. In the case of only one item in this section, all the
available functionality of the library will be contained within that first and only
subsection. However, in the case of a library that has subpackages, each item will
contain the features of the particular subpackage indicated by the link. The
documentation will cover all of the available functions of the library, including more
complex ones that may not interest you.

The first list item is the animation subpackage. If you scroll down, you'll begin to see
the available features of animation. They are listed alphabetically. Each of these
things can be called in your code. It includes the name and a description of the
specific function you would call, and if any parameters are necessary, lists those with
a description as well.

As with the Examples section, all of the API Reference content is on a single
page, and the links under API Reference are anchor links to the specified
section of the page.

©Adafruit Industries Page 63 of 157

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/api.html

You can view the other subpackages by clicking the link on the left or scrolling down
the page. You may be interested in something a little more practical. Here is an
example. To use the LED Animation library Comet animation, you would run the
following example.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""
This example animates a jade comet that bounces from end to end of the strip.

For QT Py Haxpress and a NeoPixel strip. Update pixel_pin and pixel_num to match
your wiring if
using a different board or form of NeoPixels.

This example will run on SAMD21 (M0) Express boards (such as Circuit Playground
Express or QT Py
Haxpress), but not on SAMD21 non-Express boards (such as QT Py or Trinket).
"""
import board
import neopixel

from adafruit_led_animation.animation.comet import Comet
from adafruit_led_animation.color import JADE

Update to match the pin connected to your NeoPixels
pixel_pin = board.A3
Update to match the number of NeoPixels you have connected
pixel_num = 30

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

comet = Comet(pixels, speed=0.02, color=JADE, tail_length=10, bounce=True)

while True:
comet.animate()

Note the line where you create the comet object. There are a number of items inside
the parentheses. In this case, you're provided with a fully working example. But what
if you want to change how the comet works? The code alone does not explain what
the options mean.

©Adafruit Industries Page 64 of 157

So, in the API Reference documentation list, click the
adafruit_led_animation.animation.comet link and scroll down a bit until you
see the following.

Look familiar? It is! This is the documentation for setting up the comet object. It
explains what each argument provided in the comet setup in the code meant, as well
as the other available features. For example, the code includes speed=0.02 . The
documentation clarifies that this is the "Animation speed in seconds". The code
doesn't include ring . The documentation indicates this is an available setting that
enables "Ring mode".

This type of information is available for any function you would set up in your code. If
you need clarification on something, wonder whether there's more options available,
or are simply interested in the details involved in the code you're writing, check out
the documentation for the CircuitPython libraries!

Other Links

This section is the same for every library. It includes a list of links to external sites,
which you can visit for more information about the CircuitPython Project and Adafruit.

That covers the CircuitPython library documentation! When you are ready to go
beyond the basic library features covered in a guide, or you're interested in
understanding those features better, the library documentation on Read the Docs has
you covered!

Recommended Editors
The CircuitPython code on your board detects when the files are changed or written
and will automatically re-start your code. This makes coding very fast because you
save, and it re-runs.

©Adafruit Industries Page 65 of 157

However, you must wait until the file is done being saved before unplugging or
resetting your board! On Windows using some editors this can sometimes take up to
90 seconds, on Linux it can take 30 seconds to complete because the text editor
does not save the file completely. Mac OS does not seem to have this delay, which is
nice!

This is really important to be aware of. If you unplug or reset the board before your
computer finishes writing the file to your board, you can corrupt the drive. If this
happens, you may lose the code you've written, so it's important to backup your code
to your computer regularly.

To avoid the likelihood of filesystem corruption, use an editor that writes out the file
completely when you save it. Check out the list of recommended editors below.

Recommended editors
mu (https://adafru.it/ANO) is an editor that safely writes all changes (it's also our
recommended editor!)
emacs (https://adafru.it/xNA) is also an editor that will fulIy write files on
save (https://adafru.it/Be7)
Sublime Text (https://adafru.it/xNB) safely writes all changes
Visual Studio Code (https://adafru.it/Be9) appears to safely write all changes
gedit on Linux appears to safely write all changes
IDLE (https://adafru.it/IWB), in Python 3.8.1 or later, was fixed (https://adafru.it/
IWD) to write all changes immediately
Thonny (https://adafru.it/Qb6) fully writes files on save
Notepad++ (https://adafru.it/xNf) flushes files after writes, as of several years
ago. In addition, you can change the path used for "Enable session snapshot
and periodic backup" to write somewhere else than the CIRCUITPY drive. This
will save space on CIRCUITPY and reduce writes to the drive.

Recommended only with particular settings or add-ons
vim (https://adafru.it/ek9) / vi safely writes all changes. But set up vim to not
write swapfiles (https://adafru.it/ELO) (.swp files: temporary records of your edits)
to CIRCUITPY. Run vim with vim -n , set the no swapfile option, or set the
directory option to write swapfiles elsewhere. Otherwise the swapfile
writes trigger restarts of your program.
The PyCharm IDE (https://adafru.it/xNC) is safe if "Safe Write" is turned on in
Settings->System Settings->Synchronization (true by default).
If you are using Atom (https://adafru.it/fMG), install the fsync-on-save
package (https://adafru.it/E9m) or the language-circuitpython package (https://
adafru.it/Vuf) so that it will always write out all changes to files on CIRCUITPY.

•

•

•
•
•
•

•
•

•

•

•

©Adafruit Industries Page 66 of 157

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Customize-Save.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Customize-Save.html
https://www.sublimetext.com/
https://code.visualstudio.com/
https://docs.python.org/3/library/idle.html
https://bugs.python.org/issue36807
https://thonny.org/
https://notepad-plus-plus.org/
http://www.vim.org/
http://www.vim.org/
https://vi.stackexchange.com/a/179
https://www.jetbrains.com/pycharm/
https://atom.io/
https://atom.io/
https://atom.io/packages/fsync-on-save
https://atom.io/packages/fsync-on-save
https://atom.io/packages/language-circuitpython

SlickEdit (https://adafru.it/DdP) works only if you add a macro to flush the
disk (https://adafru.it/ven).

Editors that are NOT recommended
notepad (the default Windows editor) can be slow to write, so the editors above
are recommended! If you are using notepad, be sure to eject the drive.
IDLE in Python 3.8.0 or earlier does not force out changes immediately. Later
versions do force out changes.
nano (on Linux) does not force out changes.
geany (on Linux) does not force out changes.
Anything else - Other editors have not been tested so please use a
recommended one!

Advanced Serial Console on Windows
Windows 7 and 8.1
If you're using Windows 7 (or 8 or 8.1), you'll need to install drivers. See the Windows 7
and 8.1 Drivers page (https://adafru.it/VuB) for details. You will not need to install
drivers on Mac, Linux or Windows 10.

You are strongly encouraged to upgrade to Windows 10 if you are still using Windows
7 or Windows 8 or 8.1. Windows 7 has reached end-of-life and no longer receives
security updates. A free upgrade to Windows 10 is still available (https://adafru.it/
RWc).

What's the COM?
First, you'll want to find out which serial port your board is using. When you plug your
board in to USB on your computer, it connects to a serial port. The port is like a door
through which your board can communicate with your computer using USB.

You'll use Windows Device Manager to determine which port the board is using. The
easiest way to determine which port the board is using is to first check without the
board plugged in. Open Device Manager. Click on Ports (COM & LPT). You should find
something already in that list with (COM#) after it where # is a number.

•

The editors listed below are specifically NOT recommended!

•

•

•
•
•

©Adafruit Industries Page 67 of 157

https://www.slickedit.com/
https://www.slickedit.com/
https://forums.adafruit.com/viewtopic.php?f=57&t=144412#p713290
https://forums.adafruit.com/viewtopic.php?f=57&t=144412#p713290
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://www.zdnet.com/article/heres-how-you-can-still-get-a-free-windows-10-upgrade/

Now plug in your board. The Device Manager list will refresh and a new item will
appear under Ports (COM & LPT). You'll find a different (COM#) after this item in the
list.

Sometimes the item will refer to the name of the board. Other times it may be called
something like USB Serial Device, as seen in the image above. Either way, there is a
new (COM#) following the name. This is the port your board is using.

©Adafruit Industries Page 68 of 157

Install Putty
If you're using Windows, you'll need to download a terminal program. You're going to
use PuTTY.

The first thing to do is download the latest version of PuTTY (https://adafru.it/Bf1).
You'll want to download the Windows installer file. It is most likely that you'll need the
64-bit version. Download the file and install the program on your machine. If you run
into issues, you can try downloading the 32-bit version instead. However, the 64-bit
version will work on most PCs.

Now you need to open PuTTY.

Under Connection type: choose the button next to Serial.
In the box under Serial line, enter the serial port you found that your board is
using.
In the box under Speed, enter 115200. This called the baud rate, which is the
speed in bits per second that data is sent over the serial connection. For boards
with built in USB it doesn't matter so much but for ESP8266 and other board
with a separate chip, the speed required by the board is 115200 bits per second.
So you might as well just use 115200!

If you want to save those settings for later, use the options under Load, save or delete
a stored session. Enter a name in the box under Saved Sessions, and click the Save
button on the right.

•
•

•

©Adafruit Industries Page 69 of 157

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Once your settings are entered, you're ready to connect to the serial console. Click
"Open" at the bottom of the window. A new window will open.

If no code is running, the window will either be blank or will look like the window
above. Now you're ready to see the results of your code.

Great job! You've connected to the serial console!

©Adafruit Industries Page 70 of 157

Advanced Serial Console on Mac
Connecting to the serial console on Mac does not require installing any drivers or
extra software. You'll use a terminal program to find your board, and screen to
connect to it. Terminal and screen both come installed by default.

What's the Port?
First you'll want to find out which serial port your board is using. When you plug your
board in to USB on your computer, it connects to a serial port. The port is like a door
through which your board can communicate with your computer using USB.

The easiest way to determine which port the board is using is to first check without
the board plugged in. Open Terminal and type the following:

ls /dev/tty.*

Each serial connection shows up in the /dev/ directory. It has a name that starts with
tty. . The command ls shows you a list of items in a directory. You can use * as a
wildcard, to search for files that start with the same letters but end in something
different. In this case, you're asking to see all of the listings in /dev/ that start with
tty. and end in anything. This will show us the current serial connections.

Now, plug your board. In Terminal, type:

ls /dev/tty.*

This will show you the current serial connections, which will now include your board.

©Adafruit Industries Page 71 of 157

A new listing has appeared called /dev/tty.usbmodem141441 .
The tty.usbmodem141441 part of this listing is the name the example board is using.
Yours will be called something similar.

Using Linux, a new listing has appeared called /dev/ttyACM0 . The ttyACM0 part of
this listing is the name the example board is using. Yours will be called something
similar.

Connect with screen
Now that you know the name your board is using, you're ready connect to the serial
console. You're going to use a command called screen . The screen command is
included with MacOS. To connect to the serial console, use Terminal. Type the
following command, replacing board_name with the name you found your board is
using:

screen /dev/tty.board_name 115200

The first part of this establishes using the screen command. The second part tells
screen the name of the board you're trying to use. The third part tells screen what
baud rate to use for the serial connection. The baud rate is the speed in bits per
second that data is sent over the serial connection. In this case, the speed required
by the board is 115200 bits per second.

©Adafruit Industries Page 72 of 157

Press enter to run the command. It will open in the same window. If no code is
running, the window will be blank. Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

Advanced Serial Console on Linux
Connecting to the serial console on Linux does not require installing any drivers, but
you may need to install screen using your package manager. You'll use a terminal
program to find your board, and screen to connect to it. There are a variety of
terminal programs such as gnome-terminal (called Terminal) or Konsole on KDE.

The tio program works as well to connect to your board, and has the benefit of
automatically reconnecting. You would need to install it using your package manager.

What's the Port?
First you'll want to find out which serial port your board is using. When you plug your
board in to USB on your computer, it connects to a serial port. The port is like a door
through which your board can communicate with your computer using USB.

The easiest way to determine which port the board is using is to first check without
the board plugged in. Open your terminal program and type the following:

ls /dev/ttyACM*

Each serial connection shows up in the /dev/ directory. It has a name that starts with
ttyACM. The command ls shows you a list of items in a directory. You can use * as
a wildcard, to search for files that start with the same letters but end in something
different. In this case, You're asking to see all of the listings in /dev/ that start with
ttyACM and end in anything. This will show us the current serial connections.

©Adafruit Industries Page 73 of 157

In the example below, the error is indicating that are no current serial connections
starting with ttyACM.

Now plug in your board. In your terminal program, type:

ls /dev/ttyACM*

This will show you the current serial connections, which will now include your board.

A new listing has appeared called /dev/ttyACM0. The ttyACM0 part of this listing is
the name the example board is using. Yours will be called something similar.

Connect with screen
Now that you know the name your board is using, you're ready connect to the serial
console. You'll use a command called screen . You may need to install it using the
package manager.

To connect to the serial console, use your terminal program. Type the following
command, replacing board_name with the name you found your board is using:

screen /dev/tty.board_name 115200

The first part of this establishes using the screen command. The second part tells
screen the name of the board you're trying to use. The third part tells screen what

©Adafruit Industries Page 74 of 157

baud rate to use for the serial connection. The baud rate is the speed in bits per
second that data is sent over the serial connection. In this case, the speed required
by the board is 115200 bits per second.

Press enter to run the command. It will open in the same window. If no code is
running, the window will be blank. Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

Permissions on Linux
If you try to run screen and it doesn't work, then you may be running into an issue
with permissions. Linux keeps track of users and groups and what they are allowed to
do and not do, like access the hardware associated with the serial connection for
running screen . So if you see something like this:

then you may need to grant yourself access. There are generally two ways you can do
this. The first is to just run screen using the sudo command, which temporarily
gives you elevated privileges.

Once you enter your password, you should be in:

©Adafruit Industries Page 75 of 157

The second way is to add yourself to the group associated with the hardware. To
figure out what that group is, use the command ls -l as shown below. The group
name is circled in red.

Then use the command adduser to add yourself to that group. You need elevated
privileges to do this, so you'll need to use sudo . In the example below, the group is
adm and the user is ackbar.

After you add yourself to the group, you'll need to logout and log back in, or in some
cases, reboot your machine. After you log in again, verify that you have been added
to the group using the command groups . If you are still not in the group, reboot and
check again.

And now you should be able to run screen without using sudo .

And you're in:

©Adafruit Industries Page 76 of 157

The examples above use screen , but you can also use other programs, such
as putty or picocom , if you prefer.

Frequently Asked Questions
These are some of the common questions regarding CircuitPython and CircuitPython
microcontrollers.

Using Older Versions

CP or CPy = CircuitPython (https://adafru.it/KJD)
CPC = Circuit Playground Classic (http://adafru.it/3000) (does not run
CircuitPython)
CPX = Circuit Playground Express (http://adafru.it/3333)
CPB = Circuit Playground Bluefruit (http://adafru.it/4333)

? What are some common acronyms
to know?

As CircuitPython development continues and there are new releases, Adafruit
will stop supporting older releases. Visit https://circuitpython.org/downloads
to download the latest version of CircuitPython for your board. You must
download the CircuitPython Library Bundle that matches your version of
CircuitPython. Please update CircuitPython and then visit https://
circuitpython.org/libraries to download the latest Library Bundle.

We are no longer building or supporting the CircuitPython 8.x or earlier
library bundles. We highly encourage you to update CircuitPython to the
latest version (https://adafru.it/Em8) and use the current version of the

? I have to continue using
CircuitPython 8.x or earlier. Where
can I find compatible libraries?

©Adafruit Industries Page 77 of 157

https://circuitpython.org
https://www.adafruit.com/product/3000
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/4333
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/libraries

Python Arithmetic

libraries (https://adafru.it/ENC). However, if for some reason you cannot
update, here are the last available library bundles for older versions:

2.x bundle (https://adafru.it/FJA)
3.x bundle (https://adafru.it/FJB)
4.x bundle (https://adafru.it/QDL)
5.x bundle (https://adafru.it/QDJ)
6.x bundle (https://adafru.it/Xmf)
7.x bundle (https://adafru.it/18e9)
8.x bundle (https://adafru.it/1af0)

•
•
•
•
•
•
•

All CircuitPython boards support floating point arithmetic, even if the
microcontroller chip does not support floating point in hardware. Floating
point numbers are stored in 30 bits, with an 8-bit exponent and a 22-bit
mantissa. Note that this is two bits less than standard 32-bit single-
precision floats. You will get about 5-1/2 digits of decimal precision.

(The broadcom port may provide 64-bit floats in some cases.)

? Does CircuitPython support floating-
point numbers?

Python long integers (integers of arbitrary size) are available on most
builds, except those on boards with the smallest available firmware size.
On these boards, integers are stored in 31 bits.

Boards without long integer support are mostly SAMD21 ("M0") boards
without an external flash chip, such as the Adafruit Gemma M0, Trinket
M0, QT Py M0, and the Trinkey series. There are also a number of third-
party boards in this category. There are also a few small STM third-party
boards without long integer support.

time.localtime() , time.mktime() , time.time() , and
time.monotonic_ns() are available only on builds with long integers.

? Does CircuitPython support long
integers, like regular Python?

©Adafruit Industries Page 78 of 157

https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20200707/adafruit-circuitpython-bundle-4.x-mpy-20200707.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20210129/adafruit-circuitpython-bundle-5.x-mpy-20210129.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20211213/adafruit-circuitpython-bundle-6.x-mpy-20211213.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20231003/adafruit-circuitpython-bundle-7.x-mpy-20231003.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20250213/adafruit-circuitpython-bundle-8.x-mpy-20250213.zip

Wireless Connectivity

If you'd like to include WiFi in your project, your best bet is to use a
board that is running natively on ESP32 chipsets - those have WiFi built
in!

If your development board has an SPI port and at least 4 additional pins,
you can check out this guide (https://adafru.it/F5X) on using AirLift with
CircuitPython - extra wiring is required and some boards like the
MacroPad or NeoTrellis do not have enough available pins to add the
hardware support.

For further project examples, and guides about using AirLift with specific
hardware, check out the Adafruit Learn System (https://adafru.it/VBr).

? How do I connect to the Internet
with CircuitPython?

nRF52840, nRF52833, and as of CircuitPython 9.1.0, ESP32, ESP32-C3,
and ESP32-S3 boards (with 8MB) have the most complete BLE
implementation. Your program can act as both a BLE central and
peripheral. As a central, you can scan for advertisements, and connect to
an advertising board. As a peripheral, you can advertise, and you can
create services available to a central. Pairing and bonding are supported.

Most Espressif boards with only 4MB of flash do not have enough room
to include BLE in CircuitPython 9. Check the Module Support
Matrix (https://adafru.it/-Cy) to see if your board has support for _bleio .
CircuitPython 10 is planned to support _bleio on Espressif boards with
4MB flash.

Note that the ESP32-S2 does not have Bluetooth capability.

On most other boards with adequate firmware space, BLE is available for
use with AirLift (https://adafru.it/11Av) or other NINA-FW-based co-
processors. Some boards have this coprocessor on board, such as the
PyPortal (https://adafru.it/11Aw). Currently, this implementation only

? How do I do BLE (Bluetooth Low
Energy) with CircuitPython?

©Adafruit Industries Page 79 of 157

https://learn.adafruit.com/adafruit-io-basics-airlift
https://learn.adafruit.com/search?q=airlift
https://docs.circuitpython.org/en/latest/shared-bindings/support_matrix.html
https://docs.circuitpython.org/en/latest/shared-bindings/support_matrix.html
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-pyportal/circuitpython-ble

Asyncio and Interrupts

Status RGB LED

supports acting as a BLE peripheral. Scanning and connecting as a
central are not yet implemented. Bonding and pairing are not supported.

Check out Adafruit's RFM boards (https://adafru.it/11Ay)for simple radio
communication supported by CircuitPython, which can be used over
distances of 100m to over a km, depending on the version. The RFM
SAMD21 M0 boards can be used, but they were not designed for
CircuitPython, and have limited RAM and flash space; using the RFM
breakouts or FeatherWings with more capable boards will be easier.

? Are there other ways to
communicate by radio with
CircuitPython?

There is support for asyncio starting with CircuitPython 7.1.0, on all
boards except the smallest SAMD21 builds. Read about using it in the
Cooperative Multitasking in CircuitPython (https://adafru.it/XnA) Guide.

? Is there asyncio support in
CircuitPython?

No. CircuitPython does not currently support interrupts - please use
asyncio for multitasking / 'threaded' control of your code

? Does CircuitPython support
interrupts?

?

©Adafruit Industries Page 80 of 157

https://www.adafruit.com/?q=rfm&sort=BestMatch
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython

Memory Issues

The status LED can tell you what's going on with your CircuitPython
board. Read more here for what the colors mean! (https://adafru.it/Den)

My RGB NeoPixel/DotStar LED is
blinking funny colors - what does it
mean?

Memory allocation errors happen when you're trying to store too much
on the board. The CircuitPython microcontroller boards have a limited
amount of memory available. You can have about 250 lines of code on
the M0 Express boards. If you try to import too many libraries, a
combination of large libraries, or run a program with too many lines of
code, your code will fail to run and you will receive a MemoryError in
the serial console.

? What is a MemoryError?

Try resetting your board. Each time you reset the board, it reallocates the
memory. While this is unlikely to resolve your issue, it's a simple step and
is worth trying.

Make sure you are using .mpy versions of libraries. All of the
CircuitPython libraries are available in the bundle in a .mpy format which
takes up less memory than .py format. Be sure that you're using the
latest library bundle (https://adafru.it/uap) for your version of
CircuitPython.

If that does not resolve your issue, try shortening your code. Shorten
comments, remove extraneous or unneeded code, or any other clean up
you can do to shorten your code. If you're using a lot of functions, you
could try moving those into a separate library, creating a .mpy of that
library, and importing it into your code.

? What do I do when I encounter a
MemoryError?

©Adafruit Industries Page 81 of 157

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases

You can turn your entire file into a .mpy and import that into code.py.
This means you will be unable to edit your code live on the board, but it
can save you space.

It can because the memory gets fragmented differently depending on
allocation order and the size of objects. Loading .mpy files uses less
memory so its recommended to do that for files you aren't editing.

? Can the order of my import
statements affect memory?

You can make your own .mpy versions of files with mpy-cross .

You can download mpy-cross for your operating system from
here (https://adafru.it/QDK). Builds are available for Windows, macOS,
x64 Linux, and Raspberry Pi Linux. Choose the latest mpy-cross whose
version matches the version of CircuitPython you are using.

On macOS and Linux, after you download mpy-cross, you must make the
the file executable by doing chmod +x name-of-the-mpy-cross-
executable .

To make a .mpy file, run ./mpy-cross path/to/yourfile.py to
create a yourfile.mpy in the same directory as the original file.

? How can I create my own .mpy
files?

Run the following to see the number of bytes available for use:

import gc

gc.mem_free()

? How do I check how much memory
I have free?

©Adafruit Industries Page 82 of 157

https://adafruit-circuit-python.s3.amazonaws.com/index.html?prefix=bin/mpy-cross/

Unsupported Hardware

Troubleshooting
From time to time, you will run into issues when working with CircuitPython. Here are
a few things you may encounter and how to resolve them.

We dropped ESP8266 support as of 4.x - For more information please
read about it here (https://adafru.it/CiG)!

As of CircuitPython 8.x we have started to support ESP32 and ESP32-C3
and have added a WiFi workflow for wireless coding! (https://adafru.it/
10JF)

We also support ESP32-S2 & ESP32-S3, which have native USB.

? Is ESP8266 or ESP32 supported in
CircuitPython? Why not?

No, WINC1500 will not fit into the M0 flash space.

? Does Feather M0 support
WINC1500?

No.

? Can AVRs such as ATmega328 or
ATmega2560 run CircuitPython?

As CircuitPython development continues and there are new releases, Adafruit
will stop supporting older releases. Visit https://circuitpython.org/downloads
to download the latest version of CircuitPython for your board. You must
download the CircuitPython Library Bundle that matches your version of
CircuitPython. Please update CircuitPython and then visit https://
circuitpython.org/libraries to download the latest Library Bundle.

©Adafruit Industries Page 83 of 157

https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries

Always Run the Latest Version of
CircuitPython and Libraries
As CircuitPython development continues and there are new releases, Adafruit will
stop supporting older releases. You need to update to the latest
CircuitPython. (https://adafru.it/Em8).

You need to download the CircuitPython Library Bundle that matches your version of
CircuitPython. Please update CircuitPython and then download the latest
bundle (https://adafru.it/ENC).

As new versions of CircuitPython are released, Adafruit will stop providing the
previous bundles as automatically created downloads on the Adafruit CircuitPython
Library Bundle repo. If you must continue to use an earlier version, you can still
download the appropriate version of mpy-cross from the particular release of
CircuitPython on the CircuitPython repo and create your own compatible .mpy library
files. However, it is best to update to the latest for both CircuitPython and the library
bundle.

I have to continue using CircuitPython 7.x or earlier.
Where can I find compatible libraries?
Adafruit is no longer building or supporting the CircuitPython 7.x or earlier library
bundles. You are highly encourged to update CircuitPython to the latest version (http
s://adafru.it/Em8) and use the current version of the libraries (https://adafru.it/ENC).
However, if for some reason you cannot update, links to the previous bundles are
available in the FAQ (https://adafru.it/FwY).

macOS Sonoma before 14.4: Errors Writing
to CIRCUITPY
macOS 14.4 - 15.1: Slow Writes to
CIRCUITPY
macOS Sonoma before 14.4 took many seconds to complete writes to small FAT
drives, 8MB or smaller. This causes errors when writing to CIRCUITPY. The best
solution was to remount the CIRCUITPY drive after it is automatically mounted. Or
consider downgrading back to Ventura if that works for you. This problem was
tracked in CircuitPython GitHub issue 8449 (https://adafru.it/18ea).

Below is a shell script to do this remount conveniently (courtesy @czei in
GitHub (https://adafru.it/18ea)). Copy the code here into a file named, say, remount-
CIRCUITPY.sh. Place the file in a directory on your PATH, or in some other convenient
place.

©Adafruit Industries Page 84 of 157

https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/frequently-asked-questions#faq-3105289
https://github.com/adafruit/circuitpython/issues/8449
https://github.com/adafruit/circuitpython/issues/8449#issuecomment-1779981373
https://github.com/adafruit/circuitpython/issues/8449#issuecomment-1779981373

macOS Sonoma 14.4 and versions of macOS before Sequoia 15.2 did not have the
problem above, but did take an inordinately long time to write to FAT drives of size
1GB or less (40 times longer than 2GB drives). As of macOS 15.2, writes are no longer
very slow. This problem was tracked in CircuitPython GitHub issue 8918 (https://
adafru.it/19iD).

#!/bin/sh
#
This works around bug where, by default,
macOS 14.x before 14.4 writes part of a file immediately,
and then doesn't update the directory for 20-60 seconds, causing
the file system to be corrupted.
#

disky=`df | grep CIRCUITPY | cut -d" " -f1`
sudo umount /Volumes/CIRCUITPY
sudo mkdir /Volumes/CIRCUITPY
sleep 2
sudo mount -v -o noasync -t msdos $disky /Volumes/CIRCUITPY

Then in a Terminal window, do this to make this script executable:

chmod +x remount-CIRCUITPY.sh

Place the file in a directory on your PATH , or in some other convenient place.

Now, each time you plug in or reset your CIRCUITPY board, run the file remount-
CIRCUITPY.sh. You can run it in a Terminal window or you may be able to place it on
the desktop or in your dock to run it just by double-clicking.

This will be something of a nuisance but it is the safest solution.

This problem is being tracked in this CircuitPython issue (https://adafru.it/18ea).

Bootloader (boardnameBOOT) Drive Not
Present
You may have a different board.

Only Adafruit Express boards and the SAMD21 non-Express boards ship with the UF2
bootloader (https://adafru.it/zbX)installed. The Feather M0 Basic, Feather M0
Adalogger, and similar boards use a regular Arduino-compatible bootloader, which
does not show a boardnameBOOT drive.

MakeCode

If you are running a MakeCode (https://adafru.it/zbY) program on Circuit Playground
Express, press the reset button just once to get the CPLAYBOOT drive to show up.
Pressing it twice will not work.

©Adafruit Industries Page 85 of 157

https://github.com/adafruit/circuitpython/issues/8918
https://github.com/adafruit/circuitpython/issues/8449
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/makecode/sharing-and-saving?view=all#step-1-bootloader-mode

macOS

DriveDx and its accompanything SAT SMART Driver can interfere with seeing the
BOOT drive. See this forum post (https://adafru.it/sTc) for how to fix the problem.

Windows 10 or later

Did you install the Adafruit Windows Drivers package by mistake, or did you upgrade
to Windows 10 or later with the driver package installed? You don't need to install this
package on Windows 10 or 11for most Adafruit boards. The old version (v1.5) can
interfere with recognizing your device. Go to Settings -> Apps and uninstall all the
"Adafruit" driver programs.

Windows 7 or 8.1

Windows 7 and 8.1 have reached end of life. It is recommended (https://adafru.it/Amd)
that you upgrade to Windows 10 or 11 if possible. Drivers are available for some older
CircuitPython boards, but there are no plans to release drivers for newer boards.

You should now be done! Test by unplugging and replugging the board. You should
see the CIRCUITPY drive, and when you double-click the reset button (single click on
Circuit Playground Express running MakeCode), you should see the
appropriate boardnameBOOT drive.

Let us know in the Adafruit support forums (https://adafru.it/jIf) or on the Adafruit
Discord () if this does not work for you!

Windows Explorer Locks Up When
Accessing boardnameBOOT Drive
On Windows, several third-party programs that can cause issues. The symptom is that
you try to access the boardnameBOOT drive, and Windows or Windows Explorer
seems to lock up. These programs are known to cause trouble:

AIDA64: to fix, stop the program. This problem has been reported to AIDA64.
They acquired hardware to test, and released a beta version that fixes the
problem. This may have been incorporated into the latest release. Please let us
know in the forums if you test this.
Hard Disk Sentinel

The Windows Drivers installer was last updated in November 2020 (v2.5.0.0)
. Windows 7 drivers for CircuitPython boards released since then, including
RP2040 boards, are not available. There are no plans to release drivers for
newer boards. The boards work fine on Windows 10 and later.

•

•

©Adafruit Industries Page 86 of 157

https://forums.adafruit.com/viewtopic.php?f=58&t=161917&p=799309#p799215
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://forums.adafruit.com
https://adafru.it/discord
https://adafru.it/discord

Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely.
Disabling some aspects of Kaspersky does not always solve the problem. This
problem has been reported to Kaspersky.
ESET NOD32 anti-virus: There have been problems with at least version
9.0.386.0, solved by uninstallation.

Copying UF2 to boardnameBOOT Drive
Hangs at 0% Copied
On Windows, a Western DIgital (WD) utility that comes with their external USB drives
can interfere with copying UF2 files to the boardnameBOOT drive. Uninstall that
utility to fix the problem.

CIRCUITPY Drive Does Not Appear or
Disappears Quickly
Kaspersky anti-virus can block the appearance of the CIRCUITPY drive. There has
not yet been settings change discovered that prevents this. Complete uninstallation
of Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY. A user has reported this problem on
Windows 7. The user turned off both Smart Firewall and Auto Protect, and CIRCUITPY
then appeared.

Sophos Endpoint security software can cause CIRCUITPY to disappear (https://
adafru.it/ELr) and the BOOT drive to reappear. It is not clear what causes this
behavior.

Samsung Magician can cause CIRCUITPY to disappear (reported here (https://
adafru.it/18eb) and here (https://adafru.it/18ec)).

Device Errors or Problems on Windows
Windows can become confused about USB device installations. Try cleaning up your
USB devices. Use Uwe Sieber's Device Cleanup Tool (https://adafru.it/RWd) (on that
page, scroll down to "Device Cleanup Tool"). Download and unzip the tool. Unplug all
the boards and other USB devices you want to clean up. Run the tool as
Administrator. You will see a listing like this, probably with many more devices. It is
listing all the USB devices that are not currently attached.

•

•

©Adafruit Industries Page 87 of 157

https://forums.adafruit.com/viewtopic.php?f=60&t=187629
https://forums.adafruit.com/viewtopic.php?t=205159
https://forums.adafruit.com/viewtopic.php?p=987596#p987596
https://www.uwe-sieber.de/misc_tools_e.html

Select all the devices you want to remove, and then press Delete. It is usually safe
just to select everything. Any device that is removed will get a fresh install when you
plug it in. Using the Device Cleanup Tool also discards all the COM port assignments
for the unplugged boards. If you have used many Arduino and CircuitPython boards,
you have probably seen higher and higher COM port numbers used, seemingly
without end. This will fix that problem.

Serial Console in Mu Not Displaying
Anything
There are times when the serial console will accurately not display anything, such as,
when no code is currently running, or when code with no serial output is already
running before you open the console. However, if you find yourself in a situation
where you feel it should be displaying something like an error, consider the following.

Depending on the size of your screen or Mu window, when you open the serial
console, the serial console panel may be very small. This can be a problem. A basic
CircuitPython error takes 10 lines to display!

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.
code.py output:
Traceback (most recent call last):
 File "code.py", line 7
SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

More complex errors take even more lines!

Therefore, if your serial console panel is five lines tall or less, you may only see blank
lines or blank lines followed by Press any key to enter the REPL. Use CTRL-D

©Adafruit Industries Page 88 of 157

to reload. . If this is the case, you need to either mouse over the top of the panel to
utilise the option to resize the serial panel, or use the scrollbar on the right side to
scroll up and find your message.

This applies to any kind of serial output whether it be error messages or print
statements. So before you start trying to debug your problem on the hardware side,
be sure to check that you haven't simply missed the serial messages due to serial
output panel height.

code.py Restarts Constantly
CircuitPython will restart code.py if you or your computer writes to something on the
CIRCUITPY drive. This feature is called auto-reload, and lets you test a change to your
program immediately.

Some utility programs, such as backup, anti-virus, or disk-checking apps, will write to
the CIRCUITPY as part of their operation. Sometimes they do this very frequently,
causing constant restarts.

Acronis True Image and related Acronis programs on Windows are known to cause
this problem. It is possible to prevent this by disabling the " (https://adafru.it/
XDZ)Acronis Managed Machine Service Mini" (https://adafru.it/XDZ).

If you cannot stop whatever is causing the writes, you can disable auto-reload by
putting this code in boot.py or code.py:

import supervisor

supervisor.runtime.autoreload = False

CircuitPython RGB Status Light
Nearly all CircuitPython-capable boards have a single NeoPixel or DotStar RGB LED
on the board that indicates the status of CircuitPython. A few boards designed before
CircuitPython existed, such as the Feather M0 Basic, do not.

Circuit Playground Express and Circuit Playground Bluefruit have multiple RGB
LEDs, but do NOT have a status LED. The LEDs are all green when in the bootloader.
In versions before 7.0.0, they do NOT indicate any status while running
CircuitPython.

©Adafruit Industries Page 89 of 157

https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder

CircuitPython 7.0.0 and Later
The status LED blinks were changed in CircuitPython 7.0.0 in order to save battery
power and simplify the blinks. These blink patterns will occur on single color LEDs
when the board does not have any RGB LEDs. Speed and blink count also vary for
this reason.

On start up, the LED will blink YELLOW multiple times for 1 second. Pressing the
RESET button (or on Espressif, the BOOT button) during this time will restart the board
and then enter safe mode. On Bluetooth capable boards, after the yellow blinks, there
will be a set of faster blue blinks. Pressing reset during the BLUE blinks will clear
Bluetooth information and start the device in discoverable mode, so it can be used
with a BLE code editor.

Once started, CircuitPython will blink a pattern every 5 seconds when no user code is
running to indicate why the code stopped:

1 GREEN blink: Code finished without error.
2 RED blinks: Code ended due to an exception. Check the serial console for
details.
3 YELLOW blinks: CircuitPython is in safe mode. No user code was run. Check
the serial console for safe mode reason.

When in the REPL, CircuitPython will set the status LED to WHITE. You can change the
LED color from the REPL. The status indicator will not persist on non-NeoPixel or
DotStar LEDs.

•
•

•

©Adafruit Industries Page 90 of 157

CircuitPython 6.3.0 and earlier
Here's what the colors and blinking mean:

steady GREEN: code.py (or code.txt, main.py, or main.txt) is running
pulsing GREEN: code.py (etc.) has finished or does not exist
steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is waiting
for a reset to indicate that it should start in safe mode
pulsing YELLOW: Circuit Python is in safe mode: it crashed and restarted
steady WHITE: REPL is running
steady BLUE: boot.py is running

Colors with multiple flashes following indicate a Python exception and then indicate
the line number of the error. The color of the first flash indicates the type of error:

GREEN: IndentationError
CYAN: SyntaxError
WHITE: NameError
ORANGE: OSError
PURPLE: ValueError
YELLOW: other error

These are followed by flashes indicating the line number, including place value.
WHITE flashes are thousands' place, BLUE are hundreds' place, YELLOW are tens'
place, and CYAN are one's place. So for example, an error on line 32 would flash
YELLOW three times and then CYAN two times. Zeroes are indicated by an extra-long
dark gap.

•
•
•

•
•
•

•
•
•
•
•
•

©Adafruit Industries Page 91 of 157

Serial console showing ValueError:
Incompatible .mpy file
This error occurs when importing a module that is stored as a .mpy binary file that
was generated by a different version of CircuitPython than the one its being loaded
into. In particular, the mpy binary format changed between CircuitPython versions 6.x
and 7.x, 2.x and 3.x, and 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 7.x from 6.x you’ll need to download
a newer version of the library that triggered the error on import . All libraries are
available in the Adafruit bundle (https://adafru.it/y8E).

CIRCUITPY Drive Issues
You may find that you can no longer save files to your CIRCUITPY drive. You may find
that your CIRCUITPY stops showing up in your file explorer, or shows up as
NO_NAME. These are indicators that your filesystem has issues. When the
CIRCUITPY disk is not safely ejected before being reset by the button or being
disconnected from USB, it may corrupt the flash drive. It can happen on Windows,
Mac or Linux, though it is more common on Windows.

Be aware, if you have used Arduino to program your board, CircuitPython is no longer
able to provide the USB services. You will need to reload CircuitPython to resolve this
situation.

The easiest first step is to reload CircuitPython. Double-tap reset on the board so you
get a boardnameBOOT drive rather than a CIRCUITPY drive, and copy the latest

©Adafruit Industries Page 92 of 157

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

version of CircuitPython (.uf2) back to the board. This may restore CIRCUITPY
functionality.

If reloading CircuitPython does not resolve your issue, the next step is to try putting
the board into safe mode.

Safe Mode
Whether you've run into a situation where you can no longer edit your code.py on
your CIRCUITPY drive, your board has gotten into a state where CIRCUITPY is read-
only, or you have turned off the CIRCUITPY drive altogether, safe mode can help.

Safe mode in CircuitPython does not run any user code on startup, and disables auto-
reload. This means a few things. First, safe mode bypasses any code in boot.py
(where you can set CIRCUITPY read-only or turn it off completely). Second, it does
not run the code in code.py. And finally, it does not automatically soft-reload when
data is written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state,
safe mode gives you the opportunity to correct it without losing all of the data on the
CIRCUITPY drive.

Entering Safe Mode in CircuitPython 7.x and Later

You can enter safe by pressing reset during the right time when the board boots.
Immediately after the board starts up or resets, it waits one second. On some boards,
the onboard status LED will blink yellow during that time. If you press reset during
that one second period, the board will start up in safe mode. It can be difficult to react
to the yellow LED, so you may want to think of it simply as a "slow" double click of the
reset button. (Remember, a fast double click of reset enters the bootloader.)

Entering Safe Mode in CircuitPython 6.x

You can enter safe by pressing reset during the right time when the board boots..
Immediately after the board starts up or resets, it waits 0.7 seconds. On some boards,
the onboard status LED (highlighted in green above) will turn solid yellow during this
time. If you press reset during that 0.7 seconds, the board will start up in safe mode. It
can be difficult to react to the yellow LED, so you may want to think of it simply as a
slow double click of the reset button. (Remember, a fast double click of reset enters
the bootloader.)

In Safe Mode

Once you've entered safe mode successfully in CircuitPython 6.x, the LED will pulse
yellow.

©Adafruit Industries Page 93 of 157

If you successfully enter safe mode on CircuitPython 7.x, the LED will intermittently
blink yellow three times.

If you connect to the serial console, you'll find the following message.

Auto-reload is off.
Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot.
Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not
run until you press the reset button, or unplug and plug in your board, to get out of
safe mode.

At this point, you'll want to remove any user code in code.py and, if present, the
boot.py file from CIRCUITPY. Once removed, tap the reset button, or unplug and plug
in your board, to restart CircuitPython. This will restart the board and may resolve
your drive issues. If resolved, you can begin coding again as usual.

If safe mode does not resolve your issue, the board must be completely erased and
CircuitPython must be reloaded onto the board.

To erase CIRCUITPY: storage.erase_filesystem()
CircuitPython includes a built-in function to erase and reformat the filesystem. If you
have a version of CircuitPython older than 2.3.0 on your board, you can update to the
newest version (https://adafru.it/Amd) to do this.

Connect to the CircuitPython REPL (https://adafru.it/Bec) using Mu or a terminal
program.
Type the following into the REPL:

>>> import storage
>>> storage.erase_filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

You WILL lose everything on the board when you complete the following
steps. If possible, make a copy of your code before continuing.

1.

2.

©Adafruit Industries Page 94 of 157

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

Erase CIRCUITPY Without Access to the REPL
If you can't access the REPL, or you're running a version of CircuitPython previous to
2.3.0 and you don't want to upgrade, there are options available for some specific
boards.

The options listed below are considered to be the "old way" of erasing your board.
The method shown above using the REPL is highly recommended as the best
method for erasing your board.

For the specific boards listed below:
If the board you are trying to erase is listed below, follow the steps to use the file to
erase your board.

 1. Download the correct erase file:

Circuit Playground Express
https://adafru.it/AdI

Feather M0 Express
https://adafru.it/AdJ

Feather M4 Express
https://adafru.it/EVK

Metro M0 Express
https://adafru.it/AdK

Metro M4 Express QSPI Eraser
https://adafru.it/EoM

Trellis M4 Express (QSPI)
https://adafru.it/DjD

If at all possible, it is recommended to use the REPL to erase your CIRCUITPY
drive. The REPL method is explained above.

©Adafruit Industries Page 95 of 157

https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098
https://cdn-learn.adafruit.com/assets/assets/000/076/217/original/flash_erase.ino.feather_m4.uf2
https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://cdn-learn.adafruit.com/assets/assets/000/073/820/original/Metro_M4_QSPI_Eraser.UF2?1553805937
https://cdn-learn.adafruit.com/assets/assets/000/067/535/original/Trellis_M4_QSPI_Eraser.UF2?1544719380

Grand Central M4 Express (QSPI)
https://adafru.it/DBA

PyPortal M4 Express (QSPI)
https://adafru.it/Eca

Circuit Playground Bluefruit (QSPI)
https://adafru.it/Gnc

Monster M4SK (QSPI)
https://adafru.it/GAN

PyBadge/PyGamer QSPI Eraser.UF2
https://adafru.it/GAO

CLUE_Flash_Erase.UF2
https://adafru.it/Jat

Matrix_Portal_M4_(QSPI).UF2
https://adafru.it/Q5B

RP2040 boards (flash_nuke.uf2)
https://adafru.it/18ed

 2. Double-click the reset button on the board to bring up the boardnameBOOT
drive.
 3. Drag the erase .uf2 file to the boardnameBOOT drive.
 4. The status LED will turn yellow or blue, indicating the erase has started.
 5. After approximately 15 seconds, the status LED will light up green. On the
NeoTrellis M4 this is the first NeoPixel on the grid
 6. Double-click the reset button on the board to bring up
the boardnameBOOT drive.
 7. Drag the appropriate latest release of CircuitPython (https://adafru.it/Em8) .uf2
file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer
again.

©Adafruit Industries Page 96 of 157

https://cdn-learn.adafruit.com/assets/assets/000/069/314/original/GC_M4_QSPI_Erase.UF2?1547404471
https://cdn-learn.adafruit.com/assets/assets/000/072/252/original/PYPORTAL_QSPI_Eraser.UF2?1551738305
https://cdn-learn.adafruit.com/assets/assets/000/082/950/original/CP_Bluefruit_QSPI_Erase.UF2?1572026649
https://cdn-learn.adafruit.com/assets/assets/000/083/330/original/M4SK_QSPI_Eraser.UF2?1572551433
https://cdn-learn.adafruit.com/assets/assets/000/083/331/original/PyBadge_QSPI_Eraser.UF2?1572551613
https://cdn-learn.adafruit.com/assets/assets/000/088/454/original/CLUE_Flash_Erase.UF2?1581873830
https://cdn-learn.adafruit.com/assets/assets/000/098/741/original/Matrix_Portal_M4_%28QSPI%29.UF2?1611076081
https://cdn-learn.adafruit.com/assets/assets/000/101/659/original/flash_nuke.uf2
https://circuitpython.org/downloads

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps
starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board,
check out the installation page (https://adafru.it/Amd). You'll also need to load your
code and reinstall your libraries!

For SAMD21 non-Express boards that have a UF2
bootloader:
Any SAMD21-based microcontroller that does not have external flash available is
considered a SAMD21 non-Express board. Non-Express boards that have a UF2
bootloader include Trinket M0, GEMMA M0, QT Py M0, and the SAMD21-based
Trinkey boards.

If you are trying to erase a SAMD21 non-Express board, follow these steps to erase
your board.

 1. Download the erase file:

SAMD21 non-Express Boards
https://adafru.it/VB-

 2. Double-click the reset button on the board to bring up the boardnameBOOT
drive.
 3. Drag the erase .uf2 file to the boardnameBOOT drive.
 4. The boot LED will start flashing again, and the boardnameBOOT drive will
reappear.
 5. Drag the appropriate latest release CircuitPython (https://adafru.it/Em8) .uf2
file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer
again.

If you haven't already downloaded the latest release of CircuitPython for your board,
check out the installation page (https://adafru.it/Amd) YYou'll also need to load your
code and reinstall your libraries!

For SAMD21 non-Express boards that do not have a UF2
bootloader:
Any SAMD21-based microcontroller that does not have external flash available is
considered a SAMD21 non-Express board. Non-Express boards that do not have a
UF2 bootloader include the Feather M0 Basic Proto, Feather Adalogger, or the
Arduino Zero.

©Adafruit Industries Page 97 of 157

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2
https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython

If you are trying to erase a non-Express board that does not have a UF2 bootloader,
follow these directions to reload CircuitPython using bossac (https://adafru.it/Bed),
which will erase and re-create CIRCUITPY.

Running Out of File Space on SAMD21 Non-
Express Boards
Any SAMD21-based microcontroller that does not have external flash available is
considered a SAMD21 non-Express board. This includes boards like the Trinket M0,
GEMMA M0, QT Py M0, and the SAMD21-based Trinkey boards.

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its
likely you'll run out of space but don't panic! There are a number of ways to free up
space.

Delete something!
The simplest way of freeing up space is to delete files from the drive. Perhaps there
are libraries in the lib folder that you aren't using anymore or test code that isn't in
use. Don't delete the lib folder completely, though, just remove what you don't need.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you
don't need it or have already installed it. It's ~12KiB or so.

Use tabs
One unique feature of Python is that the indentation of code matters. Usually the
recommendation is to indent code with four spaces for every indent. In general, that
is recommended too. However, one trick to storing more human-readable code is to
use a single tab character for indentation. This approach uses 1/4 of the space for
indentation and can be significant when you're counting bytes.

On macOS?
MacOS loves to generate hidden files. Luckily you can disable some of the extra
hidden files that macOS adds by running a few commands to disable search indexing

©Adafruit Industries Page 98 of 157

file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation

and create zero byte placeholders. Follow the steps below to maximize the amount of
space available on macOS.

Prevent & Remove macOS Hidden Files
First find the volume name for your board. With the board plugged in run this
command in a terminal to list all the volumes:

ls -l /Volumes

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full
path to the volume is the /Volumes/CIRCUITPY path.

Now follow the steps from this question (https://adafru.it/u1c) to run these terminal
commands that stop hidden files from being created on the board:

mdutil -i off /Volumes/CIRCUITPY
cd /Volumes/CIRCUITPY
rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}
mkdir .fseventsd
touch .fseventsd/no_log .metadata_never_index .Trashes
cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to your
board's volume if it's different. At this point all the hidden files should be cleared from
the board and some hidden files will be prevented from being created.

Alternatively, with CircuitPython 4.x and above, the special files and folders
mentioned above will be created automatically if you erase and reformat the
filesystem. WARNING: Save your files first! Do this in the REPL:

>>> import storage

>>> storage.erase_filesystem()

However there are still some cases where hidden files will be created by MacOS. In
particular if you copy a file that was downloaded from the internet it will have special
metadata that MacOS stores as a hidden file. Luckily you can run a copy command
from the terminal to copy files without this hidden metadata file. See the steps below.

Copy Files on macOS Without Creating Hidden Files
Once you've disabled and removed hidden files with the above commands on macOS
you need to be careful to copy files to the board with a special command that
prevents future hidden files from being created. Unfortunately you cannot use drag
and drop copy in Finder because it will still create these hidden extended attribute
files in some cases (for files downloaded from the internet, like Adafruit's modules).

©Adafruit Industries Page 99 of 157

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

To copy a file or folder use the -X option for the cp command in a terminal. For
example to copy a file_name.mpy file to the board use a command like:

cp -X file_name.mpy /Volumes/CIRCUITPY

(Replace file_name.mpy with the name of the file you want to copy.)

Or to copy a folder and all of the files and folders contained within, use a command
like:

cp -rX folder_to_copy /Volumes/CIRCUITPY

If you are copying to the lib folder, or another folder, make sure it exists before
copying.

if lib does not exist, you'll create a file named lib !
cp -X file_name.mpy /Volumes/CIRCUITPY/lib
This is safer, and will complain if a lib folder does not exist.
cp -X file_name.mpy /Volumes/CIRCUITPY/lib/

Other macOS Space-Saving Tips
If you'd like to see the amount of space used on the drive and manually delete hidden
files here's how to do so. First, move into the Volumes/ directory with cd /
Volumes/ , and then list the amount of space used on the CIRCUITPY drive with the
df command.

That's not very much space left! The next step is to show a list of the files currently on
the CIRCUITPY drive, including the hidden files, using the ls command. You cannot
use Finder to do this, you must do it via command line!

©Adafruit Industries Page 100 of 157

There are a few of the hidden files that MacOS loves to generate, all of which begin
with a ._ before the file name. Remove the ._ files using the rm command. You can
remove them all once by running rm CIRCUITPY/._* . The * acts as a wildcard to
apply the command to everything that begins with ._ at the same time.

Finally, you can run df again to see the current space used.

Nice! You have 12Ki more than before! This space can now be used for libraries and
code!

Device Locked Up or Boot Looping
In rare cases, it may happen that something in your code.py or boot.py files causes
the device to get locked up, or even go into a boot loop. A boot loop occurs when the
board reboots repeatedly and never fully loads. These are not caused by your
everyday Python exceptions, typically it's the result of a deeper problem within
CircuitPython. In this situation, it can be difficult to recover your device if CIRCUITPY
is not allowing you to modify the code.py or boot.py files. Safe mode is one recovery
option. When the device boots up in safe mode it will not run the code.py or boot.py
scripts, but will still connect the CIRCUITPY drive so that you can remove or modify
those files as needed.

For more information on safe mode and how to enter safe mode, see the Safe Mode
section on this page (https://adafru.it/Den).

©Adafruit Industries Page 101 of 157

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#safe-mode-3105351
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#safe-mode-3105351

Welcome to the Community!

CircuitPython is a programming language that's super simple to get started with and
great for learning. It runs on microcontrollers and works out of the box. You can plug it
in and get started with any text editor. The best part? CircuitPython comes with an
amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for
anyone to use, edit, copy and improve upon. This also means CircuitPython becomes
better because of you being a part of it. Whether this is your first microcontroller
board or you're a seasoned software engineer, you have something important to offer
the Adafruit CircuitPython community. This page highlights some of the many ways
you can be a part of it!

Adafruit Discord

The Adafruit Discord server is the best place to start. Discord is where the community
comes together to volunteer and provide live support of all kinds. From general

©Adafruit Industries Page 102 of 157

discussion to detailed problem solving, and everything in between, Discord is a digital
maker space with makers from around the world.

There are many different channels so you can choose the one best suited to your
needs. Each channel is shown on Discord as "#channelname". There's the #help-with-
projects channel for assistance with your current project or help coming up with ideas
for your next one. There's the #show-and-tell channel for showing off your newest
creation. Don't be afraid to ask a question in any channel! If you're unsure, #general is
a great place to start. If another channel is more likely to provide you with a better
answer, someone will guide you.

The help with CircuitPython channel is where to go with your CircuitPython questions.
#help-with-circuitpython is there for new users and developers alike so feel free to
ask a question or post a comment! Everyone of any experience level is welcome to
join in on the conversation. Your contributions are important! The #circuitpython-dev
channel is available for development discussions as well.

The easiest way to contribute to the community is to assist others on Discord.
Supporting others doesn't always mean answering questions. Join in celebrating
successes! Celebrate your mistakes! Sometimes just hearing that someone else has
gone through a similar struggle can be enough to keep a maker moving forward.

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your
granddaughter to.

Visit https://adafru.it/discord ()to sign up for Discord. Everyone is looking forward to
meeting you!

CircuitPython.org

Beyond the Adafruit Learn System, which you are viewing right now, the best place to
find information about CircuitPython is circuitpython.org (https://adafru.it/KJD).
Everything you need to get started with your new microcontroller and beyond is

©Adafruit Industries Page 103 of 157

https://adafru.it/discord
https://circuitpython.org

available. You can do things like download CircuitPython for your
microcontroller (https://adafru.it/Em8) or download the latest CircuitPython Library
bundle (https://adafru.it/ENC), or check out which single board computers support
Blinka (https://adafru.it/EA8). You can also get to various other CircuitPython related
things like Awesome CircuitPython or the Python for Microcontrollers newsletter. This
is all incredibly useful, but it isn't necessarily community related. So why is it included
here? The Contributing page (https://adafru.it/VD7).

CircuitPython itself is written in C. However, all of the Adafruit CircuitPython libraries
are written in Python. If you're interested in contributing to CircuitPython on the
Python side of things, check out circuitpython.org/contributing (https://adafru.it/VD7).
You'll find information pertaining to every Adafruit CircuitPython library GitHub
repository, giving you the opportunity to join the community by finding a contributing
option that works for you.

Note the date on the page next to Current Status for:

If you submit any contributions to the libraries, and do not see them reflected on the
Contributing page, it could be that the job that checks for new updates hasn't yet run
for today. Simply check back tomorrow!

Now, a look at the different options.

Pull Requests

The first tab you'll find is a list of open pull requests.

©Adafruit Industries Page 104 of 157

https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://circuitpython.org/blinka
https://circuitpython.org/blinka
https://circuitpython.org/contributing
https://circuitpython.org/contributing

GitHub pull requests, or PRs, are opened when folks have added something to an
Adafruit CircuitPython library GitHub repo, and are asking for Adafruit to add, or
merge, their changes into the main library code. For PRs to be merged, they must first
be reviewed. Reviewing is a great way to contribute! Take a look at the list of open
pull requests, and pick one that interests you. If you have the hardware, you can test
code changes. If you don't, you can still check the code updates for syntax. In the
case of documentation updates, you can verify the information, or check it for spelling
and grammar. Once you've checked out the update, you can leave a comment letting
us know that you took a look. Once you've done that for a while, and you're more
comfortable with it, you can consider joining the CircuitPythonLibrarians review team.
The more reviewers we have, the more authors we can support. Reviewing is a crucial
part of an open source ecosystem, CircuitPython included.

Open Issues

The second tab you'll find is a list of open issues.

GitHub issues are filed for a number of reasons, including when there is a bug in the
library or example code, or when someone wants to make a feature request. Issues
are a great way to find an opportunity to contribute directly to the libraries by
updating code or documentation. If you're interested in contributing code or
documentation, take a look at the open issues and find one that interests you.

If you're not sure where to start, you can search the issues by label. Labels are
applied to issues to make the goal easier to identify at a first glance, or to indicate the
difficulty level of the issue. Click on the dropdown next to "Sort by issue labels" to see
the list of available labels, and click on one to choose it.

©Adafruit Industries Page 105 of 157

If you're new to everything, new to contributing to open source, or new to
contributing to the CircuitPython project, you can choose "Good first issue". Issues
with that label are well defined, with a finite scope, and are intended to be easy for
someone new to figure out.

If you're looking for something a little more complicated, consider "Bug" or
"Enhancement". The Bug label is applied to issues that pertain to problems or failures
found in the library. The Enhancement label is applied to feature requests.

Don't let the process intimidate you. If you're new to Git and GitHub, there is a
guide (https://adafru.it/Dkh) to walk you through the entire process. As well, there are
always folks available on Discord () to answer questions.

Library Infrastructure Issues

The third tab you'll find is a list of library infrastructure issues.

This section is generated by a script that runs checks on the libraries, and then
reports back where there may be issues. It is made up of a list of subsections each
containing links to the repositories that are experiencing that particular issue. This
page is available mostly for internal use, but you may find some opportunities to
contribute on this page. If there's an issue listed that sounds like something you could
help with, mention it on Discord, or file an issue on GitHub indicating you're working

©Adafruit Industries Page 106 of 157

https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https:adafru.it/discord

to resolve that issue. Others can reply either way to let you know what the scope of it
might be, and help you resolve it if necessary.

CircuitPython Localization

The fourth tab you'll find is the CircuitPython Localization tab.

If you speak another language, you can help translate CircuitPython! The translations
apply to informational and error messages that are within the CircuitPython core. It
means that folks who do not speak English have the opportunity to have these
messages shown to them in their own language when using CircuitPython. This is
incredibly important to provide the best experience possible for all users.
CircuitPython uses Weblate to translate, which makes it much simpler to contribute
translations. You will still need to know some CircuitPython-specific practices and a
few basics about coding strings, but as with any CircuitPython contributions, folks are
there to help.

Regardless of your skill level, or how you want to contribute to the CircuitPython
project, there is an opportunity available. The Contributing page (https://adafru.it/VD7)
is an excellent place to start!

Adafruit GitHub

Whether you're just beginning or are life-long programmer who would like to
contribute, there are ways for everyone to be a part of the CircuitPython project. The
CircuitPython core is written in C. The libraries are written in Python. GitHub is the
best source of ways to contribute to the CircuitPython core (https://adafru.it/tB7), and

©Adafruit Industries Page 107 of 157

https://circuitpython.org/contributing
https://github.com/adafruit/circuitpython

the CircuitPython libraries (https://adafru.it/VFv). If you need an account, visit https://
github.com/ (https://adafru.it/d6C) and sign up.

If you're new to GitHub or programming in general, there are great opportunities for
you. For the CircuitPython core, head over to the CircuitPython repository on GitHub,
click on "Issues (https://adafru.it/tBb)", and you'll find a list that includes issues labeled
"good first issue (https://adafru.it/188e)". For the libraries, head over to the
Contributing page Issues list (https://adafru.it/VFv), and use the drop down menu to
search for "good first issue (https://adafru.it/VFw)". These issues are things that have
been identified as something that someone with any level of experience can help
with. These issues include options like updating documentation, providing feedback,
and fixing simple bugs. If you need help getting started with GitHub, there is an
excellent guide on Contributing to CircuitPython with Git and GitHub (https://adafru.it/
Dkh).

Already experienced and looking for a challenge? Checkout the rest of either issues
list and you'll find plenty of ways to contribute. You'll find all sorts of things, from new
driver requests, to library bugs, to core module updates. There's plenty of
opportunities for everyone at any level!

When working with or using CircuitPython or the CircuitPython libraries, you may find
problems. If you find a bug, that's great! The team loves bugs! Posting a detailed issue
to GitHub is an invaluable way to contribute to improving CircuitPython. For
CircuitPython itself, file an issue here (https://adafru.it/tBb). For the libraries, file an
issue on the specific library repository on GitHub. Be sure to include the steps to
replicate the issue as well as any other information you think is relevant. The more
detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of
CircuitPython or a library onto your CircuitPython hardware, and use it. Let us know
about any problems you find by posting a new issue to GitHub. Software testing on
both stable and unstable releases is a very important part of contributing
CircuitPython. The developers can't possibly find all the problems themselves! They
need your help to make CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report problems and
much more. If you have questions, remember that Discord and the Forums are both
there for help!

©Adafruit Industries Page 108 of 157

https://circuitpython.org/contributing/open-issues
https://github.com/
https://github.com/
https://github.com/adafruit/circuitpython/issues
https://github.com/adafruit/circuitpython/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues?label=good-first-issue
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https://github.com/adafruit/circuitpython/issues

Adafruit Forums

The Adafruit Forums (https://adafru.it/jIf) are the perfect place for support. Adafruit
has wonderful paid support folks to answer any questions you may have. Whether
your hardware is giving you issues or your code doesn't seem to be working, the
forums are always there for you to ask. You need an Adafruit account to post to the
forums. You can use the same account you use to order from Adafruit.

While Discord may provide you with quicker responses than the forums, the forums
are a more reliable source of information. If you want to be certain you're getting an
Adafruit-supported answer, the forums are the best place to be.

There are forum categories that cover all kinds of topics, including everything
Adafruit. The Adafruit CircuitPython (https://adafru.it/xXA) category under "Supported
Products & Projects" is the best place to post your CircuitPython questions.

Be sure to include the steps you took to get to where you are. If it involves wiring,
post a picture! If your code is giving you trouble, include your code in your post!
These are great ways to make sure that there's enough information to help you with
your issue.

You might think you're just getting started, but you definitely know something that
someone else doesn't. The great thing about the forums is that you can help others
too! Everyone is welcome and encouraged to provide constructive feedback to any of
the posted questions. This is an excellent way to contribute to the community and
share your knowledge!

©Adafruit Industries Page 109 of 157

https://forums.adafruit.com
https://forums.adafruit.com/viewforum.php?f=60

Read the Docs

Read the Docs (https://adafru.it/Beg) is a an excellent resource for a more detailed
look at the CircuitPython core and the CircuitPython libraries. This is where you'll find
things like API documentation and example code. For an in depth look at viewing and
understanding Read the Docs, check out the CircuitPython Documentation (https://
adafru.it/VFx) page!

CircuitPython Essentials

You've been introduced to CircuitPython, and worked through getting everything set
up. What's next? CircuitPython Essentials!

There are a number of core modules built into CircuitPython, which can be used along
side the many CircuitPython libraries available. The following pages demonstrate

©Adafruit Industries Page 110 of 157

https://circuitpython.readthedocs.io/
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-documentation

some of these modules. Each page presents a different concept including a code
example with an explanation. All of the examples are designed to work with your
microcontroller board.

Time to get started learning the CircuitPython essentials!

Some examples require external components, such as switches or sensors. You'll find
wiring diagrams where applicable to show you how to wire up the necessary
components to work with each example.

The following components are needed to complete all of the examples:

Adafruit MCP9808 High Accuracy I2C
Temperature Sensor Breakout
The MCP9808 digital temperature sensor
is one of the more accurate/precise we've
ever seen, with a typical accuracy of
±0.25°C over the sensor's -40°C to...
https://www.adafruit.com/product/5027

STEMMA QT / Qwiic JST SH 4-pin Cable -
100mm Long
This 4-wire cable is a little over 100mm /
4" long and fitted with JST-SH female 4-
pin connectors on both ends. Compared
with the chunkier JST-PH these are 1mm
pitch instead of...
https://www.adafruit.com/product/4210

512MB micro SD Memory Card
Add storage in a jiffy using this 512MB
microSD card. Preformatted to FAT32, so
it works out of the packaging with our
projects. Works great with any device in
the...
https://www.adafruit.com/product/5252

©Adafruit Industries Page 111 of 157

https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/5252
https://www.adafruit.com/product/5252

Blink
In learning any programming language, you often begin with some sort of Hello,
World! program. In CircuitPython, Hello, World! is blinking an LED. Blink is one of the
simplest programs in CircuitPython. It involves three built-in modules, two lines of set
up, and a short loop. Despite its simplicity, it shows you many of the basic concepts
needed for most CircuitPython programs, and provides a solid basis for more complex
projects. Time to get blinky!

LED Location

Blinking an LED
In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Templates/blink/ and then click on the
directory that matches the version of CircuitPython you're using and copy the
contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""CircuitPython Blink Example - the CircuitPython 'Hello, World!'"""
import time
import board
import digitalio

©Adafruit Industries Page 112 of 157

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

The built-in LED begins blinking!

Note that the code is a little less "Pythonic" than it could be. It could also be written as
led.value = not led.value with a single time.sleep(0.5) . That way is more
difficult to understand if you're new to programming, so the example is a bit longer
than it needed to be to make it easier to read.

It's important to understand what is going on in this program.

First you import three modules: time , board and digitalio . This makes these
modules available for use in your code. All three are built-in to CircuitPython, so you
don't need to download anything to get started.

Next, you set up the LED. To interact with hardware in CircuitPython, your code must
let the board know where to look for the hardware and what to do with it. So, you
create a digitalio.DigitalInOut() object, provide it the LED pin using the
board module, and save it to the variable led . Then, you tell the pin to act as an
OUTPUT .

Finally, you create a while True: loop. This means all the code inside the loop will
repeat indefinitely. Inside the loop, you set led.value = True which powers on the
LED. Then, you use time.sleep(0.5) to tell the code to wait half a second before
moving on to the next line. The next line sets led.value = False which turns the
LED off. Then you use another time.sleep(0.5) to wait half a second before
starting the loop over again.

With only a small update, you can control the blink speed. The blink speed is
controlled by the amount of time you tell the code to wait before moving on using
time.sleep() . The example uses 0.5 , which is one half of one second. Try
increasing or decreasing these values to see how the blinking changes.

That's all there is to blinking an LED using CircuitPython!

Digital Input
The CircuitPython digitalio module has many applications. The basic Blink
program sets up the LED as a digital output. You can just as easily set up a digital
input such as a button to control the LED. This example builds on the basic Blink

©Adafruit Industries Page 113 of 157

example, but now includes setup for a button switch. Instead of using the time
module to blink the LED, it uses the status of the button switch to control whether the
LED is turned on or off.

LED and Button

You'll use the Boot button, labeled Boot on the board silk, to turn on the build-in LED,
labeled #13 on the board silk.

Controlling the LED with a Button
SPDX-FileCopyrightText: 2022 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""
CircuitPython Digital Input Example - Blinking an LED using the built-in button.
"""
import board
import digitalio

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

button = digitalio.DigitalInOut(board.BUTTON)
button.switch_to_input(pull=digitalio.Pull.UP)

while True:
if not button.value:

led.value = True
else:

led.value = False

Now, press the button. The LED lights up! Let go of the button and the LED turns off.

©Adafruit Industries Page 114 of 157

Note that the code is a little less "Pythonic" than it could be. It could also be written as
led.value = not button.value . That way is more difficult to understand if you're
new to programming, so the example is a bit longer than it needed to be to make it
easier to read.

First you import two modules: board and digitalio . This makes these modules
available for use in your code. Both are built-in to CircuitPython, so you don't need to
download anything to get started.

Next, you set up the LED. To interact with hardware in CircuitPython, your code must
let the board know where to look for the hardware and what to do with it. So, you
create a digitalio.DigitalInOut() object, provide it the LED pin using the
board module, and save it to the variable led . Then, you tell the pin to act as an
OUTPUT .

You include setup for the button as well. It is similar to the LED setup, except the
button is an INPUT , and requires a pull up.

Inside the loop, you check to see if the button is pressed, and if so, turn on the LED.
Otherwise the LED is off.

That's all there is to controlling an LED with a button switch!

NeoPixel
Your board has a built-in RGB NeoPixel status LED. You can use CircuitPython code to
control the color and brightness of this LED. It is also used to indicate the bootloader
status and errors in your CircuitPython code.

©Adafruit Industries Page 115 of 157

A NeoPixel is what Adafruit calls the WS281x family of addressable RGB LEDs. It
contains three LEDs - a red one, a green one and a blue one - along side a driver chip
in a tiny package controlled by a single pin. They can be used individually (as in the
built-in LED on your board), or chained together in strips or other creative form
factors. NeoPixels do not light up on their own; they require a microcontroller. So, it's
super convenient that the NeoPixel is built in to your microcontroller board!

This page will cover using CircuitPython to control the status RGB NeoPixel built into
your microcontroller. You'll learn how to change the color and brightness, and how to
make a rainbow. Time to get started!

NeoPixel Location

NeoPixel Color and Brightness
To use with CircuitPython, you need to first install a few libraries, into the lib folder on
your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file
in a zip file. Extract the contents of the zip file, open the directory
CircuitPython_Templates/status_led_one_neopixel_rgb/ and then click on the
directory that matches the version of CircuitPython you're using and copy the
contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 116 of 157

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""CircuitPython status NeoPixel red, green, blue example."""
import time
import board
import neopixel

pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)

pixel.brightness = 0.3

while True:
pixel.fill((255, 0, 0))
time.sleep(0.5)
pixel.fill((0, 255, 0))
time.sleep(0.5)
pixel.fill((0, 0, 255))
time.sleep(0.5)

The built-in NeoPixel begins blinking red, then green, then blue, and repeats!

First you import two modules, time and board , and one library, neopixel . This
makes these modules and libraries available for use in your code. The first two are
modules built-in to CircuitPython, so you don't need to download anything to use

©Adafruit Industries Page 117 of 157

those. The neopixel library is separate, which is why you needed to install it before
getting started.

Next, you set up the NeoPixel LED. To interact with hardware in CircuitPython, your
code must let the board know where to look for the hardware and what to do with it.
So, you create a neopixel.NeoPixel() object, provide it the NeoPixel LED pin
using the board module, and tell it the number of LEDs. You save this object to the
variable pixel .

Then, you set the NeoPixel brightness using the brightness attribute. brightness
expects float between 0 and 1.0 . A float is essentially a number with a decimal in it.
The brightness value represents a percentage of maximum brightness; 0 is 0% and
1.0 is 100%. Therefore, setting pixel.brightness = 0.3 sets the brightness to
30%. The default brightness, which is to say the brightness if you don't explicitly set it,
is 1.0 . The default is really bright! That is why there is an option available to easily
change the brightness.

Inside the loop, you turn the NeoPixel red for 0.5 seconds, green for 0.5 seconds, and
blue for 0.5 seconds.

To turn the NeoPixel red, you "fill" it with an RGB value. Check out the section below
for details on RGB colors. The RGB value for red is (255, 0, 0) . Note that the RGB
value includes the parentheses. The fill() attribute expects the full RGB value
including those parentheses. That is why there are two pairs of parentheses in the
code.

You can change the RGB values to change the colors that the NeoPixel cycles
through. Check out the list below for some examples. You can make any color of the
rainbow with the right RGB value combination!

That's all there is to changing the color and setting the brightness of the built-in
NeoPixel LED!

RGB LED Colors
RGB LED colors are set using a combination of red, green, and blue, in the form of an
(R, G, B) tuple. Each member of the tuple is set to a number between 0 and 255 that
determines the amount of each color present. Red, green and blue in different
combinations can create all the colors in the rainbow! So, for example, to set an LED
to red, the tuple would be (255, 0, 0) , which has the maximum level of red, and
no green or blue. Green would be (0, 255, 0) , etc. For the colors between, you
set a combination, such as cyan which is (0, 255, 255) , with equal amounts of
green and blue. If you increase all values to the same level, you get white! If you
decrease all the values to 0, you turn the LED off.

©Adafruit Industries Page 118 of 157

Common colors include:

red: (255, 0, 0)
green: (0, 255, 0)
blue: (0, 0, 255)
cyan: (0, 255, 255)
purple: (255, 0, 255)
yellow: (255, 255, 0)
white: (255, 255, 255)
black (off): (0, 0, 0)

NeoPixel Rainbow
You should have already installed the library necessary to use the built-in NeoPixel
LED. If not, follow the steps at the beginning of the NeoPixel Color and Brightness
section to install it.

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Templates/status_led_one_neopixel_rainbow/
and then click on the directory that matches the version of CircuitPython you're using
and copy the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""CircuitPython status NeoPixel rainbow example."""
import time
import board
from rainbowio import colorwheel
import neopixel

pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)
pixel.brightness = 0.3

def rainbow(delay):
for color_value in range(255):

pixel[0] = colorwheel(color_value)

•
•
•
•
•
•
•
•

©Adafruit Industries Page 119 of 157

time.sleep(delay)

while True:
rainbow(0.02)

The NeoPixel displays a rainbow cycle!

This example builds on the previous example.

First, you import the same three modules and libraries. In addition to those, you
import colorwheel .

The NeoPixel hardware setup and brightness setting are the same.

Next, you have the rainbow() helper function. This helper displays the rainbow
cycle. It expects a delay in seconds. The higher the number of seconds provided for
delay , the slower the rainbow will cycle. The helper cycles through the values of the
color wheel to create a rainbow of colors.

Inside the loop, you call the rainbow helper with a 0.2 second delay, by including
rainbow(0.2) .

That's all there is to making rainbows using the built-in NeoPixel LED!

©Adafruit Industries Page 120 of 157

I2C

The I2C, or inter-integrated circuit (https://adafru.it/u2a), is a 2-wire protocol for
communicating with simple sensors and devices, which means it uses two
connections, or wires, for transmitting and receiving data. One connection is a clock,
called SCL. The other is the data line, called SDA. Each pair of clock and data pins are
referred to as a bus.

Typically, there is a device that acts as a controller and sends requests to the target
devices on each bus. In this case, your microcontroller board acts as the controller,
and the sensor breakout acts as the target. Historically, the controller is referred to as
the master, and the target is referred to as the slave, so you may run into that
terminology elsewhere. The official terminology is controller and target (https://
adafru.it/TtF).

Multiple I2C devices can be connected to the same clock and data lines. Each I2C
device has an address, and as long as the addresses are different, you can connect
them at the same time. This means you can have many different sensors and devices
all connected to the same two pins.

Both I2C connections require pull-up resistors, and most Adafruit I2C sensors and
breakouts have pull-up resistors built in. If you're using one that does not, you'll need
to add your own 2.2-10kΩ pull-up resistors from SCL and SDA to 3.3V.

I2C and CircuitPython
CircuitPython supports many I2C devices, and makes it super simple to interact with
them. There are libraries available for many I2C devices in the CircuitPython Library
Bundle (https://adafru.it/Tra). (If you don't see the sensor you're looking for, keep
checking back, more are being written all the time!)

In this section, you'll learn how to scan the I2C bus for all connected devices. Then
you'll learn how to interact with an I2C device.

©Adafruit Industries Page 121 of 157

https://en.wikipedia.org/wiki/I%C2%B2C
https://adafruit.com/controller-peripheral
https://circuitpython.readthedocs.io/projects/bundle/en/latest/#table-of-contents
https://circuitpython.readthedocs.io/projects/bundle/en/latest/#table-of-contents

Necessary Hardware
You'll need the following additional hardware to complete the examples on this page.

Adafruit MCP9808 High Accuracy I2C
Temperature Sensor Breakout
The MCP9808 digital temperature sensor
is one of the more accurate/precise we've
ever seen, with a typical accuracy of
±0.25°C over the sensor's -40°C to...
https://www.adafruit.com/product/5027

STEMMA QT / Qwiic JST SH 4-Pin Cable -
50mm Long
This 4-wire cable is 50mm / 1.9" long and
fitted with JST SH female 4-pin
connectors on both ends. Compared with
the chunkier JST PH these are 1mm pitch
instead of 2mm, but...
https://www.adafruit.com/product/4399

While the examples here will be using the Adafruit MCP9808 (http://adafru.it/5027), a
high accuracy temperature sensor, the overall process is the same for just about any
I2C sensor or device.

The first thing you'll want to do is get the sensor connected so your board has I2C to
talk to.

Wiring the MCP9808
The MCP9808 comes with a STEMMA QT connector, which makes wiring it up quite
simple and solder-free.

©Adafruit Industries Page 122 of 157

https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/5027

Connect the STEMMA QT cable from the
STEMMA QT port on your board to the
STEMMA QT port on the MCP9808.

Find Your Sensor
The first thing you'll want to do after getting the sensor wired up, is make sure it's
wired correctly. You're going to do an I2C scan to see if the board is detected, and if it
is, print out its I2C address.

Save the following to your CIRCUITPY drive as code.py.

Click the Download Project Bundle button below to download the necessary libraries
and the code.py file in a zip file. Extract the contents of the zip file, find your
CircuitPython version, and copy the matching code.py file to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""CircuitPython I2C Device Address Scan"""
import time
import board

i2c = board.I2C() # uses board.SCL and board.SDA
i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a
microcontroller

To create I2C bus on specific pins
import busio
i2c = busio.I2C(board.GP1, board.GP0) # Pi Pico RP2040

while not i2c.try_lock():
pass

try:

©Adafruit Industries Page 123 of 157

https://learn.adafruit.com//assets/130952
https://learn.adafruit.com//assets/130952

while True:
print(

"I2C addresses found:",
[hex(device_address) for device_address in i2c.scan()],

)
time.sleep(2)

finally: # unlock the i2c bus when ctrl-c'ing out of the loop
i2c.unlock()

If you run this and it seems to hang, try manually unlocking your I2C bus by running
the following two commands from the REPL.

import board
board.I2C().unlock()

First you create the i2c object, using board.I2C() . This convenience routine
creates and saves a busio.I2C object using the default pins board.SCL and
board.SDA . If the object has already been created, then the existing object is
returned. No matter how many times you call board.I2C() , it will return the same
object. This is called a singleton.

To be able to scan it, you need to lock the I2C down so the only thing accessing it is
the code. So next you include a loop that waits until I2C is locked and then continues
on to the scan function.

Last, you have the loop that runs the actual scan, i2c_scan() . Because I2C typically
refers to addresses in hex form, the example includes this bit of code that formats the
results into hex format: [hex(device_address) for device_address in
i2c.scan()] .

Open the serial console to see the results! The code prints out an array of addresses.
You've connected the MCP9808 which has a 7-bit I2C address of 0x18. The result for
this sensor is I2C addresses found: ['0x18'] . If no addresses are returned, refer
back to the wiring diagrams to make sure you've wired up your sensor correctly.

I2C Sensor Data
Now you know for certain that your sensor is connected and ready to go. Time to find
out how to get the data from the sensor!

Save the following to your CIRCUITPY drive as code.py.

Click the Download Project Bundle button below to download the necessary libraries
and the code.py file in a zip file. Extract the contents of the zip file, find your

©Adafruit Industries Page 124 of 157

CircuitPython version, and copy the matching entire lib folder and code.py file to your
CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""CircuitPython I2C MCP9808 Temperature Sensor Example"""
import time
import board
import adafruit_mcp9808

i2c = board.I2C() # uses board.SCL and board.SDA
i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a
microcontroller
import busio
i2c = busio.I2C(board.SCL1, board.SDA1) # For QT Py RP2040, QT Py ESP32-S2
mcp9808 = adafruit_mcp9808.MCP9808(i2c)

while True:
temperature_celsius = mcp9808.temperature
temperature_fahrenheit = temperature_celsius * 9 / 5 + 32
print("Temperature: {:.2f} C {:.2f} F ".format(temperature_celsius,

temperature_fahrenheit))
time.sleep(2)

This code begins the same way as the scan code, except this time, you create your
sensor object using the sensor library. You call it mcp9808 and provide it the i2c
object.

Then you have a simple loop that prints out the temperature reading using the sensor
object you created. Finally, there's a time.sleep(2) , so it only prints once every two
seconds. Connect to the serial console to see the results. Try touching the MCP9808
with your finger to see the values change!

©Adafruit Industries Page 125 of 157

Where's my I2C?
On many microcontrollers, you have the flexibility of using a wide range of pins for
I2C. On some types of microcontrollers, any pin can be used for I2C! Other chips
require using bitbangio, but can also use any pins for I2C. There are further
microcontrollers that may have fixed I2C pins.

Given the many different types of microcontroller boards available, it's impossible to
guarantee anything other than the labeled 'SDA' and 'SCL' pins. So, if you want some
other setup, or multiple I2C interfaces, how will you find those pins? Easy! Below is a
handy script.

Save the following to your CIRCUITPY drive as code.py.

Click the Download Project Bundle button below to download the necessary libraries
and the code.py file in a zip file. Extract the contents of the zip file, find your
CircuitPython version, and copy the matching code.py file to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021-2023 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""CircuitPython I2C possible pin-pair identifying script"""
import board
import busio
from microcontroller import Pin

def is_hardware_i2c(scl, sda):
try:

p = busio.I2C(scl, sda)
p.deinit()
return True

except ValueError:
return False

except RuntimeError:
return True

def get_unique_pins():
exclude = [

getattr(board, p)
for p in [

This is not an exhaustive list of unexposed pins. Your results
may include other pins that you cannot easily connect to.
"NEOPIXEL",
"DOTSTAR_CLOCK",

©Adafruit Industries Page 126 of 157

"DOTSTAR_DATA",
"APA102_SCK",
"APA102_MOSI",
"LED",
"SWITCH",
"BUTTON",
"ACCELEROMETER_INTERRUPT",
"VOLTAGE_MONITOR",
"MICROPHONE_CLOCK",
"MICROPHONE_DATA",
"RFM_RST",
"RFM_CS",
"RFM_IO0",
"RFM_IO1",
"RFM_IO2",
"RFM_IO3",
"RFM_IO4",
"RFM_IO5",
"TFT_I2C_POWER",
"NEOPIXEL_POWER",

]
if p in dir(board)

]
pins = [

pin
for pin in [getattr(board, p) for p in dir(board)]
if isinstance(pin, Pin) and pin not in exclude

]
unique = []
for p in pins:

if p not in unique:
unique.append(p)

return unique

for scl_pin in get_unique_pins():
for sda_pin in get_unique_pins():

if scl_pin is sda_pin:
continue

if is_hardware_i2c(scl_pin, sda_pin):
print("SCL pin:", scl_pin, "\t SDA pin:", sda_pin)

Now, connect to the serial console and check out the output! The results print out a
nice handy list of SCL and SDA pin pairs that support I2C.

The output for the Feather RP2040 Adalogger is extremely long! The
screenshot shows only the beginning. Run the script yourself to see the full
output!

This example only runs once, so if you do not see any output when you
connect to the serial console, try CTRL+D to reload.

©Adafruit Industries Page 127 of 157

SD Card

Follow these steps to create the /sd
directory

https://adafru.it/19ei

Your board comes with a built in MicroSD card slot! Adding a MicroSD card allows you
to include more files, music, images, videos etc. than the flash on the board can hold.
You can use a MicroSD card with CircuitPython and the
Adafruit_CircuitPython_SD (https://adafru.it/zwC) module. This module allows you to
easily write Python code that lets you read and write to an attached MicroSD card.

MicroSD Card Slot

The MicroSD card slot is located at the
end of the board, directly behind the
STEMMA QT port.

As of CircuitPython 9, a mount point (folder) named /sd is required on the
CIRCUITPY drive. Make sure to create that directory after upgrading
CircuitPython.

For these demos to work, you must insert a MicroSD card into the slot.

©Adafruit Industries Page 128 of 157

https://learn.adafruit.com/adafruit-memento-camera-board/circuitpython-memento-starter-projects
https://github.com/adafruit/Adafruit_CircuitPython_SD
https://learn.adafruit.com//assets/130954
https://learn.adafruit.com//assets/130954

512MB micro SD Memory Card
Add storage in a jiffy using this 512MB
microSD card. Preformatted to FAT32, so
it works out of the packaging with our
projects. Works great with any device in
the...
https://www.adafruit.com/product/5252

CircuitPython Usage
To use with CircuitPython, you need to first install the adafruit_sdcard library, and its
dependencies, into the lib folder on your CIRCUITPY drive. Then you need to update
code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file
in a zip file. Extract the contents of the zip file, and copy the entire lib folder and the
code.py file to your CIRCUITPY drive.

Your CIRCUITPY/lib folder should contain the following folders and files:

/adafruit_bus_device
adafruit_sdcard.mpy

SD Card Read Test
Once everything is saved to the CIRCUITPY drive, connect to the serial
console (https://adafru.it/Bec) to see the data printed out!

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

"""

•
•

©Adafruit Industries Page 129 of 157

https://www.adafruit.com/product/5252
https://www.adafruit.com/product/5252
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

CircuitPython Essentials SD Card Read Demo
Feather RP2040 Adalogger
"""

import os
import busio
import digitalio
import board
import storage
import adafruit_sdcard

Connect to the card and mount the filesystem.
cs = digitalio.DigitalInOut(board.SD_CS)
sd_spi = busio.SPI(board.SD_CLK, board.SD_MOSI, board.SD_MISO)
sdcard = adafruit_sdcard.SDCard(sd_spi, cs)
vfs = storage.VfsFat(sdcard)
storage.mount(vfs, "/sd")

Use the filesystem as normal! Our files are under /sd

This helper function will print the contents of the SD
def print_directory(path, tabs=0):

for file in os.listdir(path):
stats = os.stat(path + "/" + file)
filesize = stats[6]
isdir = stats[0] & 0x4000

if filesize < 1000:
sizestr = str(filesize) + " bytes"

elif filesize < 1000000:
sizestr = "%0.1f KB" % (filesize / 1000)

else:
sizestr = "%0.1f MB" % (filesize / 1000000)

prettyprintname = ""
for _ in range(tabs):

prettyprintname += " "
prettyprintname += file
if isdir:

prettyprintname += "/"
print("{0:<40} Size: {1:>10}".format(prettyprintname, sizestr))

recursively print directory contents
if isdir:

print_directory(path + "/" + file, tabs + 1)

print("Files on filesystem:")
print("====================")
print_directory("/sd")

©Adafruit Industries Page 130 of 157

In this read test for the SD card, the filesystem on the SD card is mounted and read.
Then, the contents of the filesystem are printed to the REPL.

SD Card Write Test
SPDX-FileCopyrightText: 2017 Limor Fried for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
CircuitPython Essentials SD Card Write Demo
Feather RP2040 Adalogger
"""

import time
import busio
import board
import digitalio
import microcontroller
import storage
import adafruit_sdcard

Connect to the card and mount the filesystem.
cs = digitalio.DigitalInOut(board.SD_CS)
sd_spi = busio.SPI(board.SD_CLK, board.SD_MOSI, board.SD_MISO)
sdcard = adafruit_sdcard.SDCard(sd_spi, cs)
vfs = storage.VfsFat(sdcard)
storage.mount(vfs, "/sd")

Use the filesystem as normal! Our files are under /sd

print("Logging temperature to filesystem")
append to the file!
while True:

open file for append
with open("/sd/temperature.txt", "a") as f:

t = microcontroller.cpu.temperature
print("Temperature = %0.1f" % t)
f.write("%0.1f\n" % t)

file is saved
time.sleep(1)

©Adafruit Industries Page 131 of 157

In this example, the code is writing data to the SD card. The microcontroller CPU
temperature is printed to the REPL and logged to a text file on the SD card. After
running the code, you can read the text file from the SD card. You'll see that the text
file matches what was printed to the REPL.

Arduino
The Arduino Philhower core (https://adafru.it/ToC) provides support for RP2040
microcontroller boards. This page covers getting your Arduino IDE set up to include
your board.

Arduino IDE Download
The first thing you will need to do is to download the latest release of the Arduino
IDE. The Philhower core requires version 1.8 or higher.

Arduino IDE Download
https://adafru.it/Pd5

Download and install it to your computer.

Once installed, open the Arduino IDE.

Adding the Philhower Board Manager URL
In the Arduino IDE, and navigate to the Preferences window. You can access it
through File > Preferences on Windows or Linux, or Arduino > Preferences on OS X.

The Preferences window will open.

In the Additional Boards Manager URLs field, you'll want to add a new URL. The list of
URLs is comma separated, and you will only have to add each URL once. The URLs

©Adafruit Industries Page 132 of 157

https://github.com/earlephilhower/arduino-pico
https://github.com/earlephilhower/arduino-pico
https://github.com/earlephilhower/arduino-pico
https://www.arduino.cc/en/software

point to index files that the Board Manager uses to build the list of available &
installed boards.

Copy the following URL.

https://github.com/earlephilhower/arduino-pico/releases/download/

global/package_rp2040_index.json

Add the URL to the the Additional Boards Manager URLs field (highlighted in red
below).

Click OK to save and close Preferences.

Add Board Support Package
In the Arduino IDE, click on Tools > Board > Boards Manager. If you have previously
selected a board, the Board menu item may have a board name after it.

In the Boards Manager, search for RP2040. Scroll down to the Raspberry Pi Pico/
RP2040 by Earle F Philhower, III entry. Click Install to install it.

©Adafruit Industries Page 133 of 157

Once installation is complete, click Close to close the Boards Manager.

Choose Your Board
In the Tools > Boards menu, you should now see Raspberry Pi RP2040 Boards
(possibly followed by a version number).

Navigate to the Raspberry Pi RP2040 Boards menu. You will see the available boards
listed.

Navigate to the Raspberry Pi RP2040 Boards menu and choose Adafruit Feather
RP2040 Adalogger.

Installing a new board package can take a few minutes. Don't click Cancel!

©Adafruit Industries Page 134 of 157

Now you're ready to begin using Arduino with your RP2040 board!

Arduino Usage
Now that you've set up the Arduino IDE with the Philhower RP2040 Arduino core,
you're ready to start using Arduino with your RP2040.

RP2040 Arduino Pins
There is no pin remapping for Arduino on the RP2040. Therefore, the pin names on
the top of the board are not the pin names used for Arduino. The Arduino pin names
are the RP2040 GPIO pin names.

To find the Arduino pin name, check the PrettyPins diagram found on the Pinouts
page. Each GPIO pin in the diagram has a GPIOx pin name listed, where x is the pin
number. The Arduino pin name is the number following GPIO. For
example, GPIO1 would be Arduino pin 1 .

Choose Your Board
Navigate to the Tools > Boards > Raspberry Pi RP2040 Boards menu. The Raspberry
PI RP2040 Boards menu name may be followed by a version number.

Choose Adafruit Feather RP2040 Adalogger from the menu.

If there is no serial Port available in the dropdown, or an invalid one appears -
don't worry about it! The RP2040 does not actually use a serial port to upload,
so its OK if it does not appear if in manual bootload mode. You will see a serial
port appear after uploading your first sketch.

©Adafruit Industries Page 135 of 157

Load the Blink Sketch
Begin by plugging in your board to your computer, and wait a moment for it to be
recognised by the OS. It will create a COM/serial port that you can now select from
the Tools > Port menu dropdown.

Open the Blink sketch by clicking through File > Examples > 01.Basics > Blink.

Click Upload. A successful upload will result in text similar to the following.

Once complete, the little red LED will begin blinking once every second! Try changing
up the delay() timing to change the rate at which the LED blinks.

Manually Enter the Bootloader
If you get into a state with the bootloader where you can no longer upload a sketch,
or you have uploaded code that crashes and doesn't auto-reboot into the bootloader,
you may have to manually enter the bootloader.

To enter the bootloader, hold down the Boot button, and while continuing to hold it
(don't let go!), press and release the reset button. Continue to hold the Boot button
until the RPI-RP2 drive appears!

Once the RPI-RP2 drive shows up, your board is in bootloader mode. There will not be
a port available in bootloader mode, this is expected.

Once you see RPI-RP2 drive, make sure you are no longer holding down any buttons
(reset or boot0 button).

Now, click Upload on your sketch to try again.

©Adafruit Industries Page 136 of 157

Blink
The first and most basic program you can upload to your Arduino is the classic Blink
sketch. This takes something on the board and makes it, well, blink! On and off. It's a
great way to make sure everything is working and you're uploading your sketch to the
right board and right configuration.

When all else fails, you can always come back to Blink!

Pre-Flight Check: Get Arduino IDE &
Hardware Set Up
This lesson assumes you have Arduino IDE set up. This is a generalized checklist,
some elements may not apply to your hardware. If you haven't yet, check the previous
steps in the guide to make sure you:

Install the very latest Arduino IDE for Desktop (not all boards are supported by
the Web IDE so we don't recommend it).
Install any board support packages (BSP) required for your hardware. Some
boards are built in defaults on the IDE, but lots are not! You may need to install
plug-in support which is called the BSP.
Get a Data/Sync USB cable for connecting your hardware. A significant amount
of problems folks have stem from not having a USB cable with data pins. Yes,
these cursed cables roam the land, making your life hard. If you find a USB
cable that doesn't work for data/sync, throw it away immediately! There is no
need to keep it around, cables are very inexpensive these days.

•

•

•

©Adafruit Industries Page 137 of 157

Install any drivers required - If you have a board with a FTDI or CP210x chip,
you may need to get separate drivers. If your board has native USB, it probably
doesn't need anything. After installing, reboot to make sure the driver sinks in.
Connect the board to your computer. If your board has a power LED, make sure
its lit. Is there a power switch? Make sure its turned On!

Start up Arduino IDE and Select Board/Port
OK now you are prepared! Open the Arduino IDE on your computer. Now you have to
tell the IDE what board you are using, and how you want to connect to it.

In the IDE find the Tools menu. You will use this to select the board. If you switch
boards, you must switch the selection! So always double-check before you upload
code in a new session.

•

•

©Adafruit Industries Page 138 of 157

New Blink Sketch
OK lets make a new blink sketch! From the File menu, select New

Then in the new window, copy and paste this text:

int led = LED_BUILTIN;

void setup() {
 // Some boards work best if we also make a serial connection
 Serial.begin(115200);

 // set LED to be an output pin
 pinMode(led, OUTPUT);
}

void loop() {
 // Say hi!
 Serial.println("Hello!");

 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(500); // wait for a half second
 digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
 delay(500); // wait for a half second
}

One note you'll see is that we reference the LED with the constant LED_BUILTIN
rather than a number. That's because, historically, the built in LED was on pin 13 for
Arduinos. But in the decades since, boards don't always have a pin 13, or maybe it
could not be used for an LED. So the LED could have moved to another pin. It's best
to use LED_BUILTIN so you don't get the pin number confused!

Note that in this example, we are not only blinking the LED but also printing to
the Serial monitor, think of it as a little bonus to test the serial connection.

©Adafruit Industries Page 139 of 157

Verify (Compile) Sketch
OK now you can click the Verify button to convert the sketch into binary data to be
uploaded to the board.

Note that Verifying a sketch is the same as Compiling a sketch - so we will use the
words interchangeably

During verification/compilation, the computer will do a bunch of work to collect all the
libraries and code and the results will appear in the bottom window of the IDE.

If something went wrong with compilation, you will get red warning/error text in the
bottom window letting you know what the error was. It will also highlight the line with
an error.

For example, here I had the wrong board selected - and the selected board does not
have a built in LED!

©Adafruit Industries Page 140 of 157

Here's another common error, in my haste I forgot to add a ; at the end of a line. The
compiler warns me that it's looking for one - note that the error is actually a few lines
up!

On success you will see something like this white text output and the message Done
compiling. in the message area.

Turning on detailed compilation warnings and output can be very helpful
sometimes - Its in Preferences under "Show Verbose Output During:" and
check the Compilation button. If you ever need to get help from others, be
sure to do this and then provide all the text that is output. It can assist in
nailing down what happened!

©Adafruit Industries Page 141 of 157

Upload Sketch
Once the code is verified/compiling cleanly you can upload it to your board. Click the
Upload button.

The IDE will try to compile the sketch again for good measure, then it will try to
connect to the board and upload a the file.

This is actually one of the hardest parts for beginners because it's where a lot of
things can go wrong.

However, lets start with what it looks like on success! Here's what your board upload
process looks like when it goes right:

Often times you will get a warning like this, which is kind of vague:

No device found on COM66 (or whatever port is selected)
An error occurred while uploading the sketch

This could be a few things.

First up, check again that you have the correct board selected! Many electronics
boards have very similar names or look, and often times folks grab a board different
from what they thought.

©Adafruit Industries Page 142 of 157

If you're positive the right board is selected, we recommend the next step is to put
the board into manual bootloading mode.

Native USB and manual bootloading
Historically, microcontroller boards contained two chips: the main micro chip (say,
ATmega328 or ESP8266 or ESP32) and a separate chip for USB interface that would
be used for bootloading (a CH430, FT232, CP210x, etc). With these older designs, the
microcontroller is put into a bootloading state for uploading code by the separate
chip. It allows for easier uploading but is more expensive as two chips are needed,
and also the microcontroller can't act like a keyboard or disk drive.

Modern chips often have 'native' USB - that means that there is no separate chip for
USB interface. It's all in one! Great for cost savings, simplicity of design, reduced size
and more control. However, it means the chip must be self-aware enough to be able
to put itself into bootload/upload mode on its own. That's fine 99% of the time but is
very likely you will at some point get the board into an odd state that makes it too
confused to bootload.

Before continuing we really, really suggest turning on Verbose Upload messages, it
will help in this process because you will be able to see what the IDE is trying to do.
It's a checkbox in the Preferences menu.

Enter Manual Bootload Mode
OK now you know it's probably time to try manual bootloading. No problem! Here is
how you do that for this board:

A lot of beginners have a little freakout the first time this happens, they think
the board is ruined or 'bricked' - it's almost certainly not, it is just crashed and/
or confused. You may need to perform a little trick to get the board back into a
good state, at which point you won't need to manually bootload again.

©Adafruit Industries Page 143 of 157

To enter the bootloader, hold down the Boot button, and while continuing to hold it
(don't let go!), press and release the reset button. Continue to hold the Boot button
until the RPI-RP2 drive appears!

Once you are in manual bootload mode, go to the Tools menu, and make sure you
have selected the bootloader serial port. It is almost certain that the serial port has
changed now that the bootloader is enabled

Now you can try uploading again!

This time, you should have success!

After uploading this way, be sure to click the reset button - it sort of makes sure that
the board got a good reset and will come back to life nicely.

Did you remember to select the new Port in the Tools menu since the
bootloader port has changed?

©Adafruit Industries Page 144 of 157

It's also a good idea to try to re-upload the sketch again now that you've performed a
manual bootload to get the chip into a good state. It should perform an auto-reset the
second time, so you don't have to manually bootload again.

Finally, a Blink!
OK it was a journey but now we're here and you can enjoy your blinking LED. Next up,
try to change the delay between blinks and re-upload. It's a good way to make sure
your upload process is smooth and practiced.

I2C
A lot of sensors, displays, and devices can connect over I2C. I2C is a 2-wire 'bus' that
allows multiple devices to all connect on one set of pins so it's very convenient for
wiring!

When using your board, you'll probably want to connect up I2C devices, and it can be
a little tricky the first time. The best way to debug I2C is go through a checklist and
then perform an I2C scan

After uploading with Manual Bootloader - don't forget to re-select the old Port
again

©Adafruit Industries Page 145 of 157

Common I2C Connectivity Issues
Have you connected four wires (at a minimum) for each I2C device? Power the
device with whatever is the logic level of your microcontroller board (probably
3.3V), then a ground wire, and a SCL clock wire, and and a SDA data wire.
If you're using a STEMMA QT board - check if the power LED is lit. It's usually a
green LED to the left side of the board.
Does the STEMMA QT/I2C port have switchable power or pullups? To reduce
power, some boards have the ability to cut power to I2C devices or the pullup
resistors. Check the documentation if you have to do something special to turn
on the power or pullups.
If you are using a DIY I2C device, do you have pullup resistors? Many boards
do not have pullup resistors built in and they are required! We suggest any
common 2.2K to 10K resistors. You'll need two: one each connects from SDA to
positive power, and SCL to positive power. Again, positive power (a.k.a VCC,
VDD or V+) is often 3.3V
Do you have an address collision? You can only have one board per address. So
you cannot, say, connect two AHT20's to one I2C port because they have the
same address and will interfere. Check the sensor or documentation for the
address. Sometimes there are ways to adjust the address.
Does your board have multiple I2C ports? Historically, boards only came with
one. But nowadays you can have two or even three! This can help solve the
"hey, but what if I want two devices with the same address" problem: just put
one on each bus.
Are you hot-plugging devices? I2C does not support dynamic re-connection,
you cannot connect and disconnect sensors as you please. They should all be
connected on boot and not change. (Only exception is if you're using a hot-plug
assistant but that'll cost you (http://adafru.it/5159)).
Are you keeping the total bus length reasonable? I2C was designed for maybe
6" max length. We like to push that with plug-n-play cables, but really please
keep them as short as possible! (Only exception is if you're using an active bus
extender (http://adafru.it/4756)).

Perform an I2C scan!
Install TestBed Library

To scan I2C, the Adafruit TestBed library is used. This library and example just makes
the scan a little easier to run because it takes care of some of the basics. You will
need to add support by installing the library. Good news: it is very easy to do it. Go to
the Arduino Library Manager.

•

•

•

•

•

•

•

•

©Adafruit Industries Page 146 of 157

https://www.adafruit.com/product/5159
https://www.adafruit.com/product/5159
https://www.adafruit.com/product/4756
https://www.adafruit.com/product/4756

Search for TestBed and install the Adafruit TestBed library

Now open up the I2C Scan example

// SPDX-FileCopyrightText: 2023 Carter Nelson for Adafruit Industries
//
// SPDX-License-Identifier: MIT
// --------------------------------------
// i2c_scanner
//
// Modified from https://playground.arduino.cc/Main/I2cScanner/
// --------------------------------------

#include <Wire.h>

// Set I2C bus to use: Wire, Wire1, etc.
#define WIRE Wire

void setup() {
WIRE.begin();

Serial.begin(9600);
while (!Serial)

delay(10);
Serial.println("\nI2C Scanner");

}

void loop() {
byte error, address;
int nDevices;

©Adafruit Industries Page 147 of 157

Serial.println("Scanning...");

nDevices = 0;
for(address = 1; address < 127; address++)
{

// The i2c_scanner uses the return value of
// the Write.endTransmisstion to see if
// a device did acknowledge to the address.
WIRE.beginTransmission(address);
error = WIRE.endTransmission();

if (error == 0)
{

Serial.print("I2C device found at address 0x");
if (address<16)

Serial.print("0");
Serial.print(address,HEX);
Serial.println(" !");

nDevices++;
}
else if (error==4)
{

Serial.print("Unknown error at address 0x");
if (address<16)

Serial.print("0");
Serial.println(address,HEX);

}
}
if (nDevices == 0)

Serial.println("No I2C devices found\n");
else

Serial.println("done\n");

delay(5000); // wait 5 seconds for next scan
}

Wire up I2C device

While the examples here will be using the Adafruit MCP9808 (http://adafru.it/5027), a
high accuracy temperature sensor, the overall process is the same for just about any
I2C sensor or device.

The first thing you'll want to do is get the sensor connected so your board has I2C to
talk to.

Adafruit MCP9808 High Accuracy I2C
Temperature Sensor Breakout
The MCP9808 digital temperature sensor
is one of the more accurate/precise we've
ever seen, with a typical accuracy of
±0.25°C over the sensor's -40°C to...
https://www.adafruit.com/product/5027

©Adafruit Industries Page 148 of 157

https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027

STEMMA QT / Qwiic JST SH 4-Pin Cable -
50mm Long
This 4-wire cable is 50mm / 1.9" long and
fitted with JST SH female 4-pin
connectors on both ends. Compared with
the chunkier JST PH these are 1mm pitch
instead of 2mm, but...
https://www.adafruit.com/product/4399

Wiring the MCP9808
The MCP9808 comes with a STEMMA QT connector, which makes wiring it up quite
simple and solder-free.

Now upload the scanning sketch to your microcontroller and open the serial port to
see the output. You should see something like this:

©Adafruit Industries Page 149 of 157

https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399

SD Card
Using the built in MicroSD card slot with Arduino involves installing the Adafruit Fork
of the SdFat library (https://adafru.it/18uA), and running the provided example code.

MicroSD Card Slot

The MicroSD card slot is located at the
end of the board, directly behind the
STEMMA QT port.

For these demos to work, you must insert a MicroSD card into the slot.

©Adafruit Industries Page 150 of 157

https://github.com/adafruit/SdFat
https://github.com/adafruit/SdFat
https://learn.adafruit.com//assets/130949
https://learn.adafruit.com//assets/130949

512MB micro SD Memory Card
Add storage in a jiffy using this 512MB
microSD card. Preformatted to FAT32, so
it works out of the packaging with our
projects. Works great with any device in
the...
https://www.adafruit.com/product/5252

Library Installation
You can install the Adafruit Fork of the SDFat library for Arduino using the Library
Manager in the Arduino IDE.

Click the Manage Libraries ... menu item, search for Adafruit SDFat and select
the SDFat - Adafruit Fork library:

There are no additional dependencies for the SdFat - Adafruit Fork library.

©Adafruit Industries Page 151 of 157

https://www.adafruit.com/product/5252
https://www.adafruit.com/product/5252

Read/Write Example
// SPDX-FileCopyrightText: 2023 Liz Clark for Adafruit Industries
//
// SPDX-License-Identifier: MIT
/*
 SD card read/write

 This example shows how to read and write data to and from an SD card file
 The circuit:
 * SD card attached to SPI bus as follows:
 ** MOSI - pin 11
 ** MISO - pin 12
 ** CLK - pin 13

 created Nov 2010
 by David A. Mellis
 modified 9 Apr 2012
 by Tom Igoe
 modified 14 Feb 2023
 by Liz Clark
 modified 25 Aug 2023
 by Kattni Rembor

 This example code is in the public domain.

 */

#include <SPI.h>
#include "SdFat.h"

#define SD_CS_PIN 23

SdFat SD;
FsFile myFile;
SdSpiConfig config(SD_CS_PIN, DEDICATED_SPI, SD_SCK_MHZ(16), &SPI1);

void setup() {
// Open serial communications and wait for port to open:
Serial.begin(115200);
while (!Serial) { yield(); delay(10); } // wait till serial port is opened
delay(100); // RP2040 delay is not a bad idea

Serial.print("Initializing SD card...");

// Retry mechanism for SD card initialization
while (!SD.begin(config)) {

Serial.println("initialization failed! Retrying...");
delay(1000); // Wait for a second before retrying

}
Serial.println("initialization done.");

// open the file. note that only one file can be open at a time,
// so you have to close this one before opening another.
myFile = SD.open("test.txt", FILE_WRITE);

// if the file opened okay, write to it:
if (myFile) {

Serial.print("Writing to test.txt...");
myFile.println("testing 1, 2, 3.");
myFile.println("hello world!");
// close the file:
myFile.close();
Serial.println("done.");

} else {
// if the file didn't open, print an error:
Serial.println("error opening test.txt");

}

©Adafruit Industries Page 152 of 157

// re-open the file for reading:
myFile = SD.open("test.txt");
if (myFile) {

Serial.println("test.txt:");

// read from the file until there's nothing else in it:
while (myFile.available()) {

Serial.write(myFile.read());
}
// close the file:
myFile.close();

} else {
// if the file didn't open, print an error:
Serial.println("error opening test.txt");

}
}

void loop() {
// nothing happens after setup

}

Upload the sketch to your board and open up the Serial Monitor (Tools -> Serial
Monitor) at 115200 baud. A test text file will be created and written to on the SD card.
Then, the text file will be read back with its contents printed to the Serial Monitor.

Factory Reset
The Feather RP2040 Adalogger microcontroller ships running a NeoPixel rainbow
swirl and microSD card detection. It's lovely, but you probably had other plans for the
board. As you start working with your board, you may want to return to the original
code to begin again, or you may find your board gets into a bad state. Either way, this
page has you covered.

©Adafruit Industries Page 153 of 157

Step 1. Download the factory-reset.uf2 file
Save the following file wherever is convenient for you. You will need to access it to
copy it to your board.

Click to download the Factory
Reset UF2

https://adafru.it/1a3r

Step 2. Enter RP2040 bootloader mode
Entering the RP2040 bootloader is easy. Complete the following steps.

Before you start, make sure your microcontroller is plugged into USB port to your
computer using a data/sync cable. Charge-only cables will not work!

To enter the bootloader:

Press and hold the Boot button down. Don't let go of it yet!
Press and release the Reset button. You should still have the Boot button
pressed while you do this.
Continue holding the Boot button until you see the RPI-RP2 drive appear.
You can now release but Boot button.

Step 3. Drag UF2 file to RPI-RP2

Navigate to the folder where you
downloaded the factory-reset.uf2 file from
Step 1.

Completing a factory reset will erase your board's firmware which is also used
for storing CircuitPython/Arduino/Files! Be sure to back up your data first.

1.
2.

3.
4.

©Adafruit Industries Page 154 of 157

https://github.com/adafruit/Adafruit-Feather-RP2040-Adalogger-PCB/raw/main/factory-reset/Adafruit_Feather_RP2040_Adalogger_Factory_Reset.uf2
https://learn.adafruit.com//assets/106981
https://learn.adafruit.com//assets/106981

Drag the factory-reset.uf2 file to the RPI-
RP2 drive.

The RPI-RP2 drive will disappear.

The board will automatically reboot.

The NeoPixel LED on the Feather will light up in a rainbow swirl. If you open the Serial
Monitor and insert a microSD card, the card detect pin will read high and the card size
will be printed to the monitor. If you remove the card, the card detect pin will read low.

©Adafruit Industries Page 155 of 157

https://learn.adafruit.com//assets/106982
https://learn.adafruit.com//assets/106982
https://learn.adafruit.com//assets/106983
https://learn.adafruit.com//assets/106983

You've successfully returned your board to a factory reset state!

Flash Resetting UF2
If your board ever gets into a really weird state and doesn't even show up when
loading code, try loading this 'nuke' UF2 which will do a 'deep clean' on your Flash
Memory. You will lose all the files on the board, but at least you'll be able to revive it!
Download the file below, and follow the instructions in Step 2 and Step 3 above to
load this UF2. Then, start again at Step 1 to return your board to factory reset state.

Download flash erasing "nuke" UF2
https://adafru.it/RLE

Downloads
RP2040 Datasheet (https://adafru.it/QTf)
EagleCAD PCB Files on GitHub (https://adafru.it/1a3s)
3D models on GitHub (https://adafru.it/1aca)
Fritzing object in the Adafruit Fritzing Library (https://adafru.it/1a3t)
PrettyPins PDF on GitHub (https://adafru.it/1a3p)
PrettyPins SVG on GitHub (https://adafru.it/1a3u)

Schematic and Fab Print

•
•
•
•
•
•

©Adafruit Industries Page 156 of 157

https://cdn-learn.adafruit.com/assets/assets/000/101/659/original/flash_nuke.uf2?1618945856
https://datasheets.raspberrypi.org/rp2040/rp2040_datasheet.pdf
https://github.com/adafruit/Adafruit-Feather-RP2040-Adalogger-PCB
https://github.com/adafruit/Adafruit_CAD_Parts/tree/main/5980%20Feather%20RP2040%20Adalogger
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20Feather%20RP2040%20Adalogger.fzpz
https://github.com/adafruit/Adafruit-Feather-RP2040-Adalogger-PCB/blob/main/Adafruit%20Feather%20RP2040%20Adalogger%20PrettyPins.pdf
https://github.com/adafruit/Adafruit-Feather-RP2040-Adalogger-PCB/blob/main/Adafruit%20Feather%20RP2040%20Adalogger%20PrettyPins.svg

©Adafruit Industries Page 157 of 157

	Adafruit Feather RP2040 Adalogger
	Table of Contents
	Overview
	Pinouts
	Power Management
	Install CircuitPython
	Installing the Mu Editor
	The CIRCUITPY Drive
	Creating and Editing Code
	Exploring Your First CircuitPython Program
	Connecting to the Serial Console
	Interacting with the Serial Console
	The REPL
	CircuitPython Libraries
	CircuitPython Documentation
	Recommended Editors
	Advanced Serial Console on Windows
	Advanced Serial Console on Mac
	Advanced Serial Console on Linux
	Frequently Asked Questions
	Troubleshooting
	Welcome to the Community!
	CircuitPython Essentials
	Blink
	Digital Input
	NeoPixel
	I2C
	SD Card
	Arduino
	Arduino Usage
	Blink
	I2C
	SD Card
	Factory Reset
	Downloads

	Overview
	Pinouts
	Power Pins, Connections, and Charge LED
	Logic Pins
	I2C and SPI on RP2040
	PWM on RP2040
	Analog Pins
	Digital Pins
	CircuitPython I2C, SPI and UART
	Arduino I2C, SPI and UART

	GPIO Pins by Pin Functionality
	I2C Pins
	SPI Pins
	UART Pins
	PWM Pins

	microSD Card Slot
	Microcontroller and Flash
	Buttons and RST Pin
	NeoPixel and Red LED
	STEMMA QT

	Power Management
	Battery + USB Power
	Power Supplies
	Measuring Battery
	ENable pin
	Alternative Power Options
	Install CircuitPython
	CircuitPython Quickstart
	Safe Mode
	Entering Safe Mode
	In Safe Mode

	Flash Resetting UF2

	Installing the Mu Editor
	Download and Install Mu
	Starting Up Mu
	Using Mu

	The CIRCUITPY Drive
	Boards Without CIRCUITPY

	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.
	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing

	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!
	Back to Editing Code...

	Naming Your Program File
	Exploring Your First CircuitPython Program
	Imports & Libraries
	Setting Up The LED
	Loop-de-loops
	What Happens When My Code Finishes Running?
	What if I Don't Have the Loop?

	Connecting to the Serial Console
	Are you using Mu?
	Serial Console Issues or Delays on Linux
	Setting Permissions on Linux

	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Entering the REPL
	Interacting with the REPL

	Returning to the Serial Console
	CircuitPython Libraries
	The Adafruit Learn Guide Project Bundle
	The Adafruit CircuitPython Library Bundle
	Downloading the Adafruit CircuitPython Library Bundle

	The CircuitPython Community Library Bundle
	Downloading the CircuitPython Community Library Bundle

	Understanding the Bundle
	Example Files
	Copying Libraries to Your Board

	Understanding Which Libraries to Install
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries and Examples
	CircUp CLI Tool

	CircuitPython Documentation
	CircuitPython Core Documentation
	CircuitPython Library Documentation
	Examples
	API Reference
	Other Links

	Recommended Editors
	Recommended editors
	Recommended only with particular settings or add-ons
	Editors that are NOT recommended

	Advanced Serial Console on Windows
	Windows 7 and 8.1
	What's the COM?
	Install Putty
	Advanced Serial Console on Mac
	What's the Port?
	Connect with screen

	Advanced Serial Console on Linux
	What's the Port?
	Connect with screen
	Permissions on Linux

	Frequently Asked Questions
	What are some common acronyms to know?
	Using Older Versions
	I have to continue using CircuitPython 8.x or earlier. Where can I find compatible libraries?
	Python Arithmetic
	Does CircuitPython support floating-point numbers?
	Does CircuitPython support long integers, like regular Python?
	Wireless Connectivity
	How do I connect to the Internet with CircuitPython?
	How do I do BLE (Bluetooth Low Energy) with CircuitPython?
	Are there other ways to communicate by radio with CircuitPython?
	Asyncio and Interrupts
	Is there asyncio support in CircuitPython?
	Does CircuitPython support interrupts?
	Status RGB LED
	My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?
	Memory Issues
	What is a MemoryError?
	What do I do when I encounter a MemoryError?
	Can the order of my import statements affect memory?
	How can I create my own .mpy files?
	How do I check how much memory I have free?
	Unsupported Hardware
	Is ESP8266 or ESP32 supported in CircuitPython? Why not?
	Does Feather M0 support WINC1500?
	Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?

	Troubleshooting
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 7.x or earlier. Where can I find compatible libraries?

	macOS Sonoma before 14.4: Errors Writing to CIRCUITPYmacOS 14.4 - 15.1: Slow Writes to CIRCUITPY
	Bootloader (boardnameBOOT) Drive Not Present
	You may have a different board.
	MakeCode
	macOS
	Windows 10 or later
	Windows 7 or 8.1

	Windows Explorer Locks Up When Accessing boardnameBOOT Drive
	Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
	CIRCUITPY Drive Does Not Appear or Disappears Quickly
	Device Errors or Problems on Windows
	Serial Console in Mu Not Displaying Anything
	code.py Restarts Constantly
	CircuitPython RGB Status Light
	CircuitPython 7.0.0 and Later
	CircuitPython 6.3.0 and earlier

	Serial console showing ValueError: Incompatible .mpy file
	CIRCUITPY Drive Issues
	Safe Mode
	Entering Safe Mode in CircuitPython 7.x and Later
	Entering Safe Mode in CircuitPython 6.x
	In Safe Mode

	To erase CIRCUITPY: storage.erase_filesystem()
	Erase CIRCUITPY Without Access to the REPL
	For the specific boards listed below:
	For SAMD21 non-Express boards that have a UF2 bootloader:
	For SAMD21 non-Express boards that do not have a UF2 bootloader:

	Running Out of File Space on SAMD21 Non-Express Boards
	Delete something!
	Use tabs
	On macOS?
	Prevent & Remove macOS Hidden Files
	Copy Files on macOS Without Creating Hidden Files
	Other macOS Space-Saving Tips

	Device Locked Up or Boot Looping
	Welcome to the Community!
	Adafruit Discord
	CircuitPython.org
	Pull Requests
	Open Issues
	Library Infrastructure Issues
	CircuitPython Localization

	Adafruit GitHub
	Adafruit Forums
	Read the Docs

	CircuitPython Essentials
	Blink
	LED Location
	Blinking an LED

	Digital Input
	LED and Button
	Controlling the LED with a Button

	NeoPixel
	NeoPixel Location
	NeoPixel Color and Brightness
	RGB LED Colors
	NeoPixel Rainbow

	I2C
	I2C and CircuitPython
	Necessary Hardware
	Wiring the MCP9808
	Find Your Sensor
	I2C Sensor Data
	Where's my I2C?

	SD Card
	MicroSD Card Slot
	CircuitPython Usage
	SD Card Read Test
	SD Card Write Test

	Arduino
	Arduino IDE Download
	Adding the Philhower Board Manager URL
	Add Board Support Package
	Choose Your Board

	Arduino Usage
	RP2040 Arduino Pins
	Choose Your Board
	Load the Blink Sketch
	Manually Enter the Bootloader

	Blink
	Pre-Flight Check: Get Arduino IDE & Hardware Set Up
	Start up Arduino IDE and Select Board/Port
	New Blink Sketch
	Verify (Compile) Sketch
	Upload Sketch
	Native USB and manual bootloading
	Enter Manual Bootload Mode

	Finally, a Blink!
	I2C
	Common I2C Connectivity Issues
	Perform an I2C scan!
	Install TestBed Library
	Wire up I2C device
	Wiring the MCP9808

	SD Card
	MicroSD Card Slot
	Library Installation
	Read/Write Example

	Factory Reset
	Step 1. Download the factory-reset.uf2 file
	Step 2. Enter RP2040 bootloader mode
	Step 3. Drag UF2 file to RPI-RP2
	Flash Resetting UF2

	Downloads
	Schematic and Fab Print

