

42 V Input Window Voltage Detector for Automotive Applications

No. EC-405-191101

OVERVIEW

The R3152N is a window voltage detector suited for achieving the functional safety. This device monitors over- and under- voltage of the output voltage from the power supply IC for a microprocessor and a sensor, and can prevent malfunction of system caused by abnormal voltage.

KEY BENEFITS

- A stable voltage with supplying the battery voltage can provide the power supply and the voltage supervising separately.
- High-accuracy detection enables with Overvoltage/Undervoltage Detection Accuracy of -1.25% to 0.75% and Hysteresis of 1.5%.
- Small package of SOT-23-6 is adopted, and a safe and secure pin assignment with considering a short among adjacent pins.

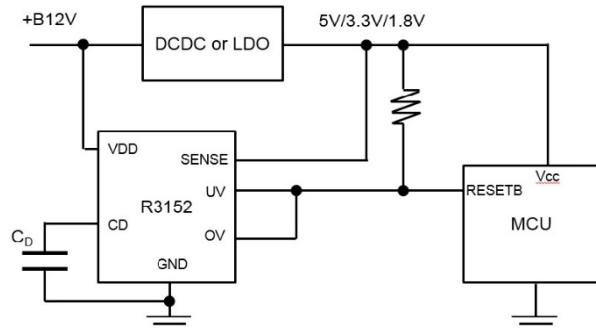
KEY SPECIFICATIONS

- Operating Voltage Range (Max. Rating): 3.0 V to 42.0 V (50.0 V)
- Operating Temperature Range: -40°C to 125°C
- Supply Current: Typ. 1.5 μ A
- Overvoltage Detection: 1.1 V to 5.9 V (0.01 V step)
- Undervoltage Detection: 1.0 V to 4.8 V (0.01 V step)
- Detection Release Hysteresis: A, Typ. 1.0% with hysteresis
B, No hysteresis
- Detection Voltage Accuracy:
 $\pm 0.5\%$ ($T_a = 25^\circ\text{C}$)
-1.25% to 0.75% (-40°C to 125°C)
- Release Delay Time: Typ. 4 ms ($C_D = 0.01 \mu\text{F}$)
- Output Type: Nch. Open Drain

SELECTION GUIDE

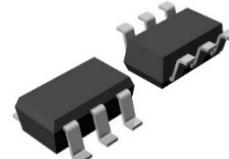
Product Name	Package	Quantity per Reel
R3152Nxxx\$-TR-#E	SOT-23-6	3,000 pcs

xxx: The combination of an overvoltage detection setting voltage (V_{OVSET}) and an undervoltage detection setting voltage (V_{UVSET})
Refer to *Product-specific Electrical Characteristics* for more details.


\$: Hysteresis

\$	Hysteresis
A	Yes
B	No

#: Quality Class


Refer to *SELECTION GUIDE* for details.

TYPICAL APPLICATIONS

CD: a capacitor set according to the release delay times

PACKAGE

SOT-23-6
2.9 x 2.8 x 1.1 (mm)

APPLICATIONS

- Power Supply Voltage Monitoring for ASIL-B/C/D Systems Including ECU and ADAS
- Power Supply Voltage Monitoring for Control Units Including EV Inverters and Charge Controllers

R3152N

No. EC-405-191101

SELECTION GUIDE

The overvoltage detection setting voltage (V_{OVSET}) and the undervoltage detection setting voltage (V_{UVSET}) are user-selectable options.

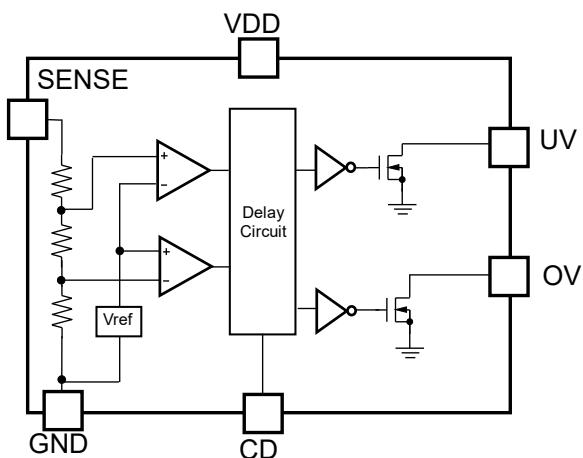
Selection Guide

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R3152Nxxx\$-TR-#E	SOT-23-6	3,000 pcs	Yes	Yes

xxx: The combination of an overvoltage detection setting voltage (V_{OVSET}) and an undervoltage detection setting voltage (V_{UVSET}).

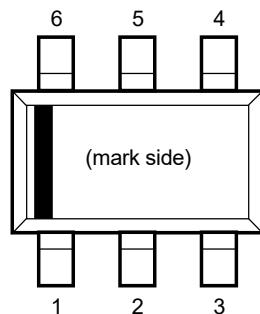
Refer to *Product-specific Electrical Characteristics* for more details.

\$: Hysteresis


\$	Hysteresis
A	Yes
B	No

#: Quality Class

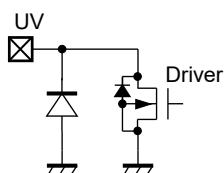
#	Operating Temp. Range	Test Temp.
A	-40°C to 125°C	25°C, High
K	-40°C to 125°C	Low, 25°C, High



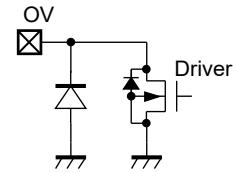
BLOCK DIAGRAM

R3152N Block Diagram

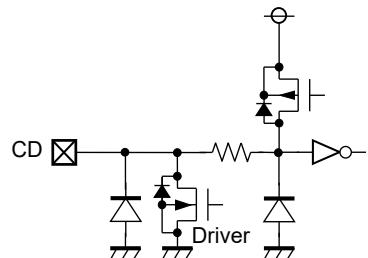
PIN DESCRIPTIONS

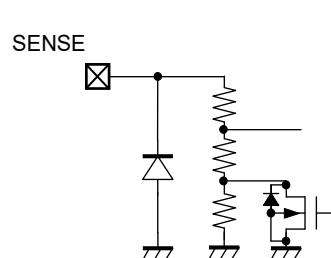

SOT-23-6 Pin Configuration

Pin Description


Pin No.	Symbol	Description
1	VDD	Supply Voltage Pin
2	CD	VD Release Delay Time Set Pin (for connecting with external capacitor for delay)
3	UV	Undervoltage Detection Output Pin ("Low" at detection)
4	OV	Oversupply Voltage Detection Output Pin ("Low" at detection)
5	GND	GND Pin
6	SENSE	SENSE Pin

Internal Equivalent Circuit for Each Pin


UV Pin


OV Pin

CD Pin

SENSE Pin

ABSOLUTE MAXIMUM RATINGS**Absolute Maximum Ratings**

Symbol	Parameter	Rating	Unit
V_{DD}	Supply Voltage	-0.3 to 50.0	V
	Peak Voltage ⁽¹⁾	60	V
V_{CD}	CD Pin Output Voltage	-0.3 to 50.0	V
V_{UVOUT}	UV Pin Output Voltage	-0.3 to 7.0	V
V_{OVOUT}	OV Pin Output Voltage	-0.3 to 7.0	V
V_{SENSE}	SENSE Pin Input Voltage	-0.3 to 7.0	V
I_{UVOUT}	UV Pin Output Current	30	mA
I_{OVOUT}	OV Pin Output Current	30	mA
P_D	Power Dissipation ⁽²⁾ (JEDEC STD.51-7)	830	mW
T_j	Junction Temperature Range	-40 to 150	°C
T_{STG}	Storage Temperature Range	-55 to 150	°C

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings are not assured.

RECOMMENDED OPERATING CONDITIONS**Recommend Operating Conditions**

Symbol	Parameter	Rating	Unit
V_{DD}	Operating Voltage	3.0 to 42	V
V_{SENSE}	SENSE Pin Input Voltage	0 to 6.0	V
T_a	Operating Temperature Range	-40 to 125	°C

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such ratings by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

⁽¹⁾ Duration Time: 200 ms

⁽²⁾ Refer to *POWER DISSIPATION* for detailed information.

ELECTRICAL CHARACTERISTICS

$V_{DD} = 14$ V, $C_D = 0.01$ μ F, pulled-up to 5 V with 100 k Ω , unless otherwise specified.

The specifications surrounded by are guaranteed by design engineering at $-40^\circ\text{C} \leq \text{Ta} \leq 125^\circ\text{C}$.

R3152N (-AE) Electrical Characteristics $(\text{Ta} = 25^\circ\text{C})$						
Symbol	Parameter	Test Conditions/Comments	Min.	Typ.	Max.	Unit
V_{OVDET}	Overvoltage (OV) Detector Threshold	$\text{Ta} = 25^\circ\text{C}$	x0.995		x1.005	V
		$-40^\circ\text{C} \leq \text{Ta} \leq 125^\circ\text{C}$	x0.9875		x1.0075	V
V_{UVDET}	Undervoltage (UV) Detector Threshold	$\text{Ta} = 25^\circ\text{C}$	x0.995		x1.005	V
		$-40^\circ\text{C} \leq \text{Ta} \leq 125^\circ\text{C}$	x0.9875		x1.0075	V
V_{OVHYS}	Overvoltage (OV) Threshold Hysteresis	With Hysteresis	V_{OVDET} x0.005	V_{OVDET} x0.01	V_{OVDET} x0.015	V
		No Hysteresis	0		10	mV
V_{UVHYS}	Undervoltage (UV) Threshold Hysteresis	With Hysteresis	V_{UVDET} x0.005	V_{UVDET} x0.01	V_{UVDET} x0.015	V
		No Hysteresis	0		10	mV
I_{SS}	Consumption Current	$V_{UVDET} < \text{SENSE} < V_{OVDET}$		1.5	3.2	μA
R_{SENSE}	SENSE Pin Resistance	$V_{UVDET} \geq 1.6\text{V}, V_{OVDET} \geq 2.0\text{V}$	7	14	28	$\text{M}\Omega$
		$V_{UVDET} < 1.6\text{V}, V_{OVDET} < 2.0\text{V}$	3.0	6	12	
V_{UVLO}	UVLO Detector Threshold			1.8	2.8	V
$V_{UVLOHYS}$	UVLO Threshold Hysteresis			0.1	0.2	V
V_{OVOUT}	Overvoltage (OV) pulled-up output voltage				6.0	V
V_{UVOUT}	Undervoltage (UV) pulled-up output voltage				6.0	V
V_{DDLOV}	Overvoltage (OV) Low-operating Voltage ⁽¹⁾				1.7	V
V_{DDLUV}	Undervoltage (UV) Low-operating Voltage ⁽¹⁾				1.7	V
I_{OUT}	OV Pin Nch. Driver Output Current	$V_{DD} = 3.0, V_{DS} = 0.1\text{ V}$	0.8	1.8		mA
	UV Pin Nch. Driver Output Current	$V_{DD} = 3.0, V_{DS} = 0.1\text{ V}$	0.8	1.8		mA
I_{LEAK}	OV Pin Nch. Driver Leak Current	$V_{OVOUT} = 5.5\text{ V}$			0.3	μA
	UV Pin Nch. Driver Leak Current	$V_{UVOUT} = 5.5\text{ V}$			0.3	μA
t_{DELAY}	Release Delay Time		2.5	4	8	ms

All test items listed under Electrical Characteristics are done under the pulse load condition ($T_j \approx \text{Ta} = 25^\circ\text{C}$).

⁽¹⁾ Minimum value of power supply voltage when an output voltage will become less than 0.1V at detection.
(Pulled-up resistance: 100 k Ω , Pulled-up voltage: 5 V)

R3152N

No. EC-405-191101

$V_{DD} = 14$ V, $C_D = 0.01 \mu\text{F}$, pulled-up to 5 V with $100 \text{ k}\Omega$, unless otherwise specified.

R3152N (-KE) Electrical Characteristics

($-40^\circ\text{C} \leq Ta \leq 125^\circ\text{C}$)

Symbol	Parameter	Test Conditions/Comments	Min.	Typ.	Max.	Unit
V_{OVDET}	Overvoltage (OV) Detector Threshold	$Ta = 25^\circ\text{C}$	$x0.995$		$x1.005$	V
		$-40^\circ\text{C} \leq Ta \leq 125^\circ\text{C}$	$x0.9875$		$x1.0075$	V
V_{UVDET}	Undervoltage (UV) Detector Threshold	$Ta = 25^\circ\text{C}$	$x0.995$		$x1.005$	V
		$-40^\circ\text{C} \leq Ta \leq 125^\circ\text{C}$	$x0.9875$		$x1.0075$	V
V_{OVHYS}	Overvoltage (OV) Threshold Hysteresis	With Hysteresis	$V_{OVDET} \times 0.005$	$V_{OVDET} \times 0.01$	$V_{OVDET} \times 0.015$	V
		No Hysteresis	0		10	mV
V_{UVHYS}	Undervoltage (UV) Threshold Hysteresis	With Hysteresis	$V_{UVDET} \times 0.005$	$V_{UVDET} \times 0.01$	$V_{UVDET} \times 0.015$	V
		No Hysteresis	0		10	mV
I_{SS}	Consumption Current	$V_{UVDET} < \text{SENSE} < V_{OVDET}$		1.5	3.2	μA
R_{SENSE}	SENSE Pin Resistance	$V_{UVDET} \geq 1.6\text{V}, V_{OVDET} \geq 2.0\text{V}$	7	14	28	$\text{M}\Omega$
		$V_{UVDET} < 1.6\text{V}, V_{OVDET} < 2.0\text{V}$	3.0	6	12	
V_{UVLO}	UVLO Detector Threshold			1.8	2.8	V
$V_{UVLOHYS}$	UVLO Threshold Hysteresis			0.1	0.2	V
V_{OVOUT}	Overvoltage (OV) pulled-up output voltage				6.0	V
V_{UVOUT}	Undervoltage (UV) pulled-up output voltage				6.0	V
V_{DDLOV}	Overvoltage (OV) Low-operating Voltage ⁽¹⁾				1.7	V
V_{DDLUV}	Undervoltage (UV) Low-operating Voltage ⁽¹⁾				1.7	V
I_{OUT}	OV Pin Nch. Driver Output Current	$V_{DD} = 3.0, V_{DS} = 0.1 \text{ V}$	0.8	1.8		mA
	UV Pin Nch. Driver Output Current	$V_{DD} = 3.0, V_{DS} = 0.1 \text{ V}$	0.8	1.8		mA
I_{LEAK}	OV Pin Nch. Driver Leak Current	$V_{OVOUT} = 5.5 \text{ V}$			0.3	μA
	UV Pin Nch. Driver Leak Current	$V_{UVOUT} = 5.5 \text{ V}$			0.3	μA
t_{DELAY}	Release Delay Time		2.5	4	8	ms

All test items listed under Electrical Characteristics are done under the pulse load condition ($T_j \approx Ta = 25^\circ\text{C}$).

⁽¹⁾ Minimum value of power supply voltage when an output voltage will become less than 0.1V at detection.
(Pulled-up resistance: $100 \text{ k}\Omega$, Pulled-up voltage: 5 V)

$V_{DD} = 14$ V, $C_D = 0.01 \mu F$, pulled-up to 5 V with $100 \text{ k}\Omega$, unless otherwise specified.

The specifications surrounded by are guaranteed by design engineering at $-40^\circ\text{C} \leq Ta \leq 125^\circ\text{C}$.

R3152N (-AE) Product-specific Electrical Characteristics

($Ta = 25^\circ\text{C}$)

Product Name	V _{OVDET} (V)			V _{UVDET} (V)			V _{OVHYS} (V)			V _{UVHYS} (V)		
	Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.
R3152N001A	5.27350	5.30	5.32650	4.67650	4.70	4.72350	0.02650	0.05300	0.07950	0.02350	0.04700	0.07050
R3152N002A	3.52230	3.54	3.55770	3.03475	3.05	3.06525	0.01770	0.03540	0.05310	0.01525	0.03050	0.04575
R3152N003B	3.55215	3.57	3.58785	2.48750	2.50	2.51250	0	-	0.01000	0	-	0.01000
R3152N004A	1.86065	1.87	1.87935	1.73130	1.74	1.74870	0.00935	0.01870	0.02805	0.00870	0.01740	0.02610
R3152N005A	3.41285	3.43	3.44715	3.17405	3.19	3.20595	0.01715	0.03430	0.05145	0.01595	0.03190	0.04785
R3152N013A	1.32335	1.33	1.33665	1.16415	1.17	1.17585	0.00665	0.01330	0.01995	0.00585	0.01170	0.01755
R3152N014A	1.16415	1.17	1.17585	1.06963	1.075	1.08037	0.00585	0.01170	0.01755	0.00538	0.01075	0.01613
R3152N015A	1.28355	1.29	1.29645	1.15420	1.16	1.16580	0.00645	0.01290	0.01935	0.00580	0.01160	0.01740
R3152N017A	3.55215	3.57	3.58785	2.72630	2.74	2.75370	0.01785	0.03570	0.05355	0.01370	0.02740	0.04110
R3152N020A	1.24375	1.25	1.25625	1.11440	1.12	1.12560	0.00625	0.01250	0.01875	0.00560	0.01120	0.01680
R3152N201B	1.23380	1.24	1.24620	1.16415	1.17	1.17585	0	-	0.01000	0	-	0.01000
R3152N101B	2.58700	2.60	2.61300	2.39795	2.41	2.42205	0	-	0.01000	0	-	0.01000
R3152N102B	3.41285	3.43	3.44715	3.16410	3.18	3.19590	0	-	0.01000	0	-	0.01000
R3152N203A	1.39300	1.40	1.40700	0.99500	1.00	1.00500	0.00700	0.01400	0.02100	0.00500	0.01000	0.01500
R3152N204A	1.62185	1.63	1.63815	1.40295	1.41	1.41705	0.00815	0.01630	0.02445	0.00705	0.01410	0.02115
R3152N103A	5.77100	5.80	5.82900	4.75610	4.78	4.80390	0.02900	0.05800	0.08700	0.02390	0.04780	0.07170

($-40^\circ\text{C} \leq Ta \leq 125^\circ\text{C}$)

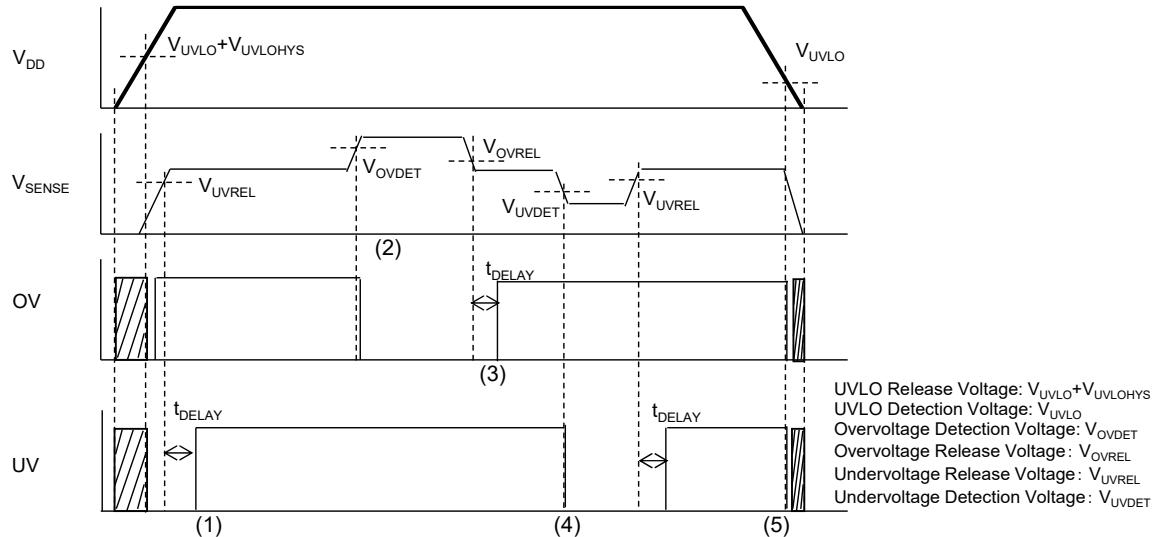
Product Name	V _{OVDET} (V)			V _{UVDET} (V)			V _{OVHYS} (V)			V _{UVHYS} (V)		
	Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.
R3152N001A	5.23375	5.30	5.33975	4.64125	4.70	4.73525	0.02650	0.05300	0.07950	0.02350	0.04700	0.07050
R3152N002A	3.49575	3.54	3.56655	3.01188	3.05	3.07287	0.01770	0.03540	0.05310	0.01525	0.03050	0.04575
R3152N003B	3.52538	3.57	3.59678	2.46875	2.50	2.51875	0	-	0.01000	0	-	0.01000
R3152N004A	1.84663	1.87	1.88403	1.71825	1.74	1.75305	0.00935	0.01870	0.02805	0.00870	0.01740	0.02610
R3152N005A	3.38713	3.43	3.45573	3.15013	3.19	3.21392	0.01715	0.03430	0.05145	0.01595	0.0319	0.04785
R3152N103A	1.31338	1.33	1.33997	1.15538	1.17	1.17877	0.00665	0.01330	0.01995	0.00585	0.01170	0.01755
R3152N014A	1.15537	1.17	1.17878	1.06156	1.075	1.08307	0.00585	0.01170	0.01755	0.00538	0.01075	0.01613
R3152N015A	1.27387	1.29	1.29968	1.14550	1.16	1.16870	0.00645	0.01290	0.01935	0.00580	0.01160	0.01740
R3152N017A	3.52537	3.57	3.59678	2.70575	2.74	2.76055	0.01785	0.03570	0.05355	0.01370	0.02740	0.04110
R3152N020A	1.23438	1.25	1.25937	1.10600	1.12	1.12840	0.00625	0.01250	0.01875	0.00560	0.01120	0.01680
R3152N201B	1.22450	1.24	1.24930	1.15538	1.17	1.17877	0	-	0.01000	0	-	0.01000
R3152N101B	2.56750	2.60	2.61950	2.37988	2.41	2.42807	0	-	0.01000	0	-	0.01000
R3152N102B	3.38713	3.43	3.45572	3.14025	3.18	3.20385	0	-	0.01000	0	-	0.01000
R3152N203A	1.38250	1.40	1.41050	0.98750	1.00	1.00750	0.00700	0.01400	0.02100	0.00500	0.01000	0.01500
R3152N204A	1.60963	1.63	1.64222	1.39238	1.41	1.42057	0.00815	0.01630	0.02445	0.00705	0.01410	0.02115
R3152N103A	5.72750	5.80	5.84350	4.72025	4.78	4.81585	0.02900	0.05800	0.08700	0.02390	0.04780	0.07170

R3152N

No. EC-405-191101

$V_{DD} = 14$ V, $C_D = 0.01$ μ F, pulled-up to 5 V with 100 $k\Omega$, unless otherwise specified.

R3152N (-KE) Product-specific Electrical Characteristics


($T_a = 25^\circ C$)

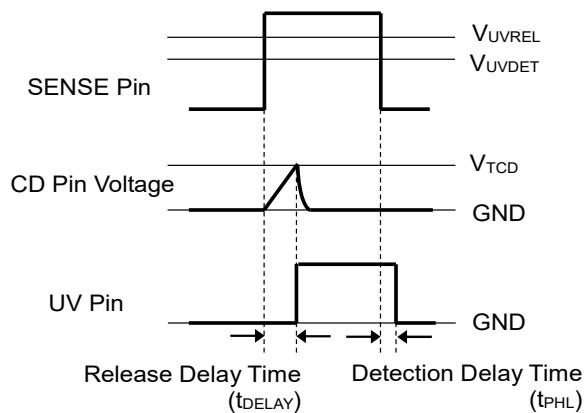
Product Name	V _{OVDET} (V)			V _{UVDET} (V)			V _{OVHYS} (V)			V _{UVHYS} (V)		
	Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.
R3152N001A	5.27350	5.30	5.32650	4.67650	4.70	4.72350	0.02650	0.05300	0.07950	0.02350	0.04700	0.07050
R3152N002A	3.52230	3.54	3.55770	3.03475	3.05	3.06525	0.01770	0.03540	0.05310	0.01525	0.03050	0.04575
R3152N003B	3.55215	3.57	3.58785	2.48750	2.50	2.51250	0	-	0.01000	0	-	0.01000
R3152N004A	1.86065	1.87	1.87935	1.73130	1.74	1.74870	0.00935	0.01870	0.02805	0.00870	0.01740	0.02610
R3152N005A	3.41285	3.43	3.44715	3.17405	3.19	3.20595	0.01715	0.03430	0.05145	0.01595	0.03190	0.04785
R3152N013A	1.32335	1.33	1.33665	1.16415	1.17	1.17585	0.00665	0.01330	0.01995	0.00585	0.01170	0.01755
R3152N014A	1.16415	1.17	1.17585	1.06963	1.075	1.08037	0.00585	0.01170	0.01755	0.00538	0.01075	0.01613
R3152N015A	1.28355	1.29	1.29645	1.15420	1.16	1.16580	0.00645	0.01290	0.01935	0.00580	0.01160	0.01740
R3152N017A	3.55215	3.57	3.58785	2.72630	2.74	2.75370	0.01785	0.03570	0.05355	0.01370	0.02740	0.04110
R3152N020A	1.24375	1.25	1.25625	1.11440	1.12	1.12560	0.00625	0.01250	0.01875	0.00560	0.01120	0.01680
R3152N201B	1.23380	1.24	1.24620	1.16415	1.17	1.17585	0	-	0.01000	0	-	0.01000
R3152N101B	2.58700	2.60	2.61300	2.39795	2.41	2.42205	0	-	0.01000	0	-	0.01000
R3152N102B	3.41285	3.43	3.44715	3.16410	3.18	3.19590	0	-	0.01000	0	-	0.01000
R3152N203A	1.39300	1.40	1.40700	0.99500	1.00	1.00500	0.00700	0.01400	0.02100	0.00500	0.01000	0.01500
R3152N204A	1.62185	1.63	1.63815	1.40295	1.41	1.41705	0.00815	0.01630	0.02445	0.00705	0.01410	0.02115
R3152N103A	5.77100	5.80	5.82900	4.75610	4.78	4.80390	0.02900	0.05800	0.08700	0.02390	0.04780	0.07170

($-40^\circ C \leq T_a \leq 125^\circ C$)

Product Name	V _{OVDET} (V)			V _{UVDET} (V)			V _{OVHYS} (V)			V _{UVHYS} (V)		
	Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.
R3152N001A	5.23375	5.30	5.33975	4.64125	4.70	4.73525	0.02650	0.0530	0.07950	0.02350	0.04700	0.07050
R3152N002A	3.49575	3.54	3.56655	3.01188	3.05	3.07287	0.01770	0.0354	0.05310	0.01525	0.03050	0.04575
R3152N003B	3.52538	3.57	3.59678	2.46875	2.50	2.51875	0	-	0.01000	0	-	0.01000
R3152N004A	1.84663	1.87	1.88403	1.71825	1.74	1.75305	0.00935	0.01870	0.02805	0.00870	0.01740	0.02610
R3152N005A	3.38713	3.43	3.45573	3.15013	3.19	3.21392	0.01715	0.03430	0.05145	0.01595	0.0319	0.04785
R3152N103A	1.31338	1.33	1.33997	1.15538	1.17	1.17877	0.00665	0.01330	0.01995	0.00585	0.01170	0.01755
R3152N014A	1.15537	1.17	1.17878	1.06156	1.075	1.08307	0.00585	0.01170	0.01755	0.00538	0.01075	0.01613
R3152N015A	1.27387	1.29	1.29968	1.14550	1.16	1.16870	0.00645	0.01290	0.01935	0.00580	0.01160	0.01740
R3152N017A	3.52537	3.57	3.59678	2.70575	2.74	2.76055	0.01785	0.03570	0.05355	0.01370	0.02740	0.04110
R3152N020A	1.23438	1.25	1.25937	1.10600	1.12	1.12840	0.00625	0.01250	0.01875	0.00560	0.01120	0.01680
R3152N201B	1.22450	1.24	1.24930	1.15538	1.17	1.17877	0	-	0.01000	0	-	0.01000
R3152N101B	2.56750	2.60	2.61950	2.37988	2.41	2.42807	0	-	0.01000	0	-	0.01000
R3152N102B	3.38713	3.43	3.45572	3.14025	3.18	3.20385	0	-	0.01000	0	-	0.01000
R3152N203A	1.38250	1.40	1.41050	0.98750	1.00	1.00750	0.00700	0.01400	0.02100	0.00500	0.01000	0.01500
R3152N204A	1.60963	1.63	1.64222	1.39238	1.41	1.42057	0.00815	0.01630	0.02445	0.00705	0.01410	0.02115
R3152N103A	5.72750	5.80	5.84350	4.72025	4.78	4.81585	0.02900	0.05800	0.08700	0.02390	0.04780	0.07170

THEORY OF OPERATION

R3152N Timing Chart

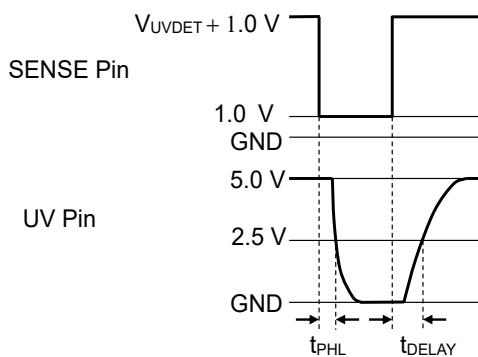

- (1) When the SENSE pin voltage (V_{SENSE}) exceed the undervoltage release voltage (V_{UVREL}), the UV pin output becomes "High" after the release delay time (t_{DELAY}).
- (2) When V_{SENSE} exceed the overvoltage detection voltage (V_{OVDET}) by increasing in voltage, the OV pin output becomes "Low" after the detection delay time (Typ.10 μ s) and enters the overvoltage detecting state.
- (3) When V_{SENSE} decreases less than the overvoltage release voltage (V_{OVREL}), the OV pin output becomes "High" after the release delay time (t_{DELAY}).
- (4) When V_{SENSE} decreases less than the undervoltage detection voltage (V_{UVDET}), the UV pin output becomes "Low" after the detection delay time (Typ.10 μ s).
- (5) When the VDD pin voltage (V_{DD}) decreases less than the UVLO detection voltage (V_{UVLO}), the OV and UV pins output become "Low".

Note: A certain tilting angle of power supply voltage of the R3152NxxxB may cause chattering at detection or at release. To prevent the occurrence of chattering, connect a 10-nF or more capacitor to the CD pin.

Delay in Operation and Delay Time (t_{DELAY})

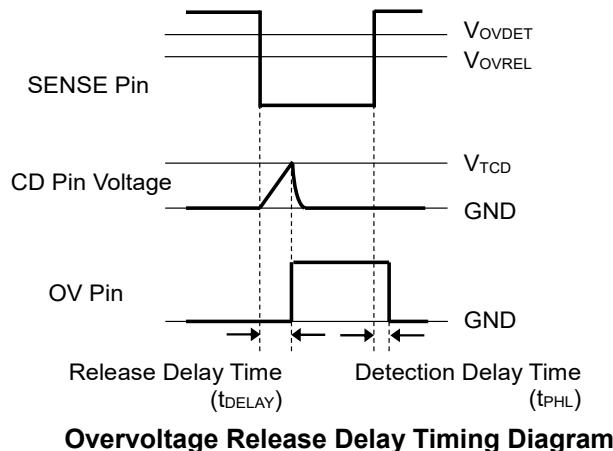
At Undervoltage Detection

When supplying a voltage higher than the undervoltage release voltage (V_{UVREL}) to the SENSE pin, a charging to an external capacitor starts and the CD pin voltage (V_{CD}) increases. The UV pin voltage (V_{UV}) maintains "Low" until V_{CD} reaches the CD pin threshold voltage (V_{TCD}). When V_{CD} exceeds V_{TCD} , V_{UV} is inverted from "Low" to "High". The release delay time (t_{DELAY}) is the period from the SENSE pin voltage (V_{SENSE}) exceeds V_{UVREL} to a rising edge of V_{UV} . When the output voltage turns from "Low" to "High", a charge carrier of the external capacitor starts discharging. When the voltage lower than V_{UV} is supplied to the SENSE pin, the detection delay time (t_{PHL}), which is the period that V_{UV} is inverted from "High" to "Low", remains constant independent of the external capacitor.


Undervoltage Release Delay Timing Diagram

Calculation of Release Delay Time (t_{DELAY})

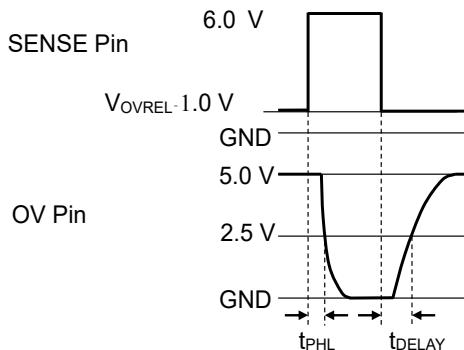
The following equation can calculate a typical value of the release delay time (t_{DELAY}) with using the external capacitor (C_D).


$$t_{DELAY} (s) = 0.73 \times C_D (F) / (1.5 \times 10^{-6})$$

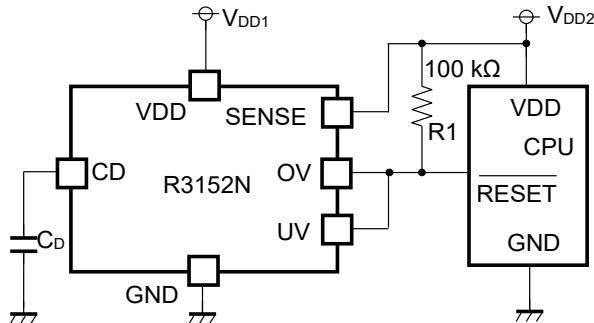
t_{DELAY} is the period from supplying a pulse voltage of 1.0 V $\rightarrow (V_{UVDET}) + 1.0$ V to the SENSE pin to the UV pins reached 2.5 V.

At Overvoltage Detection

When supplying a voltage lower than the overvoltage release voltage (V_{OVREL}) to the SENSE pin, a charging to an external capacitor starts and the CD pin voltage (V_{CD}) increases. The OV pin voltage (V_{ov}) maintains "Low" until V_{CD} reaches the CD pin threshold voltage (V_{TCD}). When V_{CD} exceeds V_{TCD} , V_{ov} is inverted from "Low" to "High". The release delay time (t_{DELAY}) is the period from the SENSE pin voltage (V_{SENSE}) falls below V_{OVREL} to a rising edge of V_{ov} . When the output voltage turns from "Low" to "High", a charge carrier of the external capacitor starts discharging. When the voltage higher than V_{ov} is supplied to the SENSE pin, the detection delay time (t_{PHL}), which is the period that V_{ov} is inverted from "High" to "Low", remains constant independent of the external capacitor.


Overvoltage Release Delay Timing Diagram

Calculation of Release Delay Time (t_{DELAY})


The following equation can calculate a typical value of the release delay time (t_{DELAY}) with using the external capacitor (C_D).

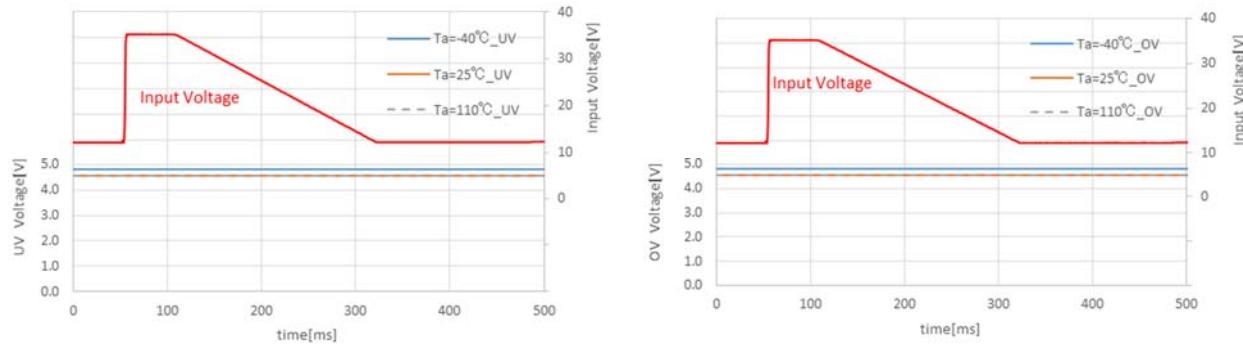
$$t_{DELAY} (s) = 0.73 \times C_D (F) / (1.5 \times 10^{-6})$$

t_{DELAY} is the period from supplying a pulse voltage of $1.0 \text{ V} \rightarrow (V_{OVREL}) + 1.0 \text{ V}$ to the SENSE pin to the OV pin reached 2.5 V after the OV pin is pulled up to 5V by connecting with a resistor of $100\text{k}\Omega$.

APPLICATION INFORMATION

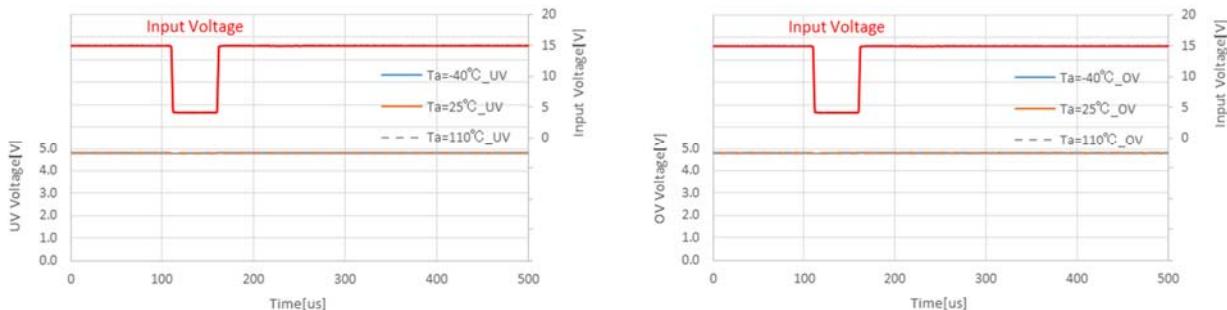
R3152N Typical Application Circuit

Recommended External Components


Symbol	Description
C _D	A capacitor corresponding to setting of Release Delay Time is required. Refer to “ <i>Delay in Operation and Released Delay Time (t_{DELAY})</i> ” in Operation Description for details.
R1	A resistor is required to set with consideration of the output current at Nch. driver’s ON and the leakage current at Nch. driver’s OFF. Refer to “ <i>Electrical Characteristic</i> ” for details – provided the evaluation result with using a resistor of 100kΩ.

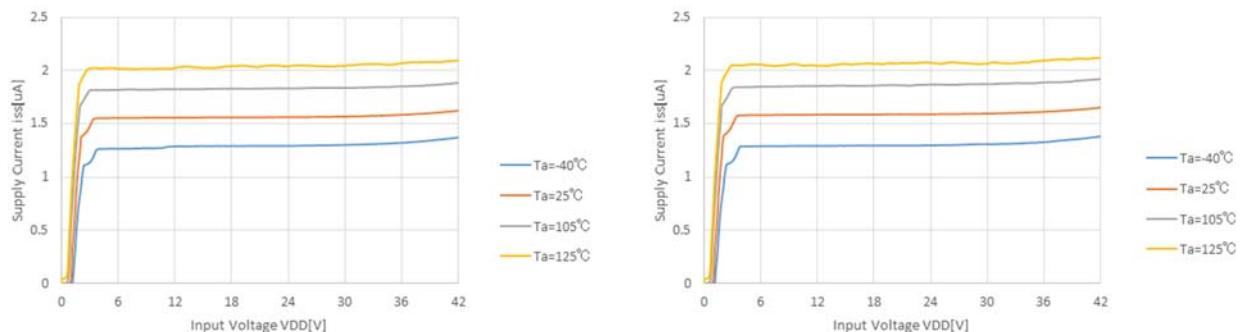
TYPICAL CHARACTERISTICS

Typical Characteristics are intended to be used as reference data, they are not guaranteed.


1) Load Dump

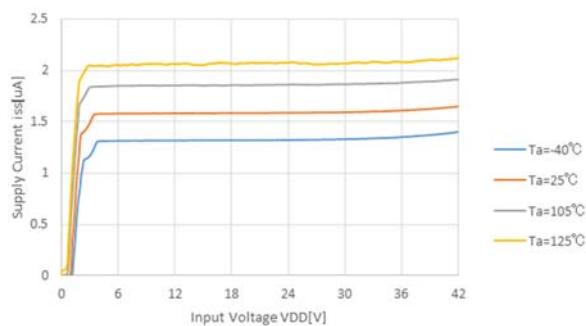
$V_{UVSET} = 3.0 \text{ V}$, $V_{OVSET} = 3.6 \text{ V}$, $V_{SENSE} = 3.3 \text{ V}$, Pulled-up to 5.0 V

2) Cranking


$V_{UVSET} = 3.0 \text{ V}$, $V_{OVSET} = 3.6 \text{ V}$, $V_{SENSE} = 3.3 \text{ V}$, Pulled-up to 5.0 V

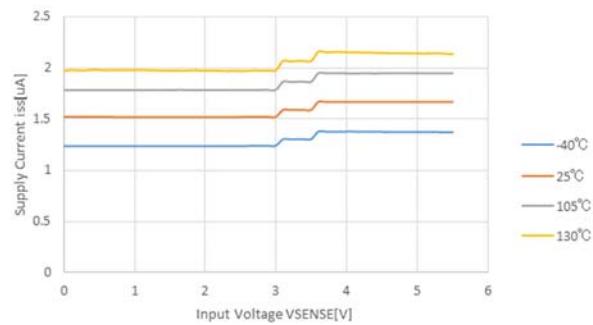
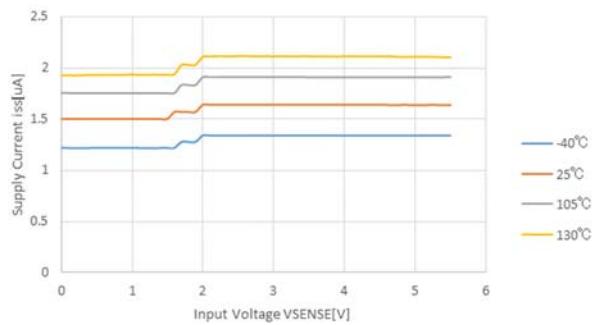
3) Supply Current vs. V_{DD}

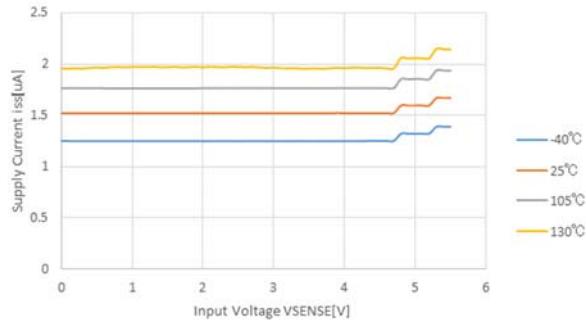
$V_{UVSET} = 1.6 \text{ V}$, $V_{OVSET} = 2.0 \text{ V}$

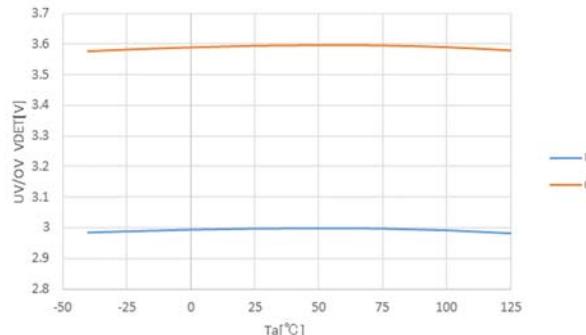
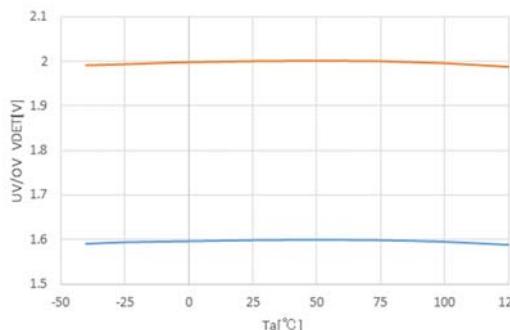
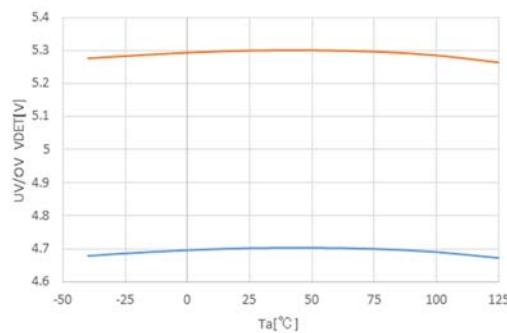
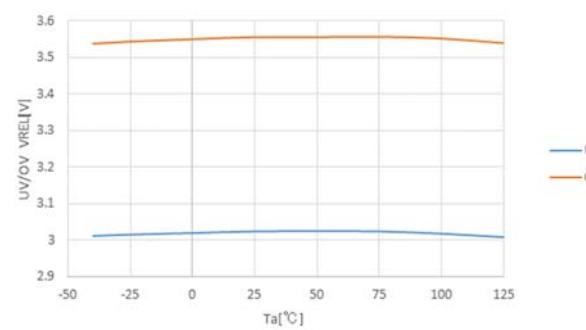
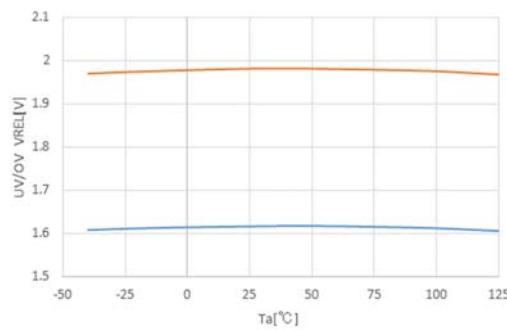

$V_{UVSET} = 3.0 \text{ V}$, $V_{OVSET} = 3.6 \text{ V}$

R3152N

No. EC-405-191101

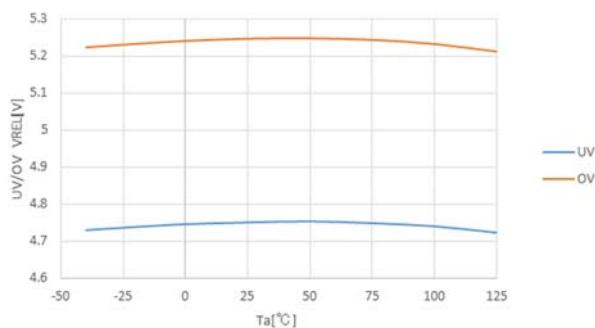


$V_{UVSET} = 4.7 \text{ V}$, $V_{OVSET} = 5.3 \text{ V}$


4) Supply Current vs. V_{SENSE}






$V_{UVSET} = 1.6 \text{ V}$, $V_{OVSET} = 2.0 \text{ V}$

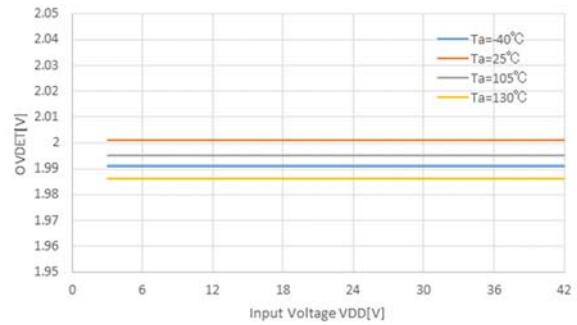
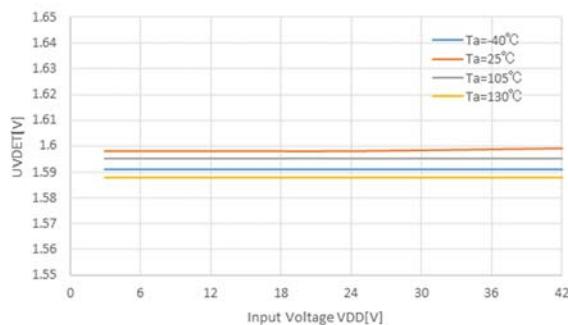
$V_{UVSET} = 3.0 \text{ V}$, $V_{OVSET} = 3.6 \text{ V}$

$V_{UVSET} = 4.7 \text{ V}$, $V_{OVSET} = 5.3 \text{ V}$

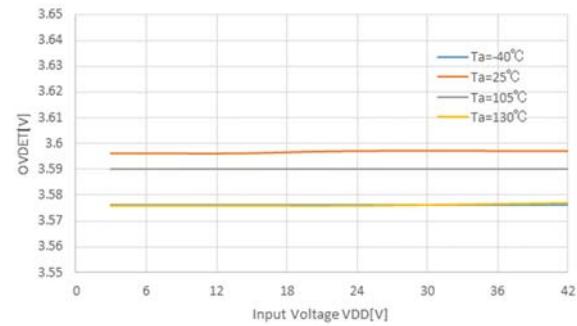
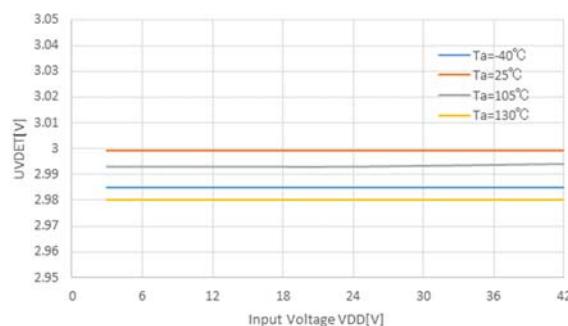


5) UV/OV Detection Voltage vs. Ambient Temperature $V_{UVSET} = 1.6 \text{ V}$, $V_{OVSET} = 2.0 \text{ V}$ $V_{UVSET} = 3.0 \text{ V}$, $V_{OVSET} = 3.6 \text{ V}$ $V_{UVSET} = 4.7 \text{ V}$, $V_{OVSET} = 5.3 \text{ V}$ **6) UV/OV Release Voltage vs. Ambient Temperature** $V_{UVSET} = 1.6 \text{ V}$, $V_{OVSET} = 2.0 \text{ V}$ $V_{UVSET} = 3.0 \text{ V}$, $V_{OVSET} = 3.6 \text{ V}$

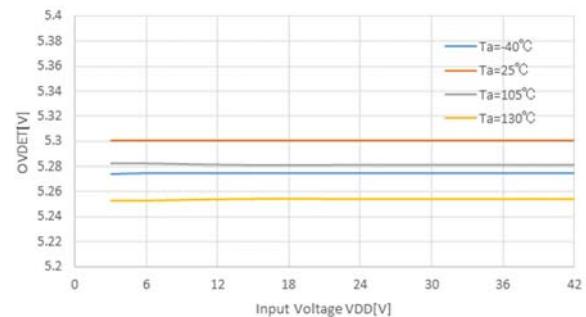
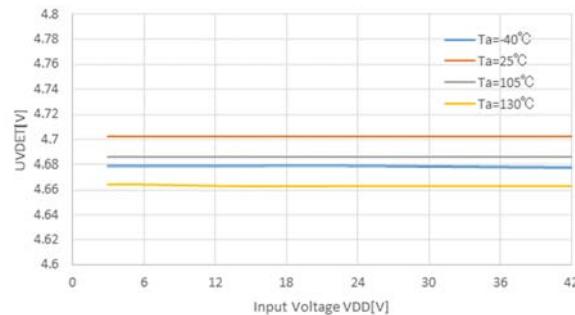
R3152N



No. EC-405-191101

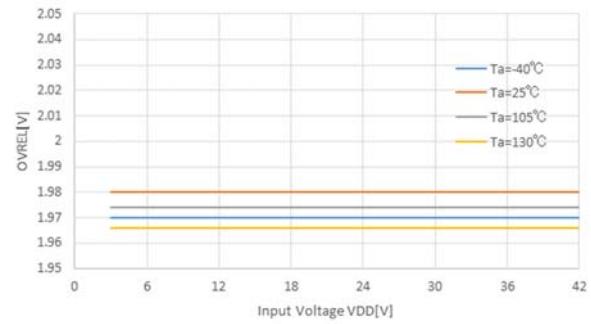
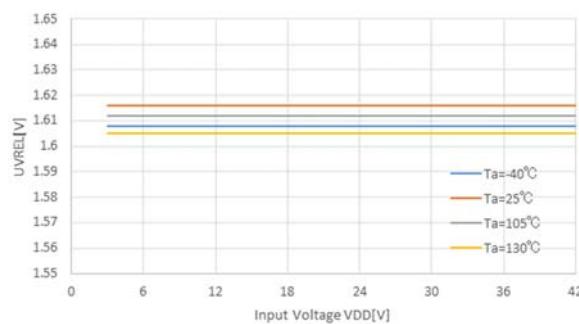
$$V_{UVSET} = 4.7 \text{ V}, V_{OVSET} = 5.3 \text{ V}$$

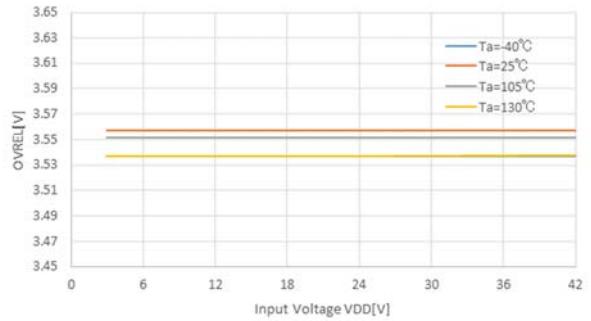
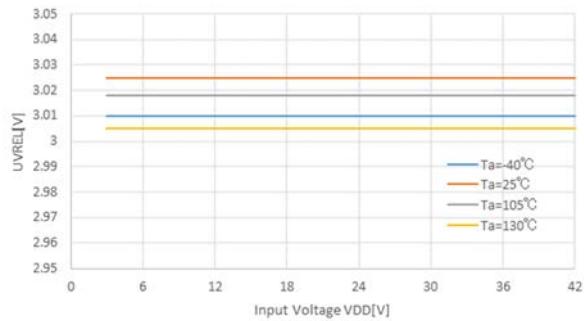
7) UV/OV Detection Voltage vs. V_{DD}



$$V_{UVSET} = 1.6 \text{ V}, V_{OVSET} = 2.0 \text{ V}$$

$$V_{UVSET} = 3.0 \text{ V}, V_{OVSET} = 3.6 \text{ V}$$

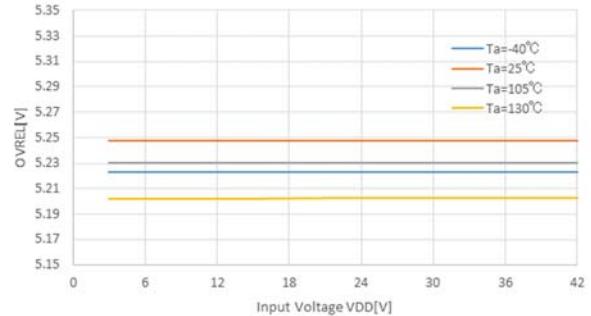
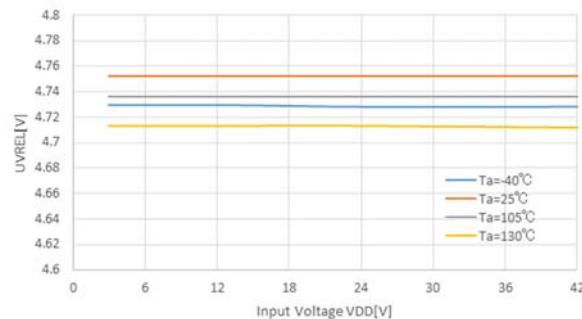



$V_{UVSET} = 4.7 \text{ V}$, $V_{OVSET} = 5.3 \text{ V}$

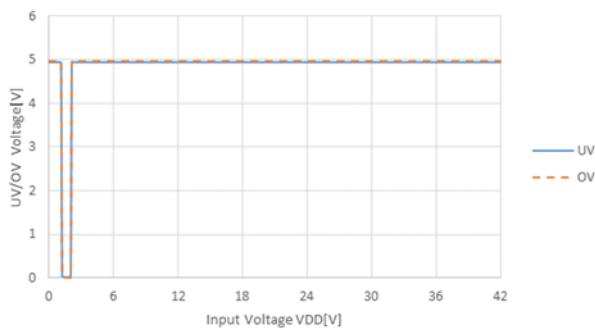



8) UV/OV Release Voltage vs. V_{DD}

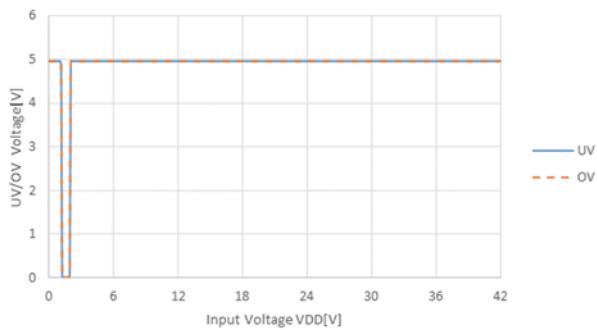
$V_{UVSET} = 1.6 \text{ V}$, $V_{OVSET} = 2.0 \text{ V}$



$V_{UVSET} = 3.0 \text{ V}$, $V_{OVSET} = 3.6 \text{ V}$

R3152N

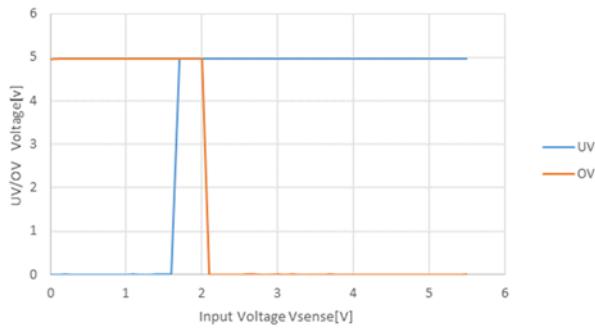

No. EC-405-191101

$$V_{UVSET} = 4.7 \text{ V}, V_{OVSET} = 5.3 \text{ V}$$

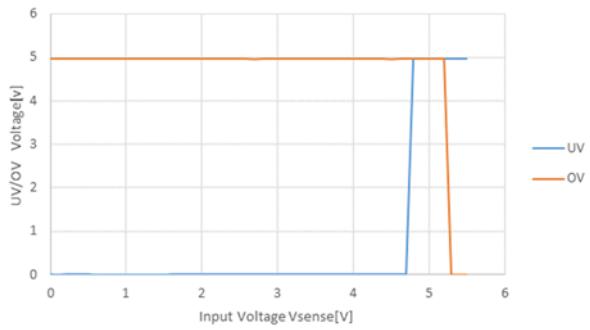


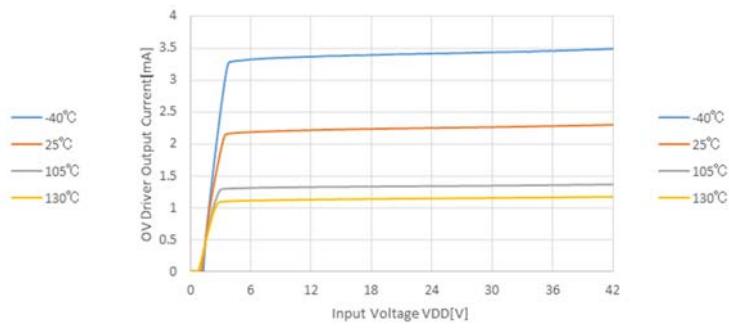
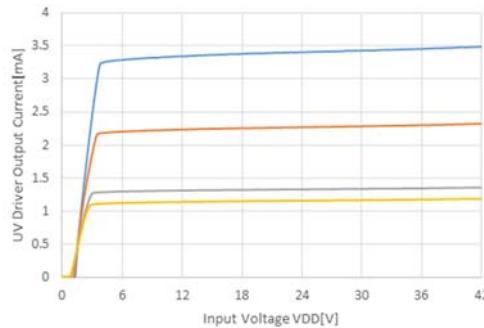
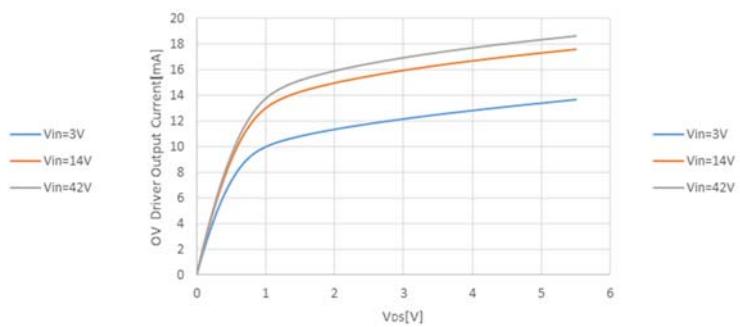
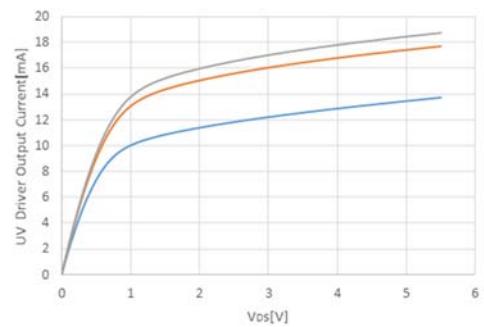
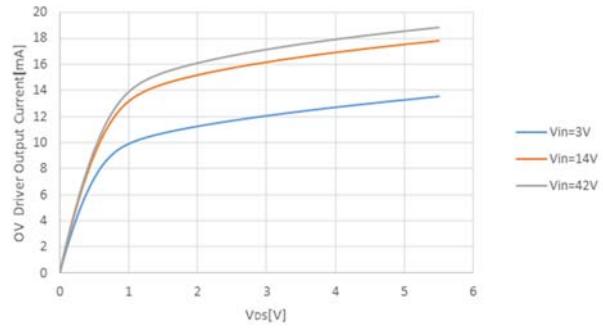
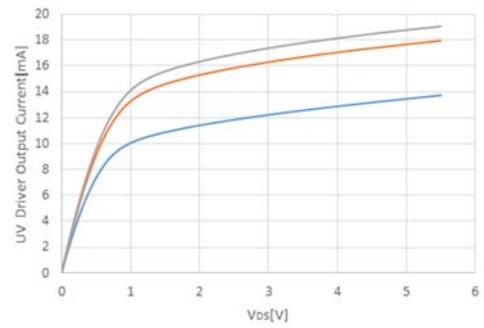
9) UV/OV Voltage vs. V_{DD} (Ta = 25°C)

V_{UVSET} = 1.6 V, V_{OVSET} = 2.0 V, Pulled-up to 5.0 V

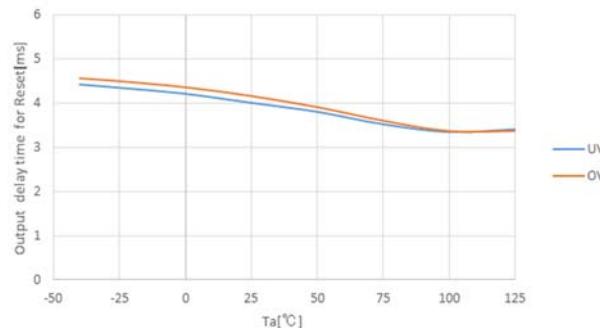


V_{UVSET} = 4.7 V, V_{OVSET} = 5.3 V, Pulled-up to 5.0 V

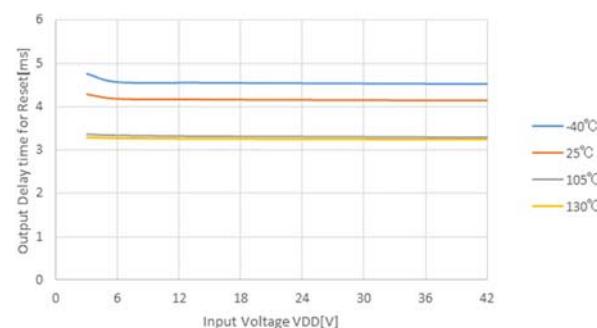
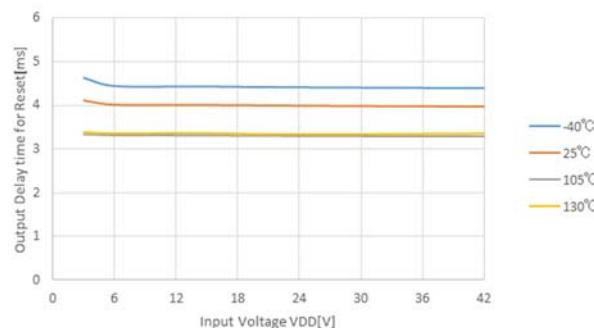








10) UV/OV Voltage vs. V_{SENSE} (Ta = 25°C)

V_{UVSET} = 1.6 V, V_{OVSET} = 2.0 V, Pulled-up to 5.0 V

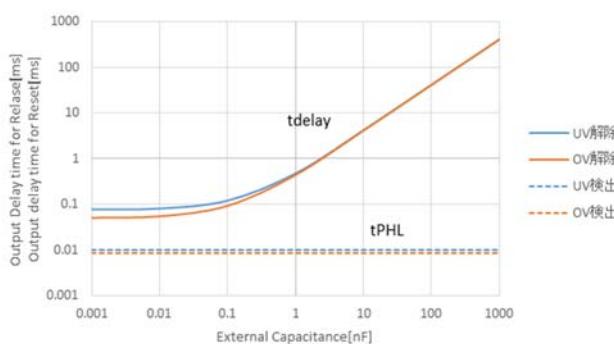

V_{UVSET} = 4.7 V, V_{OVSET} = 5.3 V, Pulled-up to 5.0 V

11) Driver Output Current vs. V_{DD} $V_{UVSET} = 4.7 \text{ V}$, $V_{OVSET} = 5.3 \text{ V}$ **12) Driver Output Current vs. V_{DS} (Ta = 25°C)** $V_{UVSET} = 1.6 \text{ V}$, $V_{OVSET} = 2.0 \text{ V}$ $V_{UVSET} = 4.7 \text{ V}$, $V_{OVSET} = 5.3 \text{ V}$



13) Release Delay Time vs. Ambient Temperature

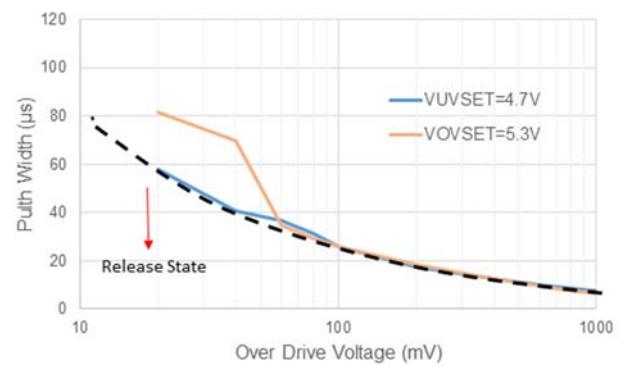
$V_{UVSET} = 4.7 \text{ V}$, $V_{OVSET} = 5.3 \text{ V}$

14) Release Delay Time vs. V_{DD}


$V_{UVSET} = 4.7 \text{ V}$, $V_{OVSET} = 5.3 \text{ V}$

15) Detection / Release Delay Time vs. External Capacitor for CD Pin

$V_{UVSET} = 4.7 \text{ V}$, $V_{OVSET} = 5.3 \text{ V}$


($T_a = 25^\circ\text{C}$)

16) SENSE Pulse Width vs. Over Drive Voltage

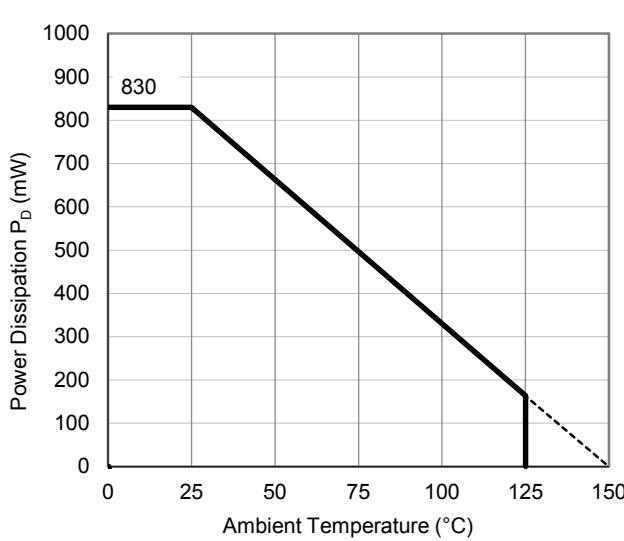
($T_a = 25^\circ\text{C}$)

Release State Threshold Pulse

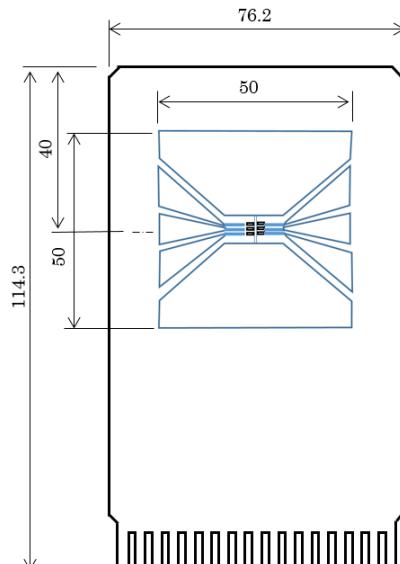
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

Item	Measurement Conditions
Environment	Mounting on Board (Wind Velocity = 0 m/s)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square
Through-holes	Ø 0.3 mm × 7 pcs


Measurement Result

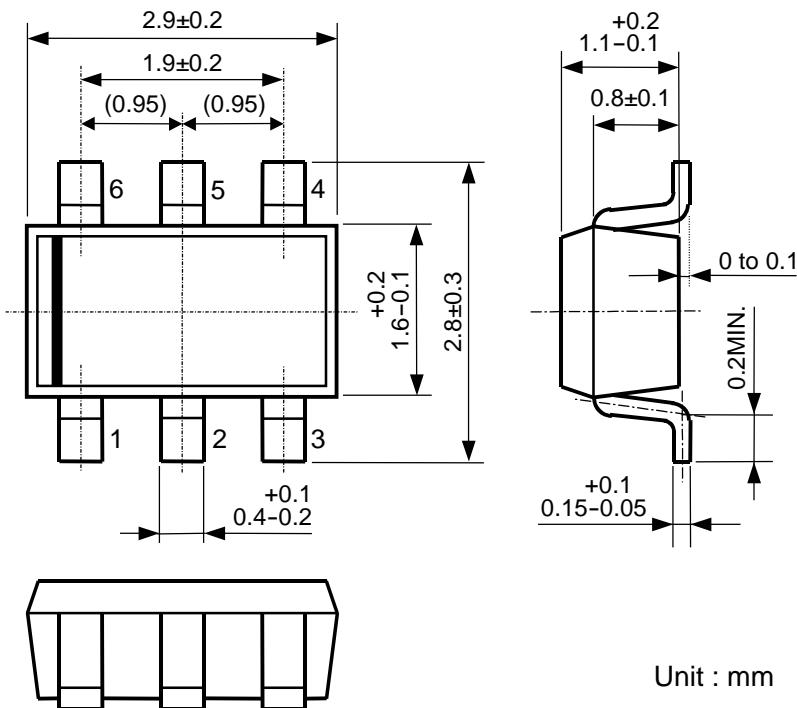
(Ta = 25°C, Tjmax = 150°C)


Item	Measurement Result
Power Dissipation	830 mW
Thermal Resistance (θ_{ja})	$\theta_{ja} = 150^{\circ}\text{C/W}$
Thermal Characterization Parameter (ψ_{jt})	$\psi_{jt} = 51^{\circ}\text{C/W}$

θ_{ja} : Junction-to-Ambient Thermal Resistance

ψ_{jt} : Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature



Measurement Board Pattern

PACKAGE DIMENSIONS

SOT-23-6

Ver. A

Unit : mm

SOT-23-6 Package Dimensions

1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
5. The products in this document are designed for automotive applications. However, when using the products for automotive applications, please make sure to contact Ricoh sales representative in advance due to confirming the quality level.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.

Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

Official website

<https://www.e-devices.ricoh.co.jp/en/>

Contact us

<https://www.e-devices.ricoh.co.jp/en/support/>

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Ricoh Electronics](#):

[R3152N002A-TR-KE](#) [R3152N001A-TR-KE](#) [R3152N004A-TR-KE](#) [R3152N005A-TR-KE](#)