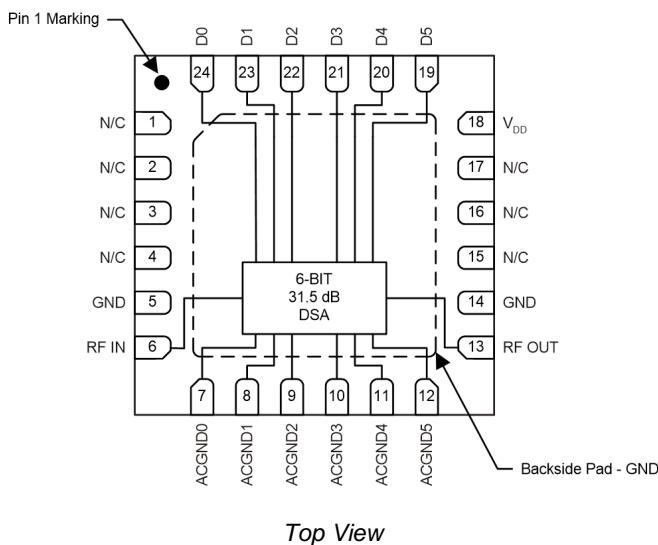



## 1. Product Overview and Benefits

The Qorvo® TQP4M9071 is a high linearity, low insertion loss, 6-bit, 31.5dB Digital Step Attenuator (DSA) operating over 0.04-4GHz frequency range. The DSA uses a single positive 3.3V or 5V supply and is with a parallel control interface to control attenuation states. This product maintains high attenuation accuracy over frequency and temperature. No external matching required. This product also comes with an added feature of not requiring external AC ground capacitors for operation above 700MHz.

The TQP4M9071 is available in a standard Lead-Free Green RoHS compliant 24-pin 4x4mm QFN package.

There is also a footprint and pin compatible DSA part available with a serial control interface. Which is Qorvo® TQP4M9072.




24 Pin 4 x 4 mm leadless QFN Package

## 3. Key Features

- 0.04-4.0GHz frequency range
- 0.5dB LSB Steps to 31.5dB
- +57dBm Input IP3
- 1.7dB Insertion Loss at 2.2GHz
- TTL Compatible Parallel Control Interface
- No external bypass capacitors required for  $\geq 700\text{MHz}$  Apps
- $50\Omega$  Impedance
- +3.3 or +5V operational voltage

## 2. Functional Block Diagram



## 4. Applications

- Mobile Infrastructure
- LTE/WCDMA/CDMA/EDGE
- Test Equipment and Sensors
- IF and RF Applications
- General Purpose Wireless

## 5. Ordering Information

| Part Number      | Description                |
|------------------|----------------------------|
| TQP4M9071TR13    | 13" T&R with 2500 pieces   |
| TQP4M9071-PCB_IF | 40–500MHz Evaluation Board |
| TQP4M9071-PCB_RF | 0.7–4GHz Evaluation Board  |

Note: EVB comes with USB control interface board

## 6. Electrical Characteristics

### 6.1. Absolute Maximum Ratings

| Parameter                      | Conditions             | Rating              |
|--------------------------------|------------------------|---------------------|
| Storage Temperature            |                        | -55 to +150 °C      |
| RF Input Power                 | 50Ω, Temperature +85°C | +28dBm              |
| V <sub>DD</sub> Supply Voltage |                        | +7.0V               |
| Control Bit Input Voltage      |                        | V <sub>DD</sub> +1V |

Operation of this device outside the parameter ranges given above may cause permanent damage.

### 6.2. Recommended Operating Conditions

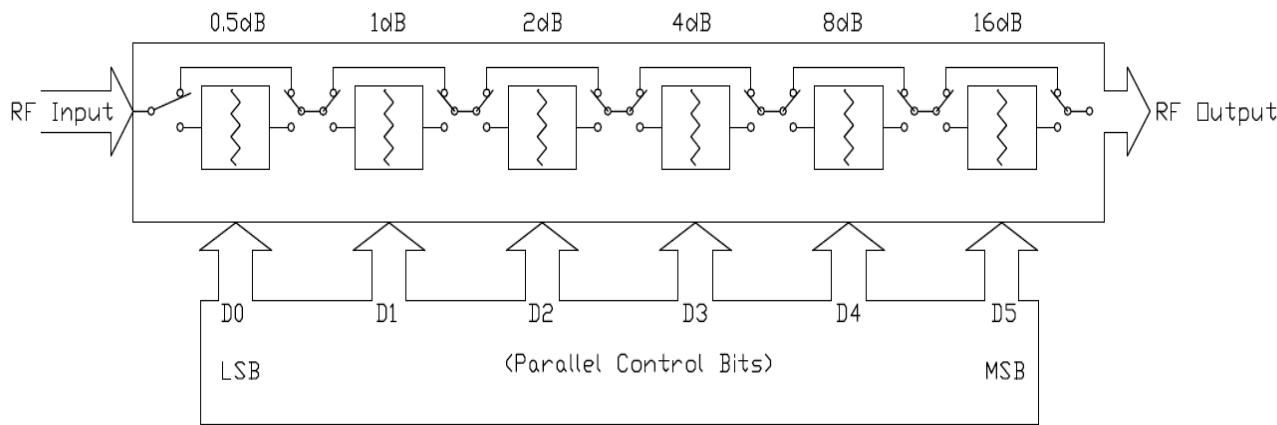
| Parameter               | Min. | Typ.  | Max.  | Units |
|-------------------------|------|-------|-------|-------|
| V <sub>DD</sub> Voltage | +3.3 | +5.00 | +5.25 | V     |
| T <sub>CASE</sub>       | -40  | -     | +105  | °C    |

Electrical specifications are measured at specified test conditions. Performances are not guaranteed over all recommended operating conditions.

### 6.3. Electrical Specifications

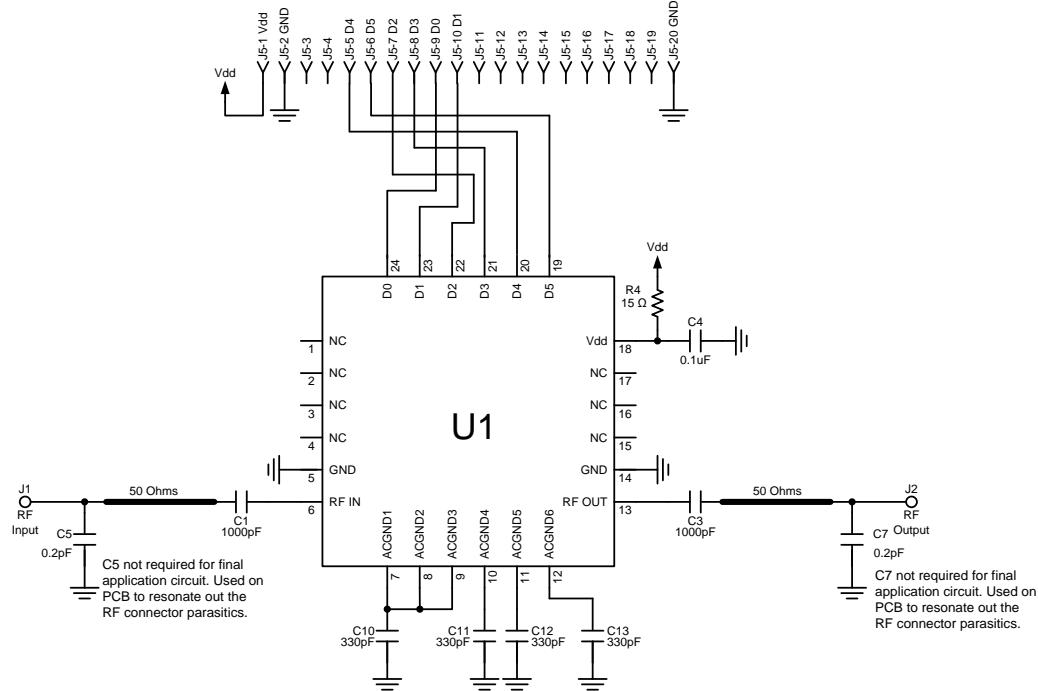
| Parameter                   | Conditions <sup>(1)(2)</sup>                            | Min. | Typ.                              | Max. | Units |
|-----------------------------|---------------------------------------------------------|------|-----------------------------------|------|-------|
| Operational Frequency Range | 1.0GHz                                                  | 40   |                                   | 4000 | MHz   |
|                             | 2.0GHz                                                  |      | 1.3                               |      | dB    |
|                             | 2.2GHz                                                  |      | 1.6                               |      | dB    |
|                             | 3.5GHz                                                  |      | 1.7                               | 2.2  | dB    |
|                             | All States                                              |      | 2.1                               |      | dB    |
| Insertion Loss              | 0.04-2.7GHz, All States, Mode 2                         |      | ± (0.3+3% of Atten. Setting), Max |      | dB    |
|                             | 0.7-2.7GHz, All States, Mode 1 & 2                      |      | ± (0.3+3% of Atten. Setting), Max |      | dB    |
|                             | 2.7-3.5GHz, All States, Mode 1 & 2                      |      | ± (0.4+4% of Atten. Setting), Max |      | dB    |
| Return Loss                 | To be monotonic, step attenuation $\geq 0$ required     | 0    | 0.5                               |      | dB    |
| Attenuation Accuracy        | Input Power +15dBm/tone, All States                     |      | +57                               |      | dBm   |
| Attenuation Step            | All States, 0.04-4GHz                                   |      | +30                               |      | dBm   |
| Input IP3                   | 10% $\leq$ 90% RF                                       |      | 90                                |      | ns    |
| Input P0.1dB                | 50% of Control to 10%/90% between any two states        |      | 100                               |      | ns    |
| Rise or Fall Time           | Supply Voltage, V <sub>DD</sub> <sup>(3)</sup>          |      | +5                                |      | V     |
| Attenuation Settling Time   | Supply Current, I <sub>DD</sub>                         |      | 1.4                               |      | mA    |
| Control Logic Low Voltage   | Pin 19-24, 6-bit TTL compatible parallel control inputs | 0    | 0.8                               |      | V     |
| Control Logic High Voltage  |                                                         | 2    | V <sub>DD</sub>                   |      | V     |
| Control Logic Low Current   |                                                         |      | 5                                 |      | μA    |
| Control Logic High Current  |                                                         |      | 50                                |      | μA    |

Notes:


1. Test conditions otherwise noted: V<sub>DD</sub> +5V, Temperature +25C, Mode 1, on Qorvo EVB
2. Mode 1 No external bypass capacitors on Pin 7-12 for 0.7-4GHz applications; Mode 2 with external bypass capacitors for 0.04-4GHz applications
3. This product can be operated at V<sub>DD</sub> +3.3V with reduced performance.

## 7. Control Logic Truth Table

| LSB | Control Bits |    |    | MSB | Attenuation Major State |                   |  |
|-----|--------------|----|----|-----|-------------------------|-------------------|--|
| D0  | D1           | D2 | D3 | D4  | D5                      | 0dB Reference: IL |  |
| 1   | 1            | 1  | 1  | 1   | 1                       | 0.5dB             |  |
| 0   | 1            | 1  | 1  | 1   | 1                       | 1.0dB             |  |
| 1   | 0            | 1  | 1  | 1   | 1                       | 2.0dB             |  |
| 1   | 1            | 0  | 1  | 1   | 1                       | 4.0dB             |  |
| 1   | 1            | 1  | 0  | 1   | 1                       | 8.0dB             |  |
| 1   | 1            | 1  | 1  | 0   | 1                       | 16.0dB            |  |
| 0   | 0            | 0  | 0  | 0   | 0                       | 31.5dB            |  |


Any combination of the possible 64 states will provide an attenuation of approximately the sum of bit states selected

## 8. Detail Functional Diagram



## 9. TQP4M9071-PCB\_RF/IF Evaluation Board

### 9.1. Application Evaluation Board Schematic

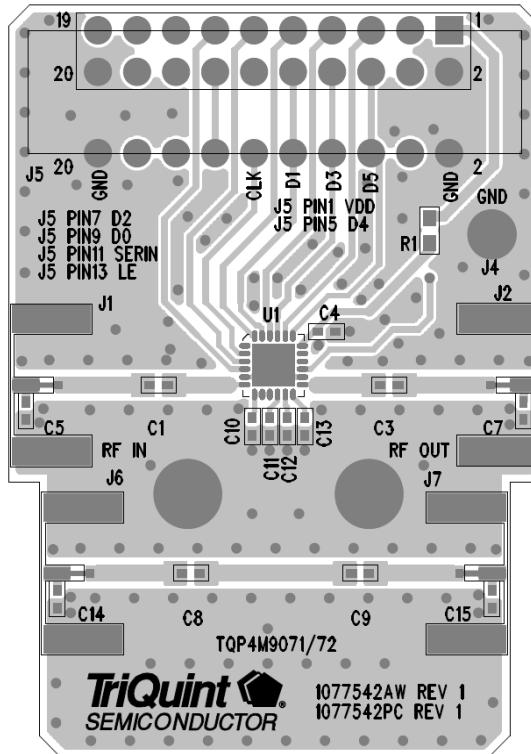


### 9.2. Bill of Material: TQP4M9071-PCB\_RF

| Reference Des.     | Value  | Description                                   | Manuf.  | Part Number |
|--------------------|--------|-----------------------------------------------|---------|-------------|
| -                  | -      | Printed Circuit Board                         | Qorvo   | -           |
| U1                 | -      | DSA, High Linearity 6-Bit, 31.5dB, 0.5dB Step | Qorvo   | TQP4M9071   |
| C1, C3, C8, C9     | 1000pF | CAP, 1000pF, 10%, 50V, C0G, 0402              | various | -           |
| C4                 | 0.1μF  | CAP, 0.1μF, 20%, 16V, 0402                    | various | -           |
| R1                 | 15Ω    | RES, 15Ω, 5%, 1/16W, 0402                     | various | -           |
| C10, C11, C12, C13 | -      | Not Installed                                 | -       | -           |

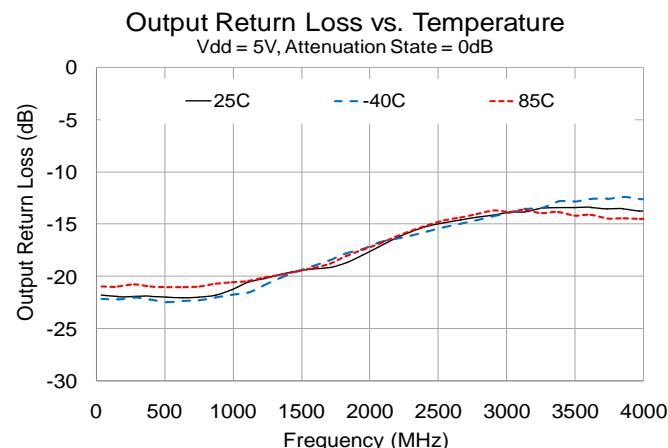
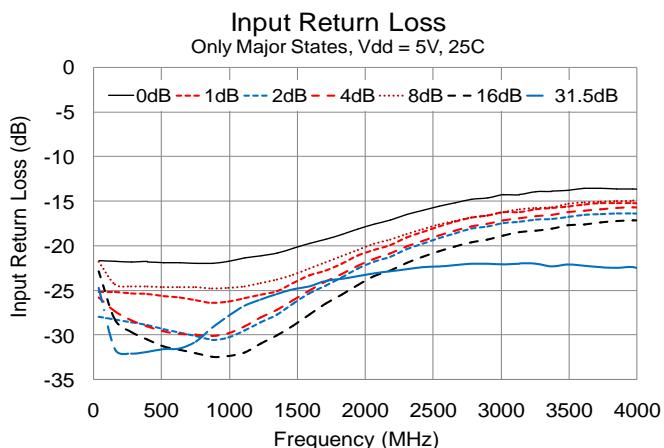
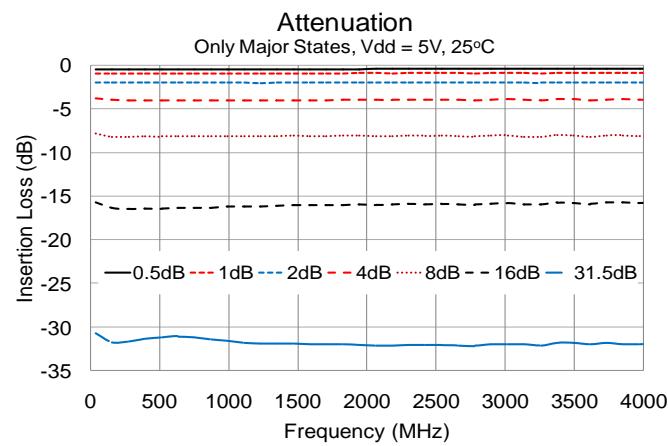
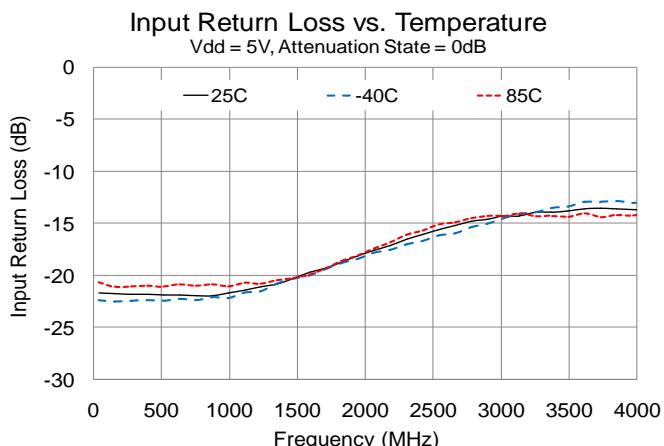
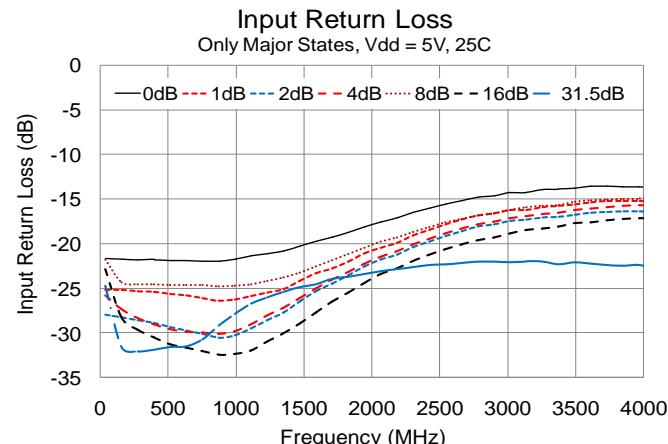
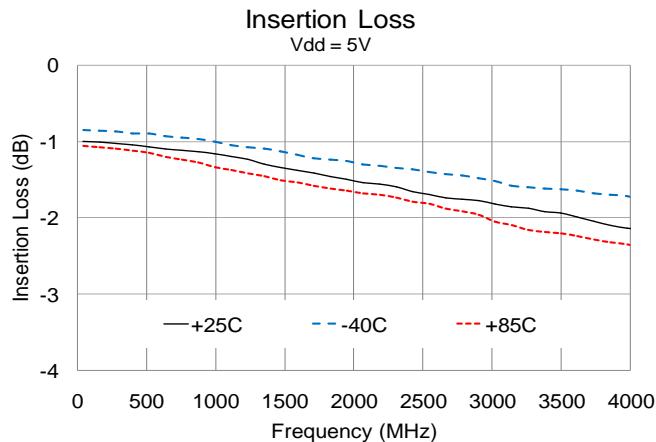
### 9.3. Bill of Material: TQP4M9071-PCB\_IF

| Reference Des.     | Value  | Description                                   | Manuf.  | Part Number |
|--------------------|--------|-----------------------------------------------|---------|-------------|
| -                  | -      | Printed Circuit Board                         | Qorvo   | -           |
| U1                 | -      | DSA, High Linearity 6-Bit, 31.5dB, 0.5dB Step | Qorvo   | TQP4M9071   |
| C1, C3, C8, C9     | 1000pF | CAP, 1000pF, 10%, 50V, C0G, 0402              | various | -           |
| C4                 | 0.1μF  | CAP, 0.1μF, 20%, 16V, 0402                    | various | -           |
| R1                 | 15Ω    | RES, 15Ω, 5%, 1/16W, 0402                     | various | -           |
| C10, C11, C12, C13 | 330pF  | CAP, 330pF, 10%, 50V, 0402Not Installed       | various | -           |

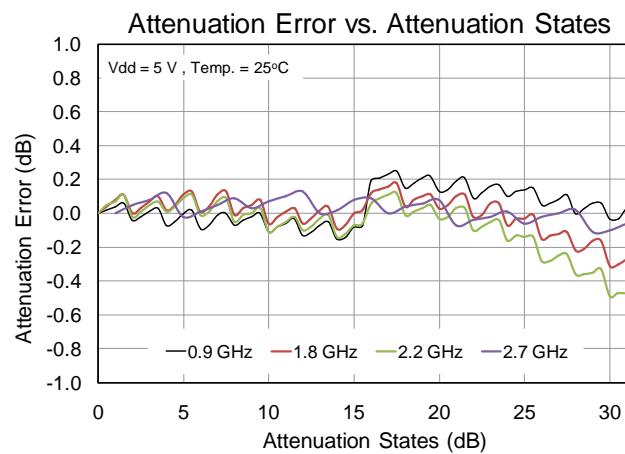
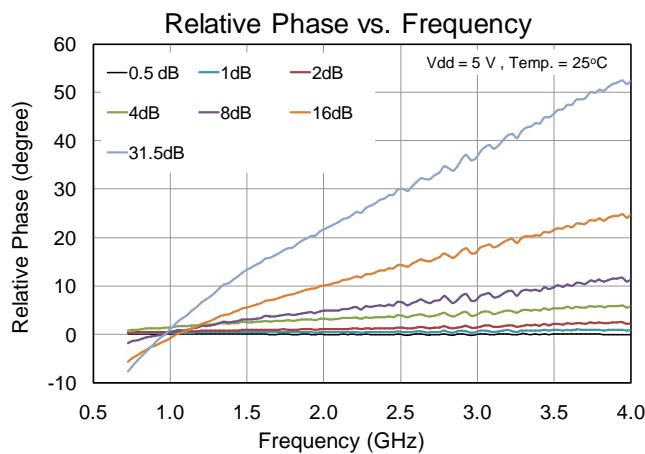
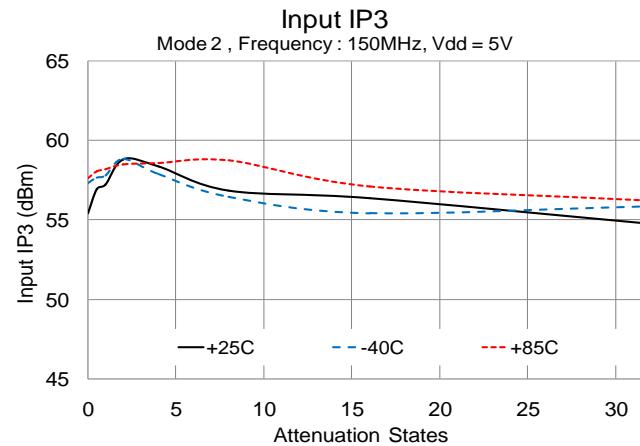
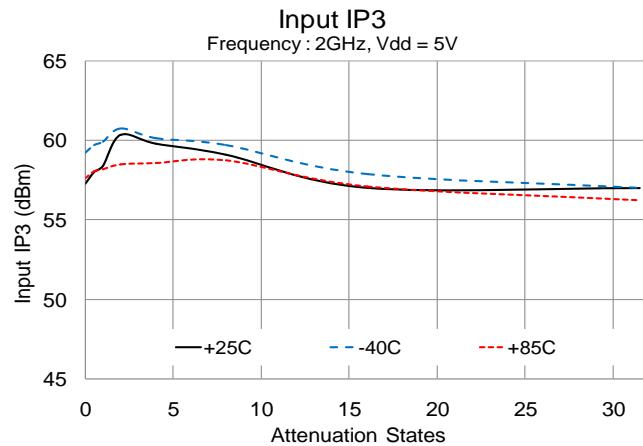

### 9.4. TQP4M9071-PCB\_RF/IF EVB Layout

Top RF layer is .020" Rogers-4003,  $\epsilon_r = 3.45$ , 4 layers total 0.062" for mechanical rigidity. Metal layers are 1-oz copper. RF trace: width = .040", spacing = .020".

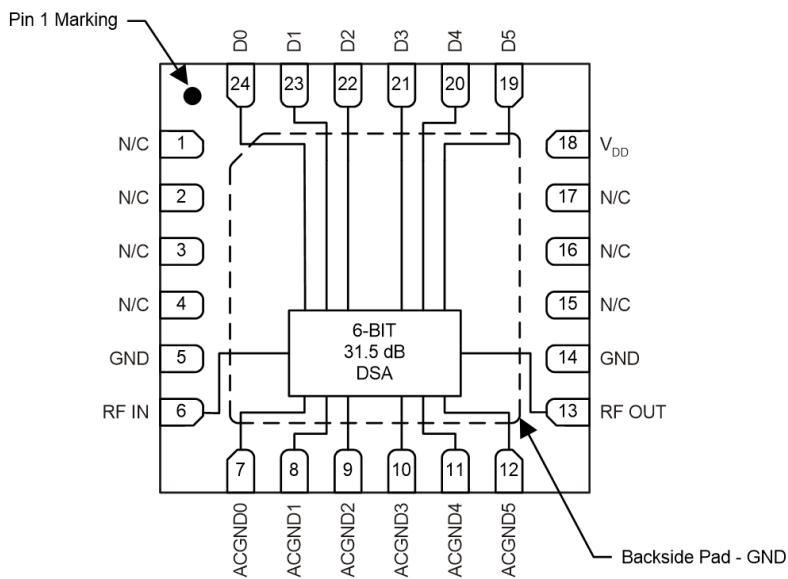
External DC blocking capacitors are required on RF IN and RF OUT pins of the device. The supply voltage for the DSA is supplied externally through pin  $V_{DD}$ . Frequency bypassing for this pin is supplied by surface mount capacitor 0.1μF (C4). This capacitor is placed close to the device pin in the board layout. To ensure application circuit is compatible with different standard power supplies, 15Ω (R1) dropping resistor is highly recommended on  $V_{DD}$  supply line.







RF layout is critical for getting the best performance RF trace impedance needs to be 50Ω. For measuring the actual device performance on connectorized PC board, losses due to RF traces need could be subtracted from the data measured through SMA connectors. The RF through line between J6 & J7 estimates the PCB trace loss for removal from the evaluation board measured data. All data shown on the data sheet is with trace losses deducted.

The PC board is designed with the connector for the USB control interface board, Evaluation Board Host (EVH). Each TQP4M9071 evaluation board is supplied with the EVH board and USB cable. The graphical user interface (GUI) for attenuation state setting, User Manual are available on Qorvo website.

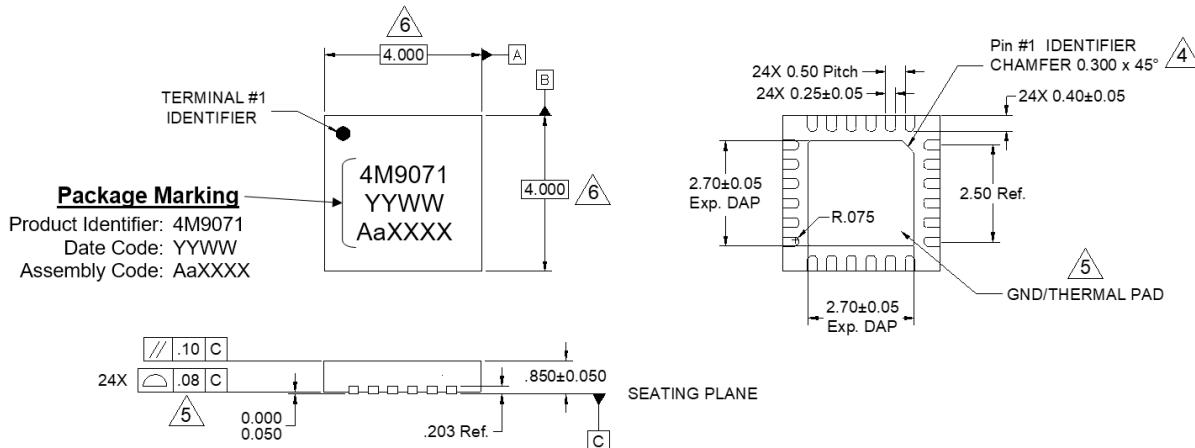

## 10. Typical Performance Plots


Performance plots data is measured using Bias Tee on RF ports in Mode 2 configuration. Mode 2 operation is required to obtain performance at frequencies lower than 0.7 GHz. For frequency range 0.7–4.0 GHz, data is identical in Mode 1 and Mode 2.



Performance plots data is measured using Bias Tee on RF ports in Mode 2 configuration. Mode 2 operation is required to obtain performance at frequencies lower than 0.7 GHz. For frequency range 0.7–4.0 GHz, data is identical in Mode 1 and Mode 2.

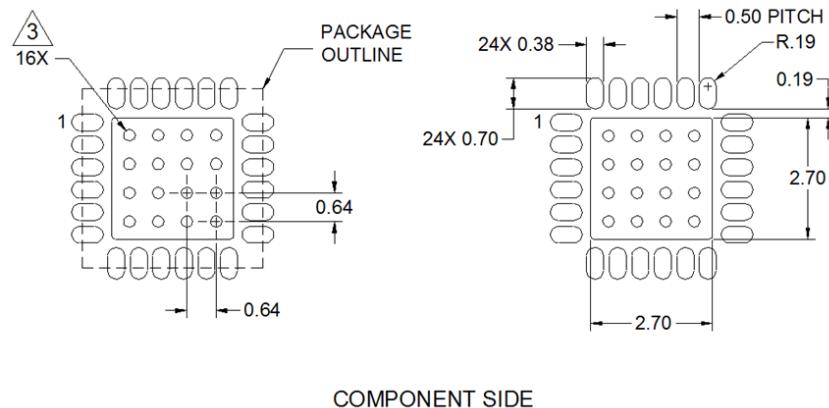



## 11. Pin Configuration and Description



| Pin Number             | Label  | Description                                                                                                                                                                       |
|------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1, 2, 3, 4, 15, 16, 17 | N/C    | No electrical connection. Land pads should be provided on PCB for mounting integrity.                                                                                             |
| 5, 14                  | GND    | Ground connection pads must be connected to RF/DC ground                                                                                                                          |
| 6                      | RF IN  | RF Input, DC voltage present, blocking capacitor required                                                                                                                         |
| 7                      | ACGND0 | AC grounding for low frequency operation                                                                                                                                          |
| 8                      | ACGND1 | AC grounding for low frequency operation                                                                                                                                          |
| 9                      | ACGND2 | AC grounding for low frequency operation                                                                                                                                          |
| 10                     | ACGND3 | AC grounding for low frequency operation                                                                                                                                          |
| 11                     | ACGND4 | AC grounding for low frequency operation                                                                                                                                          |
| 12                     | ACGND5 | AC grounding for low frequency operation                                                                                                                                          |
| 13                     | RF OUT | RF Output, DC voltage present, blocking capacitor required                                                                                                                        |
| 18                     | VDD    | DC Voltage Supply input, bypass capacitor close to pin required                                                                                                                   |
| 19                     | D5     | Logic Control bit 5, 16dB step attenuator                                                                                                                                         |
| 20                     | D4     | Logic Control bit 4, 8dB step attenuator                                                                                                                                          |
| 21                     | D3     | Logic Control bit 3, 4dB step attenuator                                                                                                                                          |
| 22                     | D2     | Logic Control bit 2, 2dB step attenuator                                                                                                                                          |
| 23                     | D1     | Logic Control bit 1, 1dB step attenuator                                                                                                                                          |
| 24                     | D0     | Logic Control bit 0, 0.5dB step attenuator                                                                                                                                        |
| Backside Pad           | Ground | Ground connection. The back side of the package should be connected to the ground plane though as short of a connection as possible. PCB via holes under the device are required. |

## 12. Packaging Information


### 12.1. Device Marking and Package Dimensions



Notes:

1. All dimensions are in mm. Angles are in degrees.
2. Except where noted, this part outline conforms to JEDEC standard MO-220, Issue E (Variation VGGC) for thermally enhanced plastic very thin fine pitch quad flat no lead package (QFN).
3. Dimension and tolerance formats conform to ASME Y14.4M-1994.
4. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.
5. Co-planarity applies to the exposed ground/thermal pad as well as the contact pins.
6. Package body length/width does not include plastic flash protrusion across mold parting line.

### 12.2. PCB Footprint Recommendations



Notes:

1. All dimensions are in mm. Angles are in degrees.
2. Use 1 oz. copper minimum for top and bottom layer metal.
3. Via holes are required under the backside paddle of this device for proper RF/DC grounding and thermal dissipation. Via holes should use a 0.35mm (#80 / .0135") diameter drill and have a final plated through diameter of 0.25 mm (.010").
4. Ensure good package backside paddle solder attach for reliable operation and best electrical performance.

## 13. Handling Precautions

| Parameter                        | Rating   | Standard               |
|----------------------------------|----------|------------------------|
| ESD – Human Body Model (HBM)     | Class 1B | ESDA/JEDEC JS-001-2012 |
| ESD – Charged Device Model (CDM) | Class C3 | JEDEC JESD22-C101F     |
| MSL – Moisture Sensitivity Level | Level 3  | IPC/JEDEC J-STD-020    |

**Caution!**

ESD sensitive device

## 14. Solderability

Compatible with both lead-free (260 °C max. reflows temperature) and tin/lead (245 °C max. reflow temperature) soldering processes. Solder profiles available upon request.

Package lead plating: Annealed Matte Tin

## 15. Environmental Compliance

This part is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C<sub>15</sub>H<sub>12</sub>Br<sub>4</sub>O<sub>2</sub>) Free
- SVHC Free
- PFOS Free
- Lead Free



## Contact Information

---

For the latest specifications, additional product information, worldwide sales and distribution locations:

**Web:** [www.qorvo.com](http://www.qorvo.com)

**Tel:** +1 844-890-8163

**Email:** [customer.support@qorvo.com](mailto:customer.support@qorvo.com)

## Important Notices

---

The information contained in this Data Sheet and any associated documents ("Data Sheet Information") is believed to be reliable; however, Qorvo makes no warranties regarding the Data Sheet Information and assumes no responsibility or liability whatsoever for the use of or reliance on said information. All Data Sheet Information is subject to change without notice. Customers should obtain and verify the latest relevant Data Sheet Information before placing orders for Qorvo® products. Information concerning Qorvo's product life cycles is available at <https://www.qorvo.com/support/product-lifecycle-information>. Data Sheet Information or the use thereof does not grant, explicitly, implicitly or otherwise any rights or licenses with respect to patents or any other intellectual property whether with regard to such Data Sheet Information itself or anything described by such information.

Qorvo grants you permission to use this Data Sheet and any associated resources only to develop an application that uses the Qorvo products described in the Data Sheet and any associated resources. Other reproduction and display of this Data Sheet and any associated resources is prohibited.

Qorvo's products are provided subject to Qorvo's [Terms of Sale](#) or provided in conjunction with such Qorvo products. Qorvo objects to and rejects any additional or different terms customer may have proposed regarding the purchase of Qorvo products.

DATA SHEET INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo® products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. Applications described in the Data Sheet Information are for illustrative purposes only. Customers are responsible for validating that a particular product described in the Data Sheet Information is suitable for use in a particular application.

© 2025 Qorvo US, Inc. All rights reserved. This document is subject to copyright laws in various jurisdictions worldwide and may not be reproduced or distributed, in whole or in part, without the express written consent of Qorvo US, Inc.

QORVO® is a registered trademark of Qorvo US, Inc. All other trademarks and trade names are property of their respective owners.

Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by Qorvo is under license.