

Distinctive Characteristics

■ Density

- 1Gb / 2Gb / 4Gb

■ Architecture

□ Page size:

- 1 Gb : (2048 + 64) bytes; 64-byte spare area (Default)
- 1 Gb : (2048 + 128) bytes; 128-byte spare area
(Contact sales for the 128-byte spare area option)
- 2 Gb / 4 Gb: (2048 + 128) bytes; 128-byte spare area

□ Block size: 64 Pages

- 1 Gb : 128 KB + 4 KB
- 1 Gb : 128 KB + 8 KB
- 2 Gb / 4 Gb: 128 KB + 8 KB

□ Plane size

- 1 Gb: 1024 blocks per plane or (128 MB + 4 MB)
- 1 Gb: 1024 blocks per plane or (128 MB + 8 MB)
- 2 Gb: 1024 blocks per plane or (128 MB + 8 MB)
- 4 Gb: 2048 blocks per plane or (256 MB + 16 MB)

□ Device Size

- 1 Gb: 1 plane per device or 128 Mbyte
- 2 Gb: 2 planes per device or 256 Mbyte
- 4 Gb: 2 planes per device or 512 Mbyte

Performance

■ Page Read / Program

- Read Page Time (tR): 45 μ s (Typ)
- Program time: 350 μ s (Typ)

■ Block Erase

- Block Erase time: 4.0 ms (Typ)

■ Reliability

- 100,000 Program / Erase cycles - Industrial (Typ)
- 80,000 Program / Erase cycles - Industrial Plus (Typ)
- 10 Year Data Retention (Typ)
- Blocks 0-7 are good at the time of shipment

■ NAND Flash interface

- Supports Serial Peripheral Interface (SPI)

■ Supply Voltage

- 3.3-V device: $V_{CC} = 2.7$ V ~ 3.6 V

■ Security

- One Time Programmable (OTP) area
- Serial number (unique ID) (Contact factory for support)
- Hardware program/erase disabled during power transition
- Volatile and Permanent Block Protection

■ Additional features

- On- chip ECC correction Program and Erase
- Supports single I/O, Dual I/O, Quad I/O
- Support Frequency up to 104MHZ
- Supports Clock Polarity and phase modes 0 and 3

■ Electronic signature

- Manufacturer ID:01h

■ Operating temperature

- Industrial: -40 °C to 85 °C
- Industrial Plus: -40 °C to 105 °C

■ Package options

- Pb-free and low halogen
- 8-Pin LGA 6 x 8 mm
- 16-Pin SOIC 300 mils
- 24-Ball FBGA 8 x 6 mm

Contents

1. General Description	3	6. Timing Diagrams	36
1.1 Logic Diagram	4	6.1 SPI Clock Timing	36
1.2 Connection Diagram	5	6.2 Serial Input Timing	36
1.3 Pin Description	6	6.3 Serial Output Timing	36
1.4 Block Diagram	6	6.4 WP# Timing	37
1.5 Array Organization	7	6.5 HOLD# Timing	37
1.6 Memory Addressing	9	6.6 Block Erase/Program Execute/ Page read Timing	38
2. Bus Operation	10	6.7 Read Buffer 1X (03h or 0Bh)Timing	38
2.1 SPI Modes	10	6.8 Fast Read Dual Output Buffer 2X (3Bh) Timing	39
2.2 SPI Protocol	10	6.9 Fast Read Quad Output Buffer 2X (6Bh) Timing	39
3. Command Set	11	6.10 Program Load 1X (02h) and Program Load Random	
3.1 Power up and Reset Commands	13	Data 1X (84h) buffer Timing	40
3.2 Write Enable and Write Disable Commands	13	6.11 Quad Program Data Load 4X (32h) and Quad Program	
3.3 Hardware Write Protection	13	Load Random Data 1X (34h) buffer Timing	41
3.4 Read Operation	13	6.12 Small Data Input. Guidelines	41
3.5 Page Program Operation	13	6.13 Fast Read Dual IO 2X(BBh)-Timing	42
3.6 Feature Operations	14	6.14 Fast Read Quad I/O 4X (EBh) Timing	43
3.6.1 Set Feature	14	6.15 Power-up Timing	44
3.6.2 Get Feature	14	7. Physical Interface	45
3.7 Feature Registers	15	7.1 Physical Diagrams	45
3.8 Read ID	18	8. Error Management	48
3.9 Read Unique ID	18	8.1 System Bad Block Replacement	48
3.10 One Time Programming OTP	18	8.2 Bad Block Management	49
3.10.1 Read OTP	18	9. Ordering Information	50
3.10.2 Program OTP	18	10. Document History	51
3.10.3 OTP Program Prevention	19		
3.11 Internal Data Move	19		
3.12 Read Parameter.Page	20		
4. Electrical Characteristics	23		
4.1 Valid Blocks	23		
4.2 Absolute Maximum Ratings	23		
4.3 Recommended Operating Conditions	23		
4.4 AC Test Conditions	23		
4.5 AC Characteristics	24		
4.6 DC Characteristics	26		
4.7 Pin Capacitance	27		
4.8 Program / Erase Characteristics	27		
5. Security Features	28		
5.1 Volatile Block Protection Overview	27		
5.2 Permanent Block Protection.Overview	33		
5.3 Permanent Block Protection Lock-Down Sequence	35		
5.4 Block Protection Status Command	35		
5.5 Block Lock Status Register	35		

1. General Description

The S35ML01G3 / S35ML02G3 / S35ML04G3 SPI devices are offered with a 3.3-V VCC power supply, and with industry standard Serial Peripheral Interface (SPI). Its NAND cell provides the most cost-effective solution for the solid state mass storage market with low pin count and a modified SPI-NOR command set to address NAND specific functions and features.

The memory is divided into blocks that can be erased independently so it is possible to preserve valid data while old data is erased. The page size for the 1Gb/2Gb/4Gb SPI devices is (2048 + 128 spare) bytes and for the 1Gb device with 64 bytes spare option is (2048 + 64 spare) bytes. SkyHigh SPI NAND family is designed with powerful internal ECC engine. To protect the system bus from transmission errors, the implementation of a 1 bit ECC is recommended.

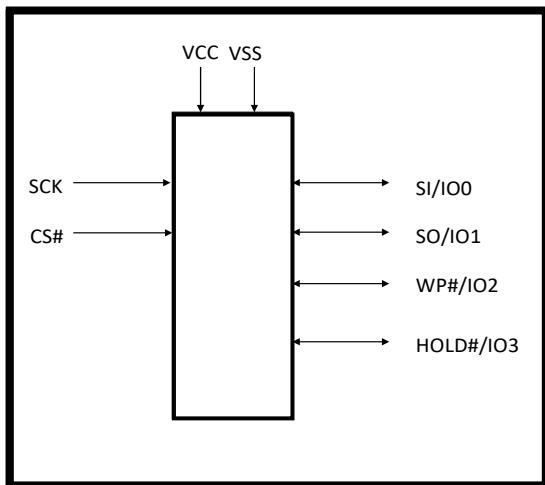
Like all other 2-kB page NAND flash devices, a program operation typically writes 2 KB (x8) in 350 μ s and an erase operation can typically be performed in 4ms on a 128-kB block.

The on-chip Program/Erase Controller automates all read, program, and erase functions including pulse repetition, where required, and internal verification and margining of data.

SkyHigh's SPI device offers many useful features including first page auto-load on power-up. SkyHigh's SPI NAND Flash has six signal lines in addition to VCC and GND pins. The signal lines are: SCK, SI, SO, CS, HOLD#, WP#.

The devices are available in the LGA- 8 pins (6 x 8 mm), SOIC- 16 pins (300 mil), FBGA- 24 pins (8 x 6 mm) packages and come with the following security features:

- OTP (one time programmable) area, which is a restricted access area where sensitive data/code can be stored permanently.
- Serial number (unique identifier), which allows the devices to be uniquely identified. Contact factory for support of this feature.
- Volatile and Permanent Block Protection.


Table 1. Product List

Device	Density (bits)	Number of Planes	Number of Blocks per Plane
S35ML01G3	1 Gb	1	1024
S35ML02G3	2 Gb	2	1024
S35ML04G3	4 Gb	2	2048

Note 1): Since Dual plane operation are not supported in SPI, therefore the whole array is described in number of blocks. The planes are reflected in this document to match the physical implementation.

1.1 Logic Diagram

Figure 1. Logic Diagram

Table 2. Signal Names

Signal Name	Type	Description
CS#	Input	Chip Select
SI/IO0	I/O	Serial Input for single bit data commands or I/O0 for Dual or Quad commands.
SO/IO1	I/O	Serial Output for single bit data commands. I/O1 for Dual or Quad commands.
WP#/IO2	I/O	Write Protect when not in Quad mode, I/O2 when in Quad
HOLD#/IO3	I/O	Hold Input / I/O3 when in Quad mode
SCK	Input	Serial Clock Input
VCC	Supply	Power Supply
VSS	Supply	Ground
NC	Unuse	No Connection
DNU	Reserv	Do not use

Notes:

1. A 0.1 μ F capacitor should be connected between the VCC Supply Voltage pin and the Vss Ground pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during program and erase operations.
2. An internal voltage detector disables all functions whenever VCC is below 1.8V to protect the device from any involuntary program/erase during power transitions.

1.2 Connection Diagram

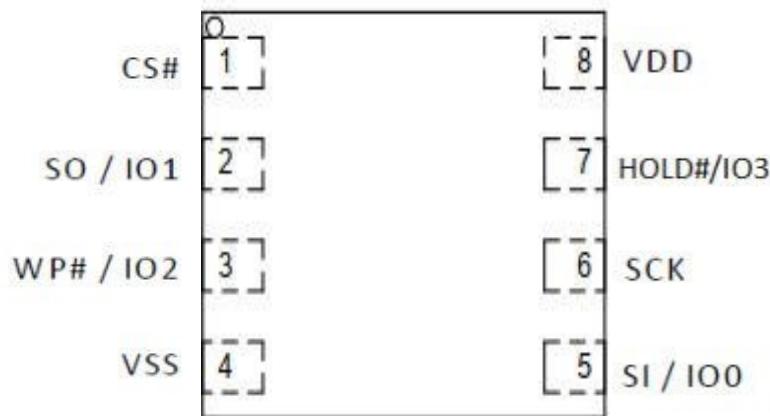


Figure 2. 8-pin LGA package (6 x 8 mm), Top View

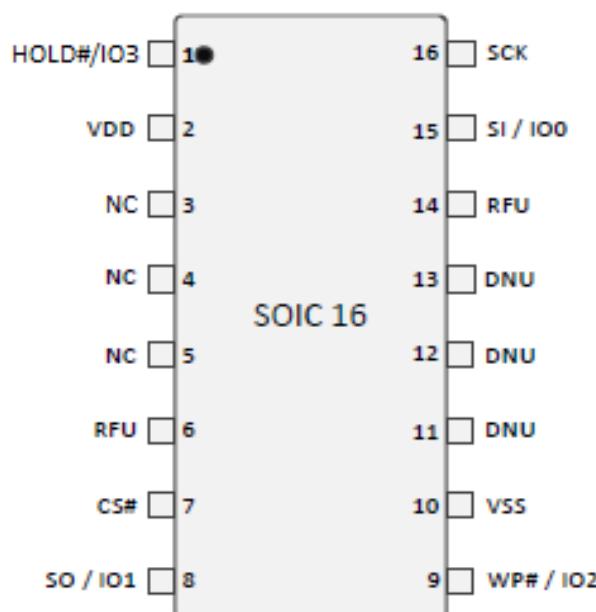


Figure 3. 16-pin SOIC (300 mils), Top View

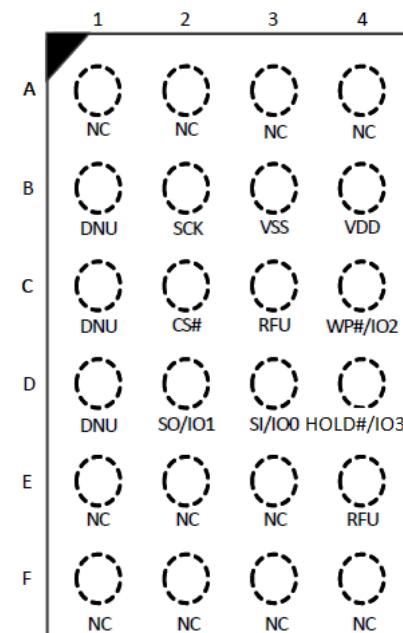
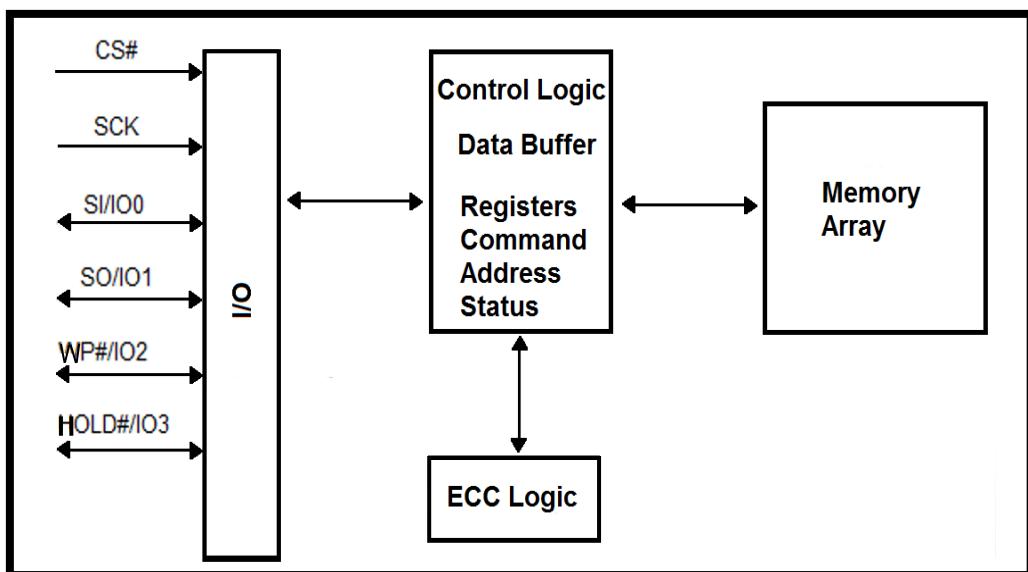


Figure 4. 24-Ball 6 x 4 Ball Array (6 x 8 mm), Top View

1.3 Pin Description

Table 3. Pin Description


Signal Name	Type	Description
CS#	Input	Chip Select
SI/IO0	I/O	Serial Input for single bit data commands or I/O0 for Dual or Quad commands.
SO/IO1	I/O	Serial Output for single bit data commands. I/O1 for Dual or Quad commands.
WP#/IO2	I/O	Write Protect when not in Quad mode, I/O2 when in Quad mode
HOLD#/IO3	I/O	Hold Input / I/O3 when in Quad mode
SCK	Input	Serial Clock Input
VCC	Supply	Power Supply
VSS	Supply	Ground
NC	Unused	No Connection
DNU	Reserved	Do not use

Notes:

1. A 0.1 μ F capacitor should be connected between the VCC Supply Voltage pin and the Vss Ground pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during program and erase operations.
2. An internal voltage detector disables all functions whenever VCC is below 1.8V to protect the device from any involuntary program/erase during power transitions.
3. If the SOC is not capable of driving WP# and HOLD# signals individually, an external weak pull-up resistor must be used to drive the signals high

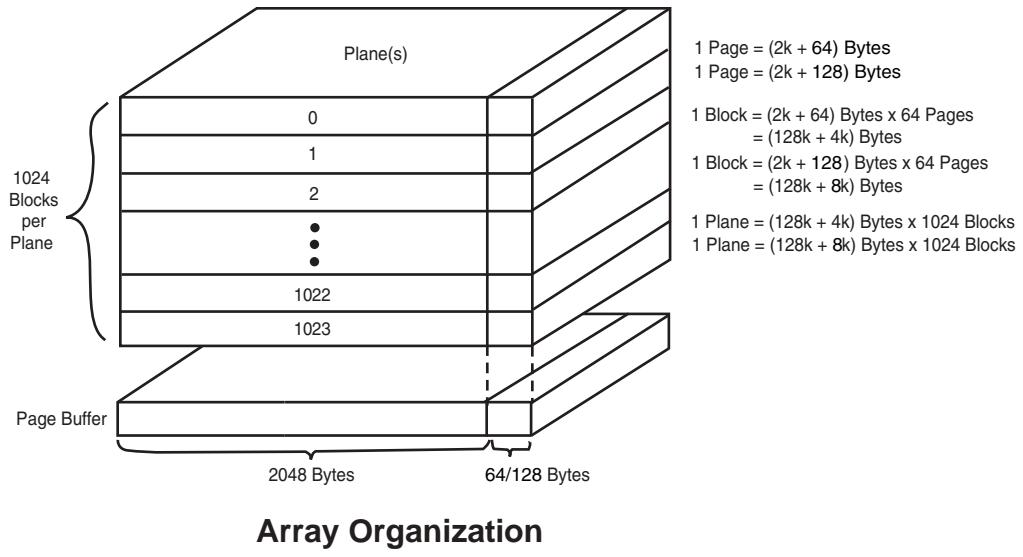
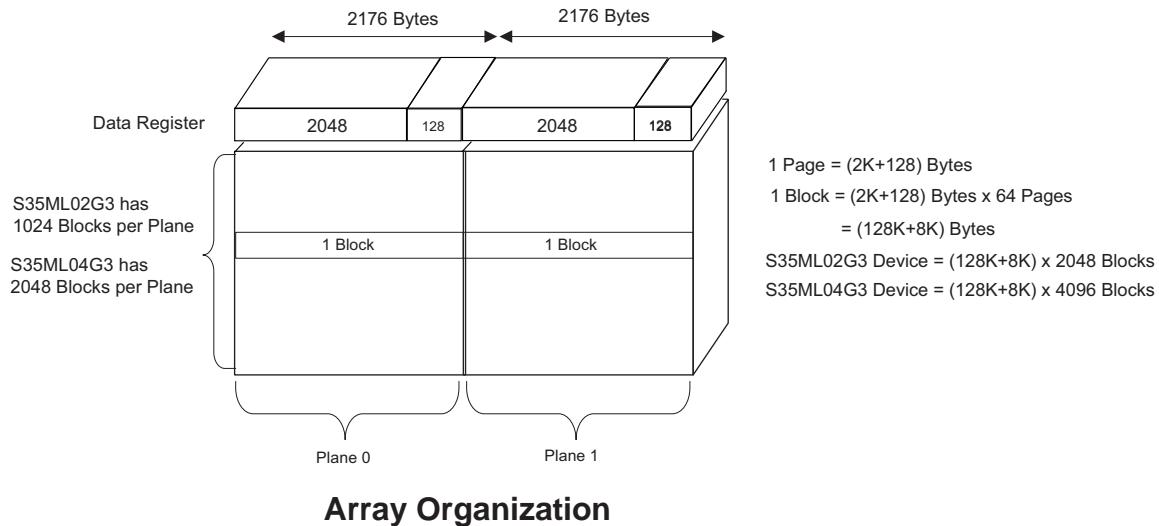

1.4 Block Diagram

Figure 5. Block Diagram

1.5 Array Organization


Figure 6. Array Organization — S35ML01G3

Note 1): S35ML01G3 is offered with 64 bytes spare are and 128 bytes spare area options.

1.5 Array Organization

Figure 6.1 Array Organization— S35ML02G3 / S35ML04G3

Note 1): Since Dual plane operation are not supported in SPI, therefore the whole array is described in number of blocks. The planes are reflected in this document to match the physical implementation.

1.6 Memory Addressing

Table 4. Memory Array organization

Density_Page Size	Device and Array organization									Address bits		
	Page Size	Die	Planes	#block per plane	Page per block	Spare Byte per page	Spare Byte per partial page	NOP	Partial Word Size	CA bits	PA bits	BA bits
01Gb_2KB	2KB	1	1	1024	64	64	16	4	512B	12	6	10
01Gb_2KB	2KB	1	1	1024	64	128	32	4	512B	12	6	10
02Gb_2KB	2KB	1	2	1024	64	128	32	4	512B	12	6	11
04Gb_2KB	2KB	1	2	2048	64	128	32	4	512B	12	6	12

Notes:

1. CAB = Column Address bit.
2. PAB = Page Address bit.
3. BAB = Block Address bit.

Table 5 : Address phase cycles for buffer and array operations

Address Cycle Map									
Bus Cycle	SI	SI[7] (MSB)	SI[6]	SI[5]	SI[4]	SI[3]	SI[2]	SI[1]	SI[0] (LSB)
Buffer Operation: Load Pin inputs Data to Buffer or Data Buffer to Output Pins									
1 st	CA[15:8]	Low	Low	Low	Low	CAx[11]	CAx[10]	CAx[9]	CAx[8]
2 nd	CA[7:0]	CAx[7]	CAx[6]	CAx[5]	CAx[4]	CAx[3]	CAx[2]	CAx[1]	CAx[0]
Array Operation: Load Data Array to buffer or Program Data from buffer to Array									
Bus Cycle	SI	SI[7] (MSB)	SI[6]	SI[5]	SI[4]	SI[3]	SI[2]	SI[1]	SI[0] (LSB)
1 st	PA[23:16]	Low	Low	Low	Low	Low	Low	BAx[11]	BAx[10]
2 nd	PA[15:8]	BAx[9]	BAx[8]	BAx[7]	BAx[6]	BAx[5]	BAx[4]	BAx[3]	BAx[2]
3 rd	PA[7:0]	BAx[1]	BAx[0]	PAx[5]	PAx[4]	PAx[3]	PAx[2]	PAx[1]	PAx[0]

Notes:

1. CAx = Column Address bit. If CA[11]=1 then CA[10:7] must Low
2. PAx = Page Address bit.
3. BAx = Block Address bit.

Since Dual plane operation are not supported in SPI, therefore the whole array is described in number of blocks.

The planes are reflected in this document to match the physical implementation.

Density_Page Size	#of Dies	# Planes	#Blocks per plane	BA[13:0]	Plane Selection
01Gb_2KB	1	1	1024	BA[13:10]=L, BA[9:0]	N/A
02Gb_2KB	1	2	1024	BA[13:11]=L, BA[10:0]	BA[0]
04Gb_2KB	1	2	2048	BA[13:12]=L, BA[11:0]	BA[0]

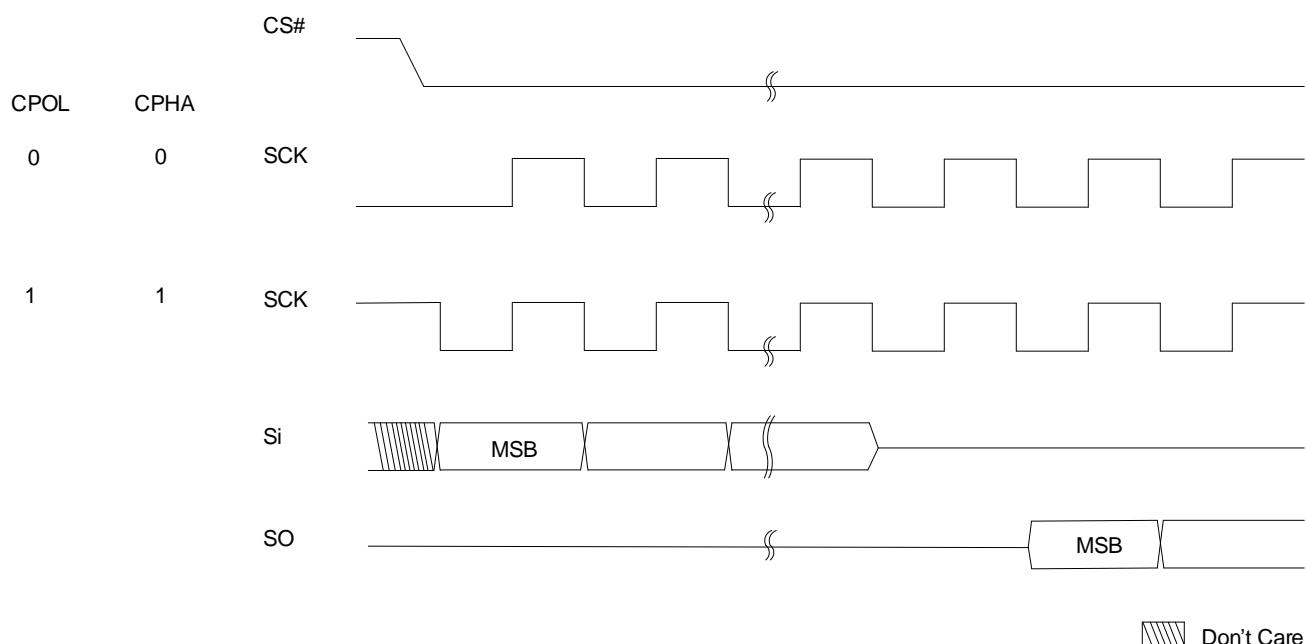
2. Bus Operation

2.1 SPI Modes

The SPI NAND can be driven by a micro-controller with its SPI interface running in either of the two following clocking modes:

Mode 0 with Clock Polarity (CPOL) = 0 and, Clock Phase (CPHA) = 0

Mode 3 with CPOL = 1 and, CPHA = 1


For these two modes, input data into the device is always latched in on the rising edge of the SCK signal and the output data is always available from the falling edge of the SCK clock signal.

The difference between the two modes is the clock polarity when the bus master is in standby mode and not transferring any data.

SCK will stay at logic low state with CPOL = 0, CPHA = 0

SCK will stay at logic high state with CPOL = 1, CPHA = 1

Figure 7. SPI Modes Timing Diagram

2.1 SPI Protocols

Standard (Traditional) SPI

Standard SPI NAND Flash supports a serial peripheral interface with 4 signals bus: Serial Clock (SCLK), Chip Select (CS#), Serial Data Input (SI) Serial Data Output (SO).

Dual SPI

SPI NAND Flash supports Dual SPI operation when using the x2 and dual IO commands. These commands allow data to be transferred to or from the device at two times the rate of the standard SPI. When using the Dual SPI command the SI and SO pins become bidirectional I/O pins: SI/IO0, SO/IO1

Quad SPI

SPI NAND Flash supports Quad SPI operation when using the x4 and Quad IO commands. These commands allow data to be transferred to or from the device at four times the rate of the standard SPI. When using the Quad SPI command the SI, SO, WP#, HOLD# pins become bidirectional I/O pins: SI/IO0, SI/IO1, WP#/IO2, HOLD#/IO3

3. Command Set

Table 6 : Command Set

Command	Op Code	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Notes
Reset	FFh							
Write Enable	06h							
Write Disable	04h							
Get Feature	0Fh	CA7-0	D7-0					
Set Feature	1Fh	CA7-0	D7-0					
Read ID	9Fh	8 Dummy clock cycles (So Output HighZ)	D7-0	D7-0				
Block Erase	D8h	PA23-16	PA15-8	PA7-0				
Array operations								
Program Execute	10h	PA23-16	PA15-8	PA7-0				
Page Read	13h	PA23-16	PA15-8	PA7-0				
Buffer operations								
Read Buffer 1X	03h or 0Bh	CA15-8	CA7-0	8 Dummy clock cycles (Outputs HighZ)	D7-0	D7-0		
Dual Read Output 2X	3Bh	CA15-8	CA7-0	8 Dummy cycles (HighZ)	D7-0(2X)	D7-0(2X)		4 clock cycles to output 1 Byte of Data
Quad Read Output 4X	6Bh	CA15-8	CA7-0	8 Dummy clock cycles (outputs HighZ)	D7-0(4X)	D7-0(4X)		2 clock cycles to output 1 Byte of Data
Program Load 1X	02h	CA15-8	CA7-0	D7-0	D7-0	D7-0		
Program Load Random Data 1X (Note 1)	84h	CA15-8	CA7-0	D7-0	D7-0	D7-0		

Command Set- cont'd

Fast Read Dual I/O	BBh	CA15-8(2X)	CA7-0(2X)	8 Dummy clock cycles (outputs High Z) (Note 4)	D7-0(2X)	D7-0(2X)		
Fast Read Quad I/O	EBh	CA15-8(4X)	CA7-0(4X)	8 Dummy clock cycles (outputs High Z) (Note 4)	D7-0(4X)	D7-0(4X)		
Quad Program Data Load 4X	32h	CA15-8	CA7-0	D7-0(4X)	D7-0(4X)	D7-0(4X)		2 clock cycles to input 1 Byte Data
Quad Program Data Load Random 4X (Note 2)	34h	CA15-8	CA7-0	D7-0(4X)	D7-0(4X)	D7-0(4X)		2 clock cycles to input 1 Byte of Data
Block Protection operations								
Block Protection Status	7Ah	PA23-16	PA15-8	PA7-0	8 Dummy clock cycles (Outputs HighZ)	D7-0		
Program PBP Setting (Note 3)	2Ch	PBPA23-16	PBPA15-8	PBPA7-0				

Notes:

1. The Program Load random data (84h) operation is similar to Program Load 02h. The 84h command does not clear the data buffer to an all FFh value and will only update the data bytes specified by the command input sequence while the rest of the input buffer remains unchanged. The host must always consider chunks of 32 bytes starting from address 0 to accommodate internal ECC requirements.
2. The Quad Program Load (32h) operation is similar to Quad Program Load random data (34h). The 34h command does not clear the data buffer to an all FFh value and will only update the data bytes specified by the command input sequence while the rest of the input buffer remains unchanged. The host must always consider chunks of 32 bytes starting from address 0 to accommodate internal ECC requirements.
3. PBPA 23-0 address cycle mapping is described in the Security Features section.
4. The number of dummy cycles is 8 cycles for 01Gb/02Gb/04Gb .

3.1 Power up and Reset Commands

During Power on Reset, the first page data of page0 is auto-loaded to the buffer register.

The reset command FFh, does not clear the feature registers but does clear the configuration register bits CONFIG[2:0] placing the device in normal operation.

3.2 Write Enable and Write Disable Commands

A WRITE_EN (06h) command needs to be issued before any OTP, Program Execute and Block Erase operation . A WRITE_DIS (04h) command is also provided to clear the WSEL bit in the status register (see GET FEATURES and SET_FEATURES section).

3.3 Hardware Write Protection

Hardware write protection prevents the block protection state from hardware modifications.

The following command sequence enables hardware write protection: The SET FEATURE command is issued on feature address A0h. Then, the Config_Protect_en bit-state is set to 0 as the default after power up.

The BRWD bit is operated in conjunction with Config_Protect_en bit. When BRWD is set to 1 and WP# is LOW, none of the other block protect register A0h bits [7:2] can be set. The block lock state cannot be changed, regardless of what is unlocked or locked. WP# is the highest protection level for this device as shown in Table 8 “Feature address A0h protection”.

The default value of BRWD andConfig_Protect_en bits = 0 after power up.

3.4 Read Operation

The PAGE READ (13h) command uses 24-bit address to transfers data from the NAND Flash array to the Data register. After the block/page address is registered, the device starts the transfer from the main array to the data register. During this data transfer busy time of tR, the 0Fh GET FEATURES command can be issued to monitor the operation.

Following successful completion of PAGE READ, one of the following READ commands must be issued to read data out of data buffer:

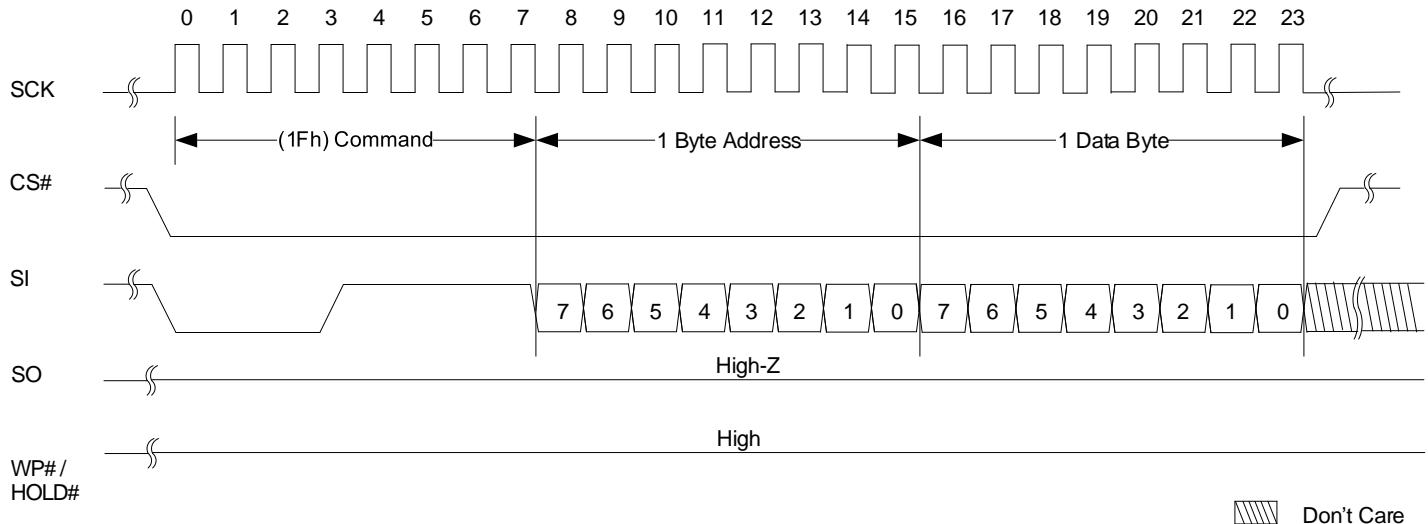
- 03h or 0Bh (READ buffer 1X)
- 3Bh (Dual Read Output 2X)
- 6Bh (Quad READ Output 4X)
- BBh (Fast READ Dual I/O)
- EBh (Fast READ Quad I/O)

3.5 Page Program Operation

A PAGE PROGRAM operation sequence enables the host to input 1 byte to 2176 bytes of data (Page size: 2048 + 128 spare bytes) or 1 byte to 2112 bytes (Page size: 2048 + 64 spare bytes) of data to the data register, and moves the data from the data register to the specified block and page address in the array. Four partial-page programs are allowed on a single page. If more than 2176 bytes are loaded, the additional bytes will be ignored by the data register.

Both main data and user spare shall be input at the same time for NOP operation; otherwise, data is not guaranteed.

The page program sequence starts by issuing 06h (Write Enable Command) followed by 02h (Program Load Command) and 10h (ProgramExecute Command). the 0Fh GET FEATURES command can be issued to monitor the operation.


For more details about partial page programming, refer to application note AN223238 ML-3 Partial Page Programming.

3.6 Feature Operations

3.6.1 Set Features

The SET FEATURE command uses a 1-byte feature address to specify the feature to be modified.

Figure 8. SET FEATURE Timing Diagram

Notes:

1. If the SOC is not capable of driving WP# and HOLD# signals individually, an external weak pull-up resistor must be used to drive the signals high

3.6.2 Get Features

The GET FEATURE command uses a 1-byte feature address to specify the feature to be read.

Figure 9. GET FEATURE Timing Diagram

Notes:

1. If the SOC is not capable of driving WP# and HOLD# signals individually, an external weak pull-up resistor must be used to drive the signals high

3.7 Feature Registers

There are 3 registers with the following addresses: A0h, B0h and C0h. While the Set Feature commands may only writes in some of the registers, the Get Feature commands allows reading back the content of all these registers. During Get Feature operation, the same status register is continuously outputed until CS# goes high.

The feature registers are volatile. Each POR will reset these registers to the default value. The Reset (FFh) only clears the configuration bits (B0[7,1,0]) to zero.

Table 7 : Feature Address A0h (Block Protect Register R/W, protected when WP# pin = 0)

Bit	Symbol	Parameter	Default	Description
7	BRWD ¹	Block Register Write Disable	0	1b: Disable update of the A0[7:0] when WP# Low 0b: Enable update of the A0[7:0] (Default)
6	AVBP_BL[3] ¹	AVBP Lock 3	1	Volatile Block protection based on addressable blocks in the device
5	AVBP_BL[2] ¹	AVBP Lock 2	1	0000b: All Blocks Unlocked
4	AVBP_BL[1] ¹	AVBP Lock 1	1	0001b: 1/1024 Blocks Locked 0010b: 1/512 Blocks Locked 0011b: 1/256 Blocks Locked 0100b: 1/128 Blocks Locked 0101b: 1/64 Blocks Locked 0110b: 1/32 Blocks Locked 0111b: 1/16 Blocks Locked 1000b: 1/8 Blocks Locked 1001b: 1/4 Blocks Locked 1010b: 1/2 Blocks Locked 1011b: All Blocks locked 11xx: All Blocks Locked
3	AVBP_BL[0] ¹	AVBP Lock 0	1	1111b: All Blocks Locked (default)
2	AVBP_BL_U ¹	AVBP Lock Upper/Lower range	1	1: Protect Upper blocks 0: Protect Lower blocks
1	Config_Protect_en ¹	WP#/Config_Protect enable	0	
0	Reserved	Reserved	0	

Table 8 : Feature Address A0h protection

State	WP# pin	0	1	1	1	1
	A0h[7]=BRWD	X	0	0	1	1
	A0h[1]	X	0	1	1	0
Effect	A0h[1]	R	W/R	W/R	W/R	W/R
	A0h[7:2]	R	A0h[7:2] = R Protected By A0h[1]=0	A0h[7:2] = W/R	A0h[7:2] = R Protected By A0h[7]=1	A0h[7:2] = R Protected By A0h[1]=0

1) A0h[1]=0

A0h[7:2] R/W :Write operation depends on WP#, A0h[1], and A0h[7] values

2) For Data Security, bit (A0h[1]) must be enabled first before block unlock region is set

3) Feature address A0h command is allowed to be issued in OIP Ready status

Table 9 : Feature Address B0h (Configuration Register R/W, protected when WP# pin = 0)

Bit	Symbol	Parameter	Default	Description
7	Config[2]	Configuration bit 2	0	Config[2:0] 000: (default) Normal Operation 010: Access OTP Area/parameter page / Unique ID (Note 1) 110: Access to OTP data protection bit to lock OTP area 111: Access to PBP lock-down
6	Config[1]	Configuration bit 1	0	
5	AVBP_LD_EN	Advance Lock down enable	0	1: AVBP_Lock down is enabled A0[7:0] and B0[5] are locked until power down. 0: AVB_Lock_down is disabled
4	ECC_Enable	ECC_Enable	1	Must be always set to 1
3	Reserved	Reserved	0	
2	Reserved	Reserved	0	
1	Config[0]	Configuration bit 0	0	See Config[2:1] description
0	Reserved	Reserved	0	

1) AVBP_LD_EN when set to 1, this bit along with the Block Protection register [6:0] can only be cleared during POR

2) Feature address B0h command is allowed to be issued in OIP Ready status

Table 10 : Feature Address C0h (Status Register R Only)

Bit	Symbol	Parameter	Default	Description
7	Reserved	Reserved	0	
6	Reserved	Reserved	0	
5	ECCS1	ECC status register[1:0] ^{1,2}	0	00 = No bit-flip 01 = 1-2 errors corrected 10 = 3-6 errors corrected 11 = Uncorrectable
4	ECCS0		0	
3	P_Fail	Program fail	0	1: Program failure occurred 0: Operation passed
2	E_Fail	Erase fail	0	1: Erase Failure occurred 0: Operation passed
1	WEL	Write enable latch	0	1: Write Enabled 0: Write Disabled
0	OIP	Operation in progress	0	1: Device is busy with executing commands: Reset, Program Execute, Page Read, Block Erase 0: Device is ready

1: SR [5:4] defines the number of corrections.

2: A Program and Erase fails include a block being protected (Array blocks + OTP) for 1Gb/2Gb densities

A Program fail does not include OTP block for 4Gb density

3.8 Read ID

Byte	Description	7	6	5	4	3	2	1	0	Value
0	Manufacturer ID	0	0	0	0	0	0	0	1	01h
1	Device ID : 01G (64B Spare)	0	0	0	1	0	1	0	1	15h
1	Device ID : 01G (128B spare)	0	0	0	1	0	1	0	0	14h
1	Device ID : 02G	0	0	1	0	0	1	0	1	25h
1	Device ID : 04G	0	0	1	1	0	1	0	1	35h

3.9 Read Unique ID

Read Unique ID located in OTP page 0

- Use SET FEATURES command (1Fh) with feature address B0h and data value of 50h for ECC enabled
- Page Read command (13h) with Block/Page address:
- 0x180 for unique ID (OTP page 0)
- GET FEATURE command (0Fh) with feature address C0h to check OIP bit ready
- Read Buffer (03h) command to read the data out
- Use SET FEATURES command (1Fh) with feature address B0h and data value with Config[2:0] = 000b to exit.
- Or use RESET (FFh) command to clear the configuration bits and return to normal mode.

3.10 One-Time Programmable (OTP)

The device contains a one-time programmable (OTP) area, that consists of (62 pages), accessed by SET/GET FEATURES commands

3.10.1 OTP Read

OTP Read: 62 pages accessible for user data located in Block #6 from page 2 to page 63

- Use SET FEATURES command (1Fh) with feature address B0h and data value of 50h.
- Page Read command (13h) with Block/Page address (0x182h-0x19Fh)
GET FEATURE command (0Fh) with feature address C0h to check OIP bit ready
- Read Buffer (03h) command to read the data out
- Use SET FEATURES command (1Fh) with feature address B0h and data value with Config[2:0] = 000b to exit
- Or use RESET (FFh) command to clear the configuration bits and return to normal mode.

3.10.2 OTP Program

OTP Program: 62 pages accessible for user data located in Block 6 from page 2 to page 63

- Use SET FEATURES command (1Fh) with feature address B0h and data value of 50h for ECC enabled
- Use Write Enable command 06h
- Program using Load command x1 (02h), Quad Program Data Load (32h) or random program data load with data
- Program Execute command x1 (10h) with Block/Page address (0x182h-0x19Fh)
- Use GET FEATURE command (0Fh) with feature address C0h to check OIP bit ready
- Use SET FEATURES command (1Fh) with feature address B0h and value with Config[2:0] = 000b to exit
- After tPROG time, use GET FEATURE command (0Fh) with feature address C0h to verify P_Fail bit is not set.

3.10.3 OTP Data Protection and Program Prevention

This mode is used to prevent further programming of the pages in the OTP area. The following sequence is used to protect and prevent further programming of the OTP area:

- Use SET FEATURES command (1Fh) with feature address B0h and Config [2:0] = 110b
- Use Write Enable command 06h
- Program execute command (10h) with row address 00h
- Verify until OIP bit not busy and P_FAIL bit 0 using GET FEATURE command (0Fh) with status register address (C0h)

3.11 Internal Data Move (S35ML02G3, S35ML04G3)

The copy back feature is intended to quickly and efficiently rewrite data stored in one page without utilizing an external memory. Since the time-consuming cycles of serial access and re-loading cycles are removed, the system performance is greatly improved. The benefit is especially obvious when a portion of a block needs to be updated and the rest of the block also needs to be copied to the newly assigned free block. For S35ML02G3/ S35ML04G3, the source and destination pages in the Copy Back Program sequence must belong to the same device plane (same BA[0]). If the random data is not sequential, another PROGRAM LOAD RANDOM DATA (84h), (34h) command must be issued with the new column address.

The internal data move command sequence is as follows:

- Page Read command (13h)
- Write Enable command (06h)
- Program Load Random Data command (84h), (34h)
- Program Execute command (10h)
- Get Feature command (0Fh) - Read the Status

3.12 Read Parameter Page

- Use SET FEATURES command (1Fh) with feature address B0h and data value of 50h for ECC enabled
- Page Read command (13h) with Block/Page address:
 - 0x181 for Parameter Page (located OTP page 1)
- GET FEATURE command (0Fh) with feature address C0h to check OIP bit ready
- Read Buffer (03h) command to read the data out
- Use SET FEATURES command (1Fh) with feature address B0h and data value with Config[2:0] = 000b to exit
- Or use RESET (FFh) command to clear the configuration bits and return to normal mode.

Table 11: Parameter Page Description

Table 11. Parameter Page Description (Continued)

Byte	O/M	Description	Values
84-85	M	Number of spare bytes per page	S35ML01G3 (64B spare): 40h, 00h S35ML01G3 (128B spare): 80h, 00h S35ML02G3/ S35ML04G3 :80h, 00h
86-89	M	Number of data bytes per partial page	00h, 02h, 00h, 00h
90-91	M	Number of spare bytes per partial page	S35ML01G3 (64B spare): 10h, 00h S35ML01G3 (128B spare): 20h, 00h S35ML02G3/ S35ML04G3: 20h, 00h
92-95	M	Number of pages per block	40h, 00h, 00h, 00h
96-99	M	Number of blocks per logical unit (LUN)	S35ML01G3: 00h, 04h, 00h, 00h S35ML02G3: 00h, 08h, 00h, 00h S35ML04G3: 00h, 10h, 00h, 00h
100	M	Number of logical units (LUNs)	01h
101	M	Number of address cycles 4-7 Column address cycles 0-3 Row address cycles	00h
102	M	Number of bits per cell	01h
103-104	M	Bad blocks maximum per LUN	S35ML01G3: 14h, 00h S35ML02G3: 28h, 00h S35ML04G3: 50h, 00h
105-106	M	Block endurance	08h, 04h
107	M	Guaranteed valid blocks at beginning of target	08h
108-109	M	Block endurance for guaranteed valid blocks	00h, 00h
110	M	Number of programs per page	04h
111	M	Partial programming attributes 5-7 Reserved 4 1 = partial page layout is partial page data followed by partial page spare 1-3 Reserved 0 1 = partial page programming has constraints	00h
112	M	Number of bits ECC correctability	00h
113	M	Number of interleaved address bits 4-7 Reserved (0) 0-3 Number of interleaved address bits	00h, 00h
114	O	Interleaved operation attributes 4-7 Reserved (0) 3 Address restrictions for program cache 2 1 = program cache supported 1 1 = no block address restrictions 0 Overlapped / concurrent interleaving support	00h, 00h
115-127		Reserved (0)	00h
Electrical Parameters Block			
128	M	I/O pin capacitance	0Ah
129-130	M	Timing mode support 6-15 Reserved (0) 5 1 = supports timing mode 5 4 1 = supports timing mode 4 3 1 = supports timing mode 3 2 1 = supports timing mode 2 1 1 = supports timing mode 1 0 1 = supports timing mode 0, shall be 1	00h, 00h
131-132	O	Program cache timing mode support 6-15 Reserved (0) 5 1 = supports timing mode 5 4 1 = supports timing mode 4 3 1 = supports timing mode 3 2 1 = supports timing mode 2 1 1 = supports timing mode 1 0 1 = supports timing mode 0	00h, 00h
133-134	M	t_{PROG} Maximum page program time (μs)	58h, 02h

Table 11. Parameter Page Description (Continued)

Byte	O/M	Description	Values
135-136	M	t_{BERS} Maximum block erase time (μ s)	10h, 27h
137-138	M	t_R Maximum page read time (μ s)	FAh, 00h
139-140	M	t_{CCS} Minimum Change Column setup time (ns)	00h, 00h
141-163		Reserved (0)	00h
Vendor Block			
164-165	M	Vendor specific Revision number	00h
166-253		Vendor specific	00h
254-255	M	Integrity CRC	01G3/64B spare :1Eh, 94h 01G3/128B spare :B0h, D2h 02G3: 7Bh, 66h 04G3: 05h, 2Dh
Redundant Parameter Pages			
256-511	M	Value of bytes 0-255	Repeat Value of bytes 0-255
512-767	M	Value of bytes 0-255	Repeat Value of bytes 0-255
768+	O	Additional redundant parameter pages	FFh

Note:

1. O" Stands for Optional, "M" for Mandatory, "N/A" for Not Applicable.

4. Electrical Characteristics

4.1 Valid Blocks

Table 12. Valid Blocks

Device	Symbol	Min	Typ	Max	Unit
S35ML01G3	N _{VB}	1004	—	1024	Blocks
S35ML02G3	N _{VB}	2008	—	2048	Blocks
S35ML04G3	N _{VB}	4016	—	4096	Blocks

4.2 Absolute Maximum Ratings

Table 13: Absolute Maximum Ratings

Parameter	Symbol	Test conditions	Min	Typ	Max	Units	Comments
Temperature under Bias	TBIAS		-50		125	°C	
Storage Temperature	TSTG		-65		150	°C	
Input or Output Voltage (3.3V)	VIO		-0.6		4.6	V	
Supply Voltage (3.3V)	VCC		-0.6		4.6	V	

Notes:

1. Except for the rating "Operating Temperature Range", stresses above those listed in the table **Absolute Maximum Ratings** "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.
2. Minimum Voltage may undershoot to -2V during transition and for less than 20 ns during transitions.
3. Maximum Voltage may overshoot to VCC +2.0V during transition and for less than 20 ns during transitions.

4.3 Recommended Operating Conditions

Table 14: Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Units
Vcc Supply Voltage	Vcc	2.7	3.3	3.6	V
Ground Supply Voltage	Vss	0	0	0	V

4.4 AC Test Conditions

Table 15: AC Test Conditions

Parameter	Value
Input Pulse Levels	0.0 V to V _{CC}
Input Rise and Fall Times	5 ns
Input and Output Timing Levels	V _{CC} / 2
Output Load (2.7V - 3.6V)	1 TTL Gate and CL = 30 pF

4.5 AC Characteristics

Table 16: AC Characteristics

Symbol	SPI-NOR Symbol	Parameter	Min	Typ	Max	Unit
fC		Serial Clock Frequency			104	MHz
tCH	tWH	Serial Clock High Time	4.316			ns
tCL	tWL	Serial Clock Low Time	4.316			ns
tCLCH	tCRT	Serial Clock Rise Time	1.3			V/ns
tCHCL	tCFT	Serial Clock Fall Time	1.3			V/ns
tSLCH		CS# Active Setup Time	4.316			ns
tCHSH		CS# Active Hold Time	4.316			ns
tSHCH		CS# Not Active Setup Time	2.877			ns
tCHSL		CS# Not Active Hold Time	2.877			ns
tSHSL / tCS		CS# High Time	30			ns
tSHQZ	tDIS	Output Disable Time			10	ns

AC Characteristics- cont'd

tCLQX	tHO	Output Hold Time	2			ns
tDVCH	tSUDAT	Data In Setup Time	2.5			ns
tCHDX	tHD	Data In Hold Time	1.75			ns
tHLCH		Hold# Low Setup Time relative to Clock	5			ns
tHHCH		Hold# High Setup Time relative to Clock	5			ns
tCHHL		Hold# High Hold Time relative to Clock	5			ns
tCHHH		Hold# Low Hold Time relative to Clock	5			ns
tHLQZ		Hold# Low To High-Z Output			12	ns
tHHQX		Hold# High To Output			9	ns
tCLQV	tV	Clock Low To Output Valid			7 (Note 2)	ns
tWHSL	tWPS	WP# Setup Time Before CS# Low	20			ns
tSHWHL	tWPH	WP# Hold Time After CS# High	100			ns
tRST		Device Reset Time (Ready/Read/Program/Erase)			5/6/10/500	μs
tR		Data transfer from cell to register tR with internal ECC on		45	250	μs

Note 1: VCC = 2.7V - 3.6V

Note 2: The maximum value for tCLQV at 105°C = 7.5ns

4.6 DC Characteristics

Table 17: DC Characteristics and Operating Conditions

Parameter	Symbol	Test Conditions	Min	Typ	Max	Units
Standby current	ICC1	CS# = VIH, Vin= 0V or VCC		20	100	uA
Read Current	ICC2			25	35	mA
Array program current	ICC3			20	25	mA
Array erase current	ICC4			20	25	mA
Input leakage current	ILI				±10	uA
Output leakage current ILO	ILO				±10	uA
DC Input high voltage	VIH		VCC * 0.8		VCC + 0.3	V
DC Input low voltage	VIL		-0.3		VCC * 0.2	V
Output high voltage	VOH	IOH=-400 µA	2.4			V
Output low voltage	VOL	IOL=2.1mA			0.4	V
Erase and program lockout voltage	VLKO			1.8		V

4.7 Pin Capacitance

Table 18: Pin Capacitance (TA = 25°C, f = 1.0 MHZ)

Parameter	Symbol	Test Condition	Min	Max	Unit
Input	C_{IN}	$V_{IN} = 0V$	—	10	pF
Input / Output	C_{IO}	$V_{IL} = 0V$	—	10	pF

4.8 Program / Erase Characteristics

Table 19: Program / Erase Characteristics

Parameter	Description	Min	Typ	Max	Unit
Program Time	tPROG		350	600	uS
Block Erase Time	tBERS		4	10	ms
Number of partial Program Cycles in the same page (Main + Spare)	NOP			4	Cycles
Power on Reset Time	tPOR			2	ms

5. Security Features

The security features below provide block protection from program and erase operations. Two security methods are described below:

- Advanced Volatile Block Protection (AVBP)

The AVBP parameter settings are stored in registers that can be accessed through Set and Get features commands. Power cycling will reset the settings to the default status (all blocks protected on power up). This AVBP method can protect one range of contiguous blocks. The Set Feature command must be issued to alter the state of the AVBP. After power-up, the device is in the locked state by default.

- Permanent Block Protection (PBP)

The PBP parameter settings will be maintained after a power cycle. The PBP method can protect up to 64 blocks (blocks 0 to 63) organized in groups of 4 contiguous blocks. Each group can be protected individually and are permanently protected.

5.1 Volatile Block Protection (VBP) Overview

The AVBP feature can protect all blocks, or one selected range of contiguous blocks, from erase and program operations. After a power-cycle, all blocks are protected as the AVBP_BL[3:0] bits are high (see Block protection feature register (A0h).) The SET FEATURE command must be issued to alter the state of block protection. A Reset command will not reset the A0h register and therefore will not modify the block protection state. When a PROGRAM/ERASE command is issued to a locked block, a status register P_Fail bit or E_Fail bit will be set to indicate the operation failure.

The following tables provides block protection range addresses for each device densities and page size.

Table 20 : AVBP block protection range (Address Min and Max)

1Gb, 2KB page devices

AVB Block Selection	Description	01Gb_2KB	
		MIN	MAX
AVBP_BL_U, AVBP_BL[3:0]			
10000	All Blocks unlocked	-	-
10001	Upper 1/1024 Blocks locked	1023	1023
10010	Upper 1/512 Blocks locked	1022	1023
10011	Upper 1/256 Blocks locked	1020	1023
10100	Upper 1/128 Blocks locked	1016	1023
10101	Upper 1/64 Blocks locked	1008	1023
10110	Upper 1/32 Blocks locked	992	1023
10111	Upper 1/16 Blocks locked	960	1023
11000	Upper 1/8 Blocks locked	896	1023
11001	Upper 1/4 Blocks locked	768	1023
11010	Upper 1/2 Blocks locked	512	1023
all others	All Blocks locked	0	1023
00000	All Blocks unlocked	-	-
00001	Lower 1/1024 Blocks locked	0	0
00010	Lower 1/512 Blocks locked	0	1
00011	Lower 1/256 Blocks locked	0	3
00100	Lower 1/128 Blocks locked	0	7

AVBP block protection range (Address Min and Max) for 1Gb, 2KB page devices - cont'd

00101	Lower 1/64 Blocks locked	0	15
00110	Lower 1/32 Blocks locked	0	31
00111	Lower 1/16 Blocks locked	0	63
01000	Lower 1/8 Blocks locked	0	127
01001	Lower 1/4 Blocks locked	0	255
01010	Lower 1/2 Blocks locked	0	511
all others	All Blocks locked	0	1023
11111 (default)		0	1023

Table 20 : AVBP block protection range (Address Min and Max)

2Gb, 2KB page devices				4Gb, 2KB page devices			
AVB Block Selection	Description	02Gb_2KB		AVB Block Selection	Description	04Gb_2KB	
AVBP_BL_U, AVBP_BL[3:0]		MIN	MAX	AVBP_BL_U, AVBP_BL[3:0]		MIN	MAX
10000	All Blocks unlocked	-	-	10000	All Blocks unlocked	-	-
10001	Upper 1/1024 Blocks locked	2046	2047	10001	Upper 1/1024 Blocks locked	4092	4095
10010	Upper 1/512 Blocks locked	2044	2047	10010	Upper 1/512 Blocks locked	4088	4095
10011	Upper 1/256 Blocks locked	2040	2047	10011	Upper 1/256 Blocks locked	4080	4095
10100	Upper 1/128 Blocks locked	2032	2047	10100	Upper 1/128 Blocks locked	4064	4095
10101	Upper 1/64 Blocks locked	2016	2047	10101	Upper 1/64 Blocks locked	4032	4095
10110	Upper 1/32 Blocks locked	1984	2047	10110	Upper 1/32 Blocks locked	3968	4095
10111	Upper 1/16 Blocks locked	1920	2047	10111	Upper 1/16 Blocks locked	3840	4095
11000	Upper 1/8 Blocks locked	1792	2047	11000	Upper 1/8 Blocks locked	3584	4095
11001	Upper 1/4 Blocks locked	1536	2047	11001	Upper 1/4 Blocks locked	3072	4095
11010	Upper 1/2 Blocks locked	1024	2047	11010	Upper 1/2 Blocks locked	2048	4095
all others	All Blocks locked	0	2047	all others	All Blocks locked	0	4095
00000	All Blocks unlocked	-	-	00000	All Blocks unlocked	-	-
00001	Lower 1/1024 Blocks locked	0	1	00001	Lower 1/1024 Blocks locked	0	3
00010	Lower 1/512 Blocks locked	0	3	00010	Lower 1/512 Blocks locked	0	7
00011	Lower 1/256 Blocks locked	0	7	00011	Lower 1/256 Blocks locked	0	15
00100	Lower 1/128 Blocks locked	0	15	00100	Lower 1/128 Blocks locked	0	31

00101	Lower 1/64 Blocks locked	0	31
00110	Lower 1/32 Blocks locked	0	63
00111	Lower 1/16 Blocks locked	0	127
01000	Lower 1/8 Blocks locked	0	255
01001	Lower 1/4 Blocks locked	0	511
01010	Lower 1/2 Blocks locked	0	1023
all others	All Blocks locked	0	2047
11111 (default)		0	2047

00101	Lower 1/64 Blocks locked	0	63
00110	Lower 1/32 Blocks locked	0	127
00111	Lower 1/16 Blocks locked	0	255
01000	Lower 1/8 Blocks locked	0	511
01001	Lower 1/4 Blocks locked	0	1023
01010	Lower 1/2 Blocks locked	0	2047
all others	All Blocks locked	0	4095
11111 (default)		0	4095

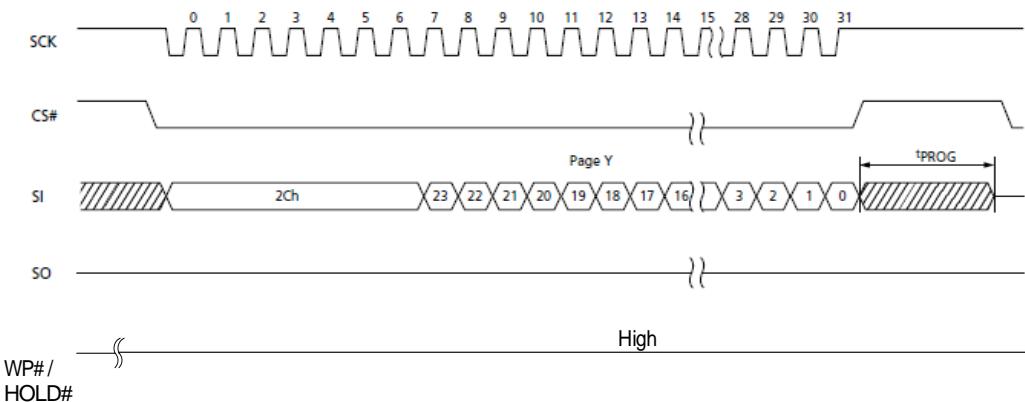
5.2 Permanent Block Protection (PBP) Overview

The device contains 16 protection parameter setting entries. Each entry enables protection from program and erase of a group of 4 contiguous blocks (64 blocks total) in the main array.

The device ships from the factory with no blocks protected by the PBP method.

Because this block protection is permanent, a power-on to power-off sequence does not affect the block status after the Permanent block protection command is issued.

The PBP method is used to select a group of blocks in the main array to be protected from program and erase operation. Multiple groups of blocks can be protected at the same time. Once a group of blocks is protected, the group of blocks can no longer be unprotected.


Additional unprotected groups can still be protected using the PBP sequence. However, the user must not re-issue a PBP command with a group that has been previously protected.

The following PBP sequence is used:

- 06h (WRITE ENABLE)
- 2Ch (PBP Command) followed by 24-bit address (X=0 and Y= block select: see table below)
- After tPROG time, use GET FEATURE command (0Fh) with feature address C0h to verify P_Fail bit is not set.

If the host attempts to program data to a protected block, this operation will fail and the status register (with feature address C0h) reads the following values: P_FAIL = 1 and WEL = 1. The timing diagram and address phase cycle of the PBP sequence is provided below:

Figure 10. Timing Diagram and Address Phase Cycle of the PBP Sequence

Notes:

1. If the SOC is not capable of driving WP# and HOLD# signals individually, an external weak pull-up resistor must be used to drive the signals high

Table 21 : PBPA[23:0] Address Cycle Map

PBPA[23:0] Address Cycle Map									
Bus Cycle	SI	SI[7] (MSB)	SI[6]	SI[5]	SI[4]	SI[3]	SI[2]	SI[1]	SI[0] (LSB)
1 st	23-16	L	L	L	L	L	L	L	L
2 nd	15-8	L	L	L	L	Y[3]	Y[2]	Y[1]	Y[0]
3 rd	7-0	L	L	L	L	L	L	L	L

The group of blocks being protected is determined by the value of Y (see Table 7) on the second address cycle

Table 22 : Second Address Cycle protection Scheme Table

Y Value	Protection Group	Group Block addresses
0000	0	0,1,2,3
0001	1	4,5,6,7
0010	2	8,9,10,11
0011	3	12,13,14,15
0100	4	16,17,18,19
0101	5	20,21,22,23
0110	6	24,25,26,27
0111	7	28,29,30,31
1000	8	32,33,34,35
1001	9	36,37,38,39
1010	10	40,41,42,43
1011	11	44,45,46,47
1100	12	48,49,50,51
1101	13	52,53,54,55
1110	14	56,57,58,59
1111	15	60,61,62,63

5.3 Permanent Block protection lock down sequence

The Permanent Block Protection (PBP) lock down can be set through the SET feature. This operation is irreversible and once the permanent lock down protection has been issued, the current protection settings are permanent. All group of blocks protected by PBP are permanently protected from program and erase operations. The PBP operations can no longer be used to protect additional groups.

The following command sequence to lock down the Permanent Block Protection is as follow:

- Use SET FEATURES command (1Fh) with feature address B0h and Config[2:0] = 111b
- Use Write Enable command (06h)
- Program Execute command (10h) with block/page address (00)
- Use GET FEATURE command (0Fh) with feature address C0h to check OIP bit ready
- Use SET FEATURES command (1Fh) with feature address B0h and data value with Config[2:0] = 000b to exit
- After tPROG time, use GET FEATURE command (0Fh) with feature address C0h to verify P_Fail bit is not set

5.4 Block Protection Status Command

The Block Protection Status Read command (7Ah) is followed by 3 address cycles (see address mapping section), eight dummy cycles and one data cycle.

This register indicates whether a given block (addressed in the Block protection read address command field: BA[13:0]) is locked-down, locked or unlocked using the AVBP or PBP).

5.5 Block Lock Status Register

The Block Lock Status (BLS) register indicates whether a block is locked-down, locked or unlocked using the VBP or PBP protection methods.

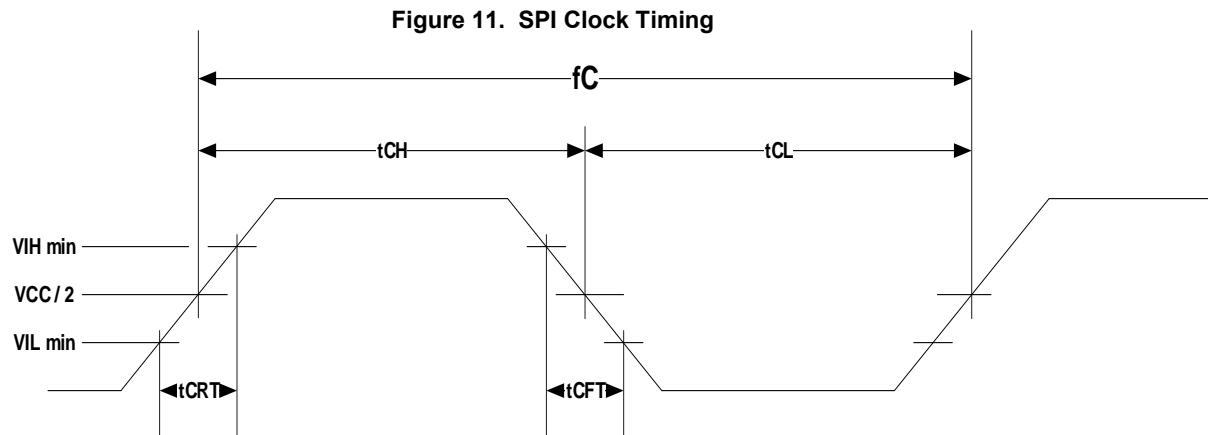
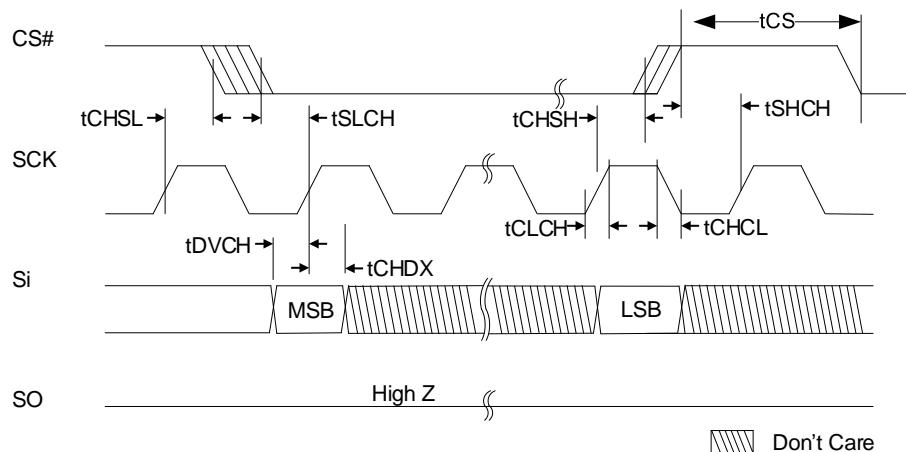

The following table provides the BLS register definition:

Table 23 : Block Lock Status Register

Bits	Field Name	Function	Default State	Description
7	RSVD	Reserved	0	
6	RSVD	Reserved	0	
5	RSVD	Reserved	0	
4	RSVD	Reserved	0	
3	PBP Lock/Unlock Status	Permanent Block Protection Lock Status	1	0: The address selected block is locked by PBP 1: The address selected block is not locked by PBP
2	VBP Lock/Unlock Status	Volatile Block Protection Status	0	001: Block is locked down by AVBP 010: Block is locked by AVBP (Default)
1			1	101: Block is unlocked, Device is locked-down by AVBP
0			0	110: Block is unlocked, Device is not locked-down by AVBP (Register B0h BIT[5])


6. Timing Diagrams

6.1 SPI Clock Timing

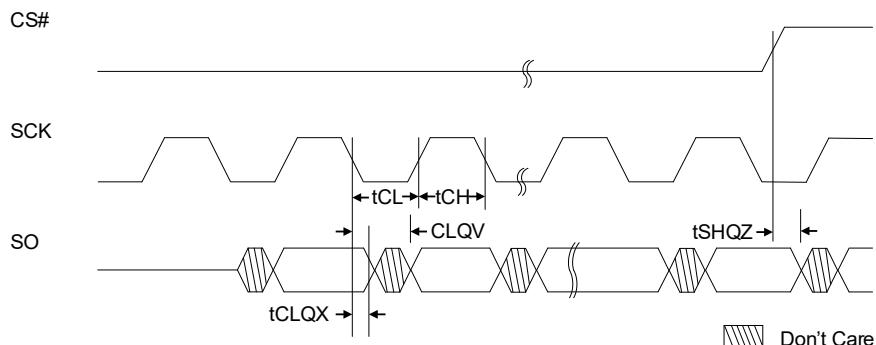
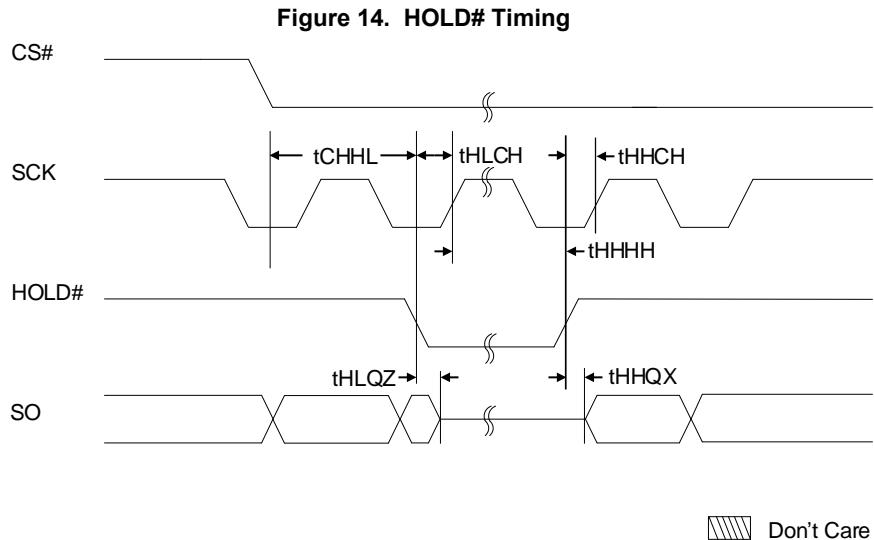
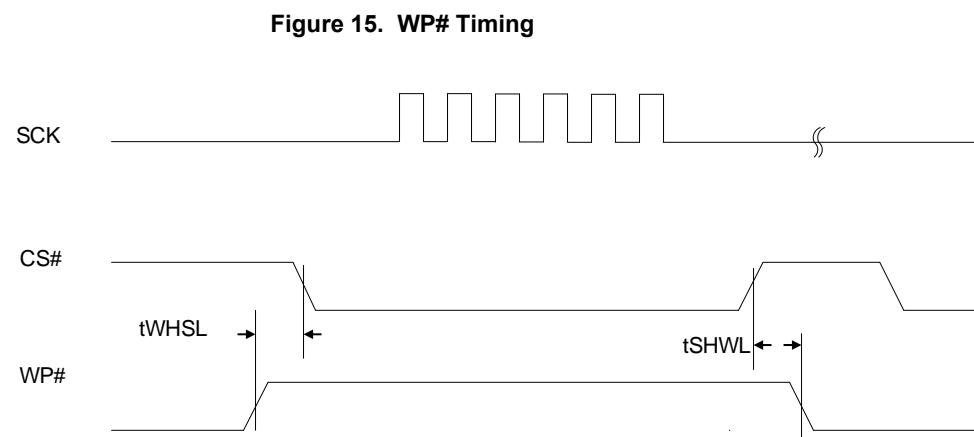

6.2 Serial Input Timing

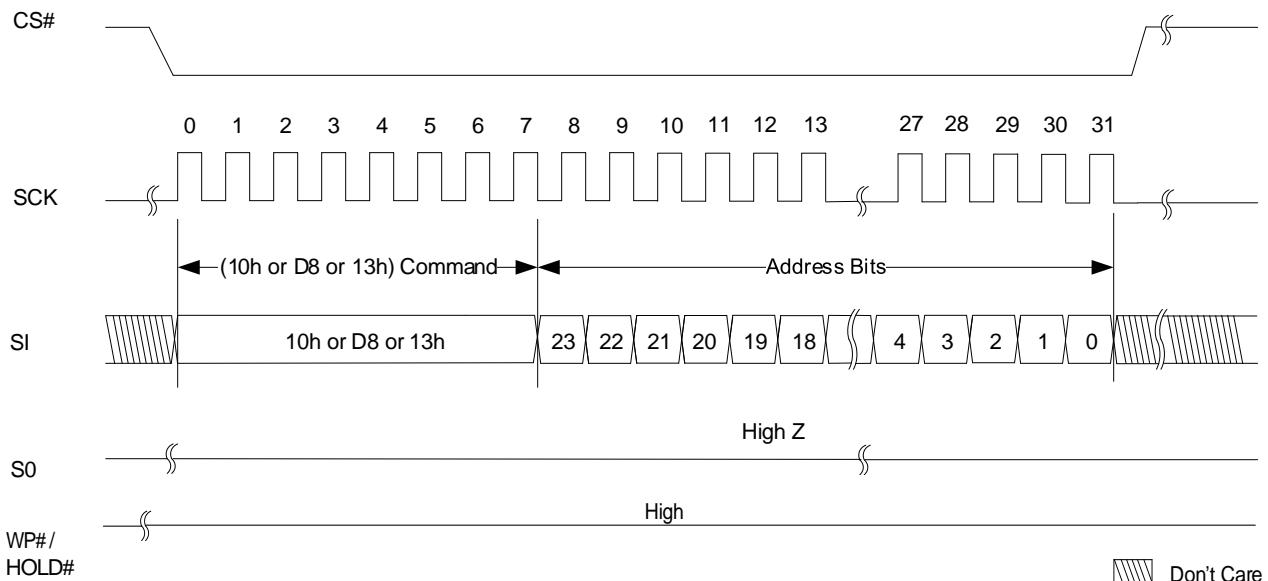
Figure 12. Serial Input Timing



6.3 Serial Output Timing


Figure 13. Serial Output Timing

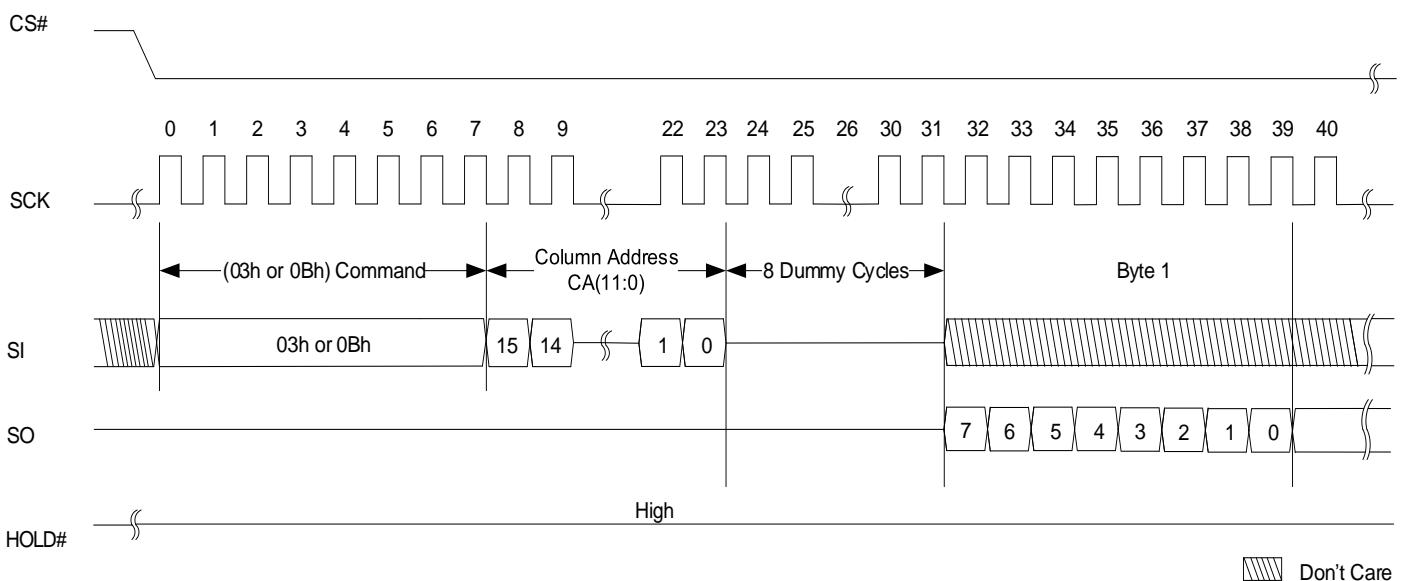
6.4 Hold# Timing


6.5 WP# Timing

6.6 Block Erase (D8h), Program Execute (10h), Page Read (13h) Timing Diagram

Timing diagrams Figure 16 covers Block Erase, Program Execute and Page Read. The address field consists of 3 bytes for block address.

Figure 16. Block Erase, Program Execute, Page Read Timing

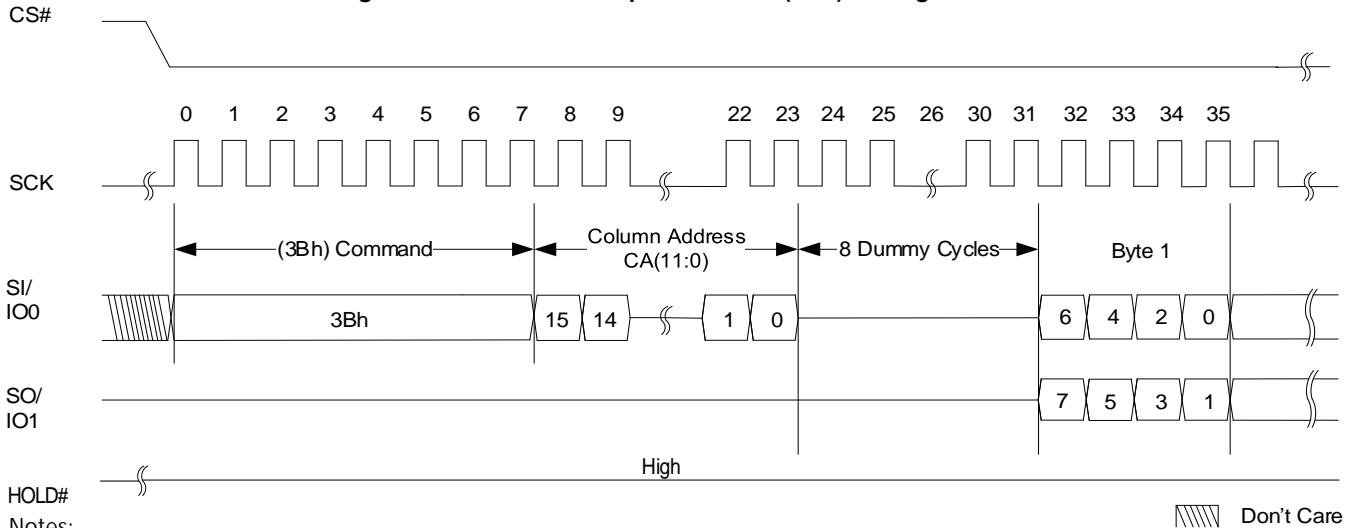


Notes:

1. WP# is a "Don't Care" for Page Read (13h)
2. If the SOC is not capable of driving WP# and HOLD# signals individually, an external weak pull-up resistor must be used to drive the signals high

6.7 Read Buffer 1X (03h or 0Bh) Timing Diagram

Figure 17: Read Buffer (03h or 0Bh) Timing

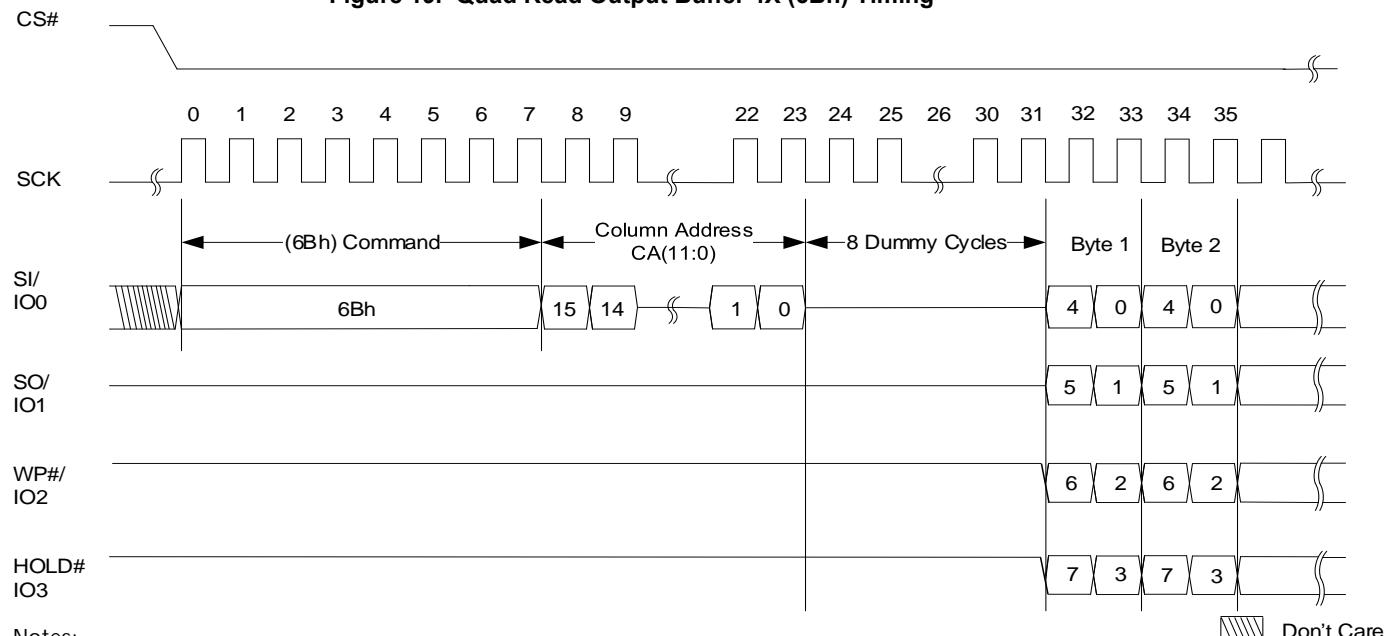

Notes:

1. WP# is a "Don't Care"
2. If the SOC is not capable of driving WP# and HOLD# signals individually, an external weak pull-up resistor must be used to drive the signals high

6.8 Dual Read Output Buffer 2X (3Bh) Timing Diagram

For the Dual I/O Read command, data bits are output through two pins: IO0, and IO1. There is a latency required after the mode bits before data begins shifting out of IO0-IO1. This latency period (i.e., dummy cycles) allows the device's internal circuitry enough time to access data at the initial address. During latency cycles, the data value on IO0-IO1 are "don't care" while the master stops driving the IO and the slave begins driving the IO. Following the latency period, the memory contents at the address given, is shifted out two bits at a time through IO0-IO1.

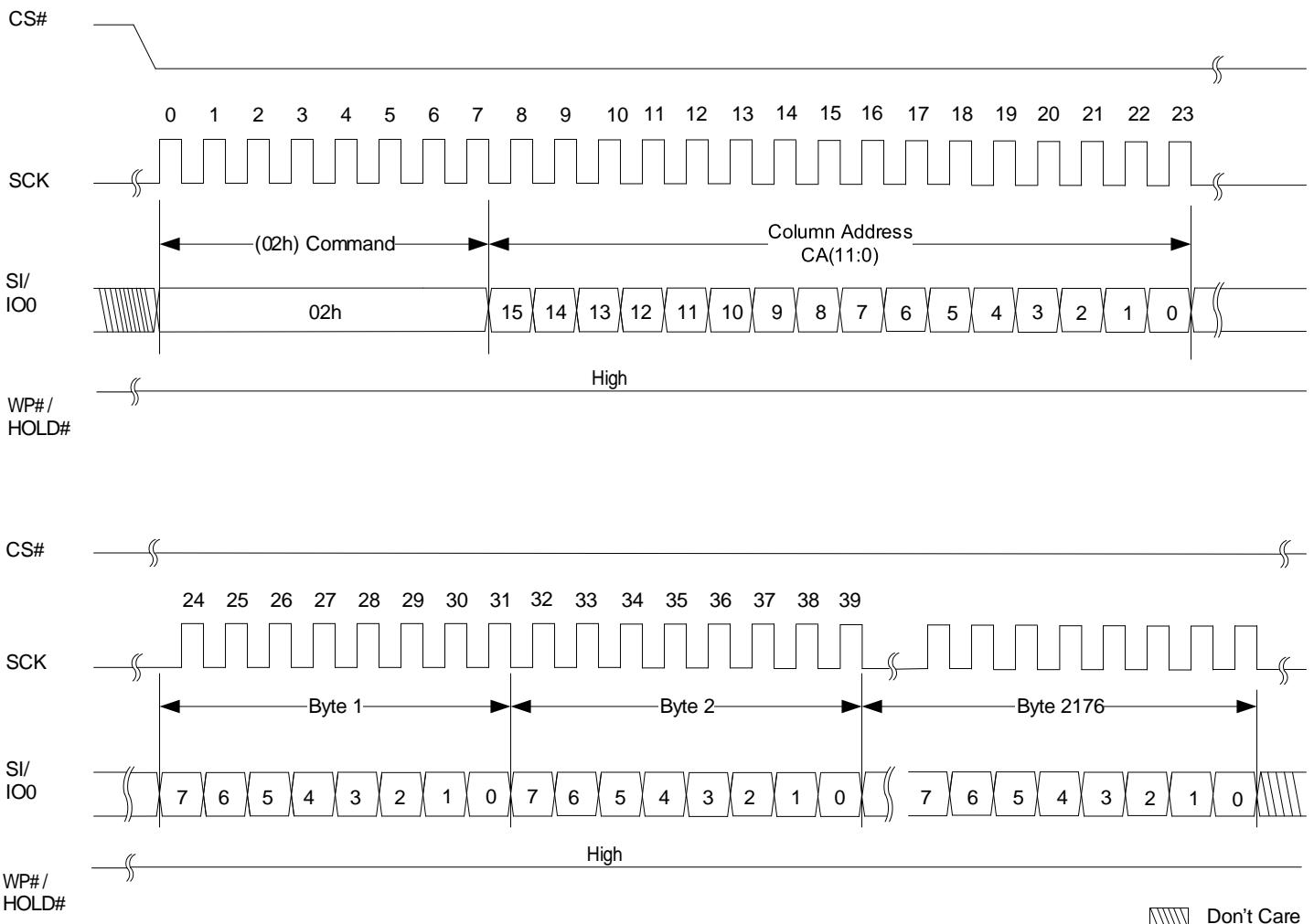
Figure 18. Dual Read Output Buffer 2x (3Bh) Timing



6.9 Quad Read Output Buffer 4X(6Bh)Timing Diagram

For the Quad I/O Read output command, data bits are input and output through four pins: IO0, IO1, IO2, and IO3. The quad data read command improves throughput per serial SCK clock.

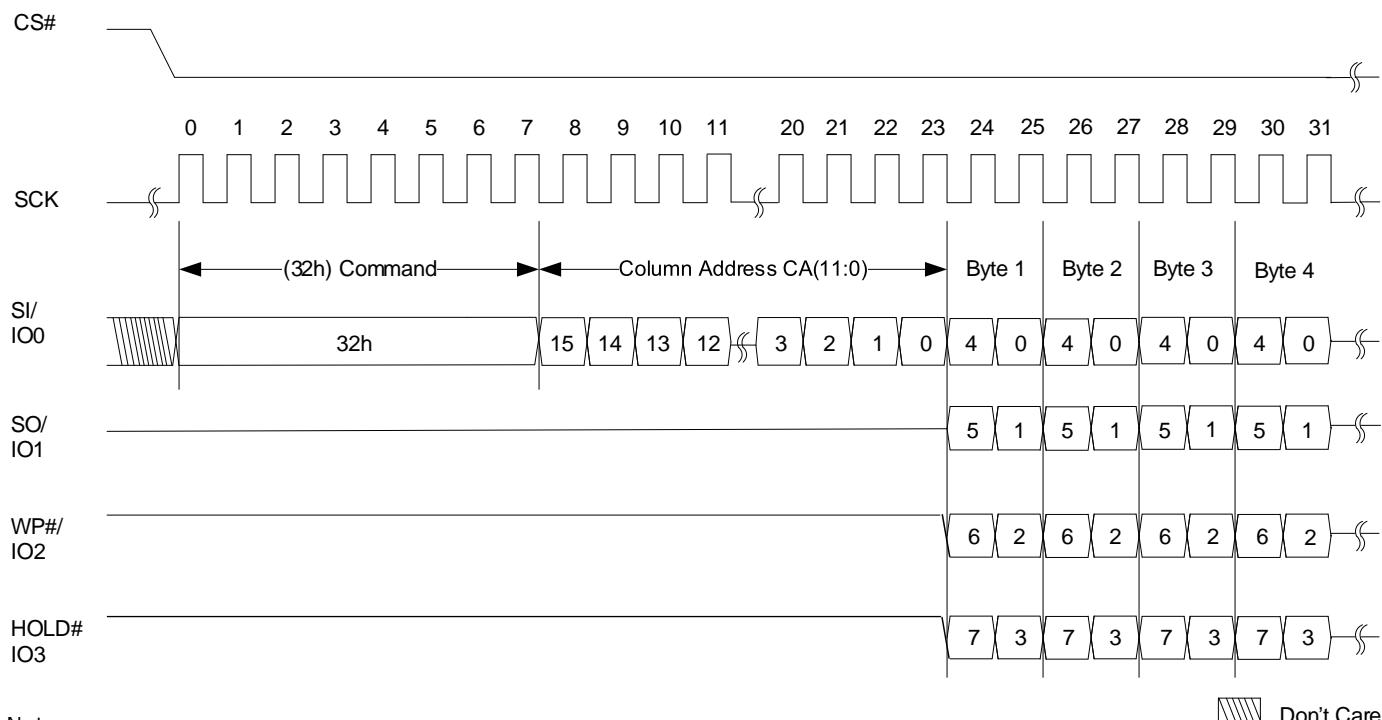
For the Quad I/O Read command, there is a latency required after the mode bits before data begins shifting out of IO0-IO3. This latency period (i.e., dummy cycles) allows the device's internal circuitry enough time to access data at the initial address. During latency cycles, the data value on IO0-IO3 are "don't care". Following the latency period, the memory contents at the address given, is shifted out four bits at a time through IO0-IO3.


Figure 19. Quad Read Output Buffer 4X (6Bh) Timing

6.10 Program Load 1X(02h) and Program Load Random Data 1X(84h) Buffer Timing Diagram

Figure 20 shows the timing diagram for Program Load 1X (command 02h).

Figure 20. Program Load 1X (02h) and Program Load Random Data 1X Buffer Timing


Notes:

1. If the SOC is not capable of driving WP# and HOLD# signals individually, an external weak pull-up resistor must be used to drive the signals high

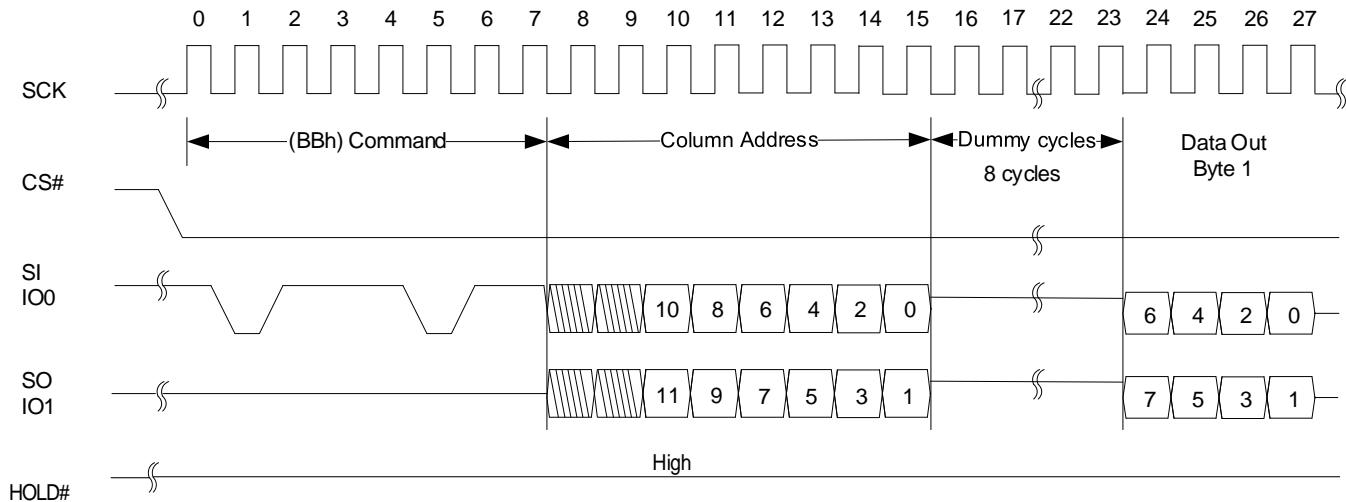
6.11 Quad Program Data Load 4X(32h) and Quad Program Load Random Data 1X(34h) Buffer

The Quad load program command allows bytes to be programmed in the memory using four signals: IO0- IO3 for improved performance.

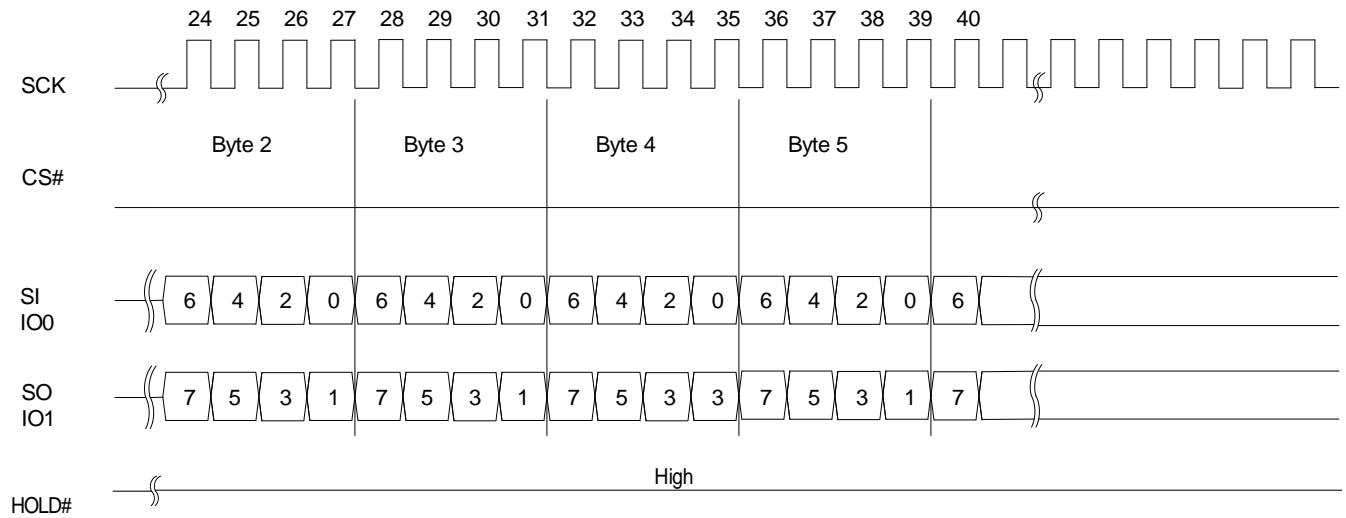
Figure 21. Quad Program Data Load 4X (32h) and Quad Program Load Random Data 1X (34h) Buffer Timing

Notes:

1. If the SOC is not capable of driving WP# and HOLD# signals individually, an external weak pull-up resistor must be used to drive the signals high


6.12 Small Data Input Guidelines

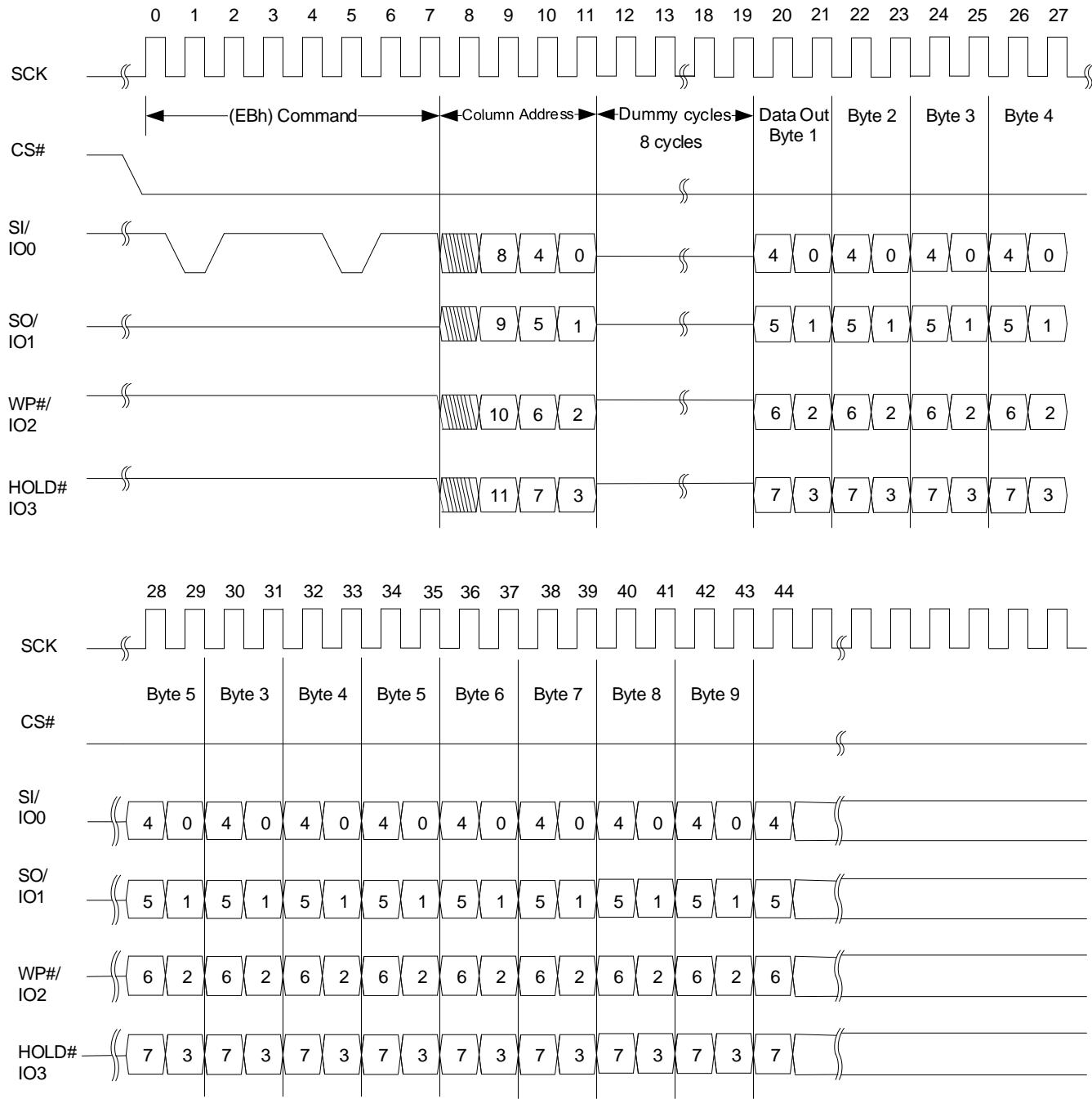
Small data input is allowed within an NOP provided that it meets the following conditions:


- Data size must be a minimum of 4 bytes or greater within single NOP.
- Data input column address must start from xxxx0h, xxx4h, xxx8h, and xxxCh.

6.13 Fast Read Dual IO 2X(BBh)

Figure 22. Fast Read Dual IO 2X(BBh) Timing Diagram

1. WP# is a "Don't Care"

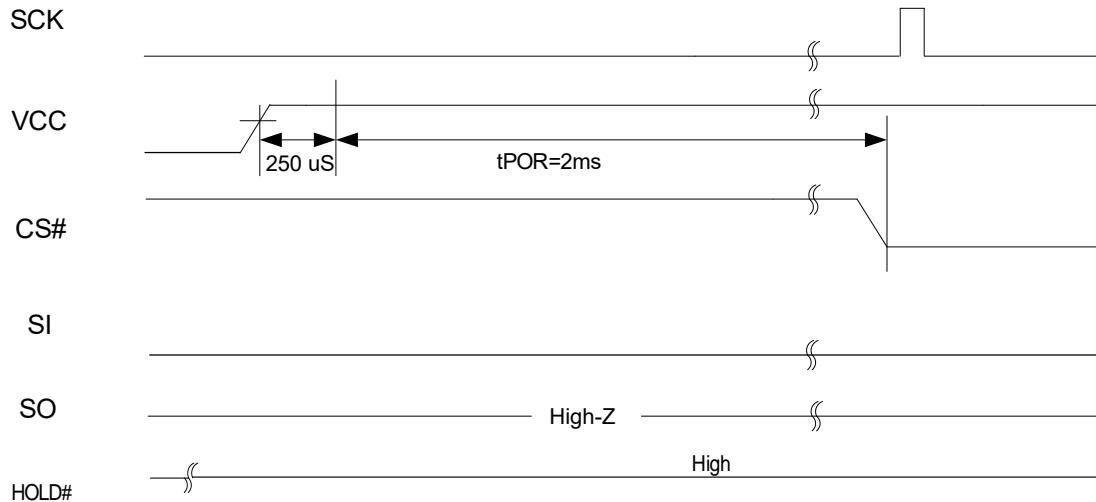

 Don't Care

Notes:

1. The number of dummy cycles is 8 cycles .
2. WP# is a "Don't care".
3. If the SOC is not capable of driving WP# and HOLD# signals individually, an external weak pull-up resistor must be used to drive the signals high

6.14 Fast Read Quad IO 4X(EBh)

Figure 23. Fast Read Quad IO 4X(EBh) Timing Diagram



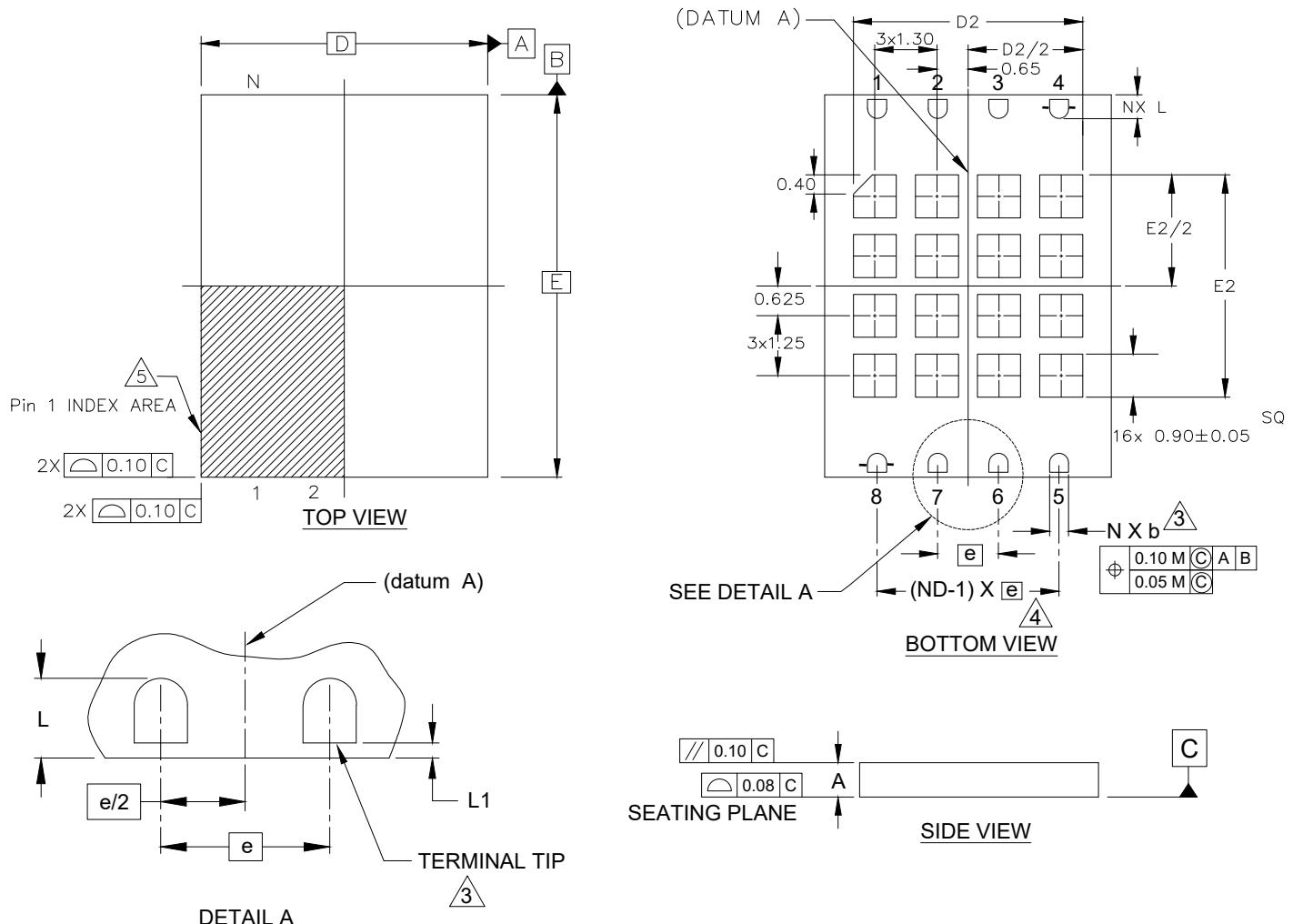
Notes:

1. The number of dummy cycles is 8 cycles.
2. If the SOC is not capable of driving WP# and HOLD# signals individually, an external weak pull-up resistor must be used to drive the signals high.

6.15 Power Up Timing

Figure 24. Power up Timing

Notes:

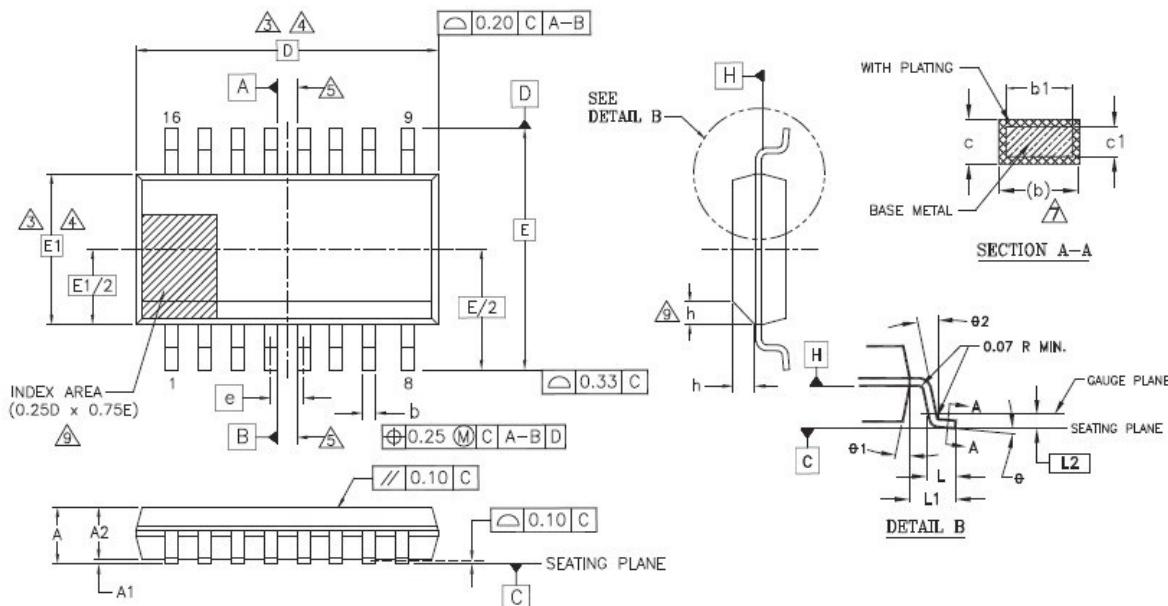

1. WP# is a "Don't care"
2. If the SOC is not capable of driving WP# and HOLD# signals individually, an external weak pull-up resistor must be used to drive the signals high

7.0 : Physical Interface

7.1 : Physical Diagram

7.1.1 : 8-pin LGA Package (6 x 8 mm body width)

Figure 25. 8-pin LGA Package (6 x 8 mm)


SYMBOL	DIMENSIONS		
	MIN.	NOM.	MAX.
e	1.27 BSC		
N	8		
ND	4		
L	0.45	0.50	0.55
b	0.35	0.40	0.45
D2	4.70	4.80	4.90
E2	4.55	4.65	4.75
D	6.00 BSC		
E	8.00 BSC		
A	0.70	0.75	0.80
L1	0.00	-	0.15

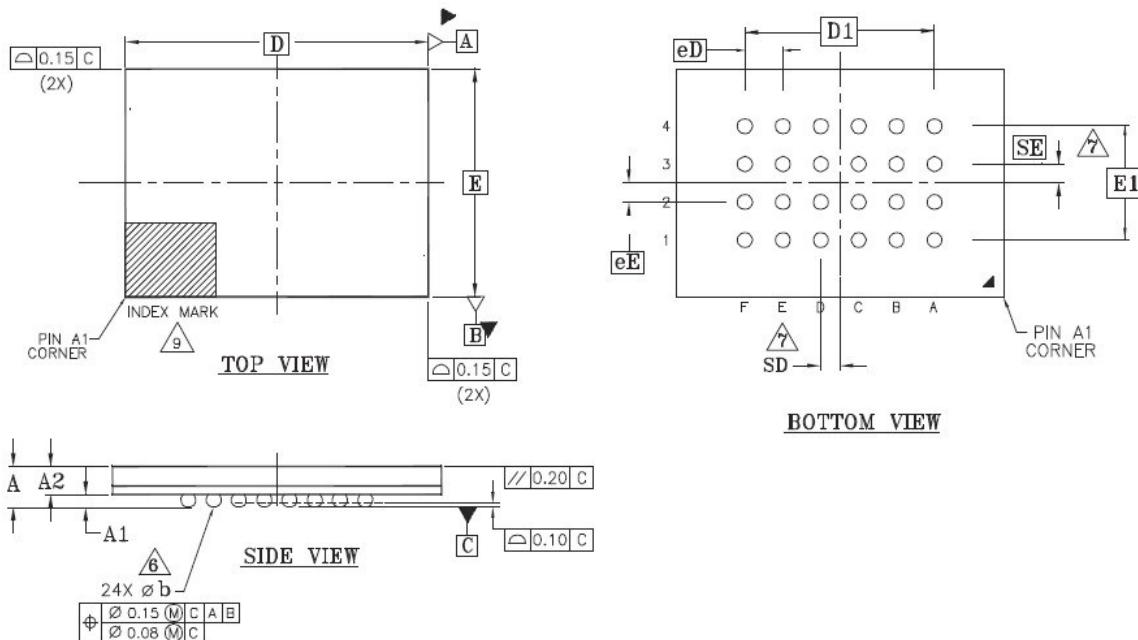
NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. N IS THE TOTAL NUMBER OF LANDS.
3. DIMENSION "b" IS MEASURED AT THE MAXIMUM LAND WIDTH IN A PLANE PARALLEL TO DATUM C.
4. ND REFERS TO THE NUMBER OF LANDS ON D SIDE.
5. PIN #1 ID ON TOP WILL BE LOCATED WITHIN THE INDICATED ZONE.

7.1.2 : 16-pin SOIC Package (300 mils body width)

Figure 26. 16-pin SOIC Package (300 mil)

PACKAGE	SO3 016 (inches)		SO3 016 (mm)	
JEDEC	MS-013(D)AA		MS-013(D)AA	
SYMBOL	MIN	MAX	MIN	MAX
A	0.093	0.104	2.35	2.65
A1	0.004	0.012	0.10	0.30
A2	0.081	0.104	2.05	2.55
b	0.012	0.020	0.31	0.51
b1	0.011	0.019	0.27	0.48
c	0.008	0.013	0.20	0.33
c1	0.008	0.012	0.20	0.30
D	0.406 BSC		10.30 BSC	
E	0.406 BSC		10.30 BSC	
E1	0.295 BSC		7.50 BSC	
e	.050 BSC		1.27 BSC	
L	0.016	0.050	0.40	1.27
L1	.055 REF		1.40 REF	
L2	.010 BSC		0.25 BSC	
N	16		16	
h	0.10	0.30	0.25	0.75
θ	0°	8°	0°	8°
θ1	5°	15°	5°	15°
θ2	0°		0°	


NOTES:

1. ALL DIMENSIONS ARE IN BOTH INCHES AND MILLIMETERS.
2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M - 1994.
3. DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER END. DIMENSION E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 mm PER SIDE. D AND E1 DIMENSIONS ARE DETERMINED AT DATUM H.
4. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM. DIMENSIONS D AND E1 ARE DETERMINED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
5. DATUMS A AND B TO BE DETERMINED AT DATUM H.
6. "N" IS THE MAXIMUM NUMBER OF TERMINAL POSITIONS FOR THE SPECIFIED PACKAGE LENGTH.
7. THE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 TO 0.25 mm FROM THE LEAD TIP.
8. DIMENSION "b" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.10 mm TOTAL IN EXCESS OF THE "b" DIMENSION AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE LEAD FOOT.
9. THIS CHAMFER FEATURE IS OPTIONAL. IF IT IS NOT PRESENT, THEN A PIN 1 IDENTIFIER MUST BE LOCATED WITHIN THE INDEX AREA INDICATED.
10. LEAD COPLANARITY SHALL BE WITHIN 0.10 mm AS MEASURED FROM THE SEATING PLANE.

36011.16-038.03 18.31.6

7.1.4 : 24-pin BGA, 6 x 4 Ball Array (8 x 6 mm body width)

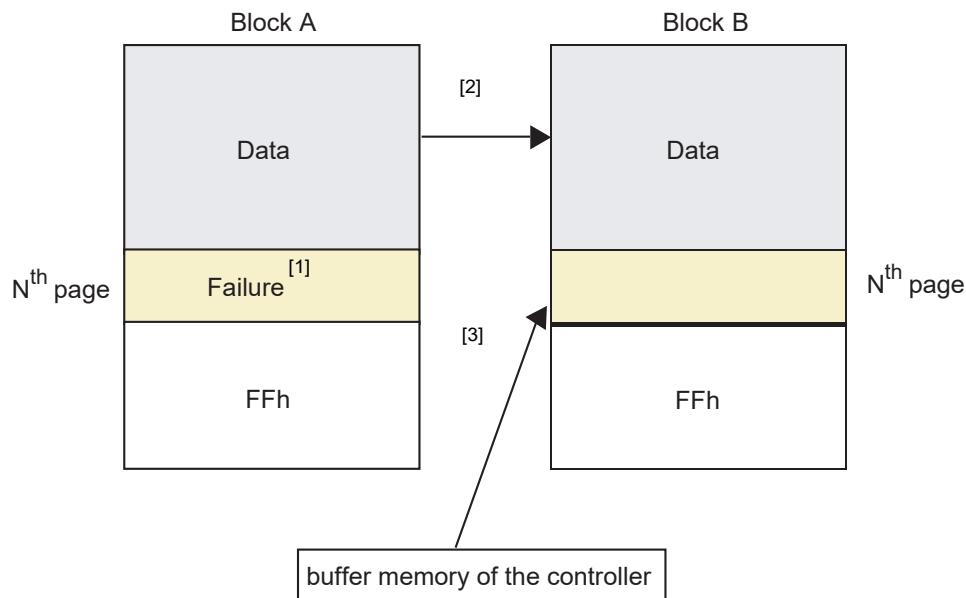
Figure 27. 24-pin BGA Ball Array (6 x 4 mm)

PACKAGE JEDEC	FAC024 N/A			NOTES:
D x E 8.00 mm x 6.00 mm NOM PACKAGE				
SYMBOL	MIN	NOM	MAX	NOTE
A	—	—	1.20	PROFILE
A1	0.25	—	—	BALL HEIGHT
A2	0.70	—	0.90	BODY THICKNESS
[D]	8.00 BSC.			BODY SIZE
[E]	6.00 BSC.			BODY SIZE
[D1]	5.00 BSC.			MATRIX FOOTPRINT
[E1]	3.00 BSC.			MATRIX FOOTPRINT
MD	6			MATRIX SIZE D DIRECTION
ME	4			MATRIX SIZE E DIRECTION
N	24			BALL COUNT
Øb	0.35	0.40	0.45	BALL DIAMETER
[e]	1.00 BSC.			BALL PITCH
SD/SE	0.5/0.5			SOLDER BALL PLACEMENT
				DEPOPULATED SOLDER BALLS
	J			PACKAGE OUTLINE TYPE

1. DIMENSIONING AND TOLERANCING METHODS PER ASME Y14.5M-1994.
2. ALL DIMENSIONS ARE IN MILLIMETERS.
3. BALL POSITION DESIGNATION PER JEP95, SECTION 4.3, SPP-010.
4. [e] REPRESENTS THE SOLDER BALL GRID PITCH.
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.
6. SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.
7. n IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.
8. [6] DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.
9. DATUM C IS THE SEATING PLANE AND IS DEFINED BY THE CROWNS OF THE SOLDER BALLS.
10. SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.
11. WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW, SD OR SE = 0.00.
12. WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, SD OR SE = e/2
13. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS.
14. [9] A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.
15. OUTLINE AND DIMENSIONS PER CUSTOMER REQUIREMENT.

8. Error Management

8.1 System Bad Block Replacement

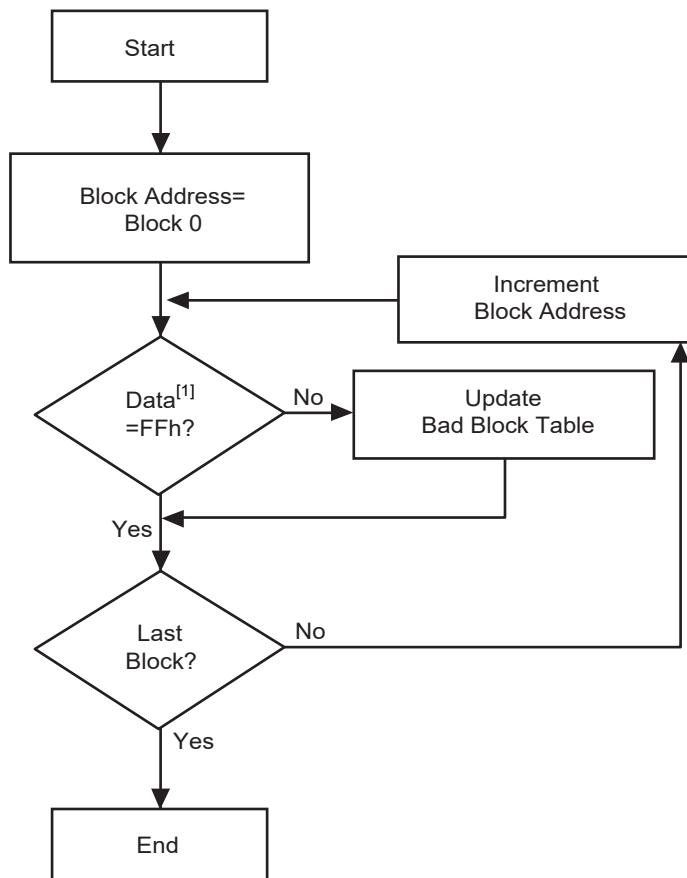

Over the lifetime of the device, additional Bad Blocks may develop. In this case, each bad block has to be replaced by copying any valid data to a new block. These additional Bad Blocks can be identified whenever a program or erase operation reports “Fail” in the Status Register.

The failure of a page program operation does not affect the data in other pages in the same block, thus the block can be replaced by re-programming the current data and copying the rest of the replaced block to an available valid block. Refer to Table 24 and Figure 28 for the recommended procedure to follow if an error occurs during an operation.

Table 24. Block Failure

Operation	Recommended Procedure
Erase	Block Replacement
Program	Block Replacement
Read	Check Read Status Register

Figure 28. Bad Block Replacement

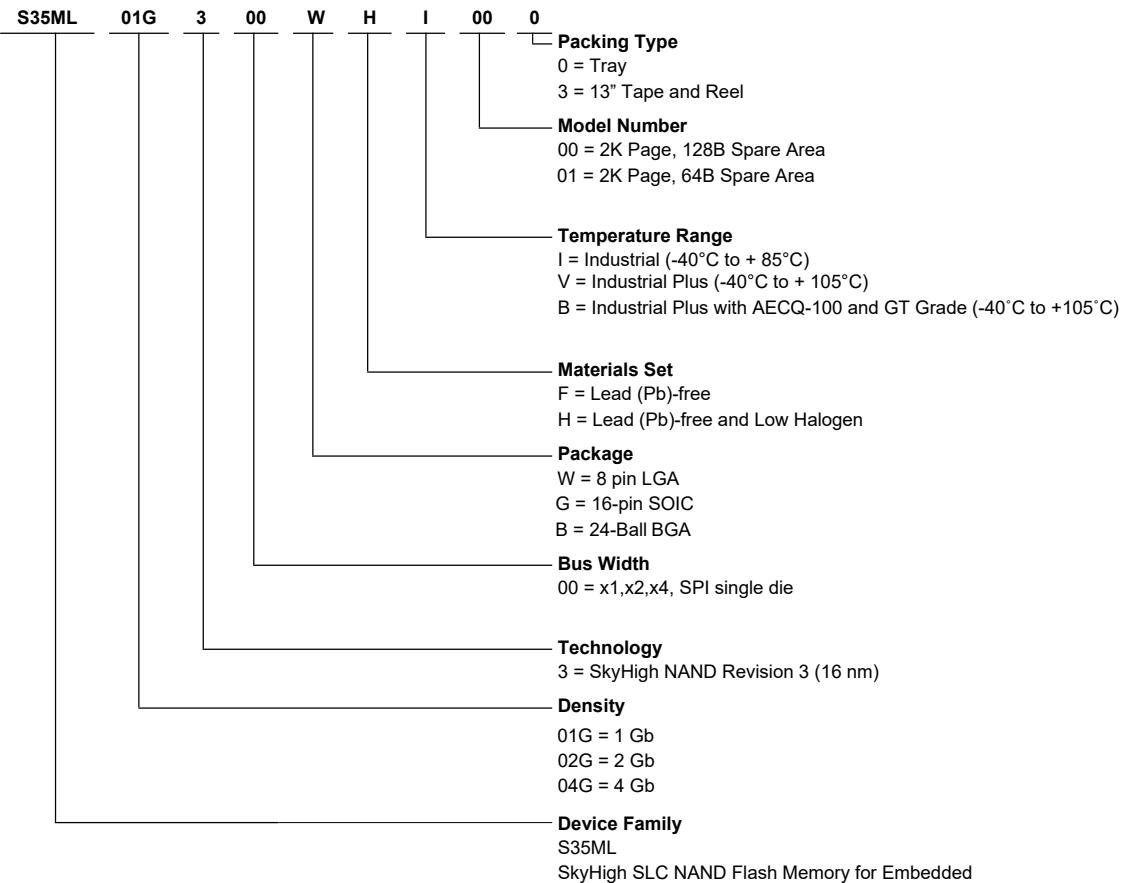

Notes

1. An error occurs on the Nth page of Block A During a program operation.
2. Data in Block A is copied to the same location in Block B, which is a valid block.
3. Th Nth page of block A, which is in controller buffer memory is copied into the Nth page of Block B.
4. Bad block table should be updated to prevent from erasing or programming Block A.

8.2 Bad Block Management

Devices with Bad Blocks have the same quality level and the same AC and DC characteristics as devices where all the blocks are valid. A Bad Block does not affect the performance of valid blocks because it is isolated from the bit line and common source line by a select transistor. The devices are supplied with all the locations inside valid blocks erased (FFh). The Bad Block Information is written before shipping. Any block where the 1st byte in the spare area of the 1st or 2nd or last page does not contain FFh is a Bad Block. That is, if the first page has an FF value and should have been a non-FF value, then the non-FF value in the second page or the last page will indicate a bad block. The Bad Block Information must be read before any erase is attempted, as the Bad Block Information may be erased. For the system to be able to recognize the Bad Blocks based on the original information, it is recommended to create a Bad Block table following the flowchart shown in Figure 29. The host is responsible to detect and track bad blocks, both factory bad blocks and blocks that may go bad during operation. Once a block is found to be bad, data should not be written to that block. Blocks 0-7 are guaranteed good at the time of shipment.

Figure 29. Bad Block Management Flowchart^[1]



Note

1. Check for FFh at the 1st byte in the spare area of the 1st, 2nd, and last pages.

9. Ordering Information

The ordering part number is formed by a valid combination of the following:

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Contact your local sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Device Family	Density	Technology	Bus Width	Package Type	Temperature Range	Additional Ordering Options	Packing Type	Package Description
S35ML	01G	3	00	WH	I,V,B	01	0, 3	LGA ^[1]
S35ML	02G/04G	3	00	WH	I,V,B	00	0, 3	LGA

Note

1. 64 bytes is the default value for the spare area. Contact sales for the 128 Bytes option.

10. Document History

Document Title: S35ML01G3 / S35ML02G3 / S35ML04G3, 1/2/4 Gb, SPI SLC NAND Flash Memory for Embedded

Document Number: 002-19205

Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	-	MNADA	08/12/2020	Initial release
A	-	MNADA	11/09/2020	Updated the AVBP tables, tR values
B	-	MNADA	01/07/2021	Updated the parameter page
C	-	MNADA	02/08/2021	Added Note 2 for Feature Address A0h table
D	-	MNADA	03/15/2021	Added 1Gb device
E	-	MNADA	05/12/2021	Change LGA part number from WF to WH
F	-	MNADA	05/28/2021	updated tSHQZ / tHHQX values and updated the OTP section
G	-	MNADA	09/14/2021	Added a note under tables 8,9 about commands in OIP Ready status
H	-	MNADA	11/16/2021	Added note 2, table 16 - CLQV max = 7.5ns at 105°C
I	-	MNADA	01/27/2022	Added 34h to the internal data move section
J	-	MNADA	02/22/2022	Updated Power up and Reset Commands section and Power up Timing
K	-	MNADA	05/16/2022	Updated Read ID table , updated Feature Address C0h table, updated page Program operation section, updated the Standby current spec
L	-	MNADA	07/17/2023	Updated Valid Combinations table, add a note for default spare area page 1
M	-	MNADA	09/14/2023	Update 8-Pin LGA Package diagram
N	-	MNADA	02/01/2024	Update Valid Combinations, Update Parameter Page(Endurance) Updated the Valid Combinations section, updated Page program Operation
O	-	MNADA	02/26/2024	Update Quad Program Data Load (32h) timing
P	-	MNADA	10/29/2024	Update timing diagrams to include WP# and HOLD# Update the ECC table under Feature Address C0h
Q	-	MNADA	07/08/2025	removed Note: "Call factory for S35ML02/04G3 devices without FFh power-on option" from section 3.1 and removed figure 24(with FF).

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

SkyHigh Memory:

[S35ML02G300WFI000](#) [S35ML02G300WFI003](#) [S35ML02G300WHI000](#) [S35ML02G300WHI003](#)

[S35ML04G300WFI000](#) [S35ML04G300WFI003](#) [S35ML04G300WHI000](#) [S35ML04G300WHI003](#)

[S35ML01G300WFI010](#) [S35ML01G300WFI013](#) [S35ML01G300WHI010](#) [S35ML01G300WHI013](#)

[S35ML01G300WHV010](#) [S35ML01G300WHV013](#) [S35ML02G300WHV000](#) [S35ML02G300WHV003](#)

[S35ML04G300WHV000](#) [S35ML04G300WHV003](#)