
Adafruit ESP32-C6 Feather
Created by Liz Clark

https://learn.adafruit.com/adafruit-esp32-c6-feather

Last updated on 2025-02-18 12:59:54 PM EST

©Adafruit Industries Page 1 of 109

5

7

14

19

26

31

33

37

41

45

50

Table of Contents

Overview

Pinouts
• Power
• ESP32-C6 WiFi Module
• MAX17048 Battery Monitor
• Logic Pins
• NeoPixel and Red LED
• STEMMA QT
• Buttons

Low Power Use

Power Management
• Battery + USB Power
• Power Supplies
• Measuring Battery
• ENable pin
• Alternative Power Options

Install CircuitPython
• CircuitPython Download
• Bootloader Mode
• Connecting to the Web Flasher
• Erasing the Board Contents
• Programming the Board

Connecting to the USB Workflow Code Editor

Navigating USB Workflow
• Opening and Saving Files
• Running Code
• File Dialog Toolbar
• Using the Serial Terminal
• More Features to Come

Blink
• LED Location
• Blinking an LED

Digital Input
• LED and Button
• Controlling the LED with a Button

I2C Scan
• I2C and CircuitPython
• Necessary Hardware
• Wiring the MCP9808
• Find Your Sensor

MAX17048 Battery Monitor
• MAX17048 Location

©Adafruit Industries Page 2 of 109

54

60

65

77

80

87

92

95

99

• MAX17048 Simple Data Example
• Update the /lib Folder
• Update code.py

NeoPixel
• NeoPixel Location
• NeoPixel Color and Brightness
• Update the /lib Folder
• Update code.py
• RGB LED Colors
• NeoPixel Rainbow

WiFi Test
• settings.toml File
• settings.toml File Example
• CircuitPython WiFi Example
• Update Your settings.toml File
• How the CircuitPython WiFi Example Works

Adafruit IO
• NeoPixel Location
• Adafruit IO Feeds and Dashboard
• Adafruit IO settings.toml
• Adafruit IO Example Code
• Update the /lib Folder
• Update code.py
• Update Your settings.toml File
• NeoPixel Color Change
• Code Walkthrough

Arduino IDE Setup

Blink
• Pre-Flight Check: Get Arduino IDE & Hardware Set Up
• Start up Arduino IDE and Select Board/Port
• New Blink Sketch
• Verify (Compile) Sketch
• Upload Sketch
• Finally, a Blink!

I2C
• Common I2C Connectivity Issues
• Perform an I2C scan!
• Wiring the MCP9808

MAX17048 Simple Data
• Arduino Library Installation
• MAX17048 Simple Data Example

WiFi Test
• WiFi Connection Test

Factory Reset
• Factory Reset Example Code
• Factory Reset .bin
• The WebSerial ESPTool Method

©Adafruit Industries Page 3 of 109

108

• The esptool Method (for advanced users)
• Reset the board
• Older Versions of Chrome

Downloads
• Files
• Schematic and Fab Print

©Adafruit Industries Page 4 of 109

Overview

The ESP32-C6 is Espressif's first WiFi 6 SoC integrating 2.4 GHz WiFi 6, Bluetooth 5
(LE) and the 802.15.4 protocol. It brings the goodness you know from the low-cost C3
series (http://adafru.it/5337) and improves it with Zigbee/802.15.4 at 2.4 Ghz. That
means it could make for great Matter development hardware (https://adafru.it/1a6C)!

We took our Feather ESP32-S2 (http://adafru.it/5000) and swapped out the 'S2 for a
C6. Plus some re-routing and here's what we've got: a C6 Feather with lots of GPIO,
lipoly charging and monitoring with the MAX17048 (http://adafru.it/5580), NeoPixel,

©Adafruit Industries Page 5 of 109

https://www.adafruit.com/product/5337
https://www.adafruit.com/product/5337
https://csa-iot.org/all-solutions/matter/
https://csa-iot.org/all-solutions/matter/
https://www.adafruit.com/product/5000
https://www.adafruit.com/product/5580

I2C Stemma QT port, and a second low-quiescent LDO for disabling the I2C and
NeoPixel when we want ultra-low power usage - as low as 17uA in deep sleep.

One thing to watch for is that, like the C3, the C6 does not have native USB. It does
have a 'built in' USB Serial core that can be used for debugging, but it cannot act like
a mouse, keyboard, or disk drive. That means if you are running CircuitPython (https://
adafru.it/1a6l) you will need to use WiFi, Bluetooth or WebSerial for transferring files
back and forth rather than drag-and-dropping to a drive. Ditto for the bootloader side,
this chip cannot run UF2.

©Adafruit Industries Page 6 of 109

https://circuitpython.org/board/adafruit_feather_esp32c6_4mbflash_nopsram/

Another thing to be aware of is the ESP32-C6 does not have as many GPIO as the
ESP32-S2 or ESP32-S3, so A2 is the same GPIO pin as IO6 and A3 is the same pin as
IO5. However, this gives it the most compatibility with our existing FeatherWings.

Pinouts

©Adafruit Industries Page 7 of 109

Link to PrettyPins PDF on GitHub (https://adafru.it/1a6D).

Power

There are two ways you can power the ESP32-C6 Feather, as well as other related
pins.

USB-C port - This is used for both powering and programming the board. You
can power it with any USB C cable. When USB is plugged in it will charge the
Lipoly battery.
LiPoly connector/charger - You can plug in any 250mAh or larger 3.7/4.2V
Lipoly battery into this JST 2-PH port to both power your Feather and charge
the battery. The battery will charge from the USB power when USB is plugged
in. If the battery is plugged in and USB is plugged in, the Feather will power
itself from USB and it will charge the battery up.
Chg LED - When the battery is charging, the yellow CHG LED will be lit. When
charging is complete, the LED will turn off. If there's no battery plugged in, the
CHD LED may blink rapidly - this is expected!

•

•

•

©Adafruit Industries Page 8 of 109

https://github.com/adafruit/Adafruit-ESP32-C6-Feather-PCB/blob/main/Adafruit%20Feather%20ESP32-C6%20PrettyPins.pdf

GND - This is the common ground for all power and logic.
BAT - This is the positive voltage to/from the 2-pin JST jack for the optional
Lipoly battery.
USB - This is the positive voltage to/from the USB C jack, if USB is connected.
EN - This is the 3.3V regulator's enable pin. It's pulled up, so connect to ground
to disable the 3.3V regulator.
3.3V - These pins are the output from the 3.3V regulator, they can supply
500mA peak.

On the back of the Feather is a jumper labeled Charger Disable. If you cut this
jumper, you'll disable the LiPoly battery charging circuit. This means that you could
use the JST-PH battery port with non-LiPoly batteries, such as AA or AAA battery
packs.

ESP32-C6 WiFi Module

This is the ESP32-C6 module. It is a 32-bit RISC-V single-core processor that operates
at up to 160 MHz. This version of the module has 4MB of flash and no PSRAM. It
supports WiFi 6 in a 2.4GHz band, Bluetooth 5, Zigbee 3.0, and Thread. It's pin-to-pin
compatible with the ESP32-WROOM series module. With low-power consumption, it is
an ideal choice for a variety of IoT projects!

•
•

•
•

•

©Adafruit Industries Page 9 of 109

MAX17048 Battery Monitor

The Adafruit MAX17048 LiPoly / LiIon Fuel Gauge and Battery Monitor reports the
voltage and charge percent over I2C. Connect it to your Lipoly or LiIon
battery (https://adafru.it/NdY) and it will let you know the voltage of the cell, and it
does the annoying math of decoding the non-linear voltage to get you a valid
percentage as well!

The battery monitor is available over I2C on address 0x36.

Our Arduino (https://adafru.it/18f1) or CircuitPython/Python (https://adafru.it/
10RA) library code allows you to read the voltage and percentage whenever you like.
There is no pin on the ESP32-C6 Feather that returns battery voltage, but this I2C
monitor makes it super simple to get that data!

Logic Pins

These are the logic pins that can be used to connect FeatherWings, sensors, servos,
LEDs and more!

There are three sets of shared pins on the Feather: Boot/NeoPixel/IO9, A2/IO6 and
A3/IO5. Be careful when using these pins.

©Adafruit Industries Page 10 of 109

https://www.adafruit.com/category/916
https://www.adafruit.com/category/916
https://github.com/adafruit/Adafruit_MAX1704x
https://github.com/adafruit/Adafruit_CircuitPython_MAX1704x

There are six analog pins:

A0 thru A5 can also be analog inputs.

ESP32 chips allow for 'multiplexing' of almost all signals. There is support for SPI,
UART, I2C, I2S, RMT, TWAI, and PWM on any pin. The Feather has a few specially
designated pins for pin compatibility with FeatherWings and preexisting code:

The SPI pins:

SCK - This is the SPI clock pin (IO21).
MOSI - This is the SPI Microcontroller Out / Sensor In pin (IO22).
MISO - This is the SPI Microcontroller In / Sensor Out pin (IO23).

The UART interface:

RX - This is the UART receive pin (IO17). Connect to TX (transmit) pin on your
sensor or breakout.
TX - This is the UART transmit pin (IO16). Connect to RX (receive) pin on your
sensor or breakout.

The I2C interface. This is shared by the STEMMA QT connector.

SCL - This is the I2C clock pin (IO18). There is a 5k pullup on this pin.
SDA - This is the I2C data pin (IO19). There is a 5k pullup on this pin.
In CircuitPython, you can use the STEMMA connector
with board.SCL and board.SDA , or board.STEMMA_I2C() . In Arduino, you
can access these pins with Wire .
There is an I2C power pin (IO20) that needs to be pulled high for the STEMMA
QT connector to work properly. CircuitPython and Arduino do this
automatically. It is available in CircuitPython and Arduino as
NEOPIXEL_I2C_POWER . This pin also controls the NeoPixel power.

•

The ESP32-C6 Feather does not have a DAC, so you cannot do true analog
out.

•
•
•

•

•

•
•
•

•

©Adafruit Industries Page 11 of 109

The digital pins:

IO0, IO5-IO9, IO12, IO15 - These are digital pins. IO9 is shared with the Boot
button and onboard NeoPixel, IO6 is shared with A2 and IO5 is shared with A3.

Check the ESP32-C6 datasheet or the PrettyPins diagram above for more details on
each pin if you need them!

NeoPixel and Red LED

There are two LEDs you can control in code.

NeoPixel LED - This addressable RGB NeoPixel LED, labeled Neo on the board,
can be controlled with code. It does not act as a status LED in CircuitPython
because it shares a pin with the Boot button (IO9). It is available in CircuitPython
as board.NEOPIXEL , and in Arduino as PIN_NEOPIXEL .
There is a NeoPixel power pin that needs to be pulled high for the NeoPixel to
work. It is the same pin as the I2C power pin (IO20). This is done automatically
by CircuitPython and Arduino. It is available in CircuitPython and Arduino
as NEOPIXEL_I2C_POWER .
Red LED - This little red LED, labeled 15 on the board, is on or blinks during
certain operations (such as pulsing when in the bootloader), and is controllable
in code. It is available in CircuitPython as board.LED , and in Arduino as
LED_BUILTIN or 15 .

•

•

•

•

The NeoPixel and Boot button are both connected to IO9.

©Adafruit Industries Page 12 of 109

STEMMA QT

This JST SH 4-pin STEMMA QT (https://adafru.it/Ft4) connector breaks out I2C (SCL,
SDA, 3.3V, GND). It allows you to connect to various breakouts and sensors with
STEMMA QT connectors (https://adafru.it/Qgf) or to other things using assorted
associated accessories (https://adafru.it/Ft6). It works great with any STEMMA QT or
Qwiic sensor/device. You can also use it with Grove I2C devices thanks to this handy
cable (http://adafru.it/4528).

There is a power pin (IO20) that must be pulled high for the STEMMA QT connector to
work. This is done automatically in CircuitPython and Arduino. The pin is available in
CircuitPython and Arduino as NEOPIXEL_I2C_POWER . You can manually cut power to
the QT port completely by setting this pin to an output and low. This will disable
power to the connector for low power usage.

Buttons

©Adafruit Industries Page 13 of 109

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/category/1018
https://www.adafruit.com/category/1018
https://www.adafruit.com/category/1018
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/product/4528
https://www.adafruit.com/product/4528

There are two buttons on the ESP32-C6 Feather.

Reset button - This button restarts the board and helps enter the bootloader.
You can click it once to reset the board without unplugging the USB cable or
battery.
The RST pin is can be used to reset the board. Tie to ground manually to reset
the board.
Boot button - This button can be read as an input in code. It is connected to pin
IO9, which is also broken out separately on the Feather. It is available as
board.BUTTON in CircuitPython, and pin 9 in Arduino. Simply set it to be an
input with a pullup. This pin is shared with the onboard NeoPixel. This button
can also be used to put the board into ROM bootloader mode. To enter ROM
bootloader mode, hold down DFU button while clicking reset button mentioned
above. When in the ROM bootloader, you can upload code and query the chip
using esptool .

Low Power Use
This microcontroller board can be used for low power usage thanks to the ESP32's
multiple sleep modes.

There are three basic operating states to Espressif chips: normal, light sleep and
deep sleep.

Normal power usage is as you expect: you can use the chip and run code as you like
- connecting to WiFi, reading sensors, etc.

Light sleep is sort of a 'hibernation' - power usage is minimal and WiFi is
disconnected, but the internal clock and memory is kept. That means you can wake
up where you left off, in the middle of the code as desired. You'll still need to re-
initialize any external hardware that got disconnected, and WiFi, but it's often faster
than waking from a deep sleep

Deep sleep is the lowest power but the tradeoff is that all memory and state is lost -
the only thing that's running is the real time clock that can wake the chip up. When
woken up, the chip starts as if it was physically reset - from the beginning of the code.
This can be beneficial if you want to have a fresh start each time

A rough guideline is:

Normal power: 100mA+ can be as much power as need and spike during WiFi
connection

•

•

•

•

©Adafruit Industries Page 14 of 109

Light sleep: 2mA assuming all external hardware is de-powered
Deep sleep: 100uA assuming all external hardware is de-powered

The Adafruit ESP32-C6 Feather has a NEOPIXEL_I2C_POWER pin that controls power
to I2C and the NeoPixel LED. This pin is automatically pulled HIGH in both
CircuitPython and Arduino. Disabling this pin by setting it to an output and LOW
allows you to drop the power draw, even when you have I2C sensors or breakouts
connected.

Here's a generic sketch we use for all our boards that has a macro-defined section for
enabling and disabling all external powered elements. For example, if there's a power
pin for NeoPixels, I2C port, TFT, etc...we turn that off before going into light or deep
sleep! This will minimize power usage

// SPDX-FileCopyrightText: 2022 Limor Fried for Adafruit Industries
//
// SPDX-License-Identifier: MIT

#include <Adafruit_NeoPixel.h>

// While we wait for Feather ESP32 V2 to get added to the Espressif BSP,
// we have to select PICO D4 and UNCOMMENT this line!
//#define ADAFRUIT_FEATHER_ESP32_V2

// then these pins will be defined for us
#if defined(ADAFRUIT_FEATHER_ESP32_V2) or defined(ARDUINO_ADAFRUIT_ITSYBITSY_ESP32)
#define PIN_NEOPIXEL 0
#define NEOPIXEL_I2C_POWER 2
#endif

#if defined(PIN_NEOPIXEL)
Adafruit_NeoPixel pixel(1, PIN_NEOPIXEL, NEO_GRB + NEO_KHZ800);

#endif

void setup() {
Serial.begin(115200);

// Turn on any internal power switches for TFT, NeoPixels, I2C, etc!
enableInternalPower();

}

void loop() {
LEDon();
delay(1000);

disableInternalPower();
LEDoff();
esp_sleep_enable_timer_wakeup(1000000); // 1 sec
esp_light_sleep_start();
// we'll wake from light sleep here

// wake up 1 second later and then go into deep sleep
esp_sleep_enable_timer_wakeup(1000000); // 1 sec
esp_deep_sleep_start();
// we never reach here

}

void LEDon() {
#if defined(PIN_NEOPIXEL)

•
•

©Adafruit Industries Page 15 of 109

pixel.begin(); // INITIALIZE NeoPixel
pixel.setBrightness(20); // not so bright
pixel.setPixelColor(0, 0xFFFFFF);
pixel.show();

#endif
}

void LEDoff() {
#if defined(PIN_NEOPIXEL)

pixel.setPixelColor(0, 0x0);
pixel.show();

#endif
}

void enableInternalPower() {
#if defined(NEOPIXEL_POWER)

pinMode(NEOPIXEL_POWER, OUTPUT);
digitalWrite(NEOPIXEL_POWER, HIGH);

#endif

#if defined(NEOPIXEL_I2C_POWER)
pinMode(NEOPIXEL_I2C_POWER, OUTPUT);
digitalWrite(NEOPIXEL_I2C_POWER, HIGH);

#endif

#if defined(ARDUINO_ADAFRUIT_FEATHER_ESP32S2)
// turn on the I2C power by setting pin to opposite of 'rest state'
pinMode(PIN_I2C_POWER, INPUT);
delay(1);
bool polarity = digitalRead(PIN_I2C_POWER);
pinMode(PIN_I2C_POWER, OUTPUT);
digitalWrite(PIN_I2C_POWER, !polarity);
pinMode(NEOPIXEL_POWER, OUTPUT);
digitalWrite(NEOPIXEL_POWER, HIGH);

#endif
}

void disableInternalPower() {
#if defined(NEOPIXEL_POWER)

pinMode(NEOPIXEL_POWER, OUTPUT);
digitalWrite(NEOPIXEL_POWER, LOW);

#endif

#if defined(NEOPIXEL_I2C_POWER)
pinMode(NEOPIXEL_I2C_POWER, OUTPUT);
digitalWrite(NEOPIXEL_I2C_POWER, LOW);

#endif

#if defined(ARDUINO_ADAFRUIT_FEATHER_ESP32S2)
// turn off the I2C power by setting pin to rest state (off)
pinMode(PIN_I2C_POWER, INPUT);
pinMode(NEOPIXEL_POWER, OUTPUT);
digitalWrite(NEOPIXEL_POWER, LOW);

#endif
}

The best way to really test power draw is with a specialty power meter such as the
Nordic PPK 2

©Adafruit Industries Page 16 of 109

Nordic nRF-PPK2 - Power Profiler Kit II
The Power Profiler Kit II is a standalone
unit, which can measure and optionally
supply currents all the way from sub-uA
and as high as 1A on all Nordic DKs, in...
https://www.adafruit.com/product/5048

When running the above code and monitoring with a PPK, you'll get a graph like this:

The big pulse is normal mode, you can see the ESP32 booting up, loading code, and
then pausing 1 second. Then there's a big drop for one sec to light sleep, and finally
one more 1 second pause at deep sleep.

Power Draw for ESP32-C6 Feather
The following graphs show the power draw for the ESP32-C6 Feather V2 in normal
power mode, light sleep mode, and deep sleep mode.

Normal Power Mode

©Adafruit Industries Page 17 of 109

https://www.adafruit.com/product/5048
https://www.adafruit.com/product/5048

The power draw, running normally (without WiFi), is 33.4mA.

Light Sleep Mode

The power draw in light sleep mode is 353.17uA.

Deep Sleep Mode

The power draw in deep sleep mode is 72.15uA.

©Adafruit Industries Page 18 of 109

Power Management

Battery + USB Power
We wanted to make our Feather boards easy to power both when connected to a
computer as well as via battery.

There's two ways to power a Feather:

You can connect with a USB cable (just plug into the jack) and the Feather will
regulate the 5V USB down to 3.3V.
You can also connect a 4.2/3.7V Lithium Polymer (LiPo/LiPoly) or Lithium Ion
(LiIon) battery to the JST jack. This will let the Feather run on a rechargeable
battery.

When the USB power is powered, it will automatically switch over to USB for power,
as well as start charging the battery (if attached). This happens 'hot-swap' style so
you can always keep the LiPoly connected as a 'backup' power that will only get used
when USB power is lost.

1.

2.

The JST connector polarity is matched to Adafruit LiPoly batteries. Using
wrong polarity batteries can destroy your Feather. Many customers try to save
money by purchasing Lipoly batteries from Amazon only to find that they plug
them in and the Feather is destroyed!

©Adafruit Industries Page 19 of 109

The above shows the USB C jack (left), LiPoly JST jack (top left), as well as the 3.3V
regulator and changeover diode (just to the right of the JST jack) and the LiPoly
charging circuitry (above the Reset button).

There's also a CHG LED next to the USB jack, which will light up while the battery is
charging. This LED might also flicker if the battery is not connected, it's normal.

Power Supplies
You have a lot of power supply options here! We bring out the BAT pin, which is tied
to the LiPoly JST connector, as well as USB which is the +5V from USB if connected.
We also have the 3V pin which has the output from the 3.3V regulator. We use a
500mA peak regulator. While you can get 500mA from it, you can't do it continuously
from 5V as it will overheat the regulator.

The charge LED is automatically driven by the LiPoly charger circuit. It will try
to detect a battery and is expecting one to be attached. If there isn't one it
may flicker once in a while when you use power because it's trying to charge
a (non-existent) battery. It's not harmful, and it's totally normal!

©Adafruit Industries Page 20 of 109

Measuring Battery
If you're running off of a battery, chances are you wanna know what the voltage is at!
That way you can tell when the battery needs recharging. LiPoly batteries are 'maxed
out' at 4.2V and stick around 3.7V for much of the battery life, then slowly sink down
to 3.2V or so before the protection circuitry cuts it off. By measuring the voltage you
can quickly tell when you're heading below 3.7V.

This board includes an MAX17048 Battery Monitor that reports the voltage and
charge percent over I2C.

The MAX17048 battery monitor is available over I2C on address 0x36.

Our Arduino MAX1704x (https://adafru.it/18f1) or CircuitPython/Python
MAX1704x (https://adafru.it/10RA) library code allows you to read the voltage and
percentage whenever you like.

There is no pin on this board that returns battery voltage, but this I2C monitor makes
it super simple to get that data!

In Arduino, you can measure the battery voltage using the following script.

// SPDX-FileCopyrightText: 2023 Liz Clark for Adafruit Industries
//
// SPDX-License-Identifier: MIT
//
// Adafruit Battery Monitor Demo
// Checks for MAX17048 or LC709203F

#include <Wire.h>
#include "Adafruit_MAX1704X.h"
#include "Adafruit_LC709203F.h"

Adafruit_MAX17048 maxlipo;
Adafruit_LC709203F lc;

// MAX17048 i2c address
bool addr0x36 = true;

©Adafruit Industries Page 21 of 109

https://github.com/adafruit/Adafruit_MAX1704x
https://github.com/adafruit/Adafruit_CircuitPython_MAX1704x
https://github.com/adafruit/Adafruit_CircuitPython_MAX1704x

void setup() {
Serial.begin(115200);
while (!Serial) delay(10); // wait until serial monitor opens
Serial.println(F("\nAdafruit Battery Monitor simple demo"));
// if no max17048..
if (!maxlipo.begin()) {

Serial.println(F("Couldnt find Adafruit MAX17048, looking for LC709203F.."));
// if no lc709203f..
if (!lc.begin()) {

Serial.println(F("Couldnt find Adafruit MAX17048 or LC709203F."));
while (1) delay(10);

}
// found lc709203f!
else {

addr0x36 = false;
Serial.println(F("Found LC709203F"));
Serial.print("Version: 0x"); Serial.println(lc.getICversion(), HEX);
lc.setThermistorB(3950);
Serial.print("Thermistor B = "); Serial.println(lc.getThermistorB());
lc.setPackSize(LC709203F_APA_500MAH);
lc.setAlarmVoltage(3.8);

}
// found max17048!
}
else {

addr0x36 = true;
Serial.print(F("Found MAX17048"));
Serial.print(F(" with Chip ID: 0x"));
Serial.println(maxlipo.getChipID(), HEX);

}
}

void loop() {
// if you have the max17048..
if (addr0x36 == true) {

max17048();
}
// if you have the lc709203f..
else {

lc709203f();
}

delay(2000); // dont query too often!

}

void lc709203f() {
Serial.print("Batt_Voltage:");
Serial.print(lc.cellVoltage(), 3);
Serial.print("\t");
Serial.print("Batt_Percent:");
Serial.print(lc.cellPercent(), 1);
Serial.print("\t");
Serial.print("Batt_Temp:");
Serial.println(lc.getCellTemperature(), 1);

}

void max17048() {
Serial.print(F("Batt Voltage: ")); Serial.print(maxlipo.cellVoltage(), 3);

Serial.println(" V");
Serial.print(F("Batt Percent: ")); Serial.print(maxlipo.cellPercent(), 1);

Serial.println(" %");
Serial.println();

}

For CircuitPython, you can measure it like this.

©Adafruit Industries Page 22 of 109

SPDX-FileCopyrightText: Copyright (c) 2023 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: Unlicense

import time
import board
from adafruit_max1704x import MAX17048
from adafruit_lc709203f import LC709203F, PackSize

#
i2c = board.I2C()
while not i2c.try_lock():

pass
i2c_address_list = i2c.scan()
i2c.unlock()

device = None

if 0x0b in i2c_address_list:
lc709203 = LC709203F(board.I2C())
Update to match the mAh of your battery for more accurate readings.
Can be MAH100, MAH200, MAH400, MAH500, MAH1000, MAH2000, MAH3000.
Choose the closest match. Include "PackSize." before it, as shown.
lc709203.pack_size = PackSize.MAH400

device = lc709203
print("Battery monitor: LC709203")

elif 0x36 in i2c_address_list:
max17048 = MAX17048(board.I2C())

device = max17048
print("Battery monitor: MAX17048")

else:
raise Exception("Battery monitor not found.")

while device:
print(f"Battery voltage: {device.cell_voltage:.2f} Volts")
print(f"Battery percentage: {device.cell_percent:.1f} %")
print("")
time.sleep(1)

ENable pin
If you'd like to turn off the 3.3V regulator, you can do that with the EN(able) pin. Simply
tie this pin to Ground and it will disable the 3V regulator. The BAT and USB pins will
still be powered.

©Adafruit Industries Page 23 of 109

STEMMA QT and NeoPixel Power
The ESP32-C6 Feather is equipped with a STEMMA QT port and NeoPixel which are
both connected to their own regulator. Unlike the one controlled by the ENable pin,
this is controlled by GPIO. They are enabled by default in CircuitPython and Arduino.
You can disable it manually for low power usage. This pin is available in CircuitPython
as I2C_POWER and in Arduino as I2C_NEOPIXEL_POWER .

Alternative Power Options
The two primary ways for powering a feather are a 3.7/4.2V LiPo battery plugged into
the JST port or a USB power cable.

If you run into I2C or NeoPixel power issues on Arduino, ensure you are using
the latest Espressif board support package. If you are still having issues, you
may need to manually pull the pin high in your code.

©Adafruit Industries Page 24 of 109

If you need other ways to power the Feather, here's what we recommend:

For permanent installations, a 5V 1A USB wall adapter (http://adafru.it/501) will
let you plug in a USB cable for reliable power
For mobile use, where you don't want a LiPoly, use a USB battery pack! (http://
adafru.it/1959)
If you have a higher voltage power supply, use a 5V buck converter (https://
adafru.it/DHs) and wire it to a USB cable's 5V and GND input (http://adafru.it/
3972)

Here's what you cannot do:

Do not use alkaline or NiMH batteries and connect to the battery port - this will
destroy the LiPoly charger
Do not use 7.4V RC batteries on the battery port - this will destroy the board

The Feather is not designed for external power supplies - this is a design decision to
make the board compact and low cost. It is not recommended, but technically
possible:

Connect an external 3.3V power supply to the 3V and GND pins. Not
recommended, this may cause unexpected behavior and the EN pin will no
longer work. Also this doesn't provide power on BAT or USB and some
Feathers/Wings use those pins for high current usages. You may end up
damaging your Feather.
Connect an external 5V power supply to the USB and GND pins. Not
recommended, this may cause unexpected behavior when plugging in the USB
port because you will be back-powering the USB port, which could confuse or
damage your computer.

•

•

•

•

•

•

•

©Adafruit Industries Page 25 of 109

https://www.adafruit.com/product/501
https://www.adafruit.com/product/1959
https://www.adafruit.com/?q=5V%20buck
https://www.adafruit.com/product/3972

If you use alkaline or NiMH batteries and connect to the battery port, you'll destroy
the LiPoly charger, unless you cut the Charger Disable jumper. This jumper is located
on the back of the board. If you cut it, the LiPoly charger will be disabled and allow
you to use alkaline or NiMH batteries.

Install CircuitPython
CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)
designed to simplify experimentation and education on low-cost microcontrollers. It
makes it easier than ever to get prototyping by requiring no upfront desktop software
downloads. ESP32 CircuitPython firmware is uploaded to the board via the USB serial
port.

Follow this step-by-step to get CircuitPython running on your board.

CircuitPython Download
Currently we recommend users use an absolute newest version of CircuitPython with
the ESP32-C6 Feather. To download this .BIN file, click the button below.

adafruit_feather_esp32c6_4mbflash_nopsram
BIN

https://adafru.it/1a6E

Click the link above to download the
latest CircuitPython .bin file.

Save it wherever is convenient for you.

Bootloader Mode
Before connecting to the Web Flasher, you need to put the board into bootloader
mode. To do this, hold down the Boot button (highlighted in blue). While continuing to
hold down the Boot button, press and release the Reset button (highlighted in green).
Then, release the Boot button. Your board is now in bootloader mode.

©Adafruit Industries Page 26 of 109

https://github.com/adafruit/circuitpython
https://micropython.org
https://cdn-learn.adafruit.com/assets/assets/000/132/011/original/adafruit_feather_esp32c6_4mbflash_nopsram_%281%29.zip?1724432777
https://learn.adafruit.com//assets/114559
https://learn.adafruit.com//assets/114559

Connecting to the Web Flasher
To begin, plug your board into your computer via USB, using a known-good data-
sync cable, directly, or via an adapter if needed.

You will have to use the Chrome or a Chromium-based browser to install
CircuitPython. For example, Edge and Opera are Chromium based (https://adafru.it/
10BL).

Safari and Firefox, etc are not supported - they have not implemented Web
Serial (https://adafru.it/10BM)!

In the Chrome browser visit https://adafruit.github.io/Adafruit_WebSerial_ESPTool/ (ht
tps://adafru.it/PMB)

The main page of the ESP Web Flasher
should look something like this.

Note: The site now displays an alert that it
is no longer maintained, and suggests
using a different option. The ESP Web
Flasher has still proven to be more
consistent and easier to use, so it is highly
suggested that you continue with this
version.

You should remove all other USB devices so only the target board is attached. This
eliminates confusion over multiple ports!

©Adafruit Industries Page 27 of 109

https://en.wikipedia.org/wiki/Chromium_(web_browser)
https://developer.mozilla.org/en-US/docs/Web/API/Serial#browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/Serial#browser_compatibility
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://learn.adafruit.com//assets/114594
https://learn.adafruit.com//assets/114594

Press the Connect button in the top right
of the web browser. You will get a pop up
asking you to select the COM or Serial
port. Look for USB Single Serial.

On some systems, such as MacOS, there
may be additional system ports that
appear in the list (as shown in the image).

The Javascript code will now try to
connect to the board. It may timeout for a
bit until it succeeds. On success, you will
see that it is Connected and will print out a
unique MAC address identifying the board
along with other information that was
detected.

Once you have successfully connected,
the command toolbar will appear.

Erasing the Board Contents
If you would like to erase the entire flash area so that you can start with a clean slate,
you can use the erase feature. We recommend doing this every time before installing
or updating CircuitPython.

©Adafruit Industries Page 28 of 109

https://learn.adafruit.com//assets/114595
https://learn.adafruit.com//assets/114595
https://learn.adafruit.com//assets/114596
https://learn.adafruit.com//assets/114596
https://learn.adafruit.com//assets/114597
https://learn.adafruit.com//assets/114597

To erase the contents, click the Erase
button. You will be prompted as to whether
you want to continue. Click OK to
continue. If you do not wish to continue,
click Cancel.

You'll see "Erasing flash memory. Please
wait..." This will eventually be followed by
"Finished." and the amount of time it took
to erase.

Do not disconnect! Immediately continue
on to Programming the Board.

Do not disconnect after erasing! You should immediately continue on to
programming your board. If you do not, you may end up with your board in a
bad state that makes it more difficult to continue. You can avoid this!

©Adafruit Industries Page 29 of 109

https://learn.adafruit.com//assets/114630
https://learn.adafruit.com//assets/114630
https://learn.adafruit.com//assets/114632
https://learn.adafruit.com//assets/114632

Programming the Board

You can click on Choose a file... from any
of the available buttons. It will only attempt
to program buttons with a file and a
unique location. Select the .bin file you
downloaded at the beginning of this page
from the file chooser dialogue.

Verify that the Offset box next to the file
location you used is 0x0. The offset
defaults to 0x0, so unless you changed it
manually, it should be good to go.

Once you choose a file, the button text will
change to match your filename. You can
then click the Program button to start
flashing.

©Adafruit Industries Page 30 of 109

https://learn.adafruit.com//assets/114633
https://learn.adafruit.com//assets/114633
https://learn.adafruit.com//assets/114669
https://learn.adafruit.com//assets/114669
https://learn.adafruit.com//assets/114655
https://learn.adafruit.com//assets/114655

A progress bar will appear and after a
minute or two, you will have written the
firmware.

You've now successfully programmed
CircuitPython onto your board! As
suggested in the output, press reset to run
the new firmware.

As the ESP32-C6 does not have native USB, no USB drive will show up on your
computer when you reset. With CircuitPython firmware loaded, the REPL can be
accessed over a serial/COM port.

Don't worry though! We have the CircuitPython USB Workflow Code Editor (https://
adafru.it/1a6F) so that you can access the board via USB in your Chromium-based
browser.

Connecting to the USB Workflow Code
Editor

The USB workflow is a new feature and there may be bugs! If you find a bug,
please file an issue on GitHub.

©Adafruit Industries Page 31 of 109

https://learn.adafruit.com//assets/114656
https://learn.adafruit.com//assets/114656
https://learn.adafruit.com//assets/114668
https://learn.adafruit.com//assets/114668
https://learn.adafruit.com/circuitpython-usb-workflow-code-editor-quick-start
https://github.com/circuitpython/web-editor/issues

To use the Code Editor, you will need an internet browser such as Google Chrome or
Microsoft Edge. It's possible that it may work in other browsers as well, but these
have been more thoroughly tested.

Open your browser and navigate to
https://code.circuitpython.org/ (https://
adafru.it/10QF). Select USB on the dialog
prompt that comes up.

This will display a page of instructions
along with a button to bring up a list of
devices to connect to.

Click Connect to Device and then select
your board in the pop-up window. Click
Connect to connect your board to the
editor.

©Adafruit Industries Page 32 of 109

https://learn.adafruit.com//assets/130966
https://learn.adafruit.com//assets/130966
https://code.circuitpython.org/
https://learn.adafruit.com//assets/130967
https://learn.adafruit.com//assets/130967
https://learn.adafruit.com//assets/130970
https://learn.adafruit.com//assets/130970

Once you have connected, the Connect
button in the upper right-hand corner
should change to a Disconnect button.

Navigating USB Workflow
Opening and Saving Files
Opening and Saving files is designed to be like to most other applications. Just use
the buttons along the top of the editor window.

Clicking the Open or Save As buttons
along the top will open the File Dialog.
Clicking the Save + Run button will save
your file and run the code. If your file
hasn't been saved yet, this will also bring
up the file dialog box.

The file dialog that appears is a simplified
dialog that displays the current path at the
top, allows you to navigate through the file
tree to select the file you would like to
open, and has buttons on the bottom to
open or save the file you would like to use.

Canceling will tell the editor that you do
not want to continue with the current
operation.

©Adafruit Industries Page 33 of 109

https://learn.adafruit.com//assets/114892
https://learn.adafruit.com//assets/114892
https://learn.adafruit.com//assets/130980
https://learn.adafruit.com//assets/130980
https://learn.adafruit.com//assets/115953
https://learn.adafruit.com//assets/115953

The X at the top performs the same
function as the Cancel button as does
clicking outside of the dialog.

On the Save As dialog, you can also type
in a filename in the field next to the button.

Running Code
As mentioned above, the Save + Run button will first save your file, then run the code.
The logic to run the code however is currently very simplistic in that it will try a couple
of basic strategies to run your code, but doesn't currently do much beyond that.

The way it works is if you are working on code.py in the root folder, a soft reset will be
performed, which automatically runs code.py. If you were working on some code in
another file, the editor will attempt to perform an import on this code, which should
run it. When you run your code, it will automatically switch over to the serial terminal.

Click the Save + Run button to save and
run the code current code.

File Dialog Toolbar
The file Dialog toolbar along the top allows you to perform common operations on
files and folders regardless of whether you are saving or opening. Clicking the cancel
button at the bottom will not undo any operations that were performed with these
buttons.

Renaming and Deleting Files and Folders

You can rename or delete both files and folders. An item must be selected first for the
buttons to become available.

©Adafruit Industries Page 34 of 109

https://learn.adafruit.com//assets/115954
https://learn.adafruit.com//assets/115954
https://learn.adafruit.com//assets/114853
https://learn.adafruit.com//assets/114853

Use the delete and rename buttons here
to perform the corresponding operation on
the currently selected file or folder.

Creating New Folders

This feature allows you to create a new folder to store your work inside of.

Clicking the new folder button at the top
will prompt you for a folder name. It will
inform you of invalid folder names such as
the same name as an existing file or folder
or a folder that begins with a period.

Uploading and Downloading Files and Folders

This feature allows you to upload or download files as long as they fit in the available
space. If you need to add images or sound files for your project, you can use the
upload button to add them. If you need to retrieve a file from your device for whatever
reason, the download button will give you access to do that.

©Adafruit Industries Page 35 of 109

https://learn.adafruit.com//assets/115955
https://learn.adafruit.com//assets/115955
https://learn.adafruit.com//assets/115956
https://learn.adafruit.com//assets/115956
https://learn.adafruit.com//assets/115957
https://learn.adafruit.com//assets/115957

You can also download folders. When you select a folder and click download, the
contents of that folder are automatically zipped into a single file. If nothing is selected
when you click the download button, the current folder will be used.

Use the upload or download buttons to
easily add files or retrieve them from your
board.

Moving Files and Folders

This feature allows you to move files and folders to a different location on the device.
When you click the move button, another prompt will appear on top of the dialog that
allows you to navigate to where you would like to move the currently selected item.

Use the move button to move files or
folders to a new location on the device.

The second dialog that appears will show
only folders and allow you to navigate to
where you would like to move the file.

©Adafruit Industries Page 36 of 109

https://learn.adafruit.com//assets/115958
https://learn.adafruit.com//assets/115958
https://learn.adafruit.com//assets/115959
https://learn.adafruit.com//assets/115959
https://learn.adafruit.com//assets/115960
https://learn.adafruit.com//assets/115960

Using the Serial Terminal
The serial terminal allows you to watch the output of your device as well as type
inputs just like you can from a separate application like PuTTY, except there's nothing
you need to configure. This allows you to access the REPL or view the output of your
currently running code.

Use the mode buttons in the bottom left-
hand corner to open and close the serial
and editor panes.

More Features to Come
The CircuitPython Code Editor is still under development, so expect more features to
be added. If you would like to contribute on GitHub (https://adafru.it/10Rc), you can
submit any new issues or pull requests for review.

Blink
In learning any programming language, you often begin with some sort of Hello,
World! program. In CircuitPython, Hello, World! is blinking an LED. Blink is one of the
simplest programs in CircuitPython. It involves three built-in modules, two lines of set
up, and a short loop. Despite its simplicity, it shows you many of the basic concepts
needed for most CircuitPython programs, and provides a solid basis for more complex
projects. Time to get blinky!

LED Location
The LED is located between the USB C port and the mounting hole.

©Adafruit Industries Page 37 of 109

https://learn.adafruit.com//assets/131075
https://learn.adafruit.com//assets/131075
https://github.com/circuitpython/web-editor/

Blinking an LED
In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Templates/blink/ and then click on the
directory that matches the version of CircuitPython you're using.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""CircuitPython Blink Example - the CircuitPython 'Hello, World!'"""
import time
import board
import digitalio

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

©Adafruit Industries Page 38 of 109

In the editor window in your browser, click
the Open button to view the file dialog.
Then, click the Upload button and select
Upload Files.

Navigate to the project bundle that you
downloaded and select the code.py file.

You'll be asked if you want to overwrite the
previous code.py with the new code.py file
from the Project Bundle. Click OK.

©Adafruit Industries Page 39 of 109

https://learn.adafruit.com//assets/131893
https://learn.adafruit.com//assets/131893
https://learn.adafruit.com//assets/131894
https://learn.adafruit.com//assets/131894
https://learn.adafruit.com//assets/131895
https://learn.adafruit.com//assets/131895

You'll see a new code.py file appear in the
file browser. Select it and click Open to
view it in the code editor.

You'll see the LED blink code.py file contents. Click Restart above the Serial monitor
to run the LED blink code.

The built-in LED begins blinking!

Note that the code is a little less "Pythonic" than it could be. It could also be written as
led.value = not led.value with a single time.sleep(0.5) . That way is more
difficult to understand if you're new to programming, so the example is a bit longer
than it needed to be to make it easier to read.

It's important to understand what is going on in this program.

First you import three modules: time , board and digitalio . This makes these
modules available for use in your code. All three are built-in to CircuitPython, so you
don't need to download anything to get started.

Next, you set up the LED. To interact with hardware in CircuitPython, your code must
let the board know where to look for the hardware and what to do with it. So, you
create a digitalio.DigitalInOut() object, provide it the LED pin using the
board module, and save it to the variable led . Then, you tell the pin to act as an
OUTPUT .

Finally, you create a while True: loop. This means all the code inside the loop will
repeat indefinitely. Inside the loop, you set led.value = True which powers on the

©Adafruit Industries Page 40 of 109

https://learn.adafruit.com//assets/131896
https://learn.adafruit.com//assets/131896

LED. Then, you use time.sleep(0.5) to tell the code to wait half a second before
moving on to the next line. The next line sets led.value = False which turns the
LED off. Then you use another time.sleep(0.5) to wait half a second before
starting the loop over again.

With only a small update, you can control the blink speed. The blink speed is
controlled by the amount of time you tell the code to wait before moving on using
time.sleep() . The example uses 0.5 , which is one half of one second. Try
increasing or decreasing these values to see how the blinking changes.

That's all there is to blinking an LED using CircuitPython!

Digital Input
The CircuitPython digitalio module has many applications. The basic Blink
program sets up the LED as a digital output. You can just as easily set up a digital
input such as a button to control the LED. This example builds on the basic Blink
example, but now includes setup for a button switch. Instead of using the time
module to blink the LED, it uses the status of the button switch to control whether the
LED is turned on or off.

LED and Button

Controlling the LED with a Button
In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

©Adafruit Industries Page 41 of 109

file, open the directory CircuitPython_Templates/digital_input_built_in_button_led/
and then click on the directory that matches the version of CircuitPython you're using.

SPDX-FileCopyrightText: 2022 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""
CircuitPython Digital Input Example - Blinking an LED using the built-in button.
"""
import board
import digitalio

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

button = digitalio.DigitalInOut(board.BUTTON)
button.switch_to_input(pull=digitalio.Pull.UP)

while True:
if not button.value:

led.value = True
else:

led.value = False

In the editor window in your browser, click
the Open button to view the file dialog.
Then, click the Upload button and select
Upload Files.

Navigate to the project bundle that you
downloaded and select the code.py file.

©Adafruit Industries Page 42 of 109

https://learn.adafruit.com//assets/131899
https://learn.adafruit.com//assets/131899
https://learn.adafruit.com//assets/131900
https://learn.adafruit.com//assets/131900

You'll be asked if you want to overwrite the
previous code.py with the new code.py file
from the Project Bundle. Click OK.

You'll see a new code.py file appear in the
file browser. Select it and click Open to
view it in the code editor.

You'll see the digital input code.py file contents. Click Restart above the Serial
monitor to run the digital input code.

Now, press the button. The LED lights up! Let go of the button and the LED turns off.

©Adafruit Industries Page 43 of 109

https://learn.adafruit.com//assets/131901
https://learn.adafruit.com//assets/131901
https://learn.adafruit.com//assets/131902
https://learn.adafruit.com//assets/131902

Note that the code is a little less "Pythonic" than it could be. It could also be written as
led.value = not button.value . That way is more difficult to understand if you're
new to programming, so the example is a bit longer than it needed to be to make it
easier to read.

First you import two modules: board and digitalio . This makes these modules
available for use in your code. Both are built-in to CircuitPython, so you don't need to
download anything to get started.

Next, you set up the LED. To interact with hardware in CircuitPython, your code must
let the board know where to look for the hardware and what to do with it. So, you
create a digitalio.DigitalInOut() object, provide it the LED pin using the
board module, and save it to the variable led . Then, you tell the pin to act as an
OUTPUT .

You include setup for the button as well. It is similar to the LED setup, except the
button is an INPUT , and requires a pull up.

Inside the loop, you check to see if the button is pressed, and if so, turn on the LED.
Otherwise the LED is off.

That's all there is to controlling an LED with a button switch!

©Adafruit Industries Page 44 of 109

I2C Scan

The I2C, or inter-integrated circuit (https://adafru.it/u2a), is a 2-wire protocol for
communicating with simple sensors and devices, which means it uses two
connections, or wires, for transmitting and receiving data. One connection is a clock,
called SCL. The other is the data line, called SDA. Each pair of clock and data pins are
referred to as a bus.

Typically, there is a device that acts as a controller and sends requests to the target
devices on each bus. In this case, your microcontroller board acts as the controller,
and the sensor breakout acts as the target. Historically, the controller is referred to as
the master, and the target is referred to as the slave, so you may run into that
terminology elsewhere. The official terminology is controller and target (https://
adafru.it/TtF).

Multiple I2C devices can be connected to the same clock and data lines. Each I2C
device has an address, and as long as the addresses are different, you can connect
them at the same time. This means you can have many different sensors and devices
all connected to the same two pins.

Both I2C connections require pull-up resistors, and most Adafruit I2C sensors and
breakouts have pull-up resistors built in. If you're using one that does not, you'll need
to add your own 2.2-10kΩ pull-up resistors from SCL and SDA to 3.3V.

I2C and CircuitPython
CircuitPython supports many I2C devices, and makes it super simple to interact with
them. There are libraries available for many I2C devices in the CircuitPython Library
Bundle (https://adafru.it/Tra). (If you don't see the sensor you're looking for, keep
checking back, more are being written all the time!)

In this section, you'll learn how to scan the I2C bus for all connected devices. Then
you'll learn how to interact with an I2C device.

©Adafruit Industries Page 45 of 109

https://en.wikipedia.org/wiki/I%C2%B2C
https://adafruit.com/controller-peripheral
https://circuitpython.readthedocs.io/projects/bundle/en/latest/#table-of-contents
https://circuitpython.readthedocs.io/projects/bundle/en/latest/#table-of-contents

Necessary Hardware
You'll need the following additional hardware to complete the examples on this page.

Adafruit MCP9808 High Accuracy I2C
Temperature Sensor Breakout
The MCP9808 digital temperature sensor
is one of the more accurate/precise we've
ever seen, with a typical accuracy of
±0.25°C over the sensor's -40°C to...
https://www.adafruit.com/product/5027

STEMMA QT / Qwiic JST SH 4-Pin Cable -
50mm Long
This 4-wire cable is 50mm / 1.9" long and
fitted with JST SH female 4-pin
connectors on both ends. Compared with
the chunkier JST PH these are 1mm pitch
instead of 2mm, but...
https://www.adafruit.com/product/4399

While the examples here will be using the Adafruit MCP9808 (http://adafru.it/5027), a
high accuracy temperature sensor, the overall process is the same for just about any
I2C sensor or device.

The first thing you'll want to do is get the sensor connected so your board has I2C to
talk to.

Wiring the MCP9808
The MCP9808 comes with a STEMMA QT connector, which makes wiring it up quite
simple and solder-free.

©Adafruit Industries Page 46 of 109

https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/5027

Connect the STEMMA QT cable from the
STEMMA QT port on your board to the
STEMMA QT port on the MCP9808.

Find Your Sensor
The first thing you'll want to do after getting the sensor wired up, is make sure it's
wired correctly. You're going to do an I2C scan to see if the board is detected, and if it
is, print out its I2C address.

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Templates/i2c_scan/ and then click on the
directory that matches the version of CircuitPython you're using.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""CircuitPython I2C Device Address Scan"""
import time
import board

i2c = board.I2C() # uses board.SCL and board.SDA
i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a
microcontroller

To create I2C bus on specific pins
import busio
i2c = busio.I2C(board.GP1, board.GP0) # Pi Pico RP2040

while not i2c.try_lock():
pass

try:
while True:

print(
"I2C addresses found:",
[hex(device_address) for device_address in i2c.scan()],

)
time.sleep(2)

finally: # unlock the i2c bus when ctrl-c'ing out of the loop
i2c.unlock()

©Adafruit Industries Page 47 of 109

https://learn.adafruit.com//assets/131999
https://learn.adafruit.com//assets/131999

In the editor window in your browser, click
the Open button to view the file dialog.
Then, click the Upload button and select
Upload Files.

Navigate to the project bundle that you
downloaded and select the code.py file.

You'll be asked if you want to overwrite the
previous code.py with the new code.py file
from the Project Bundle. Click OK.

©Adafruit Industries Page 48 of 109

https://learn.adafruit.com//assets/131905
https://learn.adafruit.com//assets/131905
https://learn.adafruit.com//assets/131906
https://learn.adafruit.com//assets/131906
https://learn.adafruit.com//assets/131907
https://learn.adafruit.com//assets/131907

You'll see a new code.py file appear in the
file browser. Select it and click Open to
view it in the code editor.

The Feather ESP32-C6 comes with 1 I2C sensor built in: the MAX17048. The I2C scan
code will show the address from the built in sensor (0x36) and the MCP9808 (0x18).

If you run this and it seems to hang, try manually unlocking your I2C bus by running
the following two commands from the REPL.

import board
board.I2C().unlock()

First you create the i2c object, using board.I2C() . This convenience routine
creates and saves a busio.I2C object using the default pins board.SCL and
board.SDA . If the object has already been created, then the existing object is
returned. No matter how many times you call board.I2C() , it will return the same
object. This is called a singleton.

To be able to scan it, you need to lock the I2C down so the only thing accessing it is
the code. So next you include a loop that waits until I2C is locked and then continues
on to the scan function.

ESP32-C6 Feather comes with an I2C sensor built in: the MAX17048. The I2C
scan code will show the addresses from the built-in sensor and the MCP9808.

©Adafruit Industries Page 49 of 109

https://learn.adafruit.com//assets/131908
https://learn.adafruit.com//assets/131908

Last, you have the loop that runs the actual scan, i2c_scan() . Because I2C typically
refers to addresses in hex form, the example includes this bit of code that formats the
results into hex format: [hex(device_address) for device_address in
i2c.scan()] .

Open the serial console to see the results! The code prints out an array of addresses.
You've connected the MCP9808 which has a 7-bit I2C address of 0x18. The result for
this sensor is I2C addresses found: ['0x18'] . If no addresses are returned, refer
back to the wiring diagrams to make sure you've wired up your sensor correctly.

MAX17048 Battery Monitor
Your microcontroller board comes with an MAX17048 lithium ion polymer (lipoly)
battery monitor built right onto the board. The MAX17048 is available over I2C.

The MAX17048 comes with its own Adafruit CircuitPython library that makes it simple
to write code to read data from it. This example will be using, among other things, the
Adafruit CircuitPython MAX1704x (https://adafru.it/10RA) library.

The example simply reads data from the battery monitor and prints it to the serial
console. It is designed to show you how to get data from the battery monitor.

MAX17048 Location

The MAX17048 battery monitor (highlighted in red) is immediately below the USB pin
label. Its I2C address is 0x36.

MAX17048 Simple Data Example
To run this example, you need to first install the MAX1704x library into the lib folder on
your board. Then you need to update code.py with the example script.

©Adafruit Industries Page 50 of 109

https://github.com/adafruit/Adafruit_CircuitPython_MAX1704x

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file.

SPDX-FileCopyrightText: Copyright (c) 2023 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: Unlicense

import time
import board
import adafruit_max1704x

monitor = adafruit_max1704x.MAX17048(board.I2C())

while True:
print(f"Battery voltage: {monitor.cell_voltage:.2f} Volts")
print(f"Battery percentage: {monitor.cell_percent:.1f} %")
print("")
time.sleep(1)

Update the /lib Folder

In the editor window in your browser, click
the Open button to view the file dialog.
Then, click the Upload button and select
Upload Folders.

Navigate to the project bundle that you
downloaded and select the /lib folder.

©Adafruit Industries Page 51 of 109

https://learn.adafruit.com//assets/131933
https://learn.adafruit.com//assets/131933
https://learn.adafruit.com//assets/131934
https://learn.adafruit.com//assets/131934

You'll be asked if you want to upload the /
lib folder from the Project Bundle. Click
Upload.

After the upload finishes, you can open
the lib folder to view the library files
required for the MAX17048 example.

Update code.py

In the editor window in your browser, click
the Open button to view the file dialog.
Then, click the Upload button and select
Upload Files.

©Adafruit Industries Page 52 of 109

https://learn.adafruit.com//assets/131935
https://learn.adafruit.com//assets/131935
https://learn.adafruit.com//assets/131936
https://learn.adafruit.com//assets/131936
https://learn.adafruit.com//assets/131937
https://learn.adafruit.com//assets/131937

Navigate to the project bundle that you
downloaded and select the code.py file.

You'll be asked if you want to overwrite the
previous code.py with the new code.py file
from the Project Bundle. Click OK.

Open the serial console to see the battery data printed out!

That's all there is to reading the MAX17048 data using CircuitPython!

This code will run without a battery plugged in, and voltage and charge level
will be printed to the serial console, but this data does not correlate to
anything. Plug in a battery to get useful data!

©Adafruit Industries Page 53 of 109

https://learn.adafruit.com//assets/131938
https://learn.adafruit.com//assets/131938
https://learn.adafruit.com//assets/131939
https://learn.adafruit.com//assets/131939

For more details, check out the guide for the MAX17048 (https://adafru.it/18f8).

NeoPixel
Your board has a built-in RGB NeoPixel status LED. You can use CircuitPython code to
control the color and brightness of this LED. It is also used to indicate the bootloader
status and errors in your CircuitPython code.

A NeoPixel is what Adafruit calls the WS281x family of addressable RGB LEDs. It
contains three LEDs - a red one, a green one and a blue one - along side a driver chip
in a tiny package controlled by a single pin. They can be used individually (as in the
built-in LED on your board), or chained together in strips or other creative form
factors. NeoPixels do not light up on their own; they require a microcontroller. So, it's
super convenient that the NeoPixel is built in to your microcontroller board!

This page will cover using CircuitPython to control the status RGB NeoPixel built into
your microcontroller. You'll learn how to change the color and brightness, and how to
make a rainbow. Time to get started!

NeoPixel Location

NeoPixel Color and Brightness
To use with CircuitPython, you need to first install a few libraries, into the lib folder on
your board. Then you need to update code.py with the example script.

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Templates/status_led_one_neopixel_rgb/ and
then click on the directory that matches the version of CircuitPython you're using.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""CircuitPython status NeoPixel red, green, blue example."""

©Adafruit Industries Page 54 of 109

https://learn.adafruit.com/adafruit-max17048-lipoly-liion-fuel-gauge-and-battery-monitor/python-circuitpython

import time
import board
import neopixel

pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)

pixel.brightness = 0.3

while True:
pixel.fill((255, 0, 0))
time.sleep(0.5)
pixel.fill((0, 255, 0))
time.sleep(0.5)
pixel.fill((0, 0, 255))
time.sleep(0.5)

Update the /lib Folder

In the editor window in your browser, click
the Open button to view the file dialog.
Then, click the Upload button and select
Upload Folders.

Navigate to the project bundle that you
downloaded and select the /lib folder.

©Adafruit Industries Page 55 of 109

https://learn.adafruit.com//assets/131912
https://learn.adafruit.com//assets/131912
https://learn.adafruit.com//assets/131913
https://learn.adafruit.com//assets/131913

You'll be asked if you want to upload the /
lib folder from the Project Bundle. Click
Upload.

After the upload finishes, you can open
the lib folder to view the two library files
required for the NeoPixel examples.

Update code.py

In the editor window in your browser, click
the Open button to view the file dialog.
Then, click the Upload button and select
Upload Files.

©Adafruit Industries Page 56 of 109

https://learn.adafruit.com//assets/131914
https://learn.adafruit.com//assets/131914
https://learn.adafruit.com//assets/131915
https://learn.adafruit.com//assets/131915
https://learn.adafruit.com//assets/131909
https://learn.adafruit.com//assets/131909

Navigate to the project bundle that you
downloaded and select the code.py file.

You'll be asked if you want to overwrite the
previous code.py with the new code.py file
from the Project Bundle. Click OK.

The built-in NeoPixel begins blinking red, then green, then blue, and repeats!

First you import two modules, time and board , and one library, neopixel . This
makes these modules and libraries available for use in your code. The first two are
modules built-in to CircuitPython, so you don't need to download anything to use

©Adafruit Industries Page 57 of 109

https://learn.adafruit.com//assets/131910
https://learn.adafruit.com//assets/131910
https://learn.adafruit.com//assets/131911
https://learn.adafruit.com//assets/131911

those. The neopixel library is separate, which is why you needed to install it before
getting started.

Next, you set up the NeoPixel LED. To interact with hardware in CircuitPython, your
code must let the board know where to look for the hardware and what to do with it.
So, you create a neopixel.NeoPixel() object, provide it the NeoPixel LED pin
using the board module, and tell it the number of LEDs. You save this object to the
variable pixel .

Then, you set the NeoPixel brightness using the brightness attribute. brightness
expects float between 0 and 1.0 . A float is essentially a number with a decimal in it.
The brightness value represents a percentage of maximum brightness; 0 is 0% and
1.0 is 100%. Therefore, setting pixel.brightness = 0.3 sets the brightness to
30%. The default brightness, which is to say the brightness if you don't explicitly set it,
is 1.0 . The default is really bright! That is why there is an option available to easily
change the brightness.

Inside the loop, you turn the NeoPixel red for 0.5 seconds, green for 0.5 seconds, and
blue for 0.5 seconds.

To turn the NeoPixel red, you "fill" it with an RGB value. Check out the section below
for details on RGB colors. The RGB value for red is (255, 0, 0) . Note that the RGB
value includes the parentheses. The fill() attribute expects the full RGB value
including those parentheses. That is why there are two pairs of parentheses in the
code.

You can change the RGB values to change the colors that the NeoPixel cycles
through. Check out the list below for some examples. You can make any color of the
rainbow with the right RGB value combination!

That's all there is to changing the color and setting the brightness of the built-in
NeoPixel LED!

RGB LED Colors
RGB LED colors are set using a combination of red, green, and blue, in the form of an
(R, G, B) tuple. Each member of the tuple is set to a number between 0 and 255 that
determines the amount of each color present. Red, green and blue in different
combinations can create all the colors in the rainbow! So, for example, to set an LED
to red, the tuple would be (255, 0, 0) , which has the maximum level of red, and
no green or blue. Green would be (0, 255, 0) , etc. For the colors between, you
set a combination, such as cyan which is (0, 255, 255) , with equal amounts of
green and blue. If you increase all values to the same level, you get white! If you
decrease all the values to 0, you turn the LED off.

©Adafruit Industries Page 58 of 109

Common colors include:

red: (255, 0, 0)
green: (0, 255, 0)
blue: (0, 0, 255)
cyan: (0, 255, 255)
purple: (255, 0, 255)
yellow: (255, 255, 0)
white: (255, 255, 255)
black (off): (0, 0, 0)

NeoPixel Rainbow
You should have already installed the library necessary to use the built-in NeoPixel
LED. If not, follow the steps at the beginning of the NeoPixel Color and Brightness
section to install it.

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file, open the directory CircuitPython_Templates/status_led_one_neopixel_rainbow/
and then click on the directory that matches the version of CircuitPython you're using.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""CircuitPython status NeoPixel rainbow example."""
import time
import board
from rainbowio import colorwheel
import neopixel

pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)
pixel.brightness = 0.3

def rainbow(delay):
for color_value in range(255):

pixel[0] = colorwheel(color_value)
time.sleep(delay)

while True:
rainbow(0.02)

Update the code.py file in the USB code editor with the rainbow code.py file. The
same libraries from the RGB blinking example are used. The NeoPixel displays a
rainbow cycle!

•
•
•
•
•
•
•
•

©Adafruit Industries Page 59 of 109

This example builds on the previous example.

First, you import the same three modules and libraries. In addition to those, you
import colorwheel .

The NeoPixel hardware setup and brightness setting are the same.

Next, you have the rainbow() helper function. This helper displays the rainbow
cycle. It expects a delay in seconds. The higher the number of seconds provided for
delay , the slower the rainbow will cycle. The helper cycles through the values of the
color wheel to create a rainbow of colors.

Inside the loop, you call the rainbow helper with a 0.2 second delay, by including
rainbow(0.2) .

That's all there is to making rainbows using the built-in NeoPixel LED!

WiFi Test
In this example, you'll test your ESP32-C6 Feather WiFi connection by connecting to
your SSID, printing your MAC address and IP address to the REPL and then pinging
Google.

settings.toml File
If you've worked on WiFi projects with CircuitPython before, you're probably familiar
with the secrets.py file. This file is a Python file that is stored on your CIRCUITPY
drive that contains all of your secret WiFi information, such as your SSID, SSID
password and any API keys for IoT services.

©Adafruit Industries Page 60 of 109

As of CircuitPython 8 (https://adafru.it/Em8), there is support for a settings.toml file.
Similar to secrets.py, the settings.toml file separates your sensitive information from
your main code.py file.

settings.toml File Example
Here is an example on how to format your settings.toml file.

Comments are supported
CIRCUITPY_WIFI_SSID="guest wifi"
CIRCUITPY_WIFI_PASSWORD="guessable"
CIRCUITPY_WEB_API_PORT=80
CIRCUITPY_WEB_API_PASSWORD="passw0rd"
test_variable="this is a test"
thumbs_up="\U0001f44d"

In a settings.toml file, it's important to keep these factors in mind:

Strings are wrapped in double quotes; ex: "your-string-here"

Integers are not quoted and may be written in decimal with optional sign
(+1 , -1 , 1000) or hexadecimal (0xabcd).

Floats, octal (0o567) and binary (0b11011) are not supported.

Use \u escapes for weird characters, \x and \ooo escapes are not available
in .toml files

Example: \U0001f44d for (thumbs up emoji) and \u20ac for € (EUR
sign)

Unicode emoji, and non-ASCII characters, stand for themselves as long as you're
careful to save in "UTF-8 without BOM" format

Your settings.toml file should be stored in the main directory of your board. It
should not be in a folder.

•
•

◦

•

◦

•

©Adafruit Industries Page 61 of 109

https://circuitpython.org/downloads

When your settings.toml file is ready, you
can save it in your text editor with
the .toml extension.

CircuitPython WiFi Example
In the example below, click the Download Project Bundle button below to download
the code.py file in a zip file. Extract the contents of the zip file and then click on the
directory that matches the version of CircuitPython you're using.

SPDX-FileCopyrightText: 2022 Liz Clark for Adafruit Industries
#
SPDX-License-Identifier: MIT

import os
import ipaddress
import wifi
import socketpool

print()
print("Connecting to WiFi")

connect to your SSID
try:

wifi.radio.connect(os.getenv('CIRCUITPY_WIFI_SSID'),
os.getenv('CIRCUITPY_WIFI_PASSWORD'))
except TypeError:

print("Could not find WiFi info. Check your settings.toml file!")
raise

print("Connected to WiFi")

pool = socketpool.SocketPool(wifi.radio)

prints MAC address to REPL
print("My MAC addr:", [hex(i) for i in wifi.radio.mac_address])

prints IP address to REPL
print("My IP address is", wifi.radio.ipv4_address)

pings Google
ipv4 = ipaddress.ip_address("8.8.4.4")
print("Ping google.com: %f ms" % (wifi.radio.ping(ipv4)*1000))

©Adafruit Industries Page 62 of 109

https://learn.adafruit.com//assets/122208
https://learn.adafruit.com//assets/122208

In the editor window in your browser, click
the Open button to view the file dialog.
Then, click the Upload button and select
Upload Files.

Navigate to the project bundle that you
downloaded and select the code.py file.

You'll be asked if you want to overwrite the
previous code.py with the new code.py file
from the Project Bundle. Click OK.

Update Your settings.toml File
Remember to add your settings.toml file as described earlier in this page. You'll need
to include your CIRCUITPY_WIFI_SSID and CIRCUITPY_WIFI_PASSWORD in the file.

©Adafruit Industries Page 63 of 109

https://learn.adafruit.com//assets/131916
https://learn.adafruit.com//assets/131916
https://learn.adafruit.com//assets/131917
https://learn.adafruit.com//assets/131917
https://learn.adafruit.com//assets/131918
https://learn.adafruit.com//assets/131918

You can edit the file manually in the USB
code editor by clicking Open, selecting
settings.toml and clicking Open at the
bottom of the dialog box.

With settings.toml open in the editor, you
can add your WiFi credentials:

CIRCUITPY_WIFI_SSID = "your-ssid-

here"

CIRCUITPY_WIFI_PASSWORD = "your-

ssid-password-here"

Once your credentials are entered, click
Save above the editor to save your
changes to settings.toml.

Once everything is saved to the board, Restart the Serial Console to see the data
printed out!

How the CircuitPython WiFi Example Works
In the basic WiFi test, the board connects to your SSID by importing your SSID and
SSID password from the settings.toml file.

wifi.radio.connect(os.getenv('CIRCUITPY_WIFI_SSID'),
os.getenv('CIRCUITPY_WIFI_PASSWORD'))

©Adafruit Industries Page 64 of 109

https://learn.adafruit.com//assets/131919
https://learn.adafruit.com//assets/131919
https://learn.adafruit.com//assets/131920
https://learn.adafruit.com//assets/131920

Then, your MAC address and IP address are printed to the REPL.

prints MAC address to REPL
print("My MAC addr:", [hex(i) for i in wifi.radio.mac_address])

prints IP address to REPL
print("My IP address is", wifi.radio.ipv4_address)

Finally, google.com is pinged. The amount of time it takes to ping is printed to the
REPL and the code stops running.

pings Google
ipv4 = ipaddress.ip_address("8.8.4.4")
print("Ping google.com: %f ms" % (wifi.radio.ping(ipv4)*1000))

By successfully running this WiFi test code, you can confirm that your board is
connecting to WiFi with CircuitPython successfully and you can move on to more
advanced projects.

Adafruit IO
Adafruit IO gives you the option to disconnect your microcontroller from your
computer and run it off of USB power or a battery, and still be able to see the data. It
also allows you to send data to your microcontroller, such as NeoPixel colors. This
example shows how to both send data to and receive data from Adafruit IO. It pulls
from a "random" number generator and sends the "random" number to Adafruit IO,
while simultaneously listening for NeoPixel color data from Adafruit IO.

NeoPixel Location

Adafruit IO Feeds and Dashboard
The first thing you'll need to do, is head over to Adafruit IO (https://adafru.it/fsU) and
make sure your account is set up.

©Adafruit Industries Page 65 of 109

https://io.adafruit.com/

Then, you need to create two feeds (https://adafru.it/f5k) called neopixel and random.
These are case sensitive!

Next, you'll create a dashboard (https://adafru.it/Fm7) for the NeoPixel Color Picker.
You can name the dashboard whatever you like.

Once the dashboard is created, you'll want to add a color picker block (https://
adafru.it/DZe). The color picker block is highlighted by a red arrow in the image
below.

Once you choose the color picker block, you'll need to connect a feed to it. Check the
box next to neopixel.

©Adafruit Industries Page 66 of 109

https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed
https://learn.adafruit.com/adafruit-io-basics-dashboards/creating-a-dashboard
https://learn.adafruit.com/adafruit-io-basics-dashboards/adding-blocks

Finally, a Block Settings page will come up. You can add an optional block title here.
Then you press Create Block.

The dashboard should look something like the following.

©Adafruit Industries Page 67 of 109

Now that things are set up on the Adafruit IO end, you can continue on to the code on
your microcontroller!

Adafruit IO settings.toml
This example requires you to provide your Wi-Fi credentials, and your Adafruit IO
username and key. To do this, you'll want to create a settings.toml file on your
CIRCUITPY drive.

To obtain your Adafruit IO key, follow the initial steps on this page (https://adafru.it/
XbK).

Your settings.toml file should be structured in a certain way, and contain all the
necessary information. Follow these instructions to create your settings.toml
file (https://adafru.it/18f9).

Adafruit IO Example Code
To run this example, you need to first install the NeoPixel, Adafruit IO, and Adafruit
MiniMQTT libraries into the lib folder on your board. Then you need to update
code.py with the example script.

In the example below, click the Download Project Bundle button below to download
the necessary libraries and the code.py file in a zip file. Extract the contents of the zip
file. You'll see a code.py file and /lib folder.

SPDX-FileCopyrightText: 2021 Ladyada for Adafruit Industries
SPDX-FileCopyrightText: 2022 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
import time
import ssl
import os
from random import randint
import microcontroller
import socketpool
import wifi
import board
import neopixel
import adafruit_minimqtt.adafruit_minimqtt as MQTT
from adafruit_io.adafruit_io import IO_MQTT

©Adafruit Industries Page 68 of 109

https://learn.adafruit.com/adafruit-io-home-security/adafruit-io-setup
https://learn.adafruit.com/pico-w-wifi-with-circuitpython/create-your-settings-toml-file
https://learn.adafruit.com/pico-w-wifi-with-circuitpython/create-your-settings-toml-file

WiFi
try:

print("Connecting to %s" % os.getenv("CIRCUITPY_WIFI_SSID"))
wifi.radio.connect(os.getenv("CIRCUITPY_WIFI_SSID"),

os.getenv("CIRCUITPY_WIFI_PASSWORD"))
print("Connected to %s!" % os.getenv("CIRCUITPY_WIFI_SSID"))

Wi-Fi connectivity fails with error messages, not specific errors, so this except
is broad.
except Exception as e: # pylint: disable=broad-except

print("Failed to connect to WiFi. Error:", e, "\nBoard will hard reset in 30
seconds.")

time.sleep(30)
microcontroller.reset()

Initialise NeoPixel
pixel = neopixel.NeoPixel(board.NEOPIXEL, 1, brightness=0.3)

Define callback functions which will be called when certain events happen.
def connected(client):

print("Connected to Adafruit IO! Listening for NeoPixel changes...")
Subscribe to Adafruit IO feed called "neopixel"
client.subscribe("neopixel")

def message(client, feed_id, payload): # pylint: disable=unused-argument
print("Feed {0} received new value: {1}".format(feed_id, payload))
if feed_id == "neopixel":

pixel.fill(int(payload[1:], 16))

Create a socket pool
pool = socketpool.SocketPool(wifi.radio)

Initialize a new MQTT Client object
mqtt_client = MQTT.MQTT(

broker="io.adafruit.com",
username=os.getenv("ADAFRUIT_AIO_USERNAME"),
password=os.getenv("ADAFRUIT_AIO_KEY"),
socket_pool=pool,
ssl_context=ssl.create_default_context(),

)

Initialize Adafruit IO MQTT "helper"
io = IO_MQTT(mqtt_client)

Set up the callback methods above
io.on_connect = connected
io.on_message = message

timestamp = 0
while True:

try:
If Adafruit IO is not connected...
if not io.is_connected:

Connect the client to the MQTT broker.
print("Connecting to Adafruit IO...")
io.connect()

Explicitly pump the message loop.
io.loop()
Obtain the "random" value, print it and publish it to Adafruit IO every

10 seconds.
if (time.monotonic() - timestamp) >= 10:

random_number = "{}".format(randint(0, 255))
print("Current 'random' number: {}".format(random_number))
io.publish("random", random_number)
timestamp = time.monotonic()

©Adafruit Industries Page 69 of 109

Adafruit IO fails with internal error types and WiFi fails with specific
messages.

This except is broad to handle any possible failure.
except Exception as e: # pylint: disable=broad-except

print("Failed to get or send data, or connect. Error:", e,
"\nBoard will hard reset in 30 seconds.")

time.sleep(30)
microcontroller.reset()

Update the /lib Folder

In the editor window in your browser, click
the Open button to view the file dialog.
Then, click the Upload button and select
Upload Folders.

Navigate to the project bundle that you
downloaded and select the /lib folder.

You'll be asked if you want to upload the /
lib folder from the Project Bundle. Click
Upload.

©Adafruit Industries Page 70 of 109

https://learn.adafruit.com//assets/131923
https://learn.adafruit.com//assets/131923
https://learn.adafruit.com//assets/131924
https://learn.adafruit.com//assets/131924
https://learn.adafruit.com//assets/131925
https://learn.adafruit.com//assets/131925

After the upload finishes, you can open
the lib folder to view the library files
required for the Adafruit IO example.

Update code.py

In the editor window in your browser, click
the Open button to view the file dialog.
Then, click the Upload button and select
Upload Files.

Navigate to the project bundle that you
downloaded and select the code.py file.

©Adafruit Industries Page 71 of 109

https://learn.adafruit.com//assets/131926
https://learn.adafruit.com//assets/131926
https://learn.adafruit.com//assets/131927
https://learn.adafruit.com//assets/131927
https://learn.adafruit.com//assets/131928
https://learn.adafruit.com//assets/131928

You'll be asked if you want to overwrite the
previous code.py with the new code.py file
from the Project Bundle. Click OK.

Update Your settings.toml File
Remember to add your settings.toml file as described earlier in this page. You'll need
to include your ADAFRUIT_AIO_USERNAME , ADAFRUIT_AIO_KEY ,
CIRCUITPY_WIFI_SSID and CIRCUITPY_WIFI_PASSWORD in the file.

You can edit the file manually in the USB
code editor by clicking Open, selecting
settings.toml and clicking Open at the
bottom of the dialog box.

©Adafruit Industries Page 72 of 109

https://learn.adafruit.com//assets/131929
https://learn.adafruit.com//assets/131929
https://learn.adafruit.com//assets/131930
https://learn.adafruit.com//assets/131930

With settings.toml open in the editor, you
can add your WiFi and Adafruit IO
credentials:

CIRCUITPY_WIFI_SSID = "your-ssid-

here"

CIRCUITPY_WIFI_PASSWORD = "your-

ssid-password-here"

ADAFRUIT_AIO_USERNAME = "your-aio-

username-here"

ADAFRUIT_AIO_KEY = "your-aio-key-

here"

Once your credentials are entered, click
Save above the editor to save your
changes to settings.toml.

Once everything is saved to the board, Restart the Serial Console to run the new
code.py. You'll see the connection info and current readings printed out in the
console.

NeoPixel Color Change
To change the color of the NeoPixel, go to the NeoPixel Adafruit IO dashboard you
created at the beginning, and click on the colored circle in the ColorPicker block. It
will bring up the following.

©Adafruit Industries Page 73 of 109

https://learn.adafruit.com//assets/131931
https://learn.adafruit.com//assets/131931

You can move the dot in the box around, and the slider line across the gradient to
choose the perfect color. Choose a new color and click SAVE.

The NeoPixel color will update, and you will see the new value printed to the serial
console, as shown below.

Code Walkthrough
This example contains three try / except blocks. These are included where the
code is likely to fail due to WiFi or Adafruit IO connection failures. WiFi can be finicky,
and without these code blocks, if the connection was lost, the code would crash.
Instead, it is designed to reset the board and start the code over again to reestablish
the connection, regardless of the cause. This ensures your code will continue
running. The details of these blocks are explained below.

First you import all of the necessary modules and libraries.

import time
import ssl
import os
from random import randint
import socketpool
import wifi
import board
import neopixel
import adafruit_minimqtt.adafruit_minimqtt as MQTT
from adafruit_io.adafruit_io import IO_MQTT

©Adafruit Industries Page 74 of 109

The WiFi attempts to connect, and prints the status to the serial console. If it connects
successfully, the code continues onto the NeoPixel set up.

try:
print("Connecting to %s" % os.getenv("CIRCUITPY_WIFI_SSID"))
wifi.radio.connect(os.getenv("CIRCUITPY_WIFI_SSID"),

os.getenv("CIRCUITPY_WIFI_PASSWORD"))
print("Connected to %s!" % os.getenv("CIRCUITPY_WIFI_SSID"))

If the WiFi connection is not successful, the error will be printed to the serial console,
and the board will hard reset after 30 seconds.

except Exception as e: # pylint: disable=broad-except
print("Failed to connect to WiFi. Error:", e, "\nBoard will hard reset in 30

seconds.")
time.sleep(30)
microcontroller.reset()

Once the WiFi successfully connects, the NeoPixel object is initiated.

pixel = neopixel.NeoPixel(board.NEOPIXEL, 1, brightness=0.3)

Following that are two callback methods. For more details, check out this
guide (https://adafru.it/FGB). The connected method subscribes to the neopixel feed
on Adafruit IO. The message callback checks for updates to the neopixel feed, and
turns the pixel the color from the feed.

def connected(client):
print("Connected to Adafruit IO! Listening for NeoPixel changes...")
Subscribe to Adafruit IO feed called "neopixel"
client.subscribe("neopixel")

pylint: disable=unused-argument
def message(client, feed_id, payload):

print("Feed {0} received new value: {1}".format(feed_id, payload))
if feed_id == "neopixel":

pixel.fill(int(payload[1:], 16))

You create a socket pool, use that to initialise the new MQTT Client object, and use
that to initialise the Adafruit IO MQTT "helper".

pool = socketpool.SocketPool(wifi.radio)

Note that if a settings.toml file is not present on your CIRCUITPY drive, the
code will fail to run, and you will receive an error in the serial console. Add a
settings.toml file to your CIRCUITPY drive to resolve this error.

©Adafruit Industries Page 75 of 109

https://learn.adafruit.com/mqtt-in-circuitpython/code-walkthrough#minimqtt-callback-methods-3034067-9
https://learn.adafruit.com/mqtt-in-circuitpython/code-walkthrough#minimqtt-callback-methods-3034067-9

mqtt_client = MQTT.MQTT(
broker="io.adafruit.com",
username=os.getenv("ADAFRUIT_AIO_USERNAME"),
password=os.getenv("ADAFRUIT_AIO_KEY"),
socket_pool=pool,
ssl_context=ssl.create_default_context(),

)

io = IO_MQTT(mqtt_client)

You set up the callback methods mentioned above.

io.on_connect = connected
io.on_message = message

Next, you attempt to connect the client to the MQTT broker. If connection is
successful, the code continues on to the timestamp .

try:
io.connect()

If the MQTT broker connection is not successful, the error is printed to the serial
console, and the board will hard reset after 30 seconds.

except Exception as e:
print("Failed to connect to Adafruit IO. Error:", e, "\nBoard will hard reset

in 30 seconds.")
time.sleep(30)
microcontroller.reset()

Once the broker is connected, you set the timestamp to 0 immediately before the
loop.

timestamp = 0

Inside the loop, you attempt to do two things. You first explicitly poll the message
loop. Check out this guide (https://adafru.it/YF7) for more details on that.

while True:
try:

io.loop()

Second, you have a block of code that runs every 10 seconds. Inside, you obtain a
"random" value between 0-255 inclusive, print it to the serial console, and publish it
to an Adafruit IO feed. Finally, you reset timestamp so the block of code knows when
another 10 seconds has passed, and runs again.

[...]
if (time.monotonic() - timestamp) >= 10:

random_number = "{}".format(randint(0, 255))

©Adafruit Industries Page 76 of 109

https://learn.adafruit.com/mqtt-in-circuitpython/advanced-minimqtt-usage#minimqtt-loop-3034264-1

print("Current 'random' number: {}".format(random_number))
io.publish("random", random_number)
timestamp = time.monotonic()

If at any time WiFi or Adafruit IO disconnects, the code will print the error to the serial
console, and the board will hard reset after 30 seconds.

[...]
except Exception as e:

print("Failed to get or send data, or connect. Error:", e,
"\nBoard will hard reset in 30 seconds.")

time.sleep(30)
microcontroller.reset()

That's all there is to using CircuitPython and Adafruit IO to send data to Adafruit IO,
and receive data from it!

Arduino IDE Setup
Install Arduino IDE

The first thing you will need to do is to download the latest release of the Arduino
IDE. You will need to be using version 1.8 or higher for this guide

Arduino IDE Download
https://adafru.it/f1P

Install ESP32 Board Support Package

After you have downloaded and installed the latest version of Arduino IDE, you will
need to start the IDE and navigate to the Preferences menu. You can access it from
the File menu in Windows or Linux, or the Arduino menu on OS X.

©Adafruit Industries Page 77 of 109

http://www.arduino.cc/en/Main/Software

A dialog will pop up just like the one shown below.

We will be adding a URL to the new Additional Boards Manager URLs option. The list
of URLs is comma separated, and you will only have to add each URL once. New
Adafruit boards and updates to existing boards will automatically be picked up by the
Board Manager each time it is opened. The URLs point to index files that the Board
Manager uses to build the list of available & installed boards.

To find the most up to date list of URLs you can add, you can visit the list of third party
board URLs on the Arduino IDE wiki (https://adafru.it/f7U). We will only need to add

©Adafruit Industries Page 78 of 109

https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls
https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls

one URL to the IDE in this example, but you can add multiple URLS by separating
them with commas. Copy and paste the link below into the Additional Boards
Manager URLs option in the Arduino IDE preferences.

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/

package_esp32_dev_index.json

If you have multiple boards you want to support, say ESP8266 and Adafruit, have
both URLs in the text box separated by a comma (,)

Once done click OK to save the new preference settings.

The next step is to actually install the Board Support Package (BSP). Go to the Tools
→ Board → Board Manager submenu. A dialog should come up with various BSPs.
Search for esp32.

Click the Install button and wait for it to finish. Once it is finished, you can close the
dialog.

In the Tools → Board submenu you should see ESP32 Arduino and in that dropdown
it should contain the ESP32 boards along with all the latest ESP32 boards.

Look for the board called Adafruit Feather ESP32-C6.

©Adafruit Industries Page 79 of 109

The upload speed can be changed: faster speed makes uploads take less time but
sometimes can cause upload issues. 921600 should work fine, but if you're having
issues, you can drop down lower.

Blink
The first and most basic program you can upload to your Arduino is the classic Blink
sketch. This takes something on the board and makes it, well, blink! On and off. It's a
great way to make sure everything is working and you're uploading your sketch to the
right board and right configuration.

When all else fails, you can always come back to Blink!

©Adafruit Industries Page 80 of 109

Pre-Flight Check: Get Arduino IDE &
Hardware Set Up
This lesson assumes you have Arduino IDE set up. This is a generalized checklist,
some elements may not apply to your hardware. If you haven't yet, check the previous
steps in the guide to make sure you:

Install the very latest Arduino IDE for Desktop (not all boards are supported by
the Web IDE so we don't recommend it)
Install any board support packages (BSP) required for your hardware. Some
boards are built in defaults on the IDE, but lots are not! You may need to install
plug-in support which is called the BSP.
Get a Data/Sync USB cable for connecting your hardware. A significant amount
of problems folks have stem from not having a USB cable with data pins. Yes,
these cursed cables roam the land, making your life hard. If you find a USB
cable that doesn't work for data/sync, throw it away immediately! There is no
need to keep it around, cables are very inexpensive these days.
Install any drivers required - If you have a board with a FTDI or CP210x chip,
you may need to get separate drivers. If your board has native USB, it probably
doesn't need anything. After installing, reboot to make sure the driver sinks in.
Connect the board to your computer. If your board has a power LED, make sure
its lit. Is there a power switch? Make sure its turned On!

Start up Arduino IDE and Select Board/Port
OK now you are prepared! Open the Arduino IDE on your computer. Now you have to
tell the IDE what board you are using, and how you want to connect to it.

In the IDE find the Tools menu. You will use this to select the board. If you switch
boards, you must switch the selection! So always double-check before you upload
code in a new session.

•

•

•

•

•

©Adafruit Industries Page 81 of 109

New Blink Sketch
OK lets make a new blink sketch! From the File menu, select New

Then in the new window, copy and paste this text:

int led = LED_BUILTIN;

void setup() {
 // Some boards work best if we also make a serial connection
 Serial.begin(115200);

If you have any issues accessing the Serial Monitor, make sure that USB CDC
On Boot is set to Enabled.

©Adafruit Industries Page 82 of 109

 // set LED to be an output pin
 pinMode(led, OUTPUT);
}

void loop() {
 // Say hi!
 Serial.println("Hello!");

 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(500); // wait for a half second
 digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
 delay(500); // wait for a half second
}

One note you'll see is that we reference the LED with the constant LED_BUILTIN
rather than a number. That's because, historically, the built in LED was on pin 13 for
Arduinos. But in the decades since, boards don't always have a pin 13, or maybe it
could not be used for an LED. So the LED could have moved to another pin. It's best
to use LED_BUILTIN so you don't get the pin number confused!

The red LED on the Feather ESP32-C6 is available as LED_BUILTIN , as well as 15 .

Verify (Compile) Sketch
OK now you can click the Verify button to convert the sketch into binary data to be
uploaded to the board.

Note that Verifying a sketch is the same as Compiling a sketch - so we will use the
words interchangeably

During verification/compilation, the computer will do a bunch of work to collect all the
libraries and code and the results will appear in the bottom window of the IDE

Note that in this example, we are not only blinking the LED but also printing to
the Serial monitor, think of it as a little bonus to test the serial connection.

©Adafruit Industries Page 83 of 109

If something went wrong with compilation, you will get red warning/error text in the
bottom window letting you know what the error was. It will also highlight the line with
an error

For example, here I had the wrong board selected - and the selected board does not
have a built in LED!

Here's another common error, in my haste I forgot to add a ; at the end of a line. The
compiler warns me that it's looking for one - note that the error is actually a few lines
up!

©Adafruit Industries Page 84 of 109

On success you will see something like this white text output and the message Done
compiling. in the message area.

Upload Sketch
Once the code is verified/compiling cleanly you can upload it to your board. Click the
Upload button

The IDE will try to compile the sketch again for good measure, then it will try to
connect to the board and upload a the file.

This is actually one of the hardest parts for beginners because it's where a lot of
things can go wrong.

However, lets start with what it looks like on success! Here's what your board upload
process looks like when it goes right:

Turning on detailed compilation warnings and output can be very helpful
sometimes - Its in Preferences under "Show Verbose Output During:" and
check the Compilation button. If you ever need to get help from others, be
sure to do this and then provide all the text that is output. It can assist in
nailing down what happened!

©Adafruit Industries Page 85 of 109

Often times you will get a warning like this, which is kind of vague:

No device found on COM66 (or whatever port is selected)
An error occurred while uploading the sketch

This could be a few things.

First up, check again that you have the correct board selected! Many electronics
boards have very similar names or look, and often times folks grab a board different
from what they thought.

Second, make sure you selected the right port! If you have the wrong port or no port
selected, Arduino doesn't know where to look for your board.

If both of those are correct, the next step is to enable verbose upload messages.

Before continuing we really really suggest turning on Verbose Upload messages, it
will help in this process because you will be able to see what the IDE is trying to do.
It's a checkbox in the Preferences menu.

Now you can try uploading again!

©Adafruit Industries Page 86 of 109

This time, you should have success!

After uploading this way, be sure to click the reset button - it sort of makes sure that
the board got a good reset and will come back to life nicely.

Finally, a Blink!
OK it was a journey but now we're here and you can enjoy your blinking LED. Next up,
try to change the delay between blinks and re-upload. It's a good way to make sure
your upload process is smooth and practiced.

I2C
A lot of sensors, displays, and devices can connect over I2C. I2C is a 2-wire 'bus' that
allows multiple devices to all connect on one set of pins so it's very convenient for
wiring!

When using your board, you'll probably want to connect up I2C devices, and it can be
a little tricky the first time. The best way to debug I2C is go through a checklist and
then perform an I2C scan

©Adafruit Industries Page 87 of 109

Common I2C Connectivity Issues
Have you connected four wires (at a minimum) for each I2C device? Power the
device with whatever is the logic level of your microcontroller board (probably
3.3V), then a ground wire, and a SCL clock wire, and and a SDA data wire.
If you're using a STEMMA QT board - check if the power LED is lit. It's usually a
green LED to the left side of the board.
Does the STEMMA QT/I2C port have switchable power or pullups? To reduce
power, some boards have the ability to cut power to I2C devices or the pullup
resistors. Check the documentation if you have to do something special to turn
on the power or pullups.
If you are using a DIY I2C device, do you have pullup resistors? Many boards
do not have pullup resistors built in and they are required! We suggest any
common 2.2K to 10K resistors. You'll need two: one each connects from SDA to
positive power, and SCL to positive power. Again, positive power (a.k.a VCC,
VDD or V+) is often 3.3V
Do you have an address collision? You can only have one board per address. So
you cannot, say, connect two AHT20's to one I2C port because they have the
same address and will interfere. Check the sensor or documentation for the
address. Sometimes there are ways to adjust the address.
Does your board have multiple I2C ports? Historically, boards only came with
one. But nowadays you can have two or even three! This can help solve the
"hey, but what if I want two devices with the same address" problem: just put
one on each bus.
Are you hot-plugging devices? I2C does not support dynamic re-connection,
you cannot connect and disconnect sensors as you please. They should all be
connected on boot and not change. (Only exception is if you're using a hot-plug
assistant but that'll cost you (http://adafru.it/5159)).
Are you keeping the total bus length reasonable? I2C was designed for maybe
6" max length. We like to push that with plug-n-play cables, but really please
keep them as short as possible! (Only exception is if you're using an active bus
extender (http://adafru.it/4756)).

The Feather ESP32-C6 has a NEOPIXEL_I2C_POWER pin that must be pulled HIGH to
enable power to the STEMMA QT port. This is done automatically in the board
support package in Arduino, but if you find you're having issues definitely double
check that it is pulled HIGH !

Perform an I2C scan!
Install TestBed Library

To scan I2C, the Adafruit TestBed library is used. This library and example just makes
the scan a little easier to run because it takes care of some of the basics. You will

•

•

•

•

•

•

•

•

©Adafruit Industries Page 88 of 109

https://www.adafruit.com/product/5159
https://www.adafruit.com/product/5159
https://www.adafruit.com/product/4756
https://www.adafruit.com/product/4756

need to add support by installing the library. Good news: it is very easy to do it. Go to
the Arduino Library Manager.

Search for TestBed and install the Adafruit TestBed library

Now open up the I2C Scan example

// SPDX-FileCopyrightText: 2023 Carter Nelson for Adafruit Industries
//
// SPDX-License-Identifier: MIT
// --------------------------------------
// i2c_scanner
//
// Modified from https://playground.arduino.cc/Main/I2cScanner/
// --------------------------------------

#include <Wire.h>

// Set I2C bus to use: Wire, Wire1, etc.
#define WIRE Wire

void setup() {
WIRE.begin();

Serial.begin(9600);
while (!Serial)

delay(10);
Serial.println("\nI2C Scanner");

}

©Adafruit Industries Page 89 of 109

void loop() {
byte error, address;
int nDevices;

Serial.println("Scanning...");

nDevices = 0;
for(address = 1; address < 127; address++)
{

// The i2c_scanner uses the return value of
// the Write.endTransmisstion to see if
// a device did acknowledge to the address.
WIRE.beginTransmission(address);
error = WIRE.endTransmission();

if (error == 0)
{

Serial.print("I2C device found at address 0x");
if (address<16)

Serial.print("0");
Serial.print(address,HEX);
Serial.println(" !");

nDevices++;
}
else if (error==4)
{

Serial.print("Unknown error at address 0x");
if (address<16)

Serial.print("0");
Serial.println(address,HEX);

}
}
if (nDevices == 0)

Serial.println("No I2C devices found\n");
else

Serial.println("done\n");

delay(5000); // wait 5 seconds for next scan
}

Wire up I2C device

While the examples here will be using the Adafruit MCP9808 (http://adafru.it/5027), a
high accuracy temperature sensor, the overall process is the same for just about any
I2C sensor or device.

The first thing you'll want to do is get the sensor connected so your board has I2C to
talk to.

©Adafruit Industries Page 90 of 109

https://www.adafruit.com/product/5027

Adafruit MCP9808 High Accuracy I2C
Temperature Sensor Breakout
The MCP9808 digital temperature sensor
is one of the more accurate/precise we've
ever seen, with a typical accuracy of
±0.25°C over the sensor's -40°C to...
https://www.adafruit.com/product/5027

STEMMA QT / Qwiic JST SH 4-Pin Cable -
50mm Long
This 4-wire cable is 50mm / 1.9" long and
fitted with JST SH female 4-pin
connectors on both ends. Compared with
the chunkier JST PH these are 1mm pitch
instead of 2mm, but...
https://www.adafruit.com/product/4399

Wiring the MCP9808
The MCP9808 comes with a STEMMA QT connector, which makes wiring it up quite
simple and solder-free.

©Adafruit Industries Page 91 of 109

https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399

Now upload the scanning sketch to your microcontroller and open the serial port to
see the output. You should see something like this:

You'll see two addresses in the Serial Monitor: 0x18 for the MCP9808 sensor and
0x36 for the built-in MAX17048.

MAX17048 Simple Data
Your microcontroller board comes with a MAX17048 lithium ion polymer (lipoly)
battery monitor built right onto the board. The MAX17048 is available over I2C.

The sensor comes with its own Adafruit CircuitPython library that makes it simple to
write code to read data from it. This example will be using, among other things,
the Adafruit_MAX1704X (https://adafru.it/10FG) library.

The example simply reads data from the sensor and prints it to the serial console. It is
designed to show you how to get data from the sensor.

If you have any issues accessing the Serial Monitor, make sure that USB CDC
On Boot is set to Enabled for the Feather.

©Adafruit Industries Page 92 of 109

https://github.com/adafruit/Adafruit_MAX1704X

The MAX17048 battery monitor (highlighted in red) is immediately below the USB pin
label. Its I2C address is 0x36.

Arduino Library Installation
You can install the necessary libraries from the Library Manager. To open, click Sketch
> Include Library > Manage Libraries...

Search for MAX17048, and install the Adafruit MAX1704X library.

When asked about installing dependencies, click Install all.

©Adafruit Industries Page 93 of 109

MAX17048 Simple Data Example
Click File > Examples > Adafruit MAX1704X > MAX17048_basic to open the example.

#include "Adafruit_MAX1704X.h"

Adafruit_MAX17048 maxlipo;

void setup() {
Serial.begin(115200);
while (!Serial) delay(10); // wait until serial monitor opens

Serial.println(F("\nAdafruit MAX17048 simple demo"));

while (!maxlipo.begin()) {
Serial.println(F("Couldnt find Adafruit MAX17048?\nMake sure a battery is

plugged in!"));
delay(2000);

}
Serial.print(F("Found MAX17048"));
Serial.print(F(" with Chip ID: 0x"));
Serial.println(maxlipo.getChipID(), HEX);

}

void loop() {
float cellVoltage = maxlipo.cellVoltage();
if (isnan(cellVoltage)) {

Serial.println("Failed to read cell voltage, check battery is connected!");
delay(2000);
return;

}
Serial.print(F("Batt Voltage: ")); Serial.print(cellVoltage, 3); Serial.println("

V");
Serial.print(F("Batt Percent: ")); Serial.print(maxlipo.cellPercent(), 1);

Serial.println(" %");
Serial.println();

delay(2000); // dont query too often!
}

If you have any issues accessing the Serial Monitor, make sure that USB CDC
On Boot is set to Enabled.

©Adafruit Industries Page 94 of 109

After opening the MAX17048_basic file, upload it to your microcontroller. Open the
Serial Monitor at 115200 baud. Plug in a lipo battery to the JST-PH battery port. You
should see the battery voltage and percentage data print to the Serial Monitor as the
sketch runs.

WiFi Test
Thankfully if you have ESP32 sketches, they'll 'just work' with variations of ESP32. You
can find a wide range of examples in the File->Examples->Examples for Adafruit
Metro ESP32-S2 subheading (the name of the board may vary so it could be
"Examples for Adafruit Feather ESP32 V2" etc)

Let's start by scanning the local networks.

©Adafruit Industries Page 95 of 109

Load up the WiFiScan example under Examples->Examples for YOUR BOARDNAME-
>WiFi->WiFiScan

And upload this example to your board. The ESP32 should scan and find WiFi
networks around you.

For ESP32, open the serial monitor, to see the scan begin.

For ESP32-S2, -S3 and -C3, don't forget you have to click Reset after uploading
through the ROM bootloader. Then select the new USB Serial port created by the
ESP32. It will take a few seconds for the board to complete the scan.

If you can not scan any networks, check your power supply. You need a solid power
supply in order for the ESP32 to not brown out. A skinny USB cable or drained battery
can cause issues.

©Adafruit Industries Page 96 of 109

WiFi Connection Test
Now that you can scan networks around you, its time to connect to the Internet!

Copy the example below and paste it into the Arduino IDE:

// SPDX-FileCopyrightText: 2020 Brent Rubell for Adafruit Industries
//
// SPDX-License-Identifier: MIT

/*
 Web client

 This sketch connects to a website (wifitest.adafruit.com/testwifi/index.html)
 using the WiFi module.

 This example is written for a network using WPA encryption. For
 WEP or WPA, change the Wifi.begin() call accordingly.

 This example is written for a network using WPA encryption. For
 WEP or WPA, change the Wifi.begin() call accordingly.

 created 13 July 2010
 by dlf (Metodo2 srl)
 modified 31 May 2012
 by Tom Igoe
 */

#include <WiFi.h>

// Enter your WiFi SSID and password
char ssid[] = "YOUR_SSID"; // your network SSID (name)
char pass[] = "YOUR_SSID_PASSWORD"; // your network password (use for WPA, or
use as key for WEP)
int keyIndex = 0; // your network key Index number (needed
only for WEP)

int status = WL_IDLE_STATUS;
// if you don't want to use DNS (and reduce your sketch size)
// use the numeric IP instead of the name for the server:
//IPAddress server(74,125,232,128); // numeric IP for Google (no DNS)

char server[] = "wifitest.adafruit.com"; // name address for adafruit test
char path[] = "/testwifi/index.html";

// Initialize the Ethernet client library
// with the IP address and port of the server
// that you want to connect to (port 80 is default for HTTP):
WiFiClient client;

void setup() {
//Initialize serial and wait for port to open:
Serial.begin(115200);
while (!Serial) {

; // wait for serial port to connect. Needed for native USB port only
}

// attempt to connect to Wifi network:
Serial.print("Attempting to connect to SSID: ");
Serial.println(ssid);

WiFi.begin(ssid, pass);
while (WiFi.status() != WL_CONNECTED) {

delay(500);
Serial.print(".");

©Adafruit Industries Page 97 of 109

}

Serial.println("");
Serial.println("Connected to WiFi");
printWifiStatus();

Serial.println("\nStarting connection to server...");
// if you get a connection, report back via serial:
if (client.connect(server, 80)) {

Serial.println("connected to server");
// Make a HTTP request:
client.print("GET "); client.print(path); client.println(" HTTP/1.1");
client.print("Host: "); client.println(server);
client.println("Connection: close");
client.println();

}
}

void loop() {
// if there are incoming bytes available
// from the server, read them and print them:
while (client.available()) {

char c = client.read();
Serial.write(c);

}

// if the server's disconnected, stop the client:
if (!client.connected()) {

Serial.println();
Serial.println("disconnecting from server.");
client.stop();

// do nothing forevermore:
while (true) {

delay(100);
}

}
}

void printWifiStatus() {
// print the SSID of the network you're attached to:
Serial.print("SSID: ");
Serial.println(WiFi.SSID());

// print your board's IP address:
IPAddress ip = WiFi.localIP();
Serial.print("IP Address: ");
Serial.println(ip);

// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.print(rssi);
Serial.println(" dBm");

}

NOTE: You must change the SECRET_SSID and SECRET_PASS in the example code
to your WiFi SSID and password before uploading this to your board.

©Adafruit Industries Page 98 of 109

After you've set it correctly, upload and check the serial monitor. You should see the
following. If not, go back, check wiring, power and your SSID/password

Factory Reset
Your microcontroller ships running a factory demo. It's lovely, but you probably had
other plans for the board. As you start working with your board, you may want to
return to the original code to begin again, or you may find your board gets into a bad
state. Either way, this page has you covered.

Factory Reset Example Code
If you're still able to load Arduino sketches, you can load the following sketch onto
your board to return it to its original state.

If you have issues establishing a connection, try power cycling the board by
unplugging and replugging the USB cable.

©Adafruit Industries Page 99 of 109

// SPDX-FileCopyrightText: 2024 ladyada for Adafruit Industries
//
// SPDX-License-Identifier: MIT

#include <Adafruit_NeoPixel.h>
#include "Adafruit_TestBed.h"
extern Adafruit_TestBed TB;

Adafruit_NeoPixel pixel(1, PIN_NEOPIXEL, NEO_GRB + NEO_KHZ800);

void setup() {
//while (! Serial) delay(10);
Serial.begin(115200);
TB.neopixelPin = PIN_NEOPIXEL;
TB.neopixelNum = 1;
TB.begin();
TB.setColor(WHITE);

}

uint8_t j = 0;

void loop() {

TB.setColor(TB.Wheel(j++));
delay(10);
if (j == 0) {

TB.printI2CBusScan();
}

}

Your board is now back to its factory-shipped state! You can now begin again with
your plans for your board.

Factory Reset .bin
If your board is in a state where Arduino isn't working, you may need to use these
tools to flash a .bin file directly onto your board.

There are two ways to do a factory reset. The first is using WebSerial through a
Chromium-based browser, and the second is using esptool via command line. We
highly recommend using WebSerial through Chrome/Chromium.

First you'll need to download the factory-reset.bin file. Save the following file
wherever is convenient for you. You'll need access to it for both tools.

Click to download the ESP32-C6
Feather Factory Reset .BIN File

https://adafru.it/1a6G

Now that you've downloaded the .bin file, you're ready to continue with the factory
reset process. The next two sections walk you through using WebSerial and
esptool .

©Adafruit Industries Page 100 of 109

https://github.com/adafruit/Adafruit-ESP32-C6-Feather-PCB/raw/main/factory-reset/Adafruit_ESP32-C6_Feather_FactoryReset.bin

The WebSerial ESPTool Method

This method uses the WebSerial ESPTool through Chrome or a Chromium-based
browser. The WebSerial ESPTool was designed to be a web-capable option for
programming ESP32 boards. It allows you to erase the contents of the microcontroller
and program up to four files at different offsets.

You will have to use a Chromium browser (like Chrome, Opera, Edge...) for this to
work, Safari and Firefox, etc. are not supported because we need Web Serial and only
Chromium is supporting it to the level needed.

Follow the steps to complete the factory reset.

Connect

You should have plugged in only the ESP32 that you intend to flash. That way there's
no confusion in picking the proper port when it's time!

In the Chrome browser visit https://
adafruit.github.io/
Adafruit_WebSerial_ESPTool/ (https://
adafru.it/PMB). You should see something
like the image shown.

We highly recommend using WebSerial ESPTool method to perform a factory
reset and bootloader repair. However, if you'd rather use esptool via
command line, you can skip this section.

If you're using Chrome 88 or older, see the Older Versions of Chrome section
at the end of this page for instructions on enabling Web Serial.

©Adafruit Industries Page 101 of 109

https://learn.adafruit.com//assets/110492
https://learn.adafruit.com//assets/110492
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/

Press the Connect button in the top right
of the web browser. You will get a pop up
asking you to select the COM or Serial
port.

Remember, you should remove all other
USB devices so only the ESP32 board is
attached, that way there's no confusion
over multiple ports!

On some systems, such as MacOS, there
may be additional system ports that
appear in the list.

The Javascript code will now try to
connect to the ROM bootloader. It may
timeout for a bit until it succeeds. On
success, you will see that it
is Connected and will print out a
unique MAC address identifying the board
along with other information that was
detected.

Once you have successfully connected,
the command toolbar will appear.

©Adafruit Industries Page 102 of 109

https://learn.adafruit.com//assets/110493
https://learn.adafruit.com//assets/110493
https://learn.adafruit.com//assets/110494
https://learn.adafruit.com//assets/110494
https://learn.adafruit.com//assets/110496
https://learn.adafruit.com//assets/110496

Erase the Contents

To erase the contents, click the Erase
button. You will be prompted whether you
want to continue. Click OK to continue or if
you changed your mind, just click cancel.

You'll see "Erasing flash memory. Please
wait..." This will eventually be followed by
"Finished." and the amount of time it took
to erase.

Do not disconnect! Immediately continue
on to programming the ESP32.

Program the ESP32

Programming the microcontroller can be done with up to four files at different
locations, but with the board-specific factory-reset.bin file, which you should have
downloaded earlier, you only need to use one file.

Do not disconnect after erasing! Immediately continue on to the next step!

©Adafruit Industries Page 103 of 109

https://learn.adafruit.com//assets/110497
https://learn.adafruit.com//assets/110497
https://learn.adafruit.com//assets/106947
https://learn.adafruit.com//assets/106947

Click on the first Choose a file.... (The tool
will only attempt to program buttons with a
file and a unique location.) Then, select the
*-factory-reset.bin file you downloaded in
Step 1 that matches your board.

Verify that the Offset box next to the file
location you used is (0x) 0.

Once you choose a file, the button text will
change to match your filename. You can
then select the Program button to begin
flashing.

A progress bar will appear and after a
minute or two, you will have written the
firmware.

Once completed, you can skip down to the section titled Reset the Board.

The esptool Method (for advanced users)

If you used WebSerial ESPTool, you do not need to complete the steps in this
section!

©Adafruit Industries Page 104 of 109

https://learn.adafruit.com//assets/101574
https://learn.adafruit.com//assets/101574
https://learn.adafruit.com//assets/110500
https://learn.adafruit.com//assets/110500
https://learn.adafruit.com//assets/110499
https://learn.adafruit.com//assets/110499

Alternatively, you can use Espressif's esptool program (https://adafru.it/E9p) to
communicate with the chip! esptool is the 'official' programming tool and is the
most common/complete way to program an ESP chip.

Install ESPTool.py

You will need to use the command line / Terminal to install and run esptool .

You will also need to have pip and Python installed (any version!).

Install the latest version using pip (you may be able to run pip without
the 3 depending on your setup):

pip3 install --upgrade esptool

Then, you can run:

esptool.py

Test the Installation

Run esptool.py in a new terminal/command line and verify you get something like
the below:

Connect

Run the following command, replacing the COM88 identifier after --port with
the COMxx , /dev/cu.usbmodemxx or /dev/ttySxx you found above.

esptool.py --port COM88 chip_id

You should get a notice that it connected over that port and found an ESP32.

©Adafruit Industries Page 105 of 109

https://github.com/espressif/esptool

Installing the Factory Test file

Run this command and replace the serial port name, COM88 , with your matching port
and *-factory-reset.bin with file you just downloaded

esptool.py --port COM88 write_flash 0x0 *-factory-reset.bin

Don't forget to change the --port name to match.

There might be a bit of a 'wait' when programming, where it doesn't seem like it's
working. Give it a minute, it has to erase the old flash code which can cause it to
seem like it's not running.

You'll finally get an output like this:

Once completed, you can continue to the next section.

Reset the board
Now that you've reprogrammed the board, you need to reset it to continue. Click the
reset button to launch the new firmware.

©Adafruit Industries Page 106 of 109

The NeoPixel LED on the ESP32-C6 Feather will show a rainbow swirl. Every few
seconds, you'll see an I2C scan print to the Serial Monitor with address 0x36 for the
onboard battery monitor.

You've successfully returned your board to a factory reset state!

Older Versions of Chrome

We suggest updating to Chrome 89 or newer, as Web Serial is enabled by default.

If you must continue using an older version of Chrome, follow these steps to enable
Web Serial.

If you receive an error like the one shown
when you visit the WebSerial ESPTool site,
you're likely running an older version of
Chrome.

You must be using Chrome 78 or later to
use Web Serial.

In the event that pressing the reset button does not restart the board, unplug
the board from USB and plug it back in to get the new firmware to start up.

As of chrome 89, Web Serial is already enabled, so this step is only necessary
on older browsers.

©Adafruit Industries Page 107 of 109

https://learn.adafruit.com//assets/106929
https://learn.adafruit.com//assets/106929

To enable Web Serial in Chrome versions
78 through 88:

Visit chrome://flags from within Chrome.
Find and enable the Experimental Web
Platform features
Restart Chrome

Downloads
Files

ESP32-C6 datasheet (https://adafru.it/1a94)
EagleCAD PCB files on GitHub (https://adafru.it/1a6I)
Fritzing object in the Adafruit Fritzing Library (https://adafru.it/1a6J)
PrettyPins pinout PDF on GitHub (https://adafru.it/1a6D)
PrettyPins pinout SVG (https://adafru.it/1a6K)

Schematic and Fab Print

•
•
•
•
•

©Adafruit Industries Page 108 of 109

https://learn.adafruit.com//assets/101562
https://learn.adafruit.com//assets/101562
https://www.espressif.com/sites/default/files/documentation/esp32-c6-mini-1_mini-1u_datasheet_en.pdf
https://github.com/adafruit/Adafruit-ESP32-C6-Feather-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20Feather%20ESP32-C6.fzpz
https://github.com/adafruit/Adafruit-ESP32-C6-Feather-PCB/blob/main/Adafruit%20Feather%20ESP32-C6%20PrettyPins.pdf
https://github.com/adafruit/Adafruit-ESP32-C6-Feather-PCB/blob/main/Adafruit%20Feather%20ESP32-C6%20PrettyPins.svg

©Adafruit Industries Page 109 of 109

	Adafruit ESP32-C6 Feather
	Table of Contents
	Overview
	Pinouts
	Low Power Use
	Power Management
	Install CircuitPython
	Connecting to the USB Workflow Code Editor
	Navigating USB Workflow
	Blink
	Digital Input
	I2C Scan
	MAX17048 Battery Monitor
	NeoPixel
	WiFi Test
	Adafruit IO
	Arduino IDE Setup
	Blink
	I2C
	MAX17048 Simple Data
	WiFi Test
	Factory Reset
	Downloads

	Overview
	Pinouts
	Power
	ESP32-C6 WiFi Module
	MAX17048 Battery Monitor
	Logic Pins
	NeoPixel and Red LED
	STEMMA QT
	Buttons

	Low Power Use
	Power Draw for ESP32-C6 Feather
	Normal Power Mode
	Light Sleep Mode
	Deep Sleep Mode

	Power Management
	Battery + USB Power
	Power Supplies
	Measuring Battery
	ENable pin
	STEMMA QT and NeoPixel Power
	Alternative Power Options
	Install CircuitPython
	CircuitPython Download
	Bootloader Mode
	Connecting to the Web Flasher
	Erasing the Board Contents
	Programming the Board

	Connecting to the USB Workflow Code Editor
	Navigating USB Workflow
	Opening and Saving Files
	Running Code
	File Dialog Toolbar
	Renaming and Deleting Files and Folders
	Creating New Folders
	Uploading and Downloading Files and Folders
	Moving Files and Folders

	Using the Serial Terminal
	More Features to Come

	Blink
	LED Location
	Blinking an LED

	Digital Input
	LED and Button
	Controlling the LED with a Button

	I2C Scan
	I2C and CircuitPython
	Necessary Hardware
	Wiring the MCP9808
	Find Your Sensor

	MAX17048 Battery Monitor
	MAX17048 Location

	MAX17048 Simple Data Example
	Update the /lib Folder
	Update code.py

	NeoPixel
	NeoPixel Location
	NeoPixel Color and Brightness
	Update the /lib Folder
	Update code.py
	RGB LED Colors
	NeoPixel Rainbow

	WiFi Test
	settings.toml File
	settings.toml File Example
	CircuitPython WiFi Example
	Update Your settings.toml File
	How the CircuitPython WiFi Example Works

	Adafruit IO
	NeoPixel Location
	Adafruit IO Feeds and Dashboard
	Adafruit IO settings.toml
	Adafruit IO Example Code
	Update the /lib Folder
	Update code.py
	Update Your settings.toml File
	NeoPixel Color Change
	Code Walkthrough

	Arduino IDE Setup
	Install Arduino IDE
	Install ESP32 Board Support Package

	Blink
	Pre-Flight Check: Get Arduino IDE & Hardware Set Up
	Start up Arduino IDE and Select Board/Port
	New Blink Sketch
	Verify (Compile) Sketch
	Upload Sketch
	Finally, a Blink!
	I2C
	Common I2C Connectivity Issues
	Perform an I2C scan!
	Install TestBed Library
	Wire up I2C device
	Wiring the MCP9808

	MAX17048 Simple Data
	Arduino Library Installation
	MAX17048 Simple Data Example

	WiFi Test
	WiFi Connection Test

	Factory Reset
	Factory Reset Example Code
	Factory Reset .bin
	The WebSerial ESPTool Method
	Connect
	Erase the Contents
	Program the ESP32

	The esptool Method (for advanced users)
	Install ESPTool.py
	Test the Installation
	Connect
	Installing the Factory Test file

	Reset the board
	Older Versions of Chrome

	Downloads
	Files
	Schematic and Fab Print

