

Adafruit 2.13" Monochrome E-Ink Bonnet

for Raspberry Pi

Created by Kattni Rembor

https://learn.adafruit.com/2-13-in-e-ink-bonnet

Last updated on 2021-12-09 03:22:12 PM EST

©Adafruit Industries Page 1 of 20

3

6

6

6

7

7

7

8

9

10

15

15

19

19

20

20

20

20

Table of Contents

Overview

Usage

• Attaching

• Install CircuitPython

• Download font5x8.bin

• DejaVu TTF Font

• Pillow Library

• EPD Library Usage

• Button Usage

• Image Drawing with Pillow

• Adding Dithering for Monochrome displays

• Drawing Shapes and Text with Pillow

Raspberry Pi E-Ink Weather Station using Python

Raspberry Pi E-Ink Event Calendar using Python

Downloads

• Files

• Schematic

• Fab Print

©Adafruit Industries Page 2 of 20

Overview

Easy e-paper finally comes to Raspberry Pi, with this bonnet that's designed to make it

a breeze to add a 2.13" 250x122 crisp monochromic eInk display. Chances are you've

seen one of those new-fangled 'e-readers' like the Kindle or Nook. They have gigantic

electronic paper 'static' displays - that means the image stays on the display even

when power is completely disconnected. The image is also high contrast and very

daylight readable. It really does look just like printed paper!

©Adafruit Industries Page 3 of 20

The Adafruit 2.13" Monochrome E-Ink Bonnet for Raspberry Pi snaps onto any modern

Raspberry Pi and provides a Python-programmable display with two buttons that can

be used to select programs or scroll through options.

We have two fun starter guides to use with this bonnet, an Open Weather display (htt

ps://adafru.it/MMD) and an event calendar that auto-syncs with a Google Calendar (ht

tps://adafru.it/MME) to show you what your next meeting or event is. We also have

examples in our E-Ink Python library you can use to craft your own project (https://

adafru.it/BTd).

©Adafruit Industries Page 4 of 20

https://learn.adafruit.com/raspberry-pi-e-ink-weather-station-using-python
https://learn.adafruit.com/raspberry-pi-e-ink-desk-calendar-using-python
https://github.com/adafruit/Adafruit_CircuitPython_EPD
https://github.com/adafruit/Adafruit_CircuitPython_EPD

Comes completely pre-assembled and tested so you don't need to do anything but

plug it in and install our Python code! Works with any Raspberry Pi computer that has

a 2x20 connector, such as the Pi B+, Pi 2, Pi 3, Pi 4, and Pi Zero (and any others that

have a 2x20 connector!)

On the bottom, we have a Qwiic/STEMMA QT connector for I2C sensors and devices

so you can plug and play any of our STEMMA QT devices (https://adafru.it/GfR).

©Adafruit Industries Page 5 of 20

https://www.adafruit.com/?q=stemma%20qt
https://www.adafruit.com/?q=stemma%20qt

Usage

Attaching

Since the eInk Bonnet comes preassembled, all you need to do is place it onto the

GPIO pins.

Since there's dozens of Linux computers/boards you can use, we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported (https://adafru.it/BSN).

Connect the display as shown below to your Raspberry Pi.

Install CircuitPython

This guide assumes that you've gotten your Raspberry Pi up and running, and have

Blinka installed. If not, check out the guide:

CircuitPython Installation Guide

https://adafru.it/Deo

This guide assumes you have your Raspberry Pi all set up with an operating

system, network connectivity and SSH!

©Adafruit Industries Page 6 of 20

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi

To install the EPD library for the Pi (https://adafru.it/BTd), enter the following into the

terminal:

sudo pip3 install adafruit-circuitpython-epd

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

Download font5x8.bin

This library also requires a font file to run! You can download it below. Before

continuing, make sure the folder you are running scripts from contains the font5x8.bin

file. If you don't have it, you can easily get it by running the following command:

wget https://github.com/adafruit/Adafruit_CircuitPython_framebuf

/raw/main/examples/font5x8.bin

DejaVu TTF Font

Raspberry Pi usually comes with the DejaVu font already installed, but in case it didn't,

you can run the following to install it:

sudo apt-get install fonts-dejavu

This package was previously calls ttf-dejavu, so if you are running an older version of

Raspberry Pi OS, it may be called that.

Pillow Library

Some of the examples also use PIL, the Python Imaging Library, to allow graphics and

using text with custom fonts. There are several system libraries that PIL relies on, so

installing via a package manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

That's it. You should be ready to go.

•

•

•

•

•

©Adafruit Industries Page 7 of 20

https://github.com/adafruit/Adafruit_CircuitPython_EPD

EPD Library Usage

To demonstrate the usage of the display you'll initialize it and draw some lines from

the Python REPL.

Run the following code to import the necessary modules and set up the pin

assignments:

import digitalio

import busio

import board

from adafruit_epd.epd import Adafruit_EPD

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

ecs = digitalio.DigitalInOut(board.CE0)

dc = digitalio.DigitalInOut(board.D22)

rst = digitalio.DigitalInOut(board.D27)

busy = digitalio.DigitalInOut(board.D17)

srcs = None

Run only one the following code sections to initialize the display.

If you have an SSD1675-chipset display (original chipset) use this code:

from adafruit_epd.ssd1675 import Adafruit_SSD1675

display = Adafruit_SSD1675(122, 250, spi, cs_pin=ecs, dc_pin=dc, sramcs_pin=srcs,

 rst_pin=rst, busy_pin=busy)

OR if you have an SSD1680-chipset display use this code:

from adafruit_epd.ssd1680 import Adafruit_SSD1680

display = Adafruit_SSD1680(122, 250, spi, cs_pin=ecs, dc_pin=dc, sramcs_pin=srcs,

 rst_pin=rst, busy_pin=busy)

Now you can clear the screens buffer and draw some shapes. Once you're done

drawing, you need to tell the screen to update using the display() method.

display.fill(Adafruit_EPD.WHITE)

display.fill_rect(0, 0, 50, 60, Adafruit_EPD.BLACK)

You'll want to refrain from updating your E-Ink display too often. Once every 3

minutes is generally a safe wait time.

Note that the chip name is different, SSD1675 vs SSD1680. If one doesn't work to

display, simply try the other!

©Adafruit Industries Page 8 of 20

display.hline(80, 30, 60, Adafruit_EPD.BLACK)

display.vline(80, 30, 60, Adafruit_EPD.BLACK)

display.display()

Your display will look something like this:

That's all there is to drawing simple shapes with eInk displays and CircuitPython!

Button Usage

To use the buttons, you just need to use digitalio. Then it's a matter of setting up the

buttons as digital inputs:

import digitalio

up_button = digitalio.DigitalInOut(board.D5)

up_button.switch_to_input()

down_button = digitalio.DigitalInOut(board.D6)

down_button.switch_to_input()

One thing to be aware of is since the buttons are pulled low when they are pushed,

they will return False when pressed and True when they aren't:

if not up_button.value:

 print("Up Button Pushed")

if not down_button.value:

 print("Down Button Pushed")

©Adafruit Industries Page 9 of 20

Image Drawing with Pillow

In this image, you will use Pillow to resize and crop the image automatically and draw

it the the ePaper Display. Pillow is really powerful and with it you can open and render

additional file formats such as PNG or JPG. Let's start with downloading a PNG of

blinka. We are using PNG for this because it is a lossless format and won't introduce

unexpected colors in.

You can easily download it directly to your pi using the following command:

wget https://github.com/adafruit/Adafruit_Learning_System_Guides

/raw/master/EInk_Bonnet/blinka.png

Make sure you save it as blinka.png and place it in the same folder as your script.

Here's the code you'll be loading onto the Raspberry Pi. Go ahead and copy it onto

your Raspberry Pi and save it as epd_pillow_image.py. You'll go over the interesting

parts along with a couple changes that you will need to make.

SPDX-FileCopyrightText: 2019 Melissa LeBlanc-Williams for Adafruit Industries

SPDX-License-Identifier: MIT

"""

Image resizing and drawing using the Pillow Library. For the image, check out the

associated Adafruit Learn guide at:

https://learn.adafruit.com/adafruit-eink-display-breakouts/python-code

"""

import digitalio

import busio

import board

from PIL import Image

from adafruit_epd.il0373 import Adafruit_IL0373

from adafruit_epd.il91874 import Adafruit_IL91874 # pylint: disable=unused-import

from adafruit_epd.il0398 import Adafruit_IL0398 # pylint: disable=unused-import

from adafruit_epd.ssd1608 import Adafruit_SSD1608 # pylint: disable=unused-import

from adafruit_epd.ssd1675 import Adafruit_SSD1675 # pylint: disable=unused-import

from adafruit_epd.ssd1680 import Adafruit_SSD1680 # pylint: disable=unused-import

from adafruit_epd.ssd1681 import Adafruit_SSD1681 # pylint: disable=unused-import

from adafruit_epd.uc8151d import Adafruit_UC8151D # pylint: disable=unused-import

create the spi device and pins we will need

•

©Adafruit Industries Page 10 of 20

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

ecs = digitalio.DigitalInOut(board.CE0)

dc = digitalio.DigitalInOut(board.D22)

srcs = None

rst = digitalio.DigitalInOut(board.D27)

busy = digitalio.DigitalInOut(board.D17)

give them all to our driver

display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display

display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display

display = Adafruit_SSD1680(122, 250, # 2.13" HD Tri-color or mono display

display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display

display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display

display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display

display = Adafruit_UC8151D(128, 296, # 2.9" mono flexible display

display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display

display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display

display = Adafruit_IL0373(

 104,

 212, # 2.13" Tri-color display

 spi,

 cs_pin=ecs,

 dc_pin=dc,

 sramcs_pin=srcs,

 rst_pin=rst,

 busy_pin=busy,

)

IF YOU HAVE A 2.13" FLEXIBLE DISPLAY uncomment these lines!

display.set_black_buffer(1, False)

display.set_color_buffer(1, False)

IF YOU HAVE A 2.9" FLEXIBLE DISPLAY uncomment these lines!

display.set_black_buffer(1, True)

display.set_color_buffer(1, True)

display.rotation = 1

image = Image.open("blinka.png")

Scale the image to the smaller screen dimension

image_ratio = image.width / image.height

screen_ratio = display.width / display.height

if screen_ratio < image_ratio:

 scaled_width = image.width * display.height // image.height

 scaled_height = display.height

else:

 scaled_width = display.width

 scaled_height = image.height * display.width // image.width

image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Crop and center the image

x = scaled_width // 2 - display.width // 2

y = scaled_height // 2 - display.height // 2

image = image.crop((x, y, x + display.width, y + display.height)).convert("RGB")

Convert to Monochrome and Add dithering

image = image.convert("1").convert("L")

Display image.

display.image(image)

display.display()

So the script starts with the usual imports including a couple of Pillow modules and

the ePaper display drivers.

©Adafruit Industries Page 11 of 20

import digitalio

import busio

import board

from PIL import Image, ImageDraw

from adafruit_epd.il0373 import Adafruit_IL0373

from adafruit_epd.il91874 import Adafruit_IL91874

from adafruit_epd.il0398 import Adafruit_IL0398

from adafruit_epd.ssd1608 import Adafruit_SSD1608

from adafruit_epd.ssd1675 import Adafruit_SSD1675

That is followed by initializing the SPI bus and defining a few pins here. The reason

we chose these is because they allow you to use the same code with the EPD

bonnets if you chose to do so.

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

ecs = digitalio.DigitalInOut(board.CE0)

dc = digitalio.DigitalInOut(board.D22)

srcs = None

rst = digitalio.DigitalInOut(board.D27)

busy = digitalio.DigitalInOut(board.D17)

We wanted to make these examples work on as many displays as possible with very

few changes. The 2.13" Tri-color display is selected by default. Since this is a

monochrome display, you'll want to go ahead and comment out the following lines:

display = Adafruit_IL0373(

 104,

 212, # 2.13" Tri-color display

and uncomment the line for the 2.13" HD mono display:

display = Adafruit_SSD1675(122, 250,

#display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display

#display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display

#display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display

#display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display

#display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display

#display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display

display = Adafruit_IL0373(

 104,

 212, # 2.13" Tri-color display

 spi,

 cs_pin=ecs,

 dc_pin=dc,

 sramcs_pin=srcs,

 rst_pin=rst,

 busy_pin=busy

)

©Adafruit Industries Page 12 of 20

The next two lines are for flexible displays. This tells the library to change a couple of

settings so that it is writing the correct colors to the correct places. Since this isn't a

flexible display, you can skip past these lines.

IF YOU HAVE A FLEXIBLE DISPLAY (2.13" or 2.9") uncomment these lines!

#display.set_black_buffer(1, False)

#display.set_color_buffer(1, False)

Next the script tells the display the rotation setting you want to use. This can be a

value between 0 to 3 . For the bonnet, you'll want to stick with the default value.

display.rotation = 1

Next the script opens the Blinka image, which you've named blinka.png. The open

command assumes it is in the same directory that you are running the script from.

Feel free to change it if it doesn't match your configuration.

image = Image.open("blinka.png")

Here's where it starts to get interesting. You want to scale the image so that it

matches either the width or height of the display, depending on which is smaller, so

that you have some of the image to chop off when you crop it. So you'll start by

calculating the width to height ratio of both the display and the image. If the height is

the closer of the dimensions, you'll want to match the image height to the display

height and let it be a bit wider than the display. Otherwise, you'll want to do the

opposite.

Once the script figures out how it's going to scale it, it passes in the new dimensions

and using a Bicubic rescaling method, it reassigns the newly rescaled image back

to image . Pillow has quite a few different methods to choose from, but Bicubic does

a great job and is reasonably fast.

Nearest actually gives a little better result with the Tri-color eInks, but loses detail with

displaying a color image on the monochrome display, so we decided to go with the

best balance.

image_ratio = image.width / image.height

screen_ratio = display.width / display.height

if screen_ratio < image_ratio:

 scaled_width = image.width * display.height // image.height

 scaled_height = display.height

else:

 scaled_width = display.width

 scaled_height = image.height * display.width // image.width

image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

©Adafruit Industries Page 13 of 20

Next to figure the starting x and y points of the image to begin cropping it so that it

ends up centered. That is done by using a standard centering function, which is

basically requesting the difference of the center of the display and the center of the

image. Just like with scaling, replace the image variable with the newly cropped

image.

x = scaled_width // 2 - display.width // 2

y = scaled_height // 2 - display.height // 2

image = image.crop((x, y, x + display.width, y + display.height))

Finally, taking the image , draw it to the frame buffer and display it. At this point,

the image should have the exact same dimensions at the display and fill it completely.

display.image(image)

display.display()

Now go to the command prompt on your Raspberry Pi and run the script with the

following command:

python3 epd_pillow_image.py

After a few seconds, your display should show this image:

©Adafruit Industries Page 14 of 20

Adding Dithering for Monochrome displays

One little trick which can be done to increase the image quality on monochrome

displays is to use dithering. Pillow can be forced to dither the image by converting

first to 1-bit and then convert it back to either grayscale or RGB. This works great for

monochrome E-Ink displays, but removes the color information for Tri-color displays.

To dither the image, add 1 line of code right before calling display.image(image) :

image = image.convert("1").convert("L")

display.image(image)

display.display()

When you run it with the additional code, the same image displays like this:

Drawing Shapes and Text with Pillow

In the next example, let's take a look at drawing shapes and text. This is very similar to

the displayio example used on other displays, but it uses Pillow instead. Go ahead

and copy it onto your Raspberry Pi and save it as epd_pillow_demo.py. Here's the

code for that.

SPDX-FileCopyrightText: 2019 Melissa LeBlanc-Williams for Adafruit Industries

SPDX-License-Identifier: MIT

"""

©Adafruit Industries Page 15 of 20

ePaper Display Shapes and Text demo using the Pillow Library.

"""

import digitalio

import busio

import board

from PIL import Image, ImageDraw, ImageFont

from adafruit_epd.il0373 import Adafruit_IL0373

from adafruit_epd.il91874 import Adafruit_IL91874 # pylint: disable=unused-import

from adafruit_epd.il0398 import Adafruit_IL0398 # pylint: disable=unused-import

from adafruit_epd.ssd1608 import Adafruit_SSD1608 # pylint: disable=unused-import

from adafruit_epd.ssd1675 import Adafruit_SSD1675 # pylint: disable=unused-import

from adafruit_epd.ssd1680 import Adafruit_SSD1680 # pylint: disable=unused-import

from adafruit_epd.ssd1681 import Adafruit_SSD1681 # pylint: disable=unused-import

from adafruit_epd.uc8151d import Adafruit_UC8151D # pylint: disable=unused-import

First define some color constants

WHITE = (0xFF, 0xFF, 0xFF)

BLACK = (0x00, 0x00, 0x00)

RED = (0xFF, 0x00, 0x00)

Next define some constants to allow easy resizing of shapes and colors

BORDER = 20

FONTSIZE = 24

BACKGROUND_COLOR = BLACK

FOREGROUND_COLOR = WHITE

TEXT_COLOR = RED

create the spi device and pins we will need

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

ecs = digitalio.DigitalInOut(board.CE0)

dc = digitalio.DigitalInOut(board.D22)

srcs = None

rst = digitalio.DigitalInOut(board.D27)

busy = digitalio.DigitalInOut(board.D17)

give them all to our driver

display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display

display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display

display = Adafruit_SSD1680(122, 250, # 2.13" HD Tri-color or mono display

display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display

display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display

display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display

display = Adafruit_UC8151D(128, 296, # 2.9" mono flexible display

display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display

display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display

display = Adafruit_IL0373(

 104,

 212, # 2.13" Tri-color display

 spi,

 cs_pin=ecs,

 dc_pin=dc,

 sramcs_pin=srcs,

 rst_pin=rst,

 busy_pin=busy,

)

IF YOU HAVE A 2.13" FLEXIBLE DISPLAY uncomment these lines!

display.set_black_buffer(1, False)

display.set_color_buffer(1, False)

IF YOU HAVE A 2.9" FLEXIBLE DISPLAY uncomment these lines!

display.set_black_buffer(1, True)

display.set_color_buffer(1, True)

display.rotation = 1

image = Image.new("RGB", (display.width, display.height))

©Adafruit Industries Page 16 of 20

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Draw a filled box as the background

draw.rectangle((0, 0, display.width - 1, display.height - 1), fill=BACKGROUND_COLOR)

Draw a smaller inner foreground rectangle

draw.rectangle(

 (BORDER, BORDER, display.width - BORDER - 1, display.height - BORDER - 1),

 fill=FOREGROUND_COLOR,

)

Load a TTF Font

font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf",

FONTSIZE)

Draw Some Text

text = "Hello World!"

(font_width, font_height) = font.getsize(text)

draw.text(

 (display.width // 2 - font_width // 2, display.height // 2 - font_height // 2),

 text,

 font=font,

 fill=TEXT_COLOR,

)

Display image.

display.image(image)

display.display()

Just like in the last example, the imports are done, but this time include the ImageDr

aw and ImageFont Pillow modules to draw some text this time.

import digitalio

import busio

import board

from PIL import Image, ImageDraw, ImageFont

from adafruit_epd.il0373 import Adafruit_IL0373

from adafruit_epd.il91874 import Adafruit_IL91874

from adafruit_epd.il0398 import Adafruit_IL0398

from adafruit_epd.ssd1608 import Adafruit_SSD1608

from adafruit_epd.ssd1675 import Adafruit_SSD1675

Next define some colors that can be used with Pillow. Since this demo can also run on

a Tri-color e-Ink, there are 3 colors defined.

WHITE = (0xFF, 0xFF, 0xFF)

BLACK = (0x00, 0x00, 0x00)

RED = (0xFF, 0x00, 0x00)

After that, the script creates some parameters that are easy to change. If you had a

smaller display for instance, you could reduce the FONTSIZE and BORDER paramete

rs. The BORDER will be the size in pixels of the green border between the edge of the

display and the inner purple rectangle. The FONTSIZE will be the size of the font in

points so that you can adjust it easily for different displays. You could play around

with the colors as well.

©Adafruit Industries Page 17 of 20

BORDER = 20

FONTSIZE = 24

BACKGROUND_COLOR = BLACK

FOREGROUND_COLOR = WHITE

TEXT_COLOR = RED

After that, the initializer and rotation sections are exactly the same as in the previous

example. Go ahead and adjust the EPD initializer as explained in the previous

example. After that, the script will create an image with the dimensions and use that

to create a draw object. The draw object will have all of the drawing functions.

image = Image.new('RGB', (display.width, display.height))

draw = ImageDraw.Draw(image)

Next the script clears whatever is on the screen by drawing a rectangle using the BA

CKGROUND_COLOR that takes up the full screen.

draw.rectangle((0, 0, display.width, display.height), fill=BACKGROUND_COLOR)

Next the script will draw an inner rectangle using the FOREGROUND_COLOR . the BORD

ER parameter is used to calculate the size and position of where to draw the

rectangle.

draw.rectangle((BORDER, BORDER, display.width - BORDER - 1, display.height - BORDER

- 1), fill=FOREGROUND_COLOR)

Next the script will load a TTF font. The DejaVuSans.ttf font should come

preloaded on your Pi in the location in the code. You also make use of the FONTSIZE

parameter that we mentioned earlier.

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf',

FONTSIZE)

Now the script will draw the text Hello World onto the center of the display. You may

recognize the centering calculation was the same one we used to center crop the

image in the previous example. In this example though, the script will get the font size

values using the getsize() function of the font object.

text = "Hello World!"

(font_width, font_height) = font.getsize(text)

One thing to note is that on monochrome displays, the RED will show up

as BLACK.

©Adafruit Industries Page 18 of 20

draw.text((display.width//2 - font_width//2, display.height//2 - font_height//2),

text, font=font, fill=TEXT_COLOR)

Finally, just like before, the script will display the image.

display.image(image)

display.display()

Now go to the command prompt on your Raspberry Pi and run the script with the

following command:

python3 epd_pillow_demo.py

After a few seconds, your display should show this image:

Raspberry Pi E-Ink Weather Station using

Python

Raspberry Pi E-Ink Weather Station using Python (https://adafru.it/MMD)

Raspberry Pi E-Ink Event Calendar using

Python

Raspberry Pi E-Ink Event Calendar using Python (https://adafru.it/MME)

©Adafruit Industries Page 19 of 20

https://learn.adafruit.com/raspberry-pi-e-ink-weather-station-using-python
https://learn.adafruit.com/raspberry-pi-e-ink-desk-calendar-using-python

Downloads

Files

SSD1675 driver datasheet (https://adafru.it/M5C)

EagleCAD files on GitHub (https://adafru.it/MPD)

Fritzing object in Adafruit Fritzing Library (https://adafru.it/c7M)

Schematic

Fab Print

•

•

•

©Adafruit Industries Page 20 of 20

https://cdn-learn.adafruit.com/assets/assets/000/092/748/original/SSD1675_0.pdf?1593792604
https://github.com/adafruit/Adafruit-2-13in-eInk-Bonnet-PCB
https://github.com/adafruit/Fritzing-Library/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Adafruit:

 4687

https://www.mouser.com/adafruit
https://www.mouser.com/access/?pn=4687

	Adafruit 2.13" Monochrome E-Ink Bonnet for Raspberry Pi
	Table of Contents
	Overview
	Usage
	Raspberry Pi E-Ink Weather Station using Python
	Raspberry Pi E-Ink Event Calendar using Python
	Downloads

	Overview
	Usage
	Attaching
	Install CircuitPython
	Download font5x8.bin
	DejaVu TTF Font
	Pillow Library
	EPD Library Usage
	Button Usage
	Image Drawing with Pillow
	Adding Dithering for Monochrome displays

	Drawing Shapes and Text with Pillow
	Raspberry Pi E-Ink Weather Station using Python
	Raspberry Pi E-Ink Event Calendar using Python
	Downloads
	Files
	Schematic
	Fab Print

