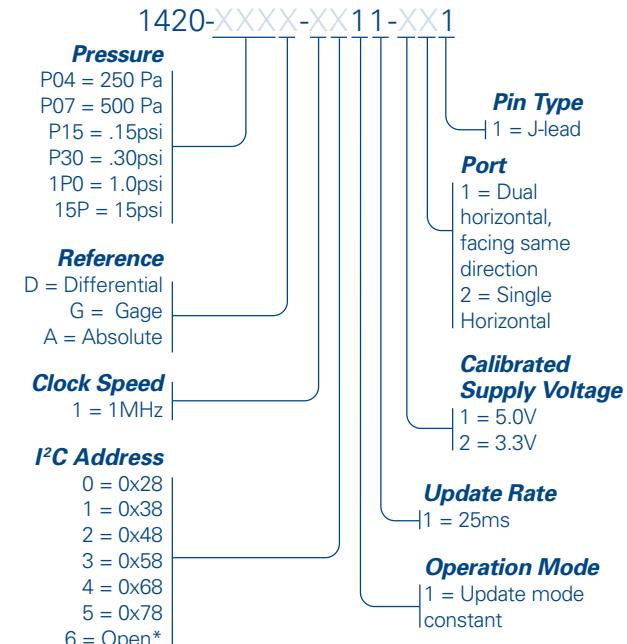

LP Series - Digital is a surface mountable pressure sensor package with a compensated digital output suitable for **ultra-low pressure sensing applications**.

COMPANY: Merit Sensor is a leader in piezoresistive pressure sensing and partners with clients to create high performing solutions for a variety of applications and industries.

SENTIUM: Merit Sensor products incorporate a proprietary Sentium® technology developed to provide superior stability.

TECHNOLOGY: Merit Sensor utilizes a piezoresistive Wheatstone bridge in a design that anodically bonds glass to a chemically etched silicon diaphragm. All products are RoHS compliant.

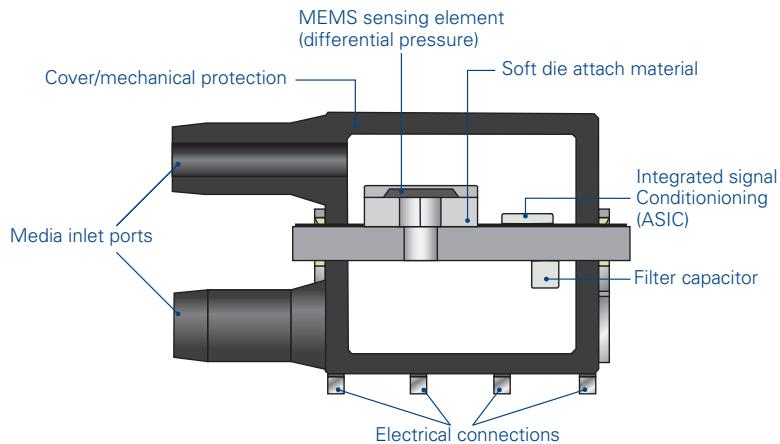
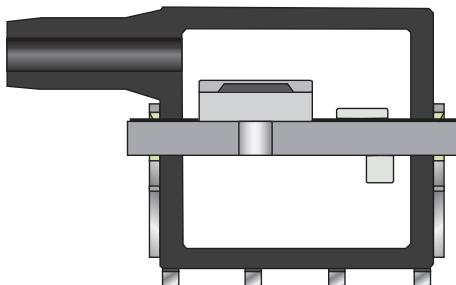
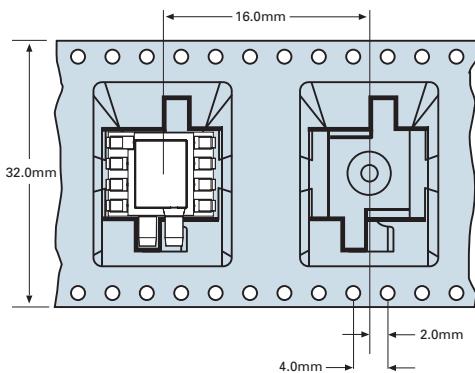
CAPABILITIES: Merit Sensor designs, engineers, fabricates, dices, assembles, tests, and sells die and packaged products from a state-of-the-art facility near Salt Lake City, Utah.

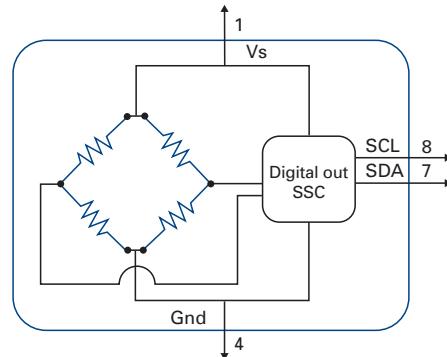

FEATURES

Pressure Range	0.04 to 15 psi (2.5 mbar to 1 bar; 250 Pa to 100 kPa KPa; 1 in H ₂ O to 415 in H ₂ O)
Output	Digital I ² C
Type	Gage, Differential and Absolute
Media	Clean, Dry Air and Non-corrosive Gases
Packaging	Tape and Reel
Customization	Supply Voltage, Temperature Calibration Range, Output Range, Accuracy Specification, Update Rate, etc

BENEFITS

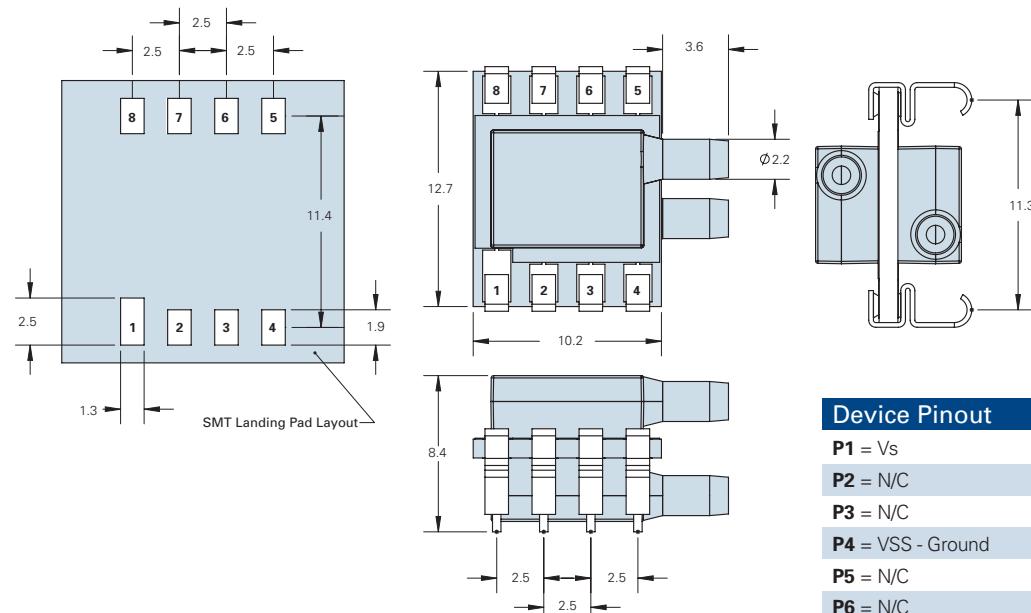
Performance	Enjoy best-in-class performance due to Merit's proprietary Sentium technology
Cost	Save money over time with high-performing die
Security	Feel confident doing business with an experienced company backed by a solid parent company (NASDAQ: MMSI)
Speed	Get to market quickly with creative and flexible solutions
Service	Experience prompt, personal and professional support




1420 Family Part Number Configurator


*Device will respond to any address.

SPECIFICATIONS

Parameter	Minimum	Typical	Maximum	Units	Notes
Electrical					
Supply Voltage (Vs)	4.5	5	5.5	V	Depending on calibrated supply voltage
Supply Voltage (Vs)	3.0	3.3	3.6	V	Depending on calibrated supply voltage
Supply Current	1.2	2	3.5	mA	(1)
Operating Temperature	-40		85	°C	
Storage Temperature	-55		100	°C	
Performance					
Effective ADC Resolution		13		Bits	
Pressure Accuracy	-1.5		1.5	%FS	(2) (3)
Long-Term Stability	-0.5		0.5	%FS	
Startup Time		10.4	12	ms	
Digital Update Time	21	25	29	ms	
Proof Pressure	5X				(4)
Burst Pressure	10X				
Transfer Function Formula					
$P_{psi} = (P_{max} - P_{min}) \cdot \left(\frac{P_{counts} - 0.1 \cdot Max}{0.8 \cdot Max} \right) + P_{min}$					
Media Compatibility					
For Use With Non-corrosive Dry Gasses					
Solder temperature: max 250 °C, 5 seconds max					
Where					
P_{psi} = Measured Pressure in PSI					
P_{counts} = Pressure Counts from Merit Sensor Part					
P_{Min} = Minimum Pressure					
P_{Max} = Maximum Pressure					
Max = 16384 = 14 Bits					


CROSS SECTION FOR DIFFERENTIAL AND GAGE

CROSS SECTION FOR ABSOLUTE

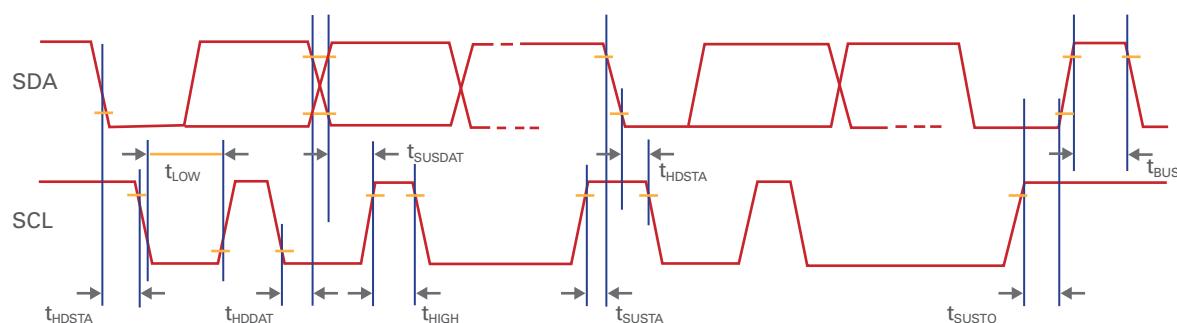
PACKAGING

ELECTRICAL

Note: Power supply decoupling included

DIMENSIONS FOR STANDARD OPTIONS (in millimeters)

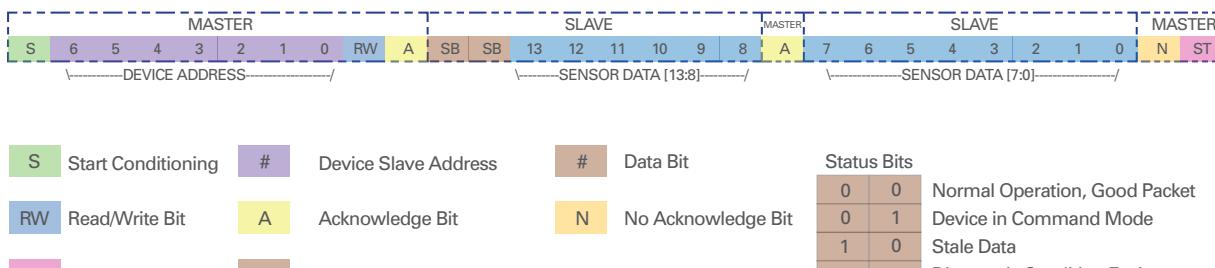
Dimensions for reference only. Engineering drawings (with tolerance) available upon order.



Device Pinout

- P1** = Vs
- P2** = N/C
- P3** = N/C
- P4** = VSS - Ground
- P5** = N/C
- P6** = N/C
- P7** = SDA - I²C data
- P8** = SCL - I²C clock

I²C PARAMETERS *


Parameter	Symbol	Min	Typ	Max	Units
SCL clock frequency	f _{SCL}	-		100	kHz
Start condition hold time relative to SCL edge	t _{HDDSTA}	0.1			μs
Minimum SCL clock low width ¹	t _{LOW}	0.6			μs
Minimum SCL clock high width ¹	t _{HIGH}	0.6			μs
Start condition setup time relative to SCL edge	t _{SUSTA}	0.1			μs
Data hold time on SDA relative to SCL edge	t _{HDDAT}	0.0			μs
Data setup time on SDA relative to SCL edge	t _{SUDAT}	0.1			μs
Stop condition setup time on SCL	t _{SUSTO}	0.1			μs
Bus free time between stop condition and start condition	t _{BUS}	2			μs

¹Combined low and high widths must equal or exceed minimum SCLK period.

I²C TIMING DIAGRAM*

MERIT SENSOR 1420 I²C COMMUNICATION

Communications to the 1420 is read only. To read the pressure counts, the master performs a read request by asserting a start condition, sending the 7 bit address of the part (If the part has an open address, 7 bits of anything is acceptable), and sets the read/write bit. The master then waits for an acknowledgment. The acknowledgment is sent by the pressure sensor along with 2 bits of status and bits 13:8 of the pressure counts, the master acknowledges the first 8 bits, and the pressure sensor sends the remaining 8 bits of data. The Master then does not acknowledge and sends a stop condition signaling the end of the transaction.

*Used by permission, IDT

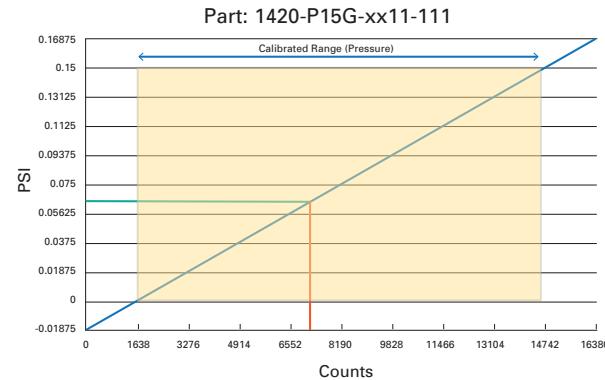
TRANSFER FUNCTION EXAMPLES

Example 1: 0.15 PSI Gage

Part: 1420-P15G-xx11-111

$P_{min} = 0.0 \text{ PSI}$

$P_{max} = 0.15 \text{ PSI}$


$P_{counts} = 7215$

$Max = 16384$

$$P_{psi} = (P_{max} - P_{min}) \cdot \left(\frac{P_{counts} - 0.1 \cdot Max}{0.8 \cdot Max} \right) + P_{min}$$

$$P_{psi} = (0.15 - 0.0) \cdot \left(\frac{7215 - 0.1 \cdot 16384}{0.8 \cdot 16384} \right) + 0$$

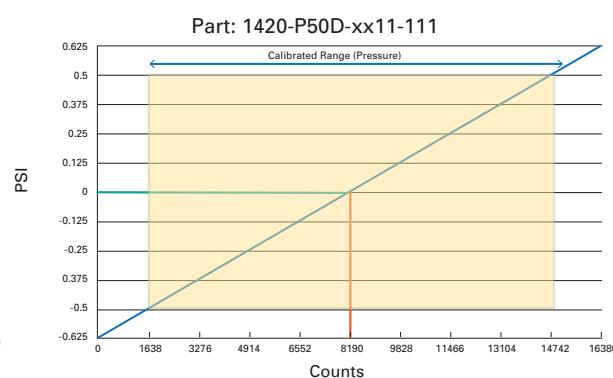
$$P_{psi} = 0.0638 \text{ Psi}$$

Example 2: -.5 to .5 PSI Differential

Part: 1420-P50D-xx11-111

$P_{min} = -0.5 \text{ PSI}$

$P_{max} = 0.5 \text{ PSI}$


$P_{counts} = 8192$

$Max = 16384$

$$P_{psi} = (P_{max} - P_{min}) \cdot \left(\frac{P_{counts} - 0.1 \cdot Max}{0.8 \cdot Max} \right) + P_{min}$$

$$P_{psi} = (0.5 - (-0.5)) \cdot \left(\frac{8192 - 0.1 \cdot 16384}{0.8 \cdot 16384} \right) + (-0.5)$$

$$P_{psi} = 0.0 \text{ Psi}$$

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Merit Sensor:

[1420-P15D-1611-111](#) [1420-P15G-1611-111](#) [1420-1P0D-1611-111](#) [1420-P30D-1611-111](#) [1420-1P0G-1611-111](#)
[1420-P30G-1611-111](#) [1420-1P0G-1011-111](#) [1420-P15G-1011-111](#) [1420-P30D-1011-111](#) [1420-P30G-1011-111](#)
[1420-P15D-1011-111](#) [1420-1P0D-1011-111](#) [1420-P07D-1011-211](#) [1420-P15D-1011-211](#) [1420-P04D-1011-211](#) [1420-P04G-1011-211](#) [1420-P07G-1011-211](#) [1420-1P0D-1011-211](#) [1420-2P0D-1011-211](#)