Adafruit 213" Monochrome E-Ink Bonnet
for Raspberry Pi

Created by Kattni Rembor

https://learn.adafruit.com/2-13-in-e-ink-bonnet

Last updated on 2021-12-09 03:22:12 PM EST

©Adafruit Industries Page 1 of 20

Table of Contents

Overview 3
Usage 6
« Attaching 6
« Install CircuitPython 6
« Download font5x8.bin 7
« DejaVu TTF Font 7
« Pillow Library 7
« EPD Library Usage 8
« Button Usage 9
- Image Drawing with Pillow 10
« Adding Dithering for Monochrome displays 15
- Drawing Shapes and Text with Pillow 15
Raspberry Pi E-Ink Weather Station using Python 19
Raspberry Pi E-Ink Event Calendar using Python 19
Downloads 20
« Files 20
« Schematic 20
« Fab Print 20

©Adafruit Industries Page 2 of 20

Overview

Easy e-paper finally comes to Raspberry Pi, with this bonnet that's designed to make it
a breeze to add a 2.13" 250x122 crisp monochromic elnk display. Chances are you've
seen one of those new-fangled 'e-readers' like the Kindle or Nook. They have gigantic
electronic paper 'static' displays - that means the image stays on the display even
when power is completely disconnected. The image is also high contrast and very
daylight readable. It really does look just like printed paper!

©Adafruit Industries Page 3 of 20

The Adafruit 213" Monochrome E-Ink Bonnet for Raspberry Pi snaps onto any modern
Raspberry Pi and provides a Python-programmable display with two buttons that can
be used to select programs or scroll through options.

We have two fun starter guides to use with this bonnet, an Open Weather display (htt
ps://adafru.it/MMD) and an event calendar that auto-syncs with a Google Calendar (ht
tps://adafru.it/MME) to show you what your next meeting or event is. We also have

examples in our E-Ink Python library you can use to craft your own project (https://
adafru.it/BTd).

__adafruit 2.13" eink bonnet

s GTHINKINK

©Adafruit Industries Page 4 of 20

https://learn.adafruit.com/raspberry-pi-e-ink-weather-station-using-python
https://learn.adafruit.com/raspberry-pi-e-ink-desk-calendar-using-python
https://github.com/adafruit/Adafruit_CircuitPython_EPD
https://github.com/adafruit/Adafruit_CircuitPython_EPD

Comes completely pre-assembled and tested so you don't need to do anything but
plug it in and install our Python code! Works with any Raspberry Pi computer that has

a 2x20 connector, such as the Pi B+, Pi 2, Pi 3, Pi 4, and Pi Zero (and any others that
have a 2x20 connector!)

LTHINKINK

SPLeCEQ “»i™ ladyada A1,
Bunt) o 2.13" Diagonal [RESS SER0T)
0C:22 E-Ink Display ! J

On the bottom, we have a Qwiic/STEMMA QT connector for 12C sensors and devices
so you can plug and play any of our STEMMA QT devices (https://adafru.it/GfR).

©Adafruit Industries Page 5 of 20

https://www.adafruit.com/?q=stemma%20qt
https://www.adafruit.com/?q=stemma%20qt

Usage

Attaching

Since the elnk Bonnet comes preassembled, all you need to do is place it onto the
GPIO pins.

Since there's dozens of Linux computers/boards you can use, we will show wiring for
Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to
see whether your platform is supported (https://adafru.it/BSN).

Connect the display as shown below to your Raspberry Pi.

adafruit 2.13" eink bonnet

Manhattan, US

7:42 PM O

Clouds

Scattered clouds

Install CircuitPython

This guide assumes that you've gotten your Raspberry Pi up and running, and have
Blinka installed. If not, check out the guide:

CircuitPython Installation Guide

https://adafru.it/Deo

©Adafruit Industries Page 6 of 20

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi

To install the EPD library for the Pi (https://adafru.it/BTd), enter the following into the
terminal:

« sudo pip3 install adafruit-circuitpython-epd

If that complains about pip3 not being installed, then run this first to install it:

« sudo apt-get install python3-pip

Download font5x8.bin

This library also requires a font file to run! You can download it below. Before
continuing, make sure the folder you are running scripts from contains the font5x8.bin
file. If you don't have it, you can easily get it by running the following command:

« wget https://github.com/adafruit/Adafruit CircuitPython framebuf
/raw/main/examples/font5x8.bin

DejaVu TTF Font

Raspberry Pi usually comes with the DejaVu font already installed, but in case it didn't,
you can run the following to install it:

« sudo apt-get install fonts-dejavu

This package was previously calls ttf-dejavu, so if you are running an older version of
Raspberry Pi OS, it may be called that.

Pillow Library

Some of the examples also use PIL, the Python Imaging Library, to allow graphics and
using text with custom fonts. There are several system libraries that PIL relies on, so
installing via a package manager is the easiest way to bring in everything:

« sudo apt-get install python3-pil

That's it. You should be ready to go.

©Adafruit Industries Page 7 of 20

https://github.com/adafruit/Adafruit_CircuitPython_EPD

EPD Library Usage

To demonstrate the usage of the display you'll initialize it and draw some lines from
the Python REPL.

Run the following code to import the necessary modules and set up the pin
assignments:

import digitalio

import busio

import board

from adafruit epd.epd import Adafruit EPD

spi busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
ecs digitalio.DigitalInOut(board.CEO)

dc = digitalio.DigitalInOut(board.D22)

rst = digitalio.DigitalInOQut(board.D27)

busy = digitalio.DigitalInOut(board.D17)

srcs None

Run only one the following code sections to initialize the display.

If you have an SSD1675-chipset display (original chipset) use this code:

from adafruit epd.ssd1675 import Adafruit SSD1675
display = Adafruit SSD1675(122, 250, spi, cs _pin=ecs, dc_pin=dc, sramcs pin=srcs,
rst pin=rst, busy pin=busy)

OR if you have an SSD1680-chipset display use this code:

from adafruit epd.ssd1680 import Adafruit SSD1680
display = Adafruit SSD1680(122, 250, spi, c¢s _pin=ecs, dc_pin=dc, sramcs pin=srcs,
rst pin=rst, busy pin=busy)

Note that the chip name is different, SSD1675 vs SSD1680. If one doesn't work to

display, simply try the other!

Now you can clear the screens buffer and draw some shapes. Once you're done
drawing, you need to tell the screen to update using the display() method.

display.fill(Adafruit EPD.WHITE)

display.fill rect(0, 0, 50, 60, Adafruit EPD.BLACK)

©Adafruit Industries Page 8 of 20

display.hline(80, 30, 60, Adafruit EPD.BLACK)
display.vline(80, 30, 60, Adafruit EPD.BLACK)

display.display()

Your display will look something like this:

adafruit 2.13" eink bonnet

That's all there is to drawing simple shapes with elnk displays and CircuitPython!

Button Usage

To use the buttons, you just need to use digitalio. Then it's a matter of setting up the
buttons as digital inputs:

import digitalio

up_button = digitalio.DigitalInOut(board.D5)
up_button.switch to input()

down button = digitalio.DigitalInOut(board.D6)
down button.switch to input()

One thing to be aware of is since the buttons are pulled low when they are pushed,
they will return False when pressed and True when they aren't:

if not up button.value:
print("Up Button Pushed")

if not down button.value:
print("Down Button Pushed")

©Adafruit Industries Page 9 of 20

Image Drawing with Pillow

In this image, you will use Pillow to resize and crop the image automatically and draw
it the the ePaper Display. Pillow is really powerful and with it you can open and render
additional file formats such as PNG or JPG. Let's start with downloading a PNG of
blinka. We are using PNG for this because it is a lossless format and won't introduce
unexpected colors in.

You can easily download it directly to your pi using the following command:

+ wget https://github.com/adafruit/Adafruit Learning System Guides
/raw/master/EInk Bonnet/blinka.png

Make sure you save it as blinka.png and place it in the same folder as your script.

Here's the code you'll be loading onto the Raspberry Pi. Go ahead and copy it onto
your Raspberry Pi and save it as epd_pillow_image.py. You'll go over the interesting
parts along with a couple changes that you will need to make.

SPDX-FileCopyrightText: 2019 Melissa LeBlanc-Williams for Adafruit Industries
SPDX-License-Identifier: MIT

Image resizing and drawing using the Pillow Library. For the image, check out the
associated Adafruit Learn guide at:
https://learn.adafruit.com/adafruit-eink-display-breakouts/python-code

import digitalio

import busio

import board

from PIL import Image

from adafruit epd.il0373 import Adafruit ILO373

from adafruit epd.il91874 import Adafruit IL91874 # pylint: disable=unused-import
from adafruit epd.il0398 import Adafruit ILO398 # pylint: disable=unused-import
from adafruit epd.ssd1608 import Adafruit SSD1608 # pylint: disable=unused-import
from adafruit epd.ssd1675 import Adafruit SSD1675 # pylint: disable=unused-import
from adafruit epd.ssd1680 import Adafruit SSD1680 # pylint: disable=unused-import
from adafruit epd.ssd1681 import Adafruit SSD1681 # pylint: disable=unused-import
from adafruit epd.uc8151d import Adafruit UC8151D # pylint: disable=unused-import

create the spi device and pins we will need

©Adafruit Industries Page 10 of 20

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
ecs = digitalio.DigitalInOut(board.CEQ)

dc = digitalio.DigitalInOut(board.D22)

srcs = None

rst = digitalio.DigitalInOut(board.D27)

busy = digitalio.DigitalInOut(board.D17)

give them all to our driver
display = Adafruit SSD1608(200, 200, # 1.54" HD mono display
display = Adafruit SSD1675(122, 250, # 2.13" HD mono display
display = Adafruit SSD1680(122, 250, # 2.13" HD Tri-color or mono display
display = Adafruit SSD1681(200, 200, # 1.54" HD Tri-color display
display = Adafruit IL91874(176, 264, # 2.7" Tri-color display
display = Adafruit IL0373(152, 152, # 1.54" Tri-color display
display = Adafruit UC8151D (128, 296, # 2.9" mono flexible display
display = Adafruit ILO373(128, 296, # 2.9" Tri-color display
display = Adafruit IL0398(400, 300, # 4.2" Tri-color display
display = Adafruit ILO373(

104,

212, # 2.13" Tri-color display

spi,

cs_pin=ecs,

dc pin=dc,

sramcs_pin=srcs,
rst pin=rst,
busy pin=busy,

IF YOU HAVE A 2.13" FLEXIBLE DISPLAY uncomment these lines!
display.set black buffer(1l, False)
display.set color buffer(1l, False)

IF YOU HAVE A 2.9" FLEXIBLE DISPLAY uncomment these lines!
display.set black buffer(1l, True)
display.set color buffer(1l, True)

HHH O HHH

display.rotation = 1
image = Image.open("blinka.png")

Scale the image to the smaller screen dimension
image ratio = image.width / image.height
screen ratio = display.width / display.height
if screen ratio < image ratio:
scaled width = image.width * display.height // image.height
scaled height = display.height
else:
scaled width = display.width
scaled height = image.height * display.width // image.width
image = image.resize((scaled width, scaled height), Image.BICUBIC)

scaled width // 2 - display.width // 2
scaled height // 2 - display.height // 2
mage = image.crop((x, y, X + display.width, y + display.height)).convert("RGB")

Crop and center the image

X =

¥=

i

Convert to Monochrome and Add dithering
image = image.convert("1l").convert("L")
Display image.

display.image(image)
display.display()

So the script starts with the usual imports including a couple of Pillow modules and
the ePaper display drivers.

©Adafruit Industries Page 11 of 20

impo
impo
impo
from
from
from
from
from
from

rt digitalio
rt busio
rt board

PIL import Image, ImageDraw

adafruit_epd
adafruit epd

.110373 import Adafruit IL0O373

.1191874 import Adafruit IL91874
adafruit epd.
adafruit _epd.
adafruit epd.

i10398 import Adafruit ILO398
ssd1608 import Adafruit SSD1608
ssd1675 import Adafruit SSD1675

That is followed by initializing the SPI bus and defining a few pins here. The reason

we chose these is because they allow you to use the same code with the EPD
bonnets if you chose to do so.

spi
ecs
dc =
srcs
rst

= busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
= digitalio.DigitalInQut(board.CE0O)
digitalio.DigitalInQut(board.D22)

= None

= digitalio.DigitalInOQut(board.D27)
busy = digitalio.DigitalInOut(board.D17)

We wanted to make these examples work on as many displays as possible with very
few changes. The 213" Tri-color display is selected by default. Since this is a
monochrome display, you'll want to go ahead and comment out the following lines:

display = Adafruit IL0O373(
104,

212,

2.13" Tri-color display

and uncomment the line for the 2.13" HD mono display:

disp

#dis
#dis
#dis
#dis
#dis
#dis

lay = Adafruit SSD1675(122, 250,

play = Adafruit SSD1608 (200, 200, # 1.54" HD mono display
play = Adafruit SSD1675(122, 250, # 2.13" HD mono display
play = Adafruit IL91874(176, 264, # 2.7" Tri-color display
play = Adafruit IL0373(152, 152, # 1.54" Tri-color display
play = Adafruit IL0373(128, 296, # 2.9" Tri-color display
play = Adafruit IL0398(400, 300, # 4.2" Tri-color display

display = Adafruit ILO373(

104,

212, # 2.13" Tri-color display

spi,
cs_pin=ecs,
dc_pin=dc,

sramcs _pin=srcs,

rst pin=rst,
busy pin=busy

©Adafruit Industries

Page 12 of 20

The next two lines are for flexible displays. This tells the library to change a couple of
settings so that it is writing the correct colors to the correct places. Since this isn't a
flexible display, you can skip past these lines.

IF YOU HAVE A FLEXIBLE DISPLAY (2.13" or 2.9") uncomment these lines!
#display.set black buffer(1l, False)
#display.set color buffer(1l, False)

Next the script tells the display the rotation setting you want to use. This can be a
value between 0 to 3. For the bonnet, you'll want to stick with the default value.

display.rotation = 1

Next the script opens the Blinka image, which you've named blinka.png. The open
command assumes it is in the same directory that you are running the script from.
Feel free to change it if it doesn't match your configuration.

image = Image.open("blinka.png")

Here's where it starts to get interesting. You want to scale the image so that it
matches either the width or height of the display, depending on which is smaller, so
that you have some of the image to chop off when you crop it. So you'll start by
calculating the width to height ratio of both the display and the image. If the height is
the closer of the dimensions, you'll want to match the image height to the display
height and let it be a bit wider than the display. Otherwise, you'll want to do the
opposite.

Once the script figures out how it's going to scale it, it passes in the new dimensions
and using a Bicubic rescaling method, it reassigns the newly rescaled image back

to image . Pillow has quite a few different methods to choose from, but Bicubic does
a great job and is reasonably fast.

Nearest actually gives a little better result with the Tri-color elnks, but loses detail with
displaying a color image on the monochrome display, so we decided to go with the
best balance.

image ratio = image.width / image.height
screen_ratio = display.width / display.height
if screen ratio < image ratio:
scaled width = image.width * display.height // image.height
scaled height = display.height
else:
scaled width = display.width
scaled height = image.height * display.width // image.width
image = image.resize((scaled width, scaled height), Image.BICUBIC)

©Adafruit Industries Page 13 of 20

Next to figure the starting x and y points of the image to begin cropping it so that it
ends up centered. That is done by using a standard centering function, which is
basically requesting the difference of the center of the display and the center of the
image. Just like with scaling, replace the image variable with the newly cropped

image.
X = scaled width // 2 - display.width // 2
y = scaled height // 2 - display.height // 2

image = image.crop((x, y, x + display.width, y + display.height))

Finally, taking the image, draw it to the frame buffer and display it. At this point,
the image should have the exact same dimensions at the display and fill it completely.

display.image(image)
display.display()

Now go to the command prompt on your Raspberry Pi and run the script with the
following command:

python3 epd pillow image.py

After a few seconds, your display should show this image:

©Adafruit Industries Page 14 of 20

Adding Dithering for Monochrome displays

One little trick which can be done to increase the image quality on monochrome
displays is to use dithering. Pillow can be forced to dither the image by converting
first to 1-bit and then convert it back to either grayscale or RGB. This works great for
monochrome E-Ink displays, but removes the color information for Tri-color displays.

To dither the image, add 1 line of code right before calling display.image(image) :
image = image.convert("1l").convert("L")

display.image(image)
display.display()

When you run it with the additional code, the same image displays like this:

Drawing Shapes and Text with Pillow

In the next example, let's take a look at drawing shapes and text. This is very similar to
the displayio example used on other displays, but it uses Pillow instead. Go ahead
and copy it onto your Raspberry Pi and save it as epd_pillow_demo.py. Here's the
code for that.

SPDX-FileCopyrightText: 2019 Melissa LeBlanc-Williams for Adafruit Industries
SPDX-License-Identifier: MIT

©Adafruit Industries Page 15 of 20

ePaper Display Shapes and Text demo using the Pillow Library.

impo
impo
impo
from
from
from
from
from
from
from
from

rt digitalio
rt busio
rt board

PIL import Image, ImageDraw, ImageFont

adafruit epd.
adafruit _epd.
adafruit epd.
adafruit epd.
adafruit epd.
adafruit epd.
adafruit epd.

il0373 import Adafruit IL0373
i191874 import Adafruit IL91874 # pylint: disable=unused-import
i10398 import Adafruit IL0398 # pylint: disable=unused-import

55d1608
ssd1675
55d1680
ssd1681

import Adafruit SSD1608
import Adafruit SSD1675
import Adafruit SSD1680
import Adafruit SSD1681

HH

#
#
#
#

pylint:
pylint:
pylint:
pylint:
pylint:

MISO=board.MISO)

disable=unused-import
disable=unused-import
disable=unused-import
disable=unused-import
disable=unused-import

from adafruit epd.uc8151d import Adafruit UC8151D
First define some color constants

WHITE = (OxFF, OxFF, OXxFF)

BLACK = (0x00, 0x00, 0x00)

RED = (OxFF, 0x00, 0x00)

Next define some constants to allow easy resizing of shapes and colors
BORDER = 20

FONTSIZE = 24

BACKGROUND COLOR = BLACK

FOREGROUND COLOR = WHITE

TEXT _COLOR = RED

create the spi device and pins we will need

spi = busio.SPI(board.SCK, M0SI=board.MOSI,

ecs = digitalio.DigitalInOut(board.CEQ)

dc = digitalio.DigitalInOut(board.D22)

srcs = None

rst = digitalio.DigitalInOQut(board.D27)

busy = digitalio.DigitalInOut(board.D17)

.54"
.13"
.13"
.54"
.7" Tri-color display

HD mono display

HD mono display

HD Tri-color or mono display
HD Tri-color display

give them all to our driver
display = Adafruit SSD1608 (200, 200, # 1
display = Adafruit SSD1675(122, 250, # 2
display = Adafruit SSD1680(122, 250, # 2
display = Adafruit SSD1681(200, 200, # 1
display = Adafruit IL91874(176, 264, # 2
display = Adafruit IL0373(152, 152, # 1
display = Adafruit UC8151D (128, 296, # 2
display = Adafruit IL0373(128, 296, # 2
display = Adafruit IL0398(400, 300, # 4
display = Adafruit ILO373(

104,

212, # 2.13" Tri-color display

spi,

CS_pin=ecs,

dc_pin=dc,

sramcs_pin=srcs,
rst pin=rst,
busy pin=busy,

.54" Tri-color display
.9" mono flexible display
.9" Tri-color display
.2" Tri-color display

IF YOU HAVE A 2.13" FLEXIBLE DISPLAY uncomment these lines!
display.set black buffer(1l, False)
display.set color buffer(1l, False)

IF YOU HAVE A 2.9" FLEXIBLE DISPLAY uncomment these lines!
display.set black buffer(1l, True)
display.set color buffer(l, True)

display.rotation = 1

image =

Image.new("RGB",

©Adafruit Industries

(display.width, display.height))

Page 16 of 20

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a filled box as the background
draw.rectangle((0, 0, display.width - 1, display.height - 1), fill1=BACKGROUND COLOR)

Draw a smaller inner foreground rectangle

draw. rectangle(
(BORDER, BORDER, display.width - BORDER - 1, display.height - BORDER - 1),
fill=FOREGROUND COLOR,

)

Load a TTF Font
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf",
FONTSIZE)

Draw Some Text
text = "Hello World!"
(font width, font height) = font.getsize(text)
draw. text(
(display.width // 2 - font width // 2, display.height // 2 - font height // 2),
text,
font=font,
fill=TEXT COLOR,
)

Display image.
display.image(image)
display.display()

Just like in the last example, the imports are done, but this time include the ImageDr
aw and ImageFont Pillow modules to draw some text this time.

import digitalio

import busio

import board

from PIL import Image, ImageDraw, ImageFont

from adafruit epd.il0373 import Adafruit ILO373
from adafruit epd.il91874 import Adafruit IL91874
from adafruit epd.il0398 import Adafruit IL0O398
from adafruit epd.ssd1608 import Adafruit SSD1608
from adafruit epd.ssd1675 import Adafruit SSD1675

Next define some colors that can be used with Pillow. Since this demo can also run on
a Tri-color e-Ink, there are 3 colors defined.

WHITE (6xFF, OxFF, OXFF)
BLACK (0x00, 0x00, 0x00)
RED = (OxFF, 0x00, 0x00)

After that, the script creates some parameters that are easy to change. If you had a
smaller display for instance, you could reduce the FONTSIZE and BORDER paramete
rs. The BORDER will be the size in pixels of the green border between the edge of the
display and the inner purple rectangle. The FONTSIZE will be the size of the fontin
points so that you can adjust it easily for different displays. You could play around
with the colors as well.

©Adafruit Industries Page 17 of 20

One thing to note is that on monochrome displays, the RED will show up

as BLACK.

BORDER = 20
FONTSIZE = 24
BACKGROUND_COLOR
FOREGROUND COLOR
TEXT_COLOR = RED

BLACK
WHITE

After that, the initializer and rotation sections are exactly the same as in the previous
example. Go ahead and adjust the EPD initializer as explained in the previous
example. After that, the script will create an image with the dimensions and use that
to create a draw object. The draw object will have all of the drawing functions.

image = Image.new('RGB', (display.width, display.height))

draw = ImageDraw.Draw(image)

Next the script clears whatever is on the screen by drawing a rectangle using the BA
CKGROUND COLOR that takes up the full screen.

draw.rectangle((0, 0, display.width, display.height), fill=BACKGROUND COLOR)

Next the script will draw an inner rectangle using the FOREGROUND COLOR . the BORD
ER parameter is used to calculate the size and position of where to draw the
rectangle.

draw.rectangle((BORDER, BORDER, display.width - BORDER - 1, display.height - BORDER
- 1), fill=FOREGROUND COLOR)

Next the script will load a TTF font. The DejaVuSans.ttf font should come
preloaded on your Pi in the location in the code. You also make use of the FONTSIZE
parameter that we mentioned earlier.

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf"',
FONTSIZE)

Now the script will draw the text Hello World onto the center of the display. You may
recognize the centering calculation was the same one we used to center crop the
image in the previous example. In this example though, the script will get the font size
values using the getsize() function of the font object.

text = "Hello World!"
(font width, font height) = font.getsize(text)

©Adafruit Industries Page 18 of 20

draw.text((display.width//2 - font width//2, display.height//2 - font _height//2),
text, font=font, fill=TEXT COLOR)

Finally, just like before, the script will display the image.

display.image(image)
display.display()

Now go to the command prompt on your Raspberry Pi and run the script with the
following command:

python3 epd pillow demo.py

After a few seconds, your display should show this image:

adafruit 2.13" eink bonnet

Hello World!

Raspberry Pi E-Ink Weather Station using
Python

Raspberry Pi E-Ink Weather Station using Python (https://adafru.it/MMD)

Raspberry Pi E-Ink Event Calendar using
Python

Raspberry Pi E-Ink Event Calendar using Python (https://adafru.it/MME)

©Adafruit Industries Page 19 of 20

https://learn.adafruit.com/raspberry-pi-e-ink-weather-station-using-python
https://learn.adafruit.com/raspberry-pi-e-ink-desk-calendar-using-python

Downloads

Files

« SSD1675 driver datasheet (https://adafru.it/M5C)
« EagleCAD files on GitHub (https://adafru.it/MPD)
« Fritzing object in Adafruit Fritzing Library (https://adafru.it/c7M)

Schematic

Fab Print

©Adafruit Industries Page 20 of 20

https://cdn-learn.adafruit.com/assets/assets/000/092/748/original/SSD1675_0.pdf?1593792604
https://github.com/adafruit/Adafruit-2-13in-eInk-Bonnet-PCB
https://github.com/adafruit/Fritzing-Library/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Adafruit:
4687

https://www.mouser.com/adafruit
https://www.mouser.com/access/?pn=4687

	Adafruit 2.13" Monochrome E-Ink Bonnet for Raspberry Pi
	Table of Contents
	Overview
	Usage
	Raspberry Pi E-Ink Weather Station using Python
	Raspberry Pi E-Ink Event Calendar using Python
	Downloads

	Overview
	Usage
	Attaching
	Install CircuitPython
	Download font5x8.bin
	DejaVu TTF Font
	Pillow Library
	EPD Library Usage
	Button Usage
	Image Drawing with Pillow
	Adding Dithering for Monochrome displays

	Drawing Shapes and Text with Pillow
	Raspberry Pi E-Ink Weather Station using Python
	Raspberry Pi E-Ink Event Calendar using Python
	Downloads
	Files
	Schematic
	Fab Print

