

Octal Industrial Sink/Source Digital Input

MAX22196

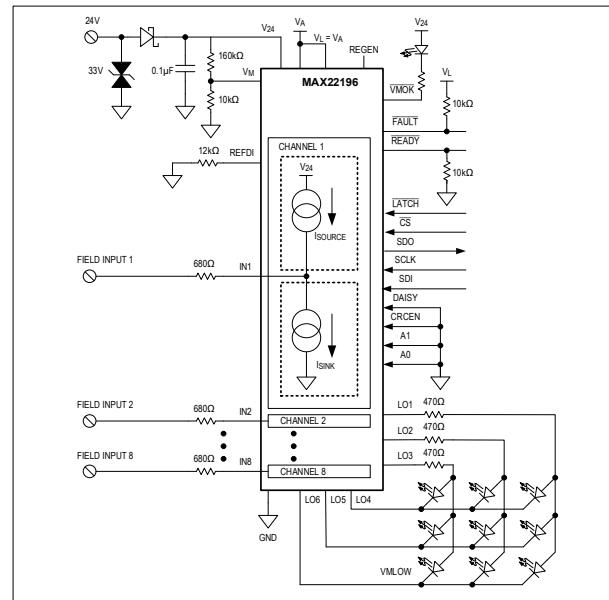
Product Highlights

- Software Configurable
 - Eight Inputs Individually Configurable as Sink or Source
 - Type 1/3, Type 2, TTL and Hi-Z (HTL) Modes
 - Wide Resistor-Settable Accurate Input Current Ranging from 0.5mA to 6.75mA
 - Programmable Glitch Filters
 - Extensive Diagnostics (Supply Voltage Monitoring, Temperature Alarms, PCB Fault Alarms, Thermal Shutdown)
 - Optional 16-bit Down-Counter Mode per Input
 - Addressable or Daisy-Chain SPI to Reduce Isolation Channels
- Robust Solution
 - IEC 61000-4-2 ESD Airgap $\pm 15\text{kV}$ and Contact $\pm 8\text{kV}$ with Minimum 680Ω Pulse Resistor at Field Inputs
 - IEC 61000-4-5 Surge $\pm 1.2\text{kV}/42\Omega$ with Minimum 680Ω Pulse Resistor at Field Inputs
 - Cyclic Redundancy Check (CRC) Error Detection on SPI
 - -40°C to $+125^\circ\text{C}$ Operating Temperature
- Low-Power Dissipation
 - Operates from 8V to 36V Field Supply
 - Low-Supply Current 2mA Maximum
- Compact Solution
 - Integrated 5V, 20mA Linear Regulator
 - 2.5V to 5.5V Logic Interface
 - LED Driver Matrix or GPO Outputs
 - 5mm x 5mm 32-Pin TQFN Package

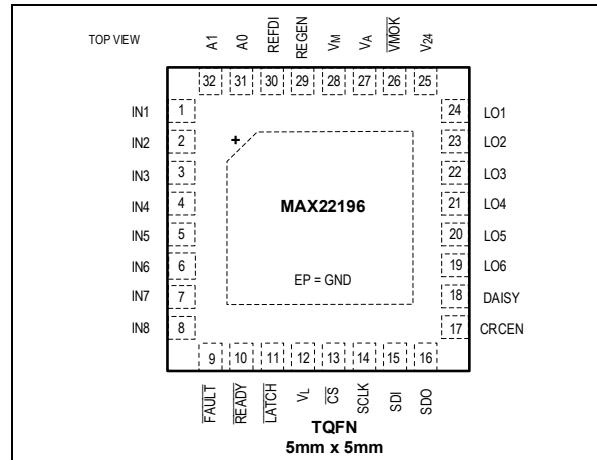
Key Applications

- Programmable Logic Controllers
- Factory Automation
- Process Control

The MAX22196 is an industrial octal digital input that translates eight industrial 24V or TTL level inputs to logic level outputs. The device has a serial interface allowing configuration and reading of serialized data through SPI.


The input channels are individually configurable as sinking (p-type) or sourcing (n-type) inputs. Current limiters on each digital input minimize power dissipation while ensuring compliance with the IEC 61131-2 standard. With a single current-setting resistor, the inputs are individually configurable for Type 1/3, Type 2,

TTL or HTL (high-impedance 24V levels). The current sinks or sources can be individually disabled.


Every input channel has a programmable glitch/debounce filter, and every input channel has an optional 16-bit down-counter.

The MAX22196 can be powered from a field supply from 8V up to 36V for sink/source operation and has an integrated 5V linear regulator that can provide up to 20mA of load current.

Simplified Application Diagram

Pin Description

[Ordering Information](#) appears at end of data sheet.

Absolute Maximum Ratings

V_{24} to GND	-0.3V to +70V
$IN_{_}$ to GND	-40V to +40V
$(V_{24} - IN_{_})$ to GND	-40V to +70V
$VMOK$ to GND	-0.3V to $(V_{24} + 0.3)$ V
V_A, V_L to GND	-0.3V to +6V

 V_M to GND

$V_A \geq V_{A_UVLO}$	-0.3V to $(V_A + 0.3)$ V
$V_A < V_{A_UVLO}$	-0.3V to $(\text{Min}(3.3, V_{24}) + 0.3)$ V

REGEN to GND

$V_A \geq V_{A_UVLO}$	-0.3V to $(V_A + 0.3)$ V
$V_A < V_{A_UVLO}$	-0.3V to $(\text{Min}(3.3, V_{24}) + 0.3)$ V

Digital Pins

\overline{CS} , SCLK, SDI, \overline{LATCH} to GND	-0.3V to +6V
A1, A0 to GND	-0.3V to $(V_A + 0.3)$ V
DAISY, CRCEN to GND	-0.3V to +6V

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

PACKAGE TYPE	32 TQFN
Package Code	T3255+8C
Outline Number	21-0140
Land Pattern Number	90-0013
THERMAL RESISTANCE, SINGLE-LAYER BOARD	
Junction-to-Ambient (θ_{JA})	47°C/W
Junction-to-Case Thermal Resistance (θ_{JC})	1.7°C/W
THERMAL RESISTANCE, FOUR-LAYER BOARD	
Junction-to-Ambient (θ_{JA})	29°C/W
Junction-to-Case Thermal Resistance (θ_{JC})	1.7°C/W

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to [www.maximintegrated.com/thermal-tutorial](#).

For the latest package outline information and land patterns (footprints), go to [www.maximintegrated.com/packages](#). Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Electrical Characteristics

($V_{24} = +8V$ to $+36V$, $V_L = +2.5V$ to $+5.5V$, $V_A = +3.0V$ to $+5.5V$, $T_A = -40^\circ C$ to $+125^\circ C$, unless otherwise noted. Typical values are at $V_{24} = +24V$, $V_L = +3.3V$, $V_A = +5V$, $T_A = +25^\circ C$) ([Note 1](#))

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
V_{24} Power Supply (Device Powered by V_{24} Pin)						
V_{24} Supply Voltage	V_{24}	Sink and TTL configuration	8	65	65	V
		Source configuration	8	36	36	V
V_{24} Undervoltage Lockout Threshold	V_{24_UVLO}	REGEN shorted to GND, $V_A = V_L = 5V$	V_{24} rising	7	7.45	7.75
			V_{24} falling	6.5	7	7.5
V_{24} UVLO Threshold Hysteresis	V_{24_UVHYS}			0.5		V
V_{24} Supply Current	I_{24SNK_V24PW} R	$V_{24} = 36V$, REGEN open, GPO bit in the GLOBLCFG register = 1, all logic outputs unloaded, all IN_floating and in sink 1x DI mode		1.4	2	mA
	I_{24SNK_VAPW} R	$V_{24} = 36V$, $V_A = 5.5V$, REGEN shorted to GND, GPO bit in the GLOBLCFG register = 1, all logic outputs unloaded, all IN_floating and in sink 1x DI mode		0.1	0.2	
	I_{24SRC_V24PW} R	$V_{24} = 36V$, REGEN open, GPO bit in the GLOBLCFG register = 1, all logic outputs unloaded, all IN_floating and in source 1x DI mode		2.6	4	
	I_{24SRC_VAPW} R	$V_{24} = 36V$, $V_A = 5.5V$, REGEN shorted to GND, GPO bit in the GLOBLCFG register = 1, all logic outputs unloaded, all IN_floating and in source 1x DI mode		1.27	2	
V_A Linear Regulator (REGEN Open)						
V_A Output Voltage	V_A	$I_A_LOAD = 1mA$, $8V \leq V_{24} \leq 65V$	4.7	5	5.3	V
V_A Line Regulation	ΔV_A_LNR	$I_A_LOAD = 1mA$, $V_{24} = 12V$ to $24V$		1		mV
V_A Load Regulation	ΔV_A_LD	$V_{24} = 12V$, $I_A_LOAD = 1mA$ to $10mA$		4		mV
V_A Short-Circuit Current	I_A_SC	$V_{24} = 12V$, V_A shorted to GND	20	28	45	mA
V_A Power Supply (REGEN Shorted to GND, Device Powered by V_A Pin, $V_{24} = V_A$ to $65V$)						
V_A Supply Voltage	V_A		3	5.5	5.5	V
V_A Supply Current	I_A_SNK	$V_A = 5.5V$, $V_{24} = 36V$, GPO bit in the GLOBLCFG register = 1, all logic outputs unloaded, all IN_floating and in sink 1x DI mode		1.3	2	mA
	I_A_SRC	$V_A = 5.5V$, $V_{24} = 36V$, GPO bit in the GLOBLCFG register = 1, all logic outputs unloaded, all IN_floating and in source 1x DI mode		1.3	2	
V_A UVLO Threshold	V_A_UVLO	V_A rising	2.3	2.9	2.9	V
		V_A falling	2.1	2.85	2.85	
V_A UVLO Threshold Hysteresis	V_A_UVHYS			0.074		V
REGEN Threshold	V_{TH_REGEN}		0.3	3.3	3.3	V
REGEN Pullup Resistor	R_{LK_REGEN}	$V_A = 5.5V$	200			k Ω
V_L Power Supply						

($V_{24} = +8V$ to $+36V$, $V_L = +2.5V$ to $+5.5V$, $V_A = +3.0V$ to $+5.5V$, $T_A = -40^\circ C$ to $+125^\circ C$, unless otherwise noted. Typical values are at $V_{24} = +24V$, $V_L = +3.3V$, $V_A = +5V$, $T_A = +25^\circ C$) ([Note 1](#))

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
V_L Supply Voltage	V_L		2.5		5.5	V
V_L Supply Current	I_L	No switching, logic inputs static, $V_L = 5.5V$, $\overline{CS} = \overline{LATCH} = V_L$		15	30	μA
V_L UVLO Threshold	V_{L_UVLO}	$V_A = 5V$, REGEN shorted to GND	0.9		1.8	V
		V_L rising	0.9		1.75	
V_L UVLO Threshold Hysteresis	V_{L_UVHYS}			0.061		V
READY Timing						
READY Delay	t_{DRDY_VARISE}	Delay from V_A rising above UVLO to READY low, REGEN shorted to GND, $V_L = 5V$, pulldown current 5mA		1		ms
	t_{DRDY_VLRISE}	Delay from V_L rising above UVLO to READY low, REGEN shorted to GND, $V_A = 5V$, pulldown current 5mA		1		
V_M Monitoring Comparator						
External V_M Monitor Alarm, On to Off	$V_{EXTVMOFF}$	V_M pin rising, bit VMLOW in the FAULT1 register goes to 0, \overline{VMOK} goes to low and LED9 (LEDINT bit in the GLOBLCFG register = 1) goes to 1	0.778	0.81	0.842	V
External V_M Monitor Alarm, Off to On	$V_{EXTVMON}$	V_M pin falling, bit VMLOW in the FAULT1 register goes to 1, \overline{VMOK} goes to high and LED9 (LEDINT bit in the GLOBLCFG register = 1) goes to 0	0.751	0.78	0.814	V
V_M Glitch Filter	t_{FILTER_VM}	V_M glitch length that is filtered		3		μs
V_M Leakage Current	I_{LEAK_VM}	$V_M = 5.5V$, $V_A = 5.5V$	-1		1	μA
VMOK Leakage Current	I_{LEAK_VMOK}	$\overline{VMOK} = 36V$, $V_{24} = 36V$, REGEN open	-1		1	μA
VMOK Output Logic-Low Voltage	$V_{\overline{VMOK_OL}}$	$I_{LOAD} = 5mA$ (Note 2)			0.4	V
Thermal Management						
Temperature Alarm	T_{ALRM}	Temperature rising until TEMPALM bit in the FAULT1 register is 1, REGEN shorted to GND, $V_A = 5V$, $V_{24} = 8V$		115		$^\circ C$
Temperature Alarm Hysteresis	T_{ALRM_HYS}	Temperature falling until TEMPALM bit in the FAULT1 register is 0		10		$^\circ C$
Thermal Shutdown	$T_{OTSHDN1}$	Temperature rising until OTSHDN1 bit in the FAULT1 register is 1, REGEN shorted to GND, $V_A = 5V$, $V_{24} = 8V$		150		$^\circ C$
Thermal Shutdown Hysteresis	$T_{OTSHDN1_HYS}$	Temperature falling until OTSHDN1 bit in the FAULT1 register is 0		10		$^\circ C$
System Thermal Shutdown Threshold	$T_{OTSHDN2}$	Temperature rising until OTSHDN2 bit in the FAULT2 register is 1, REGEN shorted to GND, $V_A = 5V$, $V_{24} = 8V$		165		$^\circ C$
System Thermal Shutdown Hysteresis	$T_{OTSHDN2_HYS}$	Temperature falling until OTSHDN2 bit in the FAULT2 register is 0		10		$^\circ C$
PCB Fault Detection						
REFDI Pin Short Alarm	I_{RFDIS}	Increasing current at pin REFDI until bit RFDIS in the FAULT2 register is 1	106	147	180	μA
		Decreasing current at pin REFDI until bit RFDIS in the FAULT2 register is 0	100	132	170	

($V_{24} = +8V$ to $+36V$, $V_L = +2.5V$ to $+5.5V$, $V_A = +3.0V$ to $+5.5V$, $T_A = -40^\circ C$ to $+125^\circ C$, unless otherwise noted. Typical values are at $V_{24} = +24V$, $V_L = +3.3V$, $V_A = +5V$, $T_A = +25^\circ C$) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
REFDI Pin Short Hysteresis	I_{REFDIS_HYS}			15		μA
REFDI Pin Open Alarm	I_{REFDIO}	Decreasing current at pin REFDI until bit RFDIO in the FAULT2 register is 1	1.8	3	4	μA
		Increasing current at pin REFDI until bit RFDIO in the FAULT2 register is 0	2.5	4	5	
REFDI Pin Open Hysteresis	I_{REFDIO_HYS}			1		μA
REFDI Current Setting						
REFDI Pin Voltage	V_{REFDI}		0.585	0.61	0.635	V
REFDI Resistor Range	R_{REFDI}		12		55	$k\Omega$
Input Current Set Range Min	$I_{IN_TY1/3_MIN}$	$R_{REFDI} = 55k\Omega$, Sink 1x DI mode and Source 1x DI mode	0.43	0.5	0.59	mA
Input Current Set Range Max	$I_{IN_TY1/3_MAX}$	$R_{REFDI} = 12k\Omega$, Sink 1x DI mode and Source 1x DI mode		2.25		mA
Input Current 3x Scale Factor	$SCLF$	$R_{REFDI} = 12k\Omega$, Sink 3x DI mode and Source 3x DI mode		3.0		
Inputs (IN1–IN8)						
Type 1/3 Digital Input						
On-State Input Current in Sink Mode (Type 1/3)	$I_{IN_TY1/3SK}$	Sink 1x DI mode, $R_{REFDI} = 12k\Omega$, $6V \leq V_{IN} \leq 36V$	2.1	2.25	2.65	mA
On-State Input Current in Source Mode (Type 1/3)	$I_{IN_TY1/3SR}$	Source 1x DI mode, $R_{REFDI} = 12k\Omega$, $V_{24} = 36V$, $(V_{24} - 36V) \leq V_{IN} \leq (V_{24} - 6V)$ (Note 2)	-2.65	-2.25	-2.1	mA
Type 2 Digital Input						
On-State Input Current in Sink Mode (Type 2)	I_{IN_TY2SK}	Sink 3x DI mode, $R_{REFDI} = 12k\Omega$, $HITHR_ = 0$, $3V \leq V_{IN} \leq 36V$	6.25	6.7	7.7	mA
On-State Input Current in Source Mode (Type 2)	I_{IN_TY2SR}	Source 3x DI mode, $R_{REFDI} = 12k\Omega$, $V_{24} = 36V$, $HITHR_ = 0$, $(V_{24} - 36V) \leq V_{IN} \leq (V_{24} - 3V)$ (Note 2)	-7.7	-7	-6.4	mA
High-Impedance Mode						
Input Current Hi-Z Mode	I_{IN_HIZ}	Sink off DI mode, $V_{IN} = 36V$, $V_{24} = 36V$, REGEN open	$HITHR_ = 1$	10	45	70
			$HITHR_ = 0$			40
		Source off DI mode, $V_{IN} = 0V$, $HITHR_ = 1$, $V_{24} = 36V$, REGEN open (Note 2)		-70		-10
		TTL off mode, $V_{IN} = 5.5V$, $V_{24} = 3V$, REGEN shorted to GND, $V_A = 3V$			2.6	15
Threshold Voltages						
On Threshold Voltage in Sink Mode	V_{TONSK_L}	Sink mode, $HITHR_ = 0$, V_{IN} rising	3.5	4	4.3	V
	V_{TONSK_H}	Sink mode, $HITHR_ = 1$, V_{IN} rising	6.6	7	7.6	
Off Threshold Voltage in Sink Mode	V_{TOFFSK_L}	Sink mode, $HITHR_ = 0$, V_{IN} falling	2.7	3	3.3	V
	V_{TOFFSK_H}	Sink mode, $HITHR_ = 1$, V_{IN} falling	5.6	6	6.5	
On Threshold Voltage in Source Mode	V_{TONSC_L}	Source mode, $HITHR_ = 0$, $V_{24} = 8V$ to $36V$, V_{IN} falling	$V_{24} - 4.3$	$V_{24} - 4$	$V_{24} - 3.5$	V
	V_{TONSC_H}	Source mode, $HITHR_ = 1$, $V_{24} = 8V$ to $36V$, V_{IN} falling	$V_{24} - 7.4$	$V_{24} - 7$	$V_{24} - 6.4$	

($V_{24} = +8V$ to $+36V$, $V_L = +2.5V$ to $+5.5V$, $V_A = +3.0V$ to $+5.5V$, $T_A = -40^\circ C$ to $+125^\circ C$, unless otherwise noted. Typical values are at $V_{24} = +24V$, $V_L = +3.3V$, $V_A = +5V$, $T_A = +25^\circ C$) ([Note 1](#))

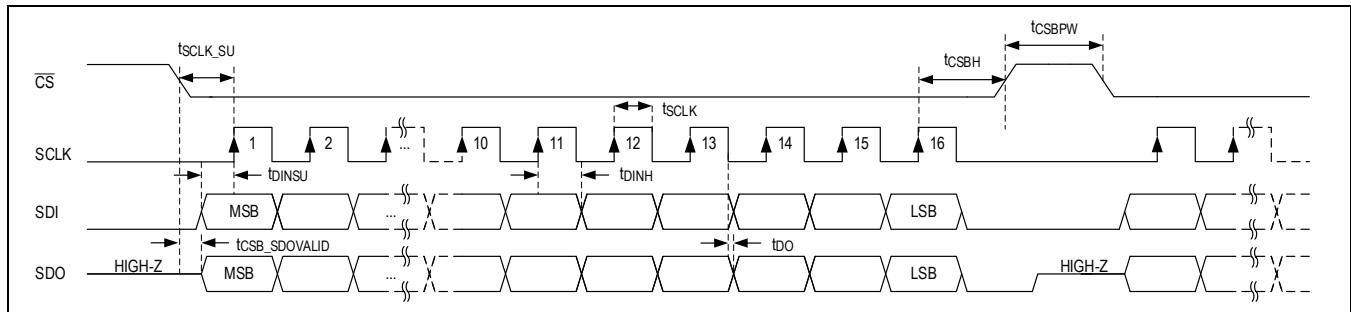
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Off Threshold Voltage in Source Mode	V_{TOFFSC_L}	Source mode, $HITHR_ = 0$, $V_{24} = 8V$ to $36V$, V_{IN} rising	$V_{24} - 3.15$	$V_{24} - 2.9$	$V_{24} - 2.55$	V
	V_{TOFFSC_H}	Source mode, $HITHR_ = 1$, $V_{24} = 8V$ to $36V$, V_{IN} rising	$V_{24} - 6.3$	$V_{24} - 6$	$V_{24} - 5.4$	
V_{IN} Threshold Hysteresis	V_{IN_HYS}	HITHR_ don't care		0.8		V
Input High in TTL Mode	V_{IH_TTL}	TTL mode, REGEN shorted to GND, $V_{24} = V_A$		1.5	1.8	V
Input Low in TTL Mode	V_{IL_TTL}	TTL mode, REGEN shorted to GND, $V_{24} = V_A$		1	1.3	V
Input Threshold Hysteresis in TTL Mode	V_{TTL_HYS}	TTL mode		0.5		V
Input Filters						
V_{IN} Sampling Rate	f_{OSC}	$V_{24} = V_A$, REGEN shorted to GND		1		MHz
Minimum Detectable Field Input Pulse Width	t_{PW}	Filter bypass, no external capacitors on pins IN1-IN8		3		μs
Input Filter Delay	t_{FLT_DELAY}	Bypass, $FLTEN_ = 0$ in the CNFG_register		2		μs
		$DELAY_ [2:0] = 0$		50		
		$DELAY_ [2:0] = 1$		0.1		
		$DELAY_ [2:0] = 2$		0.4		
		$DELAY_ [2:0] = 3$		0.8		ms
		$DELAY_ [2:0] = 4$		1.6		
		$DELAY_ [2:0] = 5$		3.2		
		$DELAY_ [2:0] = 6$		12.8		
		$DELAY_ [2:0] = 7$		20		
Input Filter Delay Tolerance		Filters and sampling clock tolerance for $DELAY_ [2:0]$		-10.16	+10.16	%
LED Matrix/GPO Pins (LO_)						
Output Logic-High Voltage	V_{OH_LED}	$I_{LOAD} = -5mA$ (Note 2)		$V_A - 0.4$		V
Output Logic-Low Voltage	V_{OL_LED}	$I_{LOAD} = 5mA$ (Note 2)			0.4	V
Output Off Leakage	I_{LEAK_LED}	$V_A = 5.5V$		-1	+1	μA
LED Matrix Scan Rate	f_{LED}			0.33		kHz
Logic Pins (LATCH, CS, SCLK, SDI, SDO, READY, FAULT, CRCEN, DAISY, A0, A1)						
Input Logic-High Voltage	V_{IH}			$0.7 \times V_L$		V
Input Logic-Low Voltage	V_{IL}				$0.3 \times V_L$	V
Input Hysteresis	V_{HYS}			0.5		mV
Input Logic Leakage Current	I_{IL}	$V_L = V_A = 5.5V$		-1	1	μA
Input Pullup Resistance	R_{PU}	$CS = LATCH = 0V$, $V_L = V_A = 5.5V$, REGEN shorted to GND		195		$k\Omega$
Input Pulldown Resistance	R_{PD}	$A0, A1, CRCEN, DAISY, SDI, SCLK, V_L = V_A = 5.5V$, REGEN shorted to GND		195		$k\Omega$

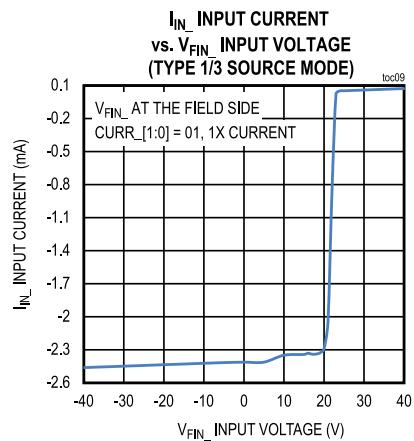
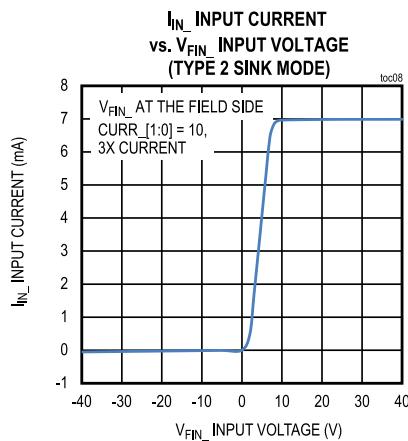
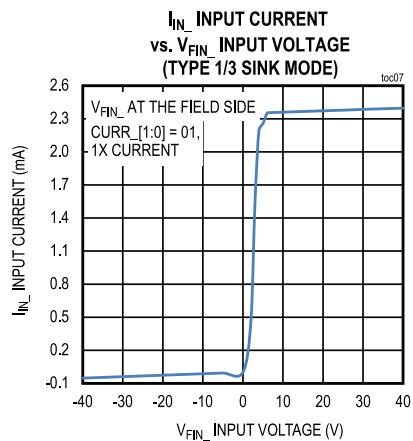
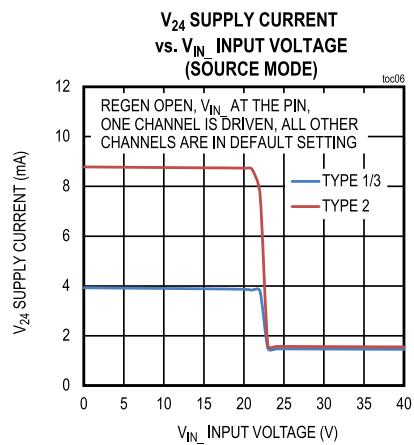
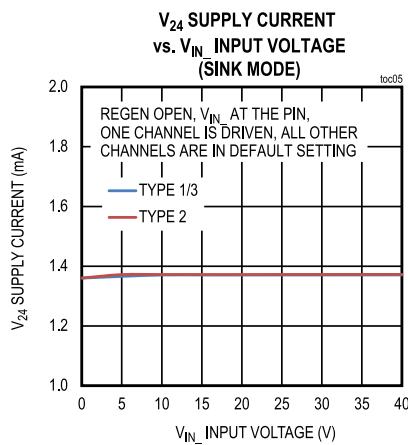
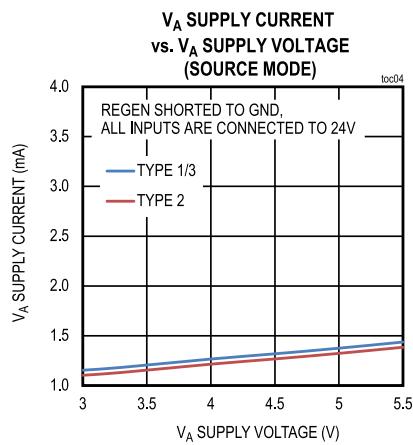
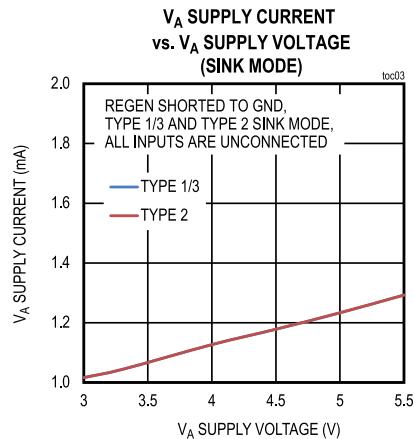
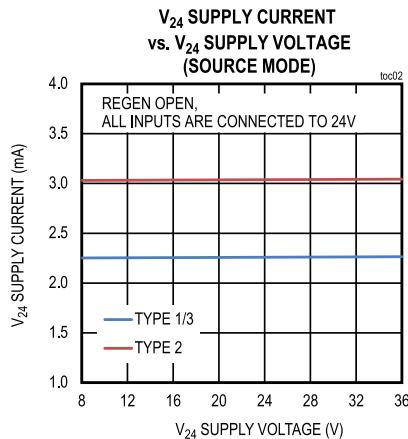
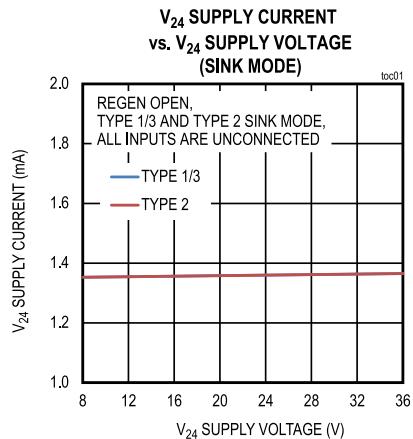
($V_{24} = +8V$ to $+36V$, $V_L = +2.5V$ to $+5.5V$, $V_A = +3.0V$ to $+5.5V$, $T_A = -40^\circ C$ to $+125^\circ C$, unless otherwise noted. Typical values are at $V_{24} = +24V$, $V_L = +3.3V$, $V_A = +5V$, $T_A = +25^\circ C$) ([Note 1](#))

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
Output Logic-High Voltage	V_{OH}	SDO, READY, $I_{LOAD} = -5mA$, $V_L = 2.5V$ to $5.5V$, $V_A = 5V$, REGEN shorted to GND (Note 2)		$V_L - 0.4$		V		
Output Logic-Low Voltage	V_{OL}	$I_{LOAD} = 5mA$, REGEN shorted to GND (Note 2)	$V_L = 2.5V$ to $5.5V$, $V_A = 5V$ for SDO	0.4		0.4	V	
			$V_A = 3V$ to $5.5V$ for FAULT	0.4				
Output Open-Drain Off Leakage Current	I_{OLEAK}			-1	1		μA	
Dynamic Characteristics								
IN_Sampling Rate	f_S	$V_{24} = V_A = 5V$, REGEN shorted to GND		1		MHz		
IN_Latching Delay	t_{LATCH}	From LATCH or CS falling until input data is frozen		40		ns		
SPI Timing Characteristics								
SCLK Frequency	f_{SCLK}			12		MHz		
SCLK Pulse Duration	t_{SCLK}	(Figure 1)		38		ns		
CS High Pulse Duration	t_{CSBPW}	(Figure 1)		1.11		μs		
Minimum Data Setup Time	t_{DINSU}	(Figure 1)		10		ns		
Minimum Data Hold Time	t_{DINH}	(Figure 1)		10		ns		
Minimum CS Hold Time	t_{CSBH}	(Figure 1)		38		ns		
CS Falling Edge to First Rising SCLK Edge	t_{SCLK_SU}	(Figure 1)		40		ns		
Maximum SCLK to SDO Output Valid Time	t_{DO}	(Figure 1)		30		ns		
Maximum CS to SDO Output Valid Time	$t_{CSB_SDOVALID}$	(Figure 1)		40		ns		
SDO Rise/Fall Time	$t_{R/F}$			3.5		ns		

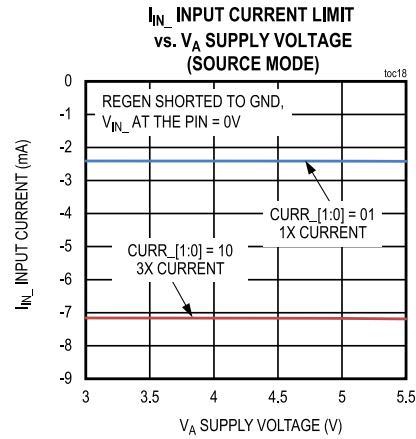
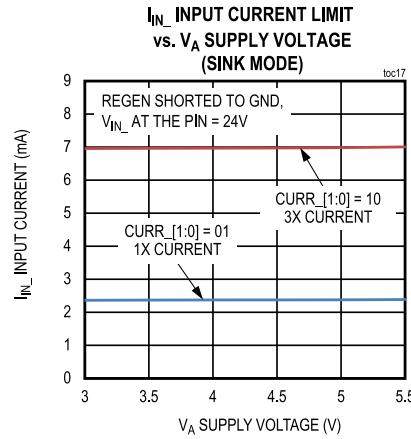
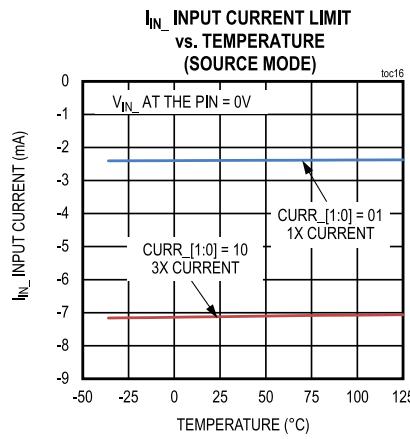
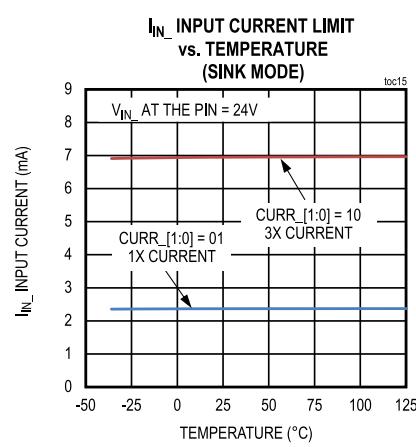
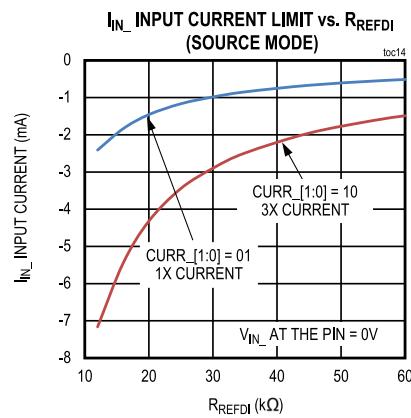
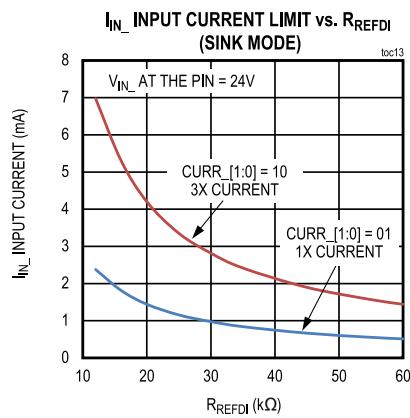
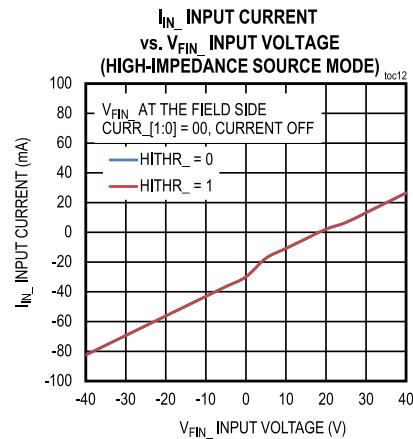
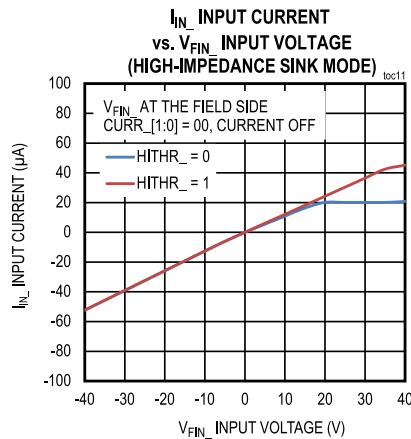
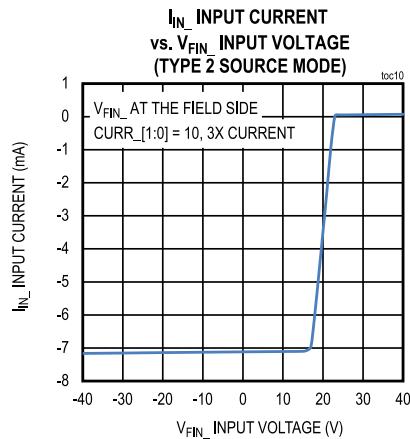
Note 1: All devices are 100% production tested at $T_A = +25^\circ C$. Specifications over temperature are guaranteed by design and characterization.

Note 2: All currents into the device are positive. All currents out of the device are negative.

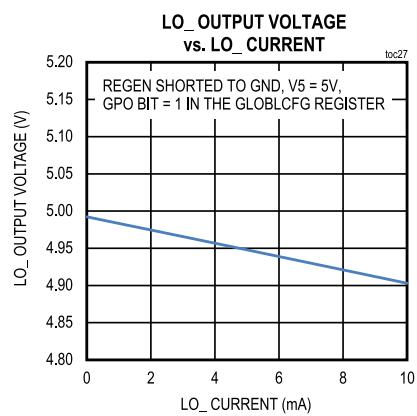
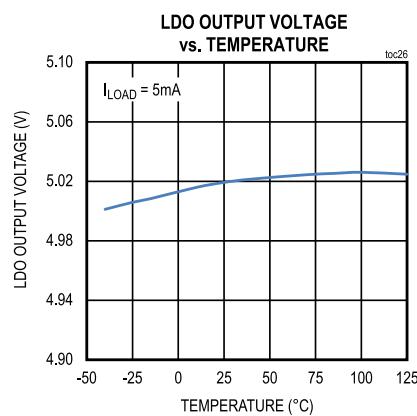
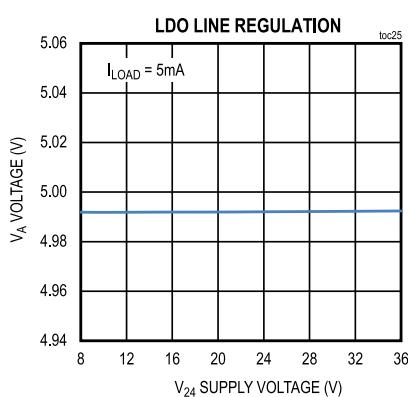
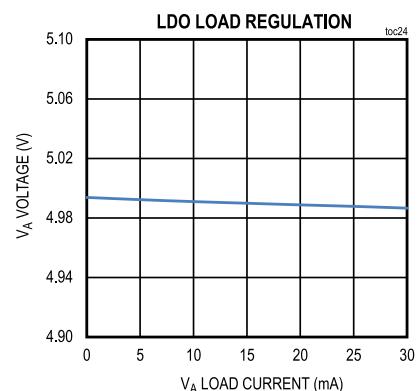
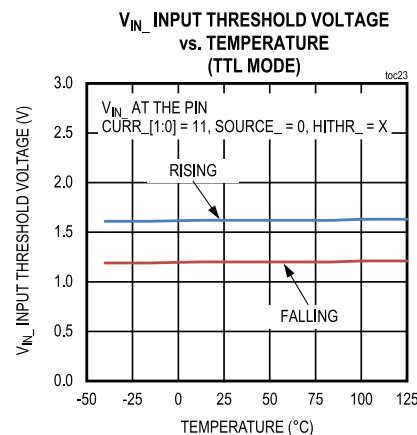
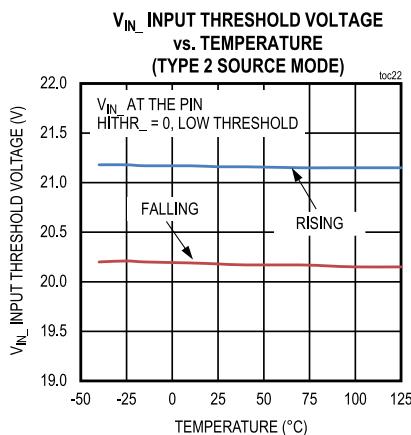
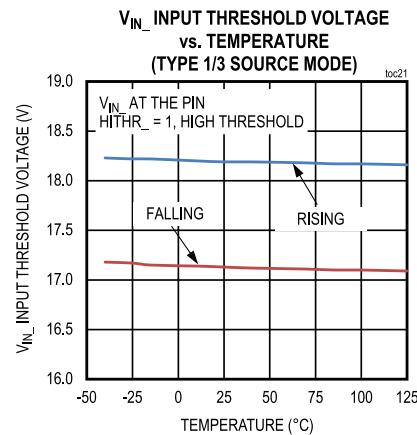
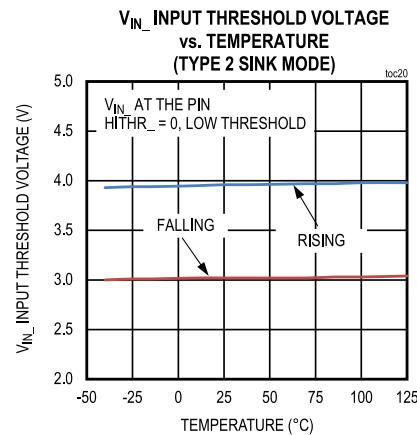
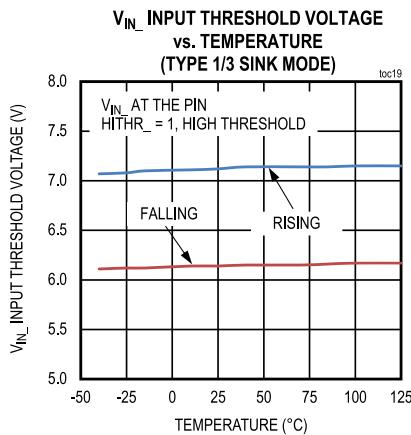

Timing Diagram

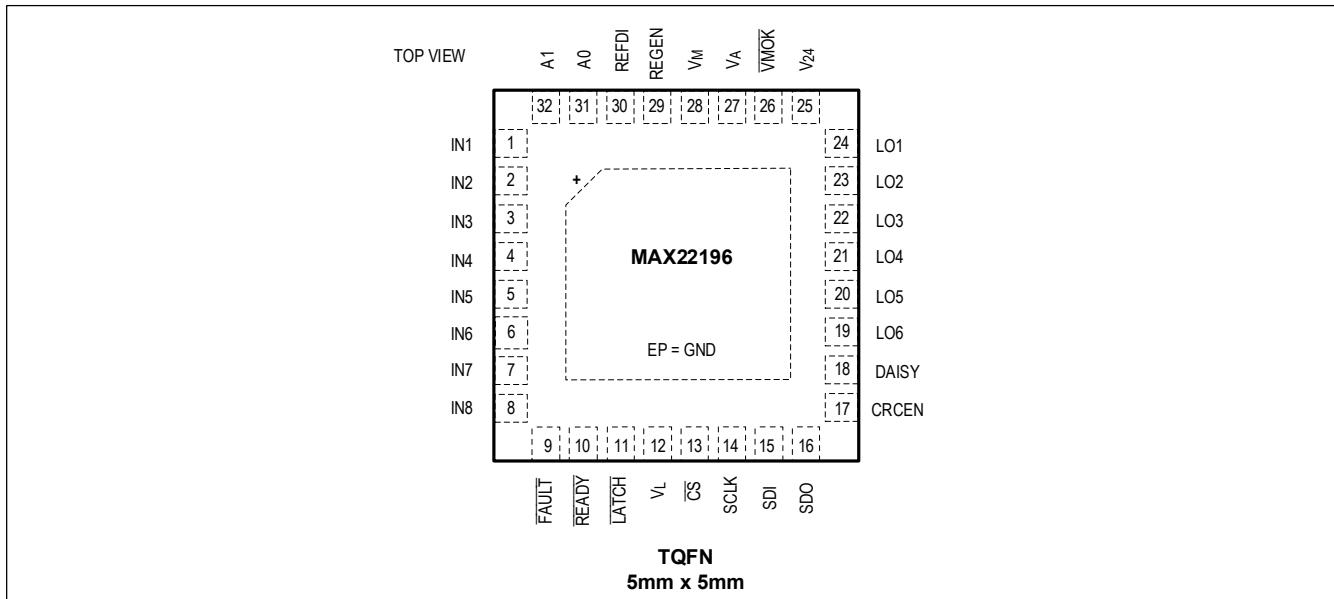









Figure 1. SPI Timing Diagram

ESD Protection(T_A = +25°C)










PARAMETER	SYMBOL	CONDITIONS	VALUE	UNITS
ESD		Human Body Model, All Pins	±2	kV

Typical Operating Characteristics










($V_{24} = +24V$, REGEN = GND, $V_A = +5V$, $V_L = +3.3V$, $R_{REFDI} = 12k\Omega$, $R_{IN_} = 680\Omega$, $V_{FIN_}$ = voltage measured at the field side, $V_{IN_}$ = voltage measured at the pin, $T_A = +25^\circ C$, unless otherwise noted.)


($V_{24} = +24V$, REGEN = GND, $V_A = +5V$, $V_L = +3.3V$, $R_{REFDI} = 12k\Omega$, $R_{IN_} = 680\Omega$, $V_{FIN_}$ = voltage measured at the field side, $V_{IN_}$ = voltage measured at the pin, $T_A = +25^\circ C$, unless otherwise noted.)

($V_{24} = +24V$, REGEN = GND, $V_A = +5V$, $V_L = +3.3V$, $R_{REFDI} = 12k\Omega$, $R_{IN} = 680\Omega$, V_{FIN} = voltage measured at the field side, V_{IN} = voltage measured at the pin, $T_A = +25^\circ C$, unless otherwise noted.)

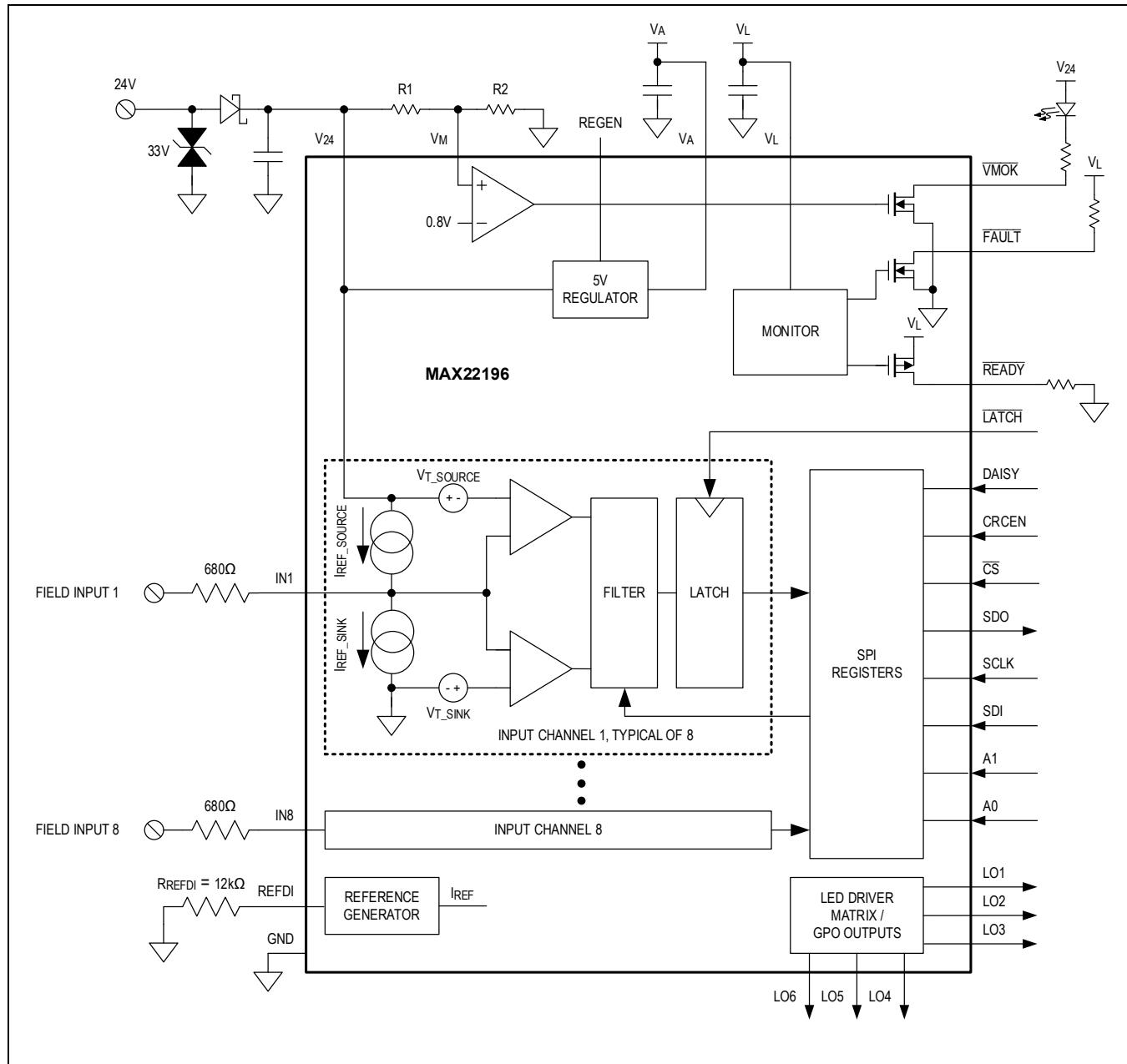
Pin Configurations

Pin Descriptions

PIN	NAME	FUNCTION	REF SUPPLY	Type
POWER SUPPLIES				
25	V ₂₄	24V field supply. Bypass to GND with a 1 μ F capacitor. In sink and TTL modes, external 24V field supply is not necessary. See Power Supply section for details.		Power
27	V _A	5V linear regulator output (REGEN pin unconnected) or 3V to 5.5V supply input (REGEN pin shorted to GND). The MAX22196 can optionally be powered only from V _A in sink and TTL modes (V ₂₄ shorted to V _A). Bypass V _A to GND with 1 μ F capacitor.		Power
29	REGEN	V _A Regulator Enable Input. Connect REGEN to GND to disable V _A regulator. Leave REGEN open (internally pulled up) to enable V _A regulator.	V _A	Digital Input
12	V _L	2.5V to 5.5V Logic Interface Supply. Bypass V _L to GND with a 0.1 μ F capacitor. Make sure V _L is always lower than or equal to V _A .		Power
28	V _M	V _M is the input voltage to a comparator that can be used for supervising V ₂₄ or other supply voltage. The V _M comparator trip voltage is 0.81V (rising, typical) or 0.78V(falling, typical), and voltage scaling can be achieved using an external resistor-divider.	V _A	Analog Input
26	VMOK	Active-Low, Low-Side, Open-Drain Output. VMOK goes low when the V _M input voltage rises to exceed 0.81V (typical), and goes high when the V _M input voltage falls below 0.78V (typical). Connect a pullup resistor from VMOK to a supply voltage of up to V ₂₄ . An LED can be used in series to indicate a good field supply condition.	V ₂₄	Digital Output
EP	GND	Ground return for all field inputs and all power supplies.	GND	
DIGITAL INPUT PINS				
1, 2, 3, 4, 5, 6, 7, 8	IN1-IN8	Field Inputs. Place a 680 Ω resistor between the field input and IN_ pin. See the Detailed Description section for details.	V ₂₄	Sink or Source Inputs
SPI INTERFACE				

9	<u>FAULT</u>	Active-Low, Low-Side, Open-Drain Fault Indicator. <u>FAULT</u> goes low to indicate that one or more of the flags in the FAULT registers have been set. Connect a pullup resistor from <u>FAULT</u> to <u>V_L</u> .	VL	Digital Output
10	<u>READY</u>	Active-Low, High-Side, Open-Drain Output. <u>READY</u> goes low when <u>V_A</u> and <u>V_L</u> are both above their respective UVLO thresholds, indicating that the MAX22196 is powered up and ready for operation. Connect a pulldown resistor from <u>READY</u> to GND.	VL	Digital Output
11	<u>LATCH</u>	Both <u>LATCH</u> and <u>CS</u> control data latching at the input of the serializer (after the inputs). The latch is transparent when both <u>CS</u> and <u>LATCH</u> are high. The data at the input of the serializer is frozen on the falling edge of either <u>LATCH</u> or <u>CS</u> . <u>LATCH</u> is typically used to synchronize input channel sampling across multiple MAX22196 devices. <u>LATCH</u> has a weak internal pullup.	VL	Digital Input
13	<u>CS</u>	Chip Select Input. Assert low to latch input states and enable the SPI interface. <u>CS</u> has a weak internal pullup.	VL	Digital Input
14	SCLK	Serial Clock Input. SCLK has a weak internal pulldown.	VL	Digital Input
15	SDI	Serial Data Input. Data is clocked into SDI on the rising edge of SCLK. SDI has a weak internal pulldown.	VL	Digital Input
16	SDO	Serial Data Output. Data is updated on the falling edge of SCLK. When <u>CS</u> is high, SDO is high impedance.	VL	Digital Output

CONFIGURATION PINS


17	CRCEN	CRC Enable Pin. Drive CRCEN pin high to enable CRC generation and error detection on the SPI interface. Drive CRCEN pin low if CRC is not used. CRCEN has a weak internal pulldown.	VL	Digital Input
18	DAISY	Daisy-Chain Enable Pin. Drive DAISY pin high to enable daisy-chained SPI mode. Drive DAISY pin low if daisy-chain mode is not used. DAISY has a weak internal pulldown.	VL	Digital Input
30	REFDI	Digital Input Current-Limit Reference Resistor. For Type 1 and Type 3 inputs, place a 12kΩ resistor from REFDI to GND. See the Detailed Description section for details.	VA	Analog Input
31	A0	Chip Address LSB for Addressable SPI. See Table 4 .	VL	Digital Input
32	A1	Chip Address MSB for Addressable SPI. See Table 4 .	VL	Digital Input

LED MATRIX/GPO OUTPUTS

21	LO4	Channel 4 LED Common Cathode Connection (Open-Drain Low-Side) when GPO bit in the GLOBLCFG register is 0, or General-Purpose Logic Output 4 (Push-Pull) when GPO bit in the GLOBLCFG register is 1. Connect a resistor in series when configured as an LED output to set the LED current. Leave unconnected, if not used. See the LED Matrix section for connection/details.	VA	Digital Output
20	LO5	Channel 5 LED Common Cathode Connection (Open-Drain Low-Side) when GPO bit in the GLOBLCFG register is 0, or General-Purpose Logic Output 5 (Push-Pull) when GPO bit in the GLOBLCFG register is 1. Connect a resistor in series when configured as an LED output to set the LED current. Leave unconnected, if not used. See the LED Matrix section for connection/details.	VA	Digital Output
19	LO6	Channel 6 LED Common Cathode Connection (Open-Drain Low-Side) when GPO bit in the GLOBLCFG register is 0, or General-Purpose Logic Output 6 (Push-Pull) when GPO bit in the GLOBLCFG register is 1. Connect a resistor in series when configured as an LED output to set the LED current. Leave unconnected, if not used. See the LED Matrix section for connection/details.	VA	Digital Output
24	LO1	Channel 1 LED Common Anode Connection (Open-Drain High-Side) when GPO bit in the GLOBLCFG register is 0, or General-Purpose Logic Output 1 (Push-Pull) when GPO bit in the GLOBLCFG register is 1. Connect a resistor in series when configured as an LED output to set the LED current. Leave unconnected, if not used. See the LED Matrix section for connection/details.	VA	Digital Output

23	LO2	Channel 2 LED Common Anode Connection (Open-Drain High-Side) when GPO bit in the GLOBLCFG register is 0, or General-Purpose Logic Output 2 (Push-Pull) when GPO bit in the GLOBLCFG register is 1. Connect a resistor in series when configured as an LED output to set the LED current. Leave unconnected, if not used. See the LED Matrix section for connection/details.	VA	Digital Output
22	LO3	Channel 3 LED Common Anode Connection (Open-Drain High-Side) when GPO bit in the GLOBLCFG register is 0, or General-Purpose Logic Output 3 (Push-Pull) when GPO bit in the GLOBLCFG register is 1. Connect a resistor in series when configured as an LED output to set the LED current. Leave unconnected, if not used. See the LED Matrix section for connection/details.	VA	Digital Output

Functional Diagrams

Detailed Description

The MAX22196 senses the logic state of eight digital inputs. The voltages at the IN1 to IN8 input pins are compared against internal references to determine whether the field binary output sensor is on (logic 1) or off (logic 0). All eight inputs are simultaneously latched by the assertion of either LATCH or CS, and the data made available in a serialized form through the SPI.

Each input can be individually configured for current sinking or sourcing, DI (high or low thresholds) or TTL thresholds. Digital input in source mode has the ability to supply current while in sink mode it has the ability to receive current. The ON state is a high voltage when the input channel is configured as a sinking input (SOURCE_ bit in the CNFG_ register = 0) or a low voltage when the input is configured as a sourcing input (SOURCE_ bit in the CNFG_ register = 1). The OFF state is a low voltage when the input channel is configured as a sinking input or a high voltage when the input is configured as a sourcing input.

The current sinks and sources can be turned off while the input comparator continues normal operation allowing 5V TTL operation, or 24V HTL operation with high-impedance inputs.

Placing a 12k Ω resistor between REFDI and GND and a 680 Ω resistor between each field input and the corresponding IN_ pin ensures that the current at the ON and OFF trip points as well as the voltage at the trip points satisfy the requirements of IEC 61131-2 Type 1/3 or Type 2 digital inputs. The current sunk (or sourced) by each input pin rises linearly with input voltage until the level set by the current limiter is reached; any voltage increase beyond this point does not increase the input current. Current limiting ensures compliance with the IEC 61131-2 while significantly reducing power dissipation compared to traditional resistive inputs. The IEC 61131-2 digital input current and voltage requirements are shown in [Figure 2](#).

Type 1/3 digital input can be selected on a per channel basis by setting the two CURR_[1:0] bits in the CNFG_ register to 0b01 to select the 1x factor for the current set by the REFDI resistor, and setting HITHR_ bit in the CNFG_ register to 1 to select the higher voltage threshold at the input pin. Type 2 digital input can be selected on a per channel basis by setting the two CURR_[1:0] bits in the CNFG_ register to 0b10. This configuration selects the 3x factor for the current set by the REFDI resistor. Hence, the HITHR_ bit in the CNFG_ register is set to 0 to select the lower voltage threshold as the 3x factor gives a higher input current causing a bigger voltage-drop across the input series resistor. See [Table 1](#) for input mode configuration.

The current-setting resistor REFDI can be calculated using the following simplified equation:

$$R_{REFDI} = \frac{M \times V_{REFDI}}{I_{IN_}}$$

Where $V_{REFDI} = 0.61V$ (typical). Constant M is different based on the input mode configuration as shown in [Table 2](#). The minimum allowed REFDI resistor value is 12k Ω . If REFDI resistor is less than 12k Ω , the RFDIS bit in the FAULT2 register is asserted to indicate a short-circuit fault on the REFDI pin.

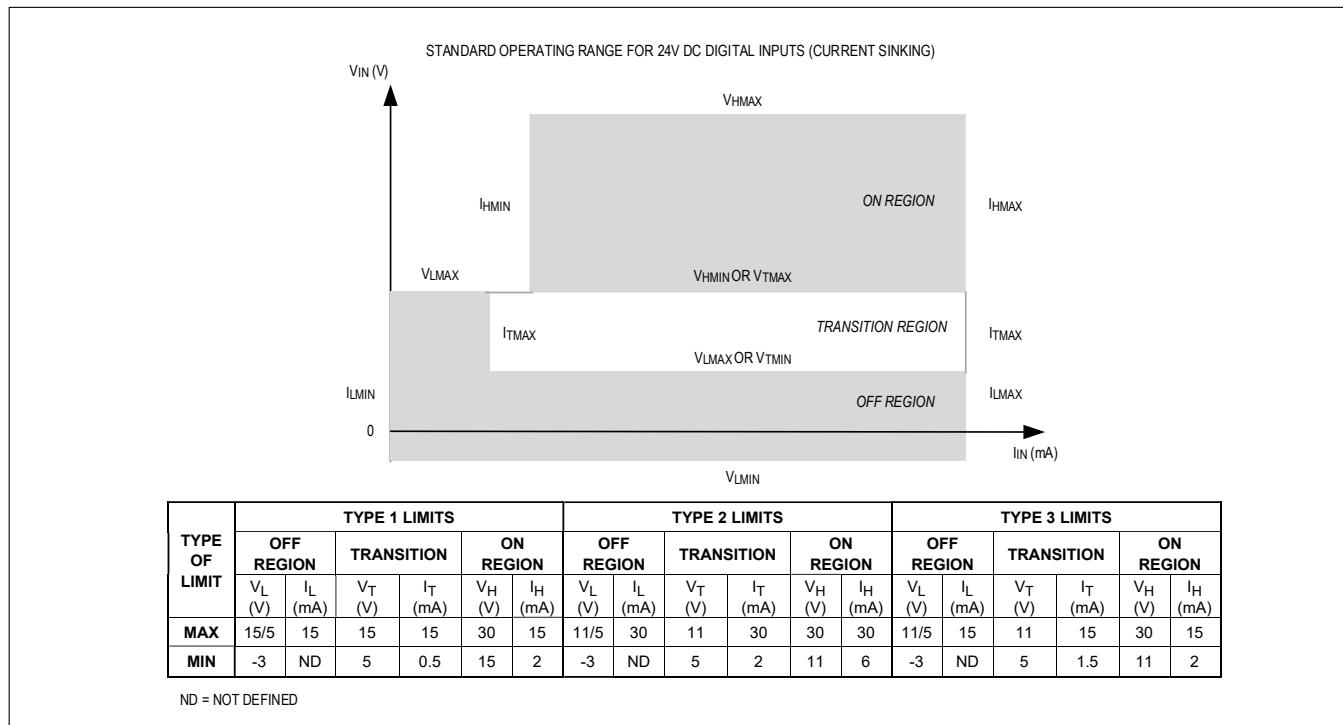


Figure 2. Switching Characteristics for IEC 61131-2 Type 1, 2, and 3 24VDC Digital Inputs

Table 1. Input Mode Configurations

INPUT TYPE	CNFG_REGISTER					
	CURR_[1:0]			SOURCE_		HITHR_
HTL Mode/High-Impedance Mode	00			0		X
Digital Input Type 1/3 Sink Mode	01			0		1
Digital Input Type 2 Sink Mode	10			0		0
TTL Mode	11			0		X
High-Impedance Mode	00			1		X
Digital Input Type 1/3 Source Mode	01			1		1
Digital Input Type 2 Source Mode	10			1		0
High-Impedance Mode	11			1		X

X = Don't care.

Table 2. Simplified Scaling Factor of REFDI in Input Current Equation

INPUT TYPE	M VALUE	INPUT CURRENT LIMIT (mA) WHEN REFDI = 12kΩ
Digital Input Type 1/3 Sink Mode (1x)	46	2.34
Digital Input Type 2 Sink Mode (3x)	136	6.91
Digital Input Type 1/3 Source Mode (1x)	43	2.19
Digital Input Type 2 Source Mode (3x)	133	6.76

Input Filters

The MAX22196 features a digital filter per channel to reduce glitches and noise at the input, making an analog RC filter unnecessary. Capacitors should not be connected to the IN_ pins for filtering. Each input (IN1–IN8) has a programmable digital filter; input data can be filtered or it can be bypassed for high-speed sampling. The input is sampled, and the data is latched at 1MHz (typ). Bit FLTEN_ in the corresponding CNFG_ register is used to bypass the filter or enable the filter. One of the eight filter delays (50µs, 100µs, 400µs, 800µs, 1.6ms, 3.2ms, 12.8ms, 20ms) can be independently selected for each channel.

Noise rejection is accomplished through a no-rollover up-down counter where the state of the field input controls the counting direction (up or down). The filter uses an up-down counter fed by a 1MHz clock. If the input is high, it counts up; if the input is low, it counts down. The filter output is updated when the counter hits the upper or lower limit, with the upper limit depending on the selected filter delay and the lower limit being zero regardless of the filter delay. The low-to-high transition of the filter occurs when the counter reaches the upper limit. The high-to-low transition occurs when the counter reaches the lower limit. There is no rollover; counting simply stops when the upper or lower limit is hit. The filter delay is the time it takes to reach the upper/lower limit in response to a step input when the counter starts from the lower/upper limit. If the input is not a step function, but is bouncing, as shown in [Figure 3](#), the output changes state after a total delay of:

$$t_{DELAY} = t_{FLT_DELAY} + 2 \times t_{OLD_STATE}$$

In the example in [Figure 3](#), the filter has a nominal delay of 1.6ms, and the input returns high for two 0.2ms periods after the first transition from high to low. These transitions back to the high state extend the time before the output of the filter switches.

$$t_{DELAY} = 1.6ms + 2 \times (0.2ms + 0.2ms) = 2.4ms$$

The channel input to data output (at SPI) delay is formed by the delay due to the input comparator ($t_{CMPDELAY}$), the sampling delay ($t_{SMPLDELAY}$), filter delay configured in the CNFG_ register, and SPI read delay as illustrated in [Figure 4](#).

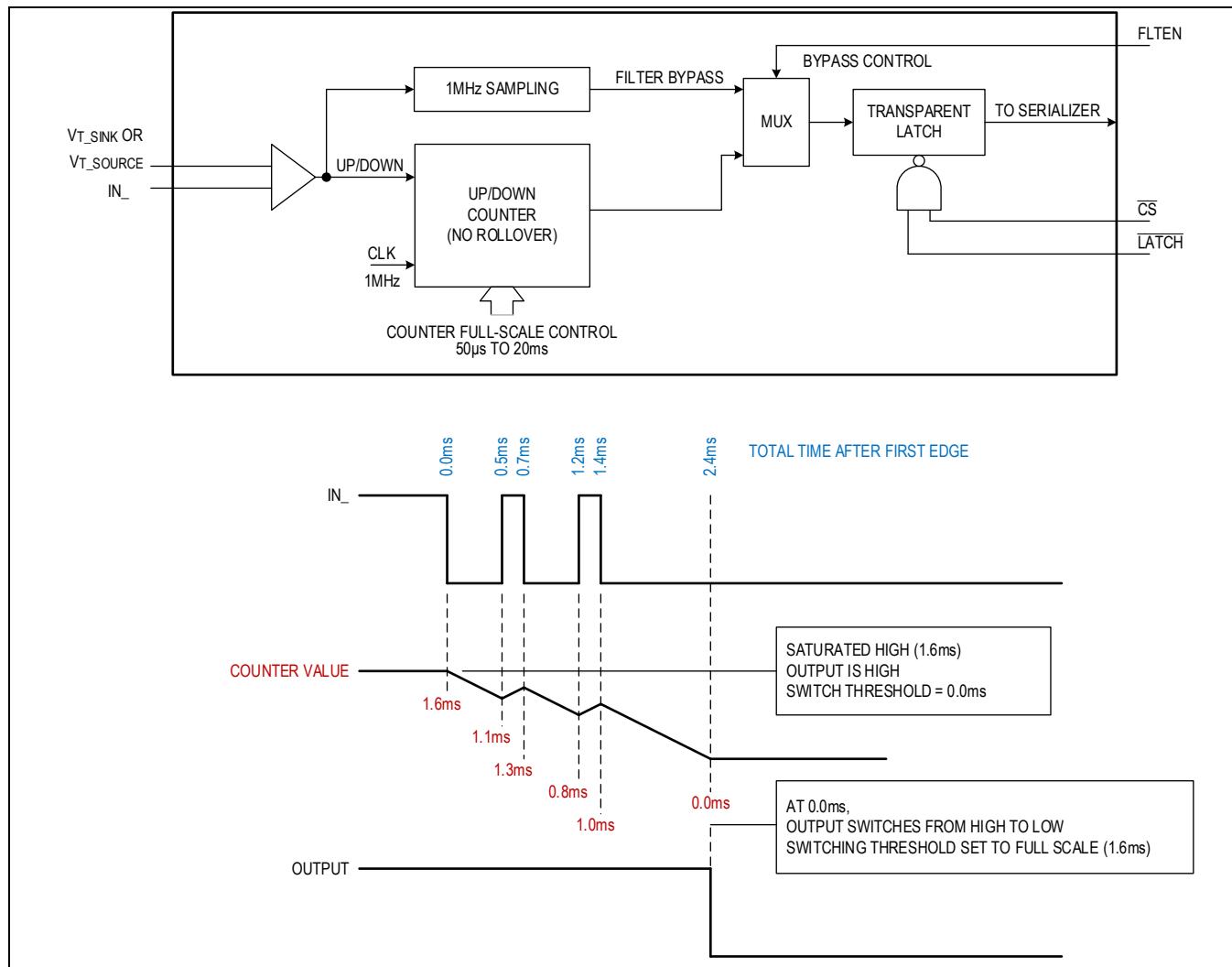


Figure 3. MAX22196 Digital Filter

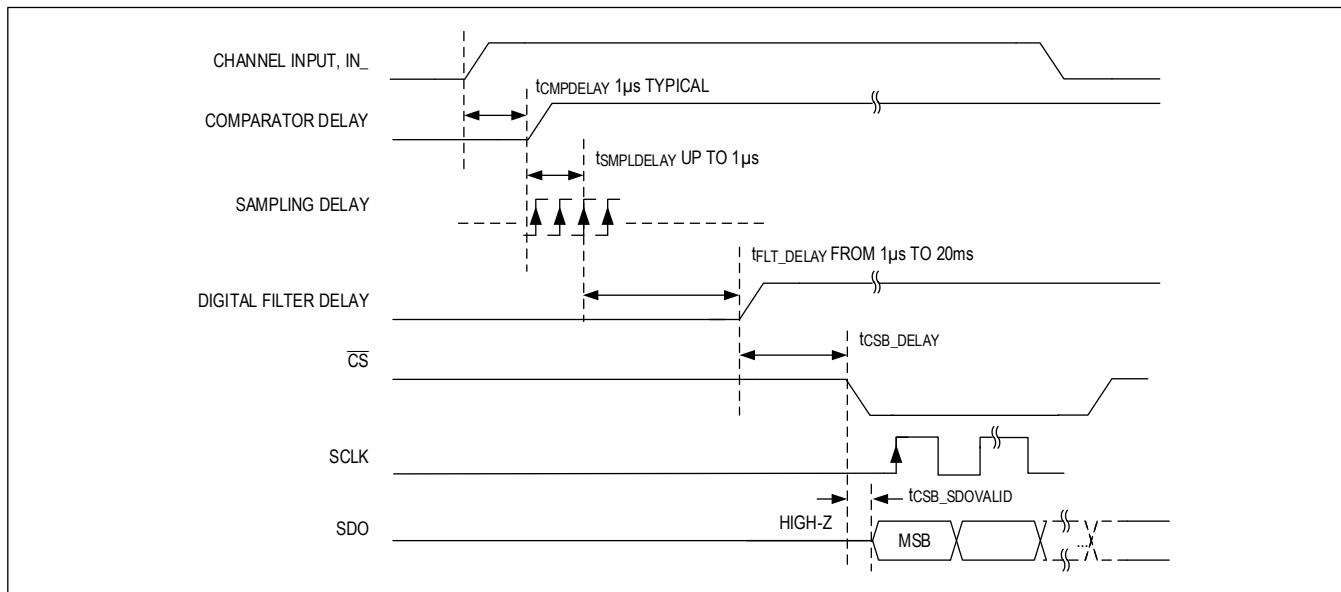


Figure 4. Channel Input to Output Delay

Sampling the IN_ Data

All eight inputs of the MAX22196 are simultaneously latched on the falling edge of either LATCH or CS, and the data is made available for SPI reading out of the DISTATE register (address 0x00). When the digital filter is disabled by setting the FLTEN_bit in the corresponding CNFG_register to 0, the IN_signals are sampled at a 1MHz sampling rate and the time resolution is $\pm 1\mu\text{s}$ relative to the LATCH or CS falling edge.

Counter Mode

The MAX22196 features a 16-bit optional down-counter mode for each channel. In order to configure an input channel in counter mode, it must be enabled for that specific channel by loading the start of count value into two 8-bit registers, CNTx_MSB and CNTx_LSB, and the counter must be enabled by setting the corresponding CNTx_START bit in the START_STOP register to 1. In sink modes, when the field input transits from low to high, the input state is 1 and the counter decrements by 1. In source modes, when the field input transits from high to low, the input state is 1 and the counter decrements by 1.

Both CNTx_LSB and CNTx_MSB registers have to be written, even if one or both of the register values remain unchanged. For example, if the count is less than 0x00FF, write 0x00 to the CNTx_MSB register and write 0xFF to the CNTx_LSB register. In counter mode, the LSB bit in the F1MASK register must be 1.

To use the counter mode on a specific channel, initially set the corresponding CNTx_START bit in the START_STOP register to 0, and then write the start of count value to the corresponding registers CNTx_MSB and CNTx_LSB. To start the down-counter, set the CNTx_START bit to 1. The CNTx_MSB and CNTx_LSB register values are always read as 0x00 when the CNTx_START bit is 1. To stop the counter, set the CNTx_START bit to 0. The current count value can then be retrieved by reading the CNTx_MSB and CNTx_LSB registers. The DI_bit in the DISTATE register for the channel that is in counter mode is not valid.

Once the count reaches zero, the counter stops. There is no signaling when the counter reaches zero. To retrieve the counter status, read the CNTx_MSB and CNTx_LSB registers after setting the CNTx_START bit to 0.

To exit the counter mode, read the DISTATE register, write 0 to the corresponding CNTx_START bit, and write 0x00 to both CNTx_MSB and CNTx_LSB registers.

Power Supply

For normal operation, the MAX22196 needs to be powered by V24 field supply, V_A analog supply, and V_L logic I/O supply. The V_A can be supplied by the internal linear regulator, or by an external supply. The integrated 5V linear regulator

generates the V_A supply when the REGEN pin is open. The REGEN pin should be connected to GND when supplying V_A from an external supply in the range of 3.0V to 5.5V.

When powering the MAX22196 from an external 3.3V or 5V supply on V_A , V_{24} must be powered by external 24V supply. If the MAX22196 is only operated in sink or TTL configurations, V_{24} can be powered by the external V_A supply, and a 24V supply is not needed.

The advantage of powering the MAX22196 from an external 5V supply on V_A is to remove the LDO power dissipation from the 24V field supply. The advantage of powering the MAX22196 from the V_{24} field supply is that if the system thermal shutdown (OTSHDN2 bit in the FAULT2 register) occurs, register contents are not lost. See the [SPI Power Status](#) section for details.

The V_L supply is the logic interface supply in the range of 2.5V to 5.5V. Make sure V_L is always lower than or equal to V_A .

READY Logic

The MAX22196 features a $\overline{\text{READY}}$ signal to indicate that the MAX22196 has been powered properly and is ready for normal operation. $\overline{\text{READY}}$ asserts low when both V_A analog supply and V_L logic I/O supply are both above their respective UVLO thresholds. $\overline{\text{READY}}$ is an open-drain high-side output that needs a pulldown resistor. Note that $\overline{\text{READY}}$ is not associated with the V_M comparator.

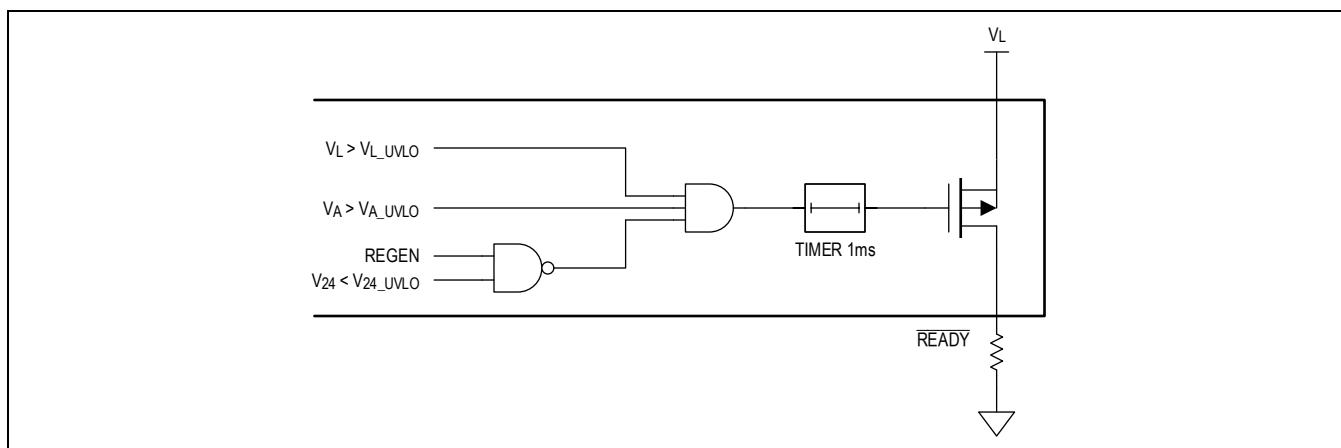


Figure 5. $\overline{\text{READY}}$ Logic

VMOK Supply Monitoring

The MAX22196 features a comparator that can be used to monitor and provide visual indication of the state of a power supply or other voltage. Connecting V_M to an external resistor-divider defines the threshold voltage. $\overline{\text{VMOK}}$ is a high-voltage open-drain output that can drive an LED through a current-limiting resistor. The V_M comparator generates three outputs, the $\overline{\text{VMOK}}$ signal, the VMLOW bit in the FAULT1 register, LED9 when LO_ pins are configured as LED matrix and the LEDs are controlled autonomously by the MAX22196 internal logic. See GLOBLCFG register for details.

The $\overline{\text{VMOK}}$ signal is not used with the $\overline{\text{READY}}$ indication. This allows the $\overline{\text{VMOK}}$ threshold to be set differently from the internal V_{24_UVLO} thresholds.

Fault Detection and Monitoring

FAULT is a low-side open-drain output that can be wire ORed with other open-drain outputs and be used to notify the host processor of a fault. When enabled, $\overline{\text{FAULT}}$ goes low to indicate that one or more of the flags in the FAULT1 register have been set. These faults are as follows: V_M comparator trip (VMLOW), V_{24} undervoltage alarm (V24UV), over-temperature alarm (TEMPALM), thermal shutdown (OTSHDN1), CRC error detected on the previous SPI frame (CRCERR), a POR occurred, or an unmasked bit in the FAULT2 register is set.

Mask bits in the F1MASK and F2MASK registers select which flags in the FAULT1 and FAULT2 registers assert the FAULT pin. The mask bits do not affect the flags in the FAULT1 register; they only affect the FAULT pin. All bits in the

FAULT1 register, except FAULT2, are latched. They remain set until read even if the faults go away. If the fault persists, the fault bit stays as 1 after the read.

The FAULT2 bit in the FAULT1 register is the logic OR of all unmasked bits in the FAULT2 register. It goes to 0 as soon as every unmasked fault bit in the FAULT2 register is cleared. The FAULT2 register can only be cleared by reading it. If the fault persists, the fault bit stays as 1 after the read.

The fault bits can only be cleared on reading the FAULT1 register if the FSPICLR bit in the GLOBLCFG register is 1. If the FSPICLR bit is 0, the fault bits in the FAULT1 register can also be cleared with a successful SPI read or write command except the OTSHDN1 bit.

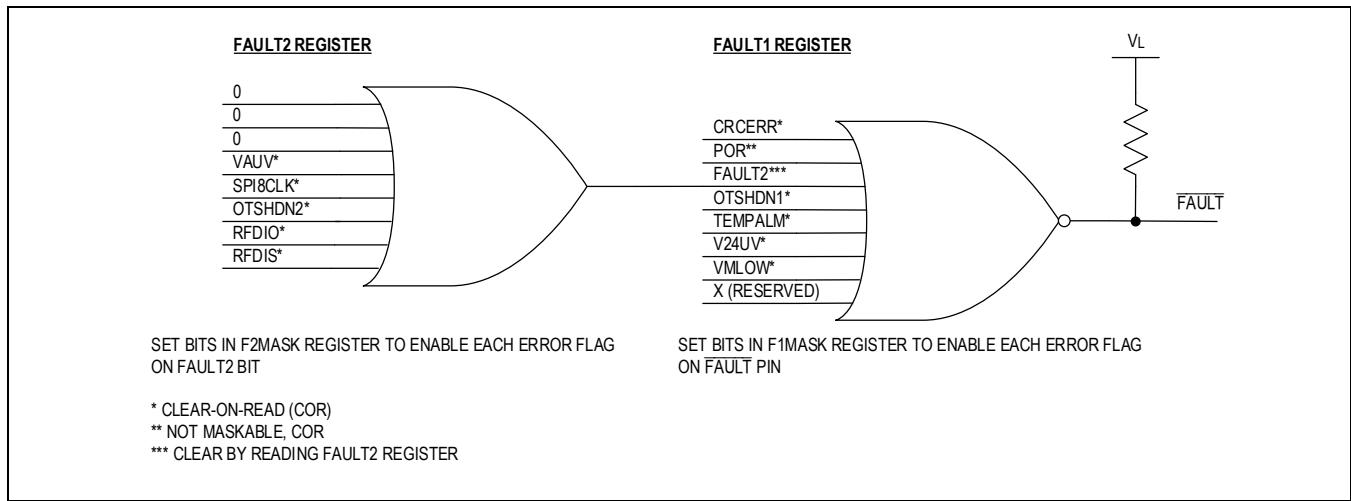


Figure 6. FAULT Output Sources

Thermal Considerations

The MAX22196 operates at an ambient air temperature up to +125°C on a properly designed PC board under the conditions listed below. Operating at higher voltages, higher input currents, or with external loads on the internal linear regulator increases power dissipation and reduces the maximum allowable ambient temperature. See [Package Information](#) and [Absolute Maximum Ratings](#) sections for thermal specifications.

The 125°C ambient temperature operating conditions include the following:

- Multi-layer board (four or more)
- $V_{24} = +28.8V$ max
- 680Ω resistor in series with each IN_ input
- All field input voltage = +30V max
- All logic outputs driving CMOS loads
- Resistor from REFDI to GND = 12kΩ

The MAX22196 has three levels of thermal protection: temperature alarm (TEMPALM bit in the FAULT1 register), thermal shutdown (OTSHDN1 bit in the FAULT1 register), and system thermal shutdown (OTSHDN2 bit in the FAULT2 register).

- Temperature Alarm: If the junction temperature rises to 115°C (typical), the TEMPALM bit in the FAULT1 register is set to 1. The MAX22196 operation is normal when TEMPALM is set to 1.
- Thermal Shutdown: If the temperature rises to 150°C (typical), the OTSHDN1 bit in the FAULT1 register is set to 1. All input channels are forced into high-impedance mode.
- System Thermal Shutdown: If the temperature rises to 165°C (typical), the OTSHDN2 bit in the FAULT2 register is set to 1. All input channels are forced into high-impedance mode. The internal LDO is turned off.

If V_A and V_L are supplied externally and a system thermal shutdown (OTSHDN2) happens, the SPI communication is operational and register access is available. If the external supply is present at V_A , the thermal shutdown is less probable, but it could happen if too much current flows through input channels.

If the MAX22196 is powered by V_{24} , internal LDO is enabled, and V_L is powered by the internal LDO output V_A , when a system thermal shutdown (OTSHDN2) happens, V_A and V_L are powered off, SPI buffers are off, SPI circuitry is powered by a supplementary internal 3.3V voltage, and register values are retained, but it is not feasible to read or write the registers since both V_A and V_L are off.

If the MAX22196 is powered by V_{24} , internal LDO is enabled, and V_L is independent from V_A , when a system thermal shutdown (OTSHDN2) happens, V_A is powered off, SPI buffers are off, SPI circuitry is powered by a supplementary internal 3.3V voltage, and register values are retained, but it is not feasible to read or write the registers since V_A is off and SPI logic interface is not operational. See [Table 3](#) for internal circuitry power-up status during different thermal events.

Table 3. Internal Circuits Power-Up Status During Thermal Events

THERMAL EVENTS	INTERNAL CIRCUITS	POWER-UP STATUS	
		Internal LDO Enabled, V_A Generated by V_{24}	Internal LDO Disabled, V_A Supplied Externally
TEMPALM	Internal Regulator	ON	OFF
	Input Channels	ON	ON
	REFDI	ON	ON
	Registers	ON	ON
	SPI	ON	ON
OTSHDN1	Internal Regulator	ON	OFF
	Input Channels	OFF	OFF
	REFDI	OFF	OFF
	Registers	ON	ON
	SPI	ON	ON
OTSHDN2	Internal Regulator	OFF	OFF
	Input Channels	OFF	OFF
	REFDI	OFF	OFF
	Registers	ON	ON
	SPI	OFF	ON

LED Matrix

The MAX22196 features six logic output pins (LO1–LO6) that can be configured as six general-purpose push-pull logic outputs (GPO) or as a 3 x 3 LED driver crossbar matrix. This is achieved by setting the GPO bit in the GLOBLCFG register to 0 for LED matrix mode, or to 1 for GPO mode. In the LED matrix mode, if the LEDs are controlled by the MAX22196 autonomously by setting the LEDINT bit in the GLOBLCFG register to 1, LED1 to LED8 indicate the state of the digital inputs (IN1–IN8), and LED9 is dedicated to the status of the V_M voltage monitoring comparator having the same function as the \bar{V}_{MOK} output. It turns on when the voltage at the V_M pin is less than the V_M threshold.

GPO Bit = 0: LED Matrix Mode

To select the LED matrix mode, bit GPO in the GLOBLCFG register is set to 0. LED1 to LED8 can either be turned on or off by the LED register providing that the LEDINT bit in the GLOBLCFG register is 0, or controlled by the MAX22196 autonomously to indicate per-input channel status. If the LED matrix is controlled autonomously by setting the LEDINT bit to 1, the status LED is automatically turned on when current flows into the corresponding IN_ channel in sink or source modes, or when the input is high in TTL mode. In low-leakage high-impedance (HTL) mode, the status LEDs are always off. LED9 always indicates the status of V_M comparator.

When the LEDINT bit is set to 0, LED1 to LED8 are controlled by the LED register, and LED9 is controlled by the LED9 bit in the GLOBLCFG register.

The LEDs in the ON state are driven with a 33% duty cycle square wave from the V_A supply. The LED current is set through the current-limiting resistor in series from LO1 to LO3 output. Each row (LO4–LO6) is alternatively kept low for

1ms over a 3ms period. A common column (LO1–LO3) is high when the corresponding LED is turned on. Current from each resistor flows through only one LED at a time. To get the same brightness as an LED that is turned on permanently, increase the LED current by a factor of three to get the equivalent brightness. Note that the LED matrix is turned off during a thermal shutdown event (OTSHDN1).

GPO Bit = 1: GPO Mode

To select the GPO mode, set the GPO bit to 1 in the GLOBLCFG register. The six GPO pins (LO1–LO6) are then controlled by writing a 0, to set GPO pin low, or a 1, to set GPO pin high, to the corresponding LED1 to LED6 bits in the LED register. Note that the GPO drivers are disabled during a system thermal shutdown event (OTSHDN2).

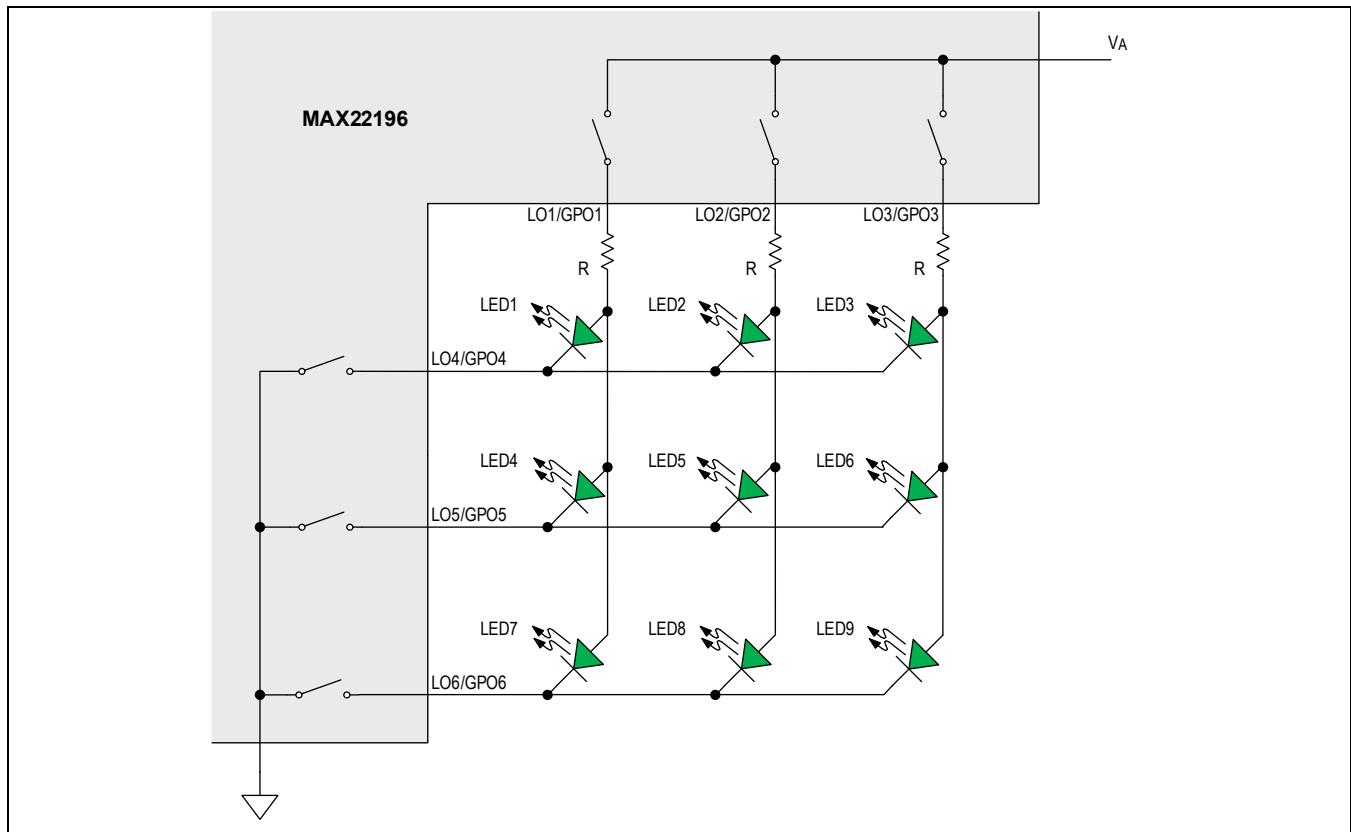


Figure 7. LED Matrix or GPO Driver Scheme

Serial Peripheral Interface

The MAX22196 has an SPI-compatible interface used to read input data, read diagnostic data, and configure all the registers. Each configuration register can be read back to ensure proper configuration. The interface can be operated as addressable SPI or daisy-chain mode as selected by the DAISY pin. In addressable SPI mode, it supports direct communication with up to four MAX22196 devices on a shared SPI using a single \overline{CS} signal. Data at the SDI input is sampled on the rising edge of SCLK and data at SDO is updated on the falling edge of SCLK. Transitions of SCLK while \overline{CS} is de-asserted (high) are ignored. SCLK must idle low when \overline{CS} is asserted. SDO is three-stated when \overline{CS} is high, allowing multiple SPI devices to share a common SPI. The maximum SPI SCLK rate is 12MHz.

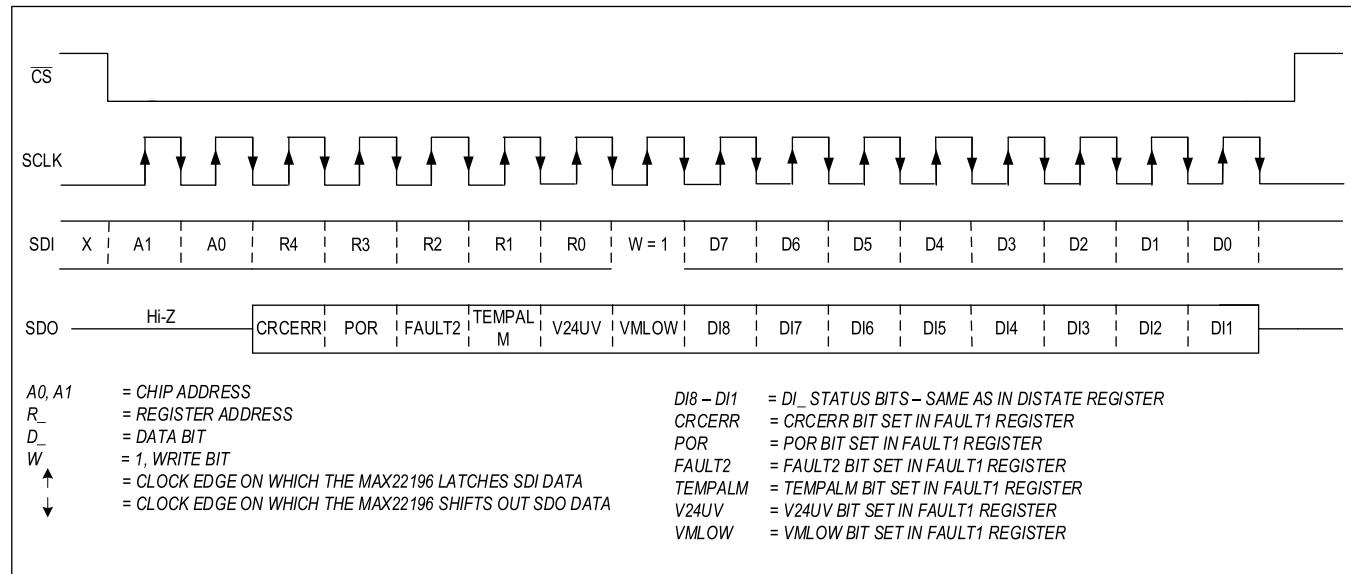
The MAX22196 has a \overline{LATCH} input to allow synchronous sampling of all input channels from multiple modules that are not controlled by the same \overline{CS} . When \overline{LATCH} goes low, digital input data are frozen in the digital input state register DISTATE (address = 0x00) and are clocked out onto SDO when \overline{CS} is driven low. If \overline{LATCH} is high, input data are sampled and frozen at the falling edge of \overline{CS} .

SPI Protocol

The serial output of the device adheres to the SPI protocol, running with CPHA = 0 and CPOL = 0. For addressable SPI mode (DAISY pin held low), the first two MSB bits clocked in on SDI are for A1 and A0 to define the chip address so the

MAX22196 device can immediately identify if it is being communicated with. For daisy-chain SPI mode (DAISY pin held high), the first two MSB bits clocked in on SDI are “don’t care” values. See [Figure 8](#) and [Figure 9](#) for SPI diagrams in addressable SPI mode. [Figure 12](#) to [Figure 15](#) demonstrate the SPI diagrams in daisy-chain mode.

Addressable SPI Mode


The MAX22196 features an addressable SPI allowing direct SPI access to any of up to four MAX22196 devices on a shared SPI using a common CS chip-select signal. This is achieved by assigning a device address to each MAX22196 using the A0 and A1 logic inputs as listed in [Table 4](#). The SPI controller starts off every SPI command by sending the two device address bits so that the MAX22196 immediately identifies if it is being communicated with. Upon identifying that it is being addressed, the MAX22196 starts clocking out six fault bits from the FAULT1 register, including CRCERR, POR, FAULT2, TEMPALM, V24UV, and VMLOW, on SDO indicating the status of the MAX22196. The SPI write cycle provides the state of eight digital inputs on SDO, following the six fault bits, while the SPI read cycle provides the register value.

If the FSPICLR bit in the GLOBLCFG register is 0, any of the fault bits that are set in the FAULT1 register, except OTSHDN1, are automatically cleared by a successful SPI command. In contrast, if the FSPICLR bit in the GLOBLCFG register is 1, any of the fault bits that are set in the FAULT1 register are only reset if the FAULT1 register is read.

Table 4. SPI Device Address Selection

A1	A0	DEVICE ADDRESS
Low	Low	00
Low	High	01
High	Low	10
High	High	11

[Figure 8](#) shows the SPI write command in SPI addressable mode. Every SPI write cycle provides the state of the eight digital inputs as data bits DI8 to DI1 on the SDO pin.

[Figure 8. Write Command in SPI Addressable Mode](#)

[Figure 9](#) shows the SPI read command in the SPI addressable mode.

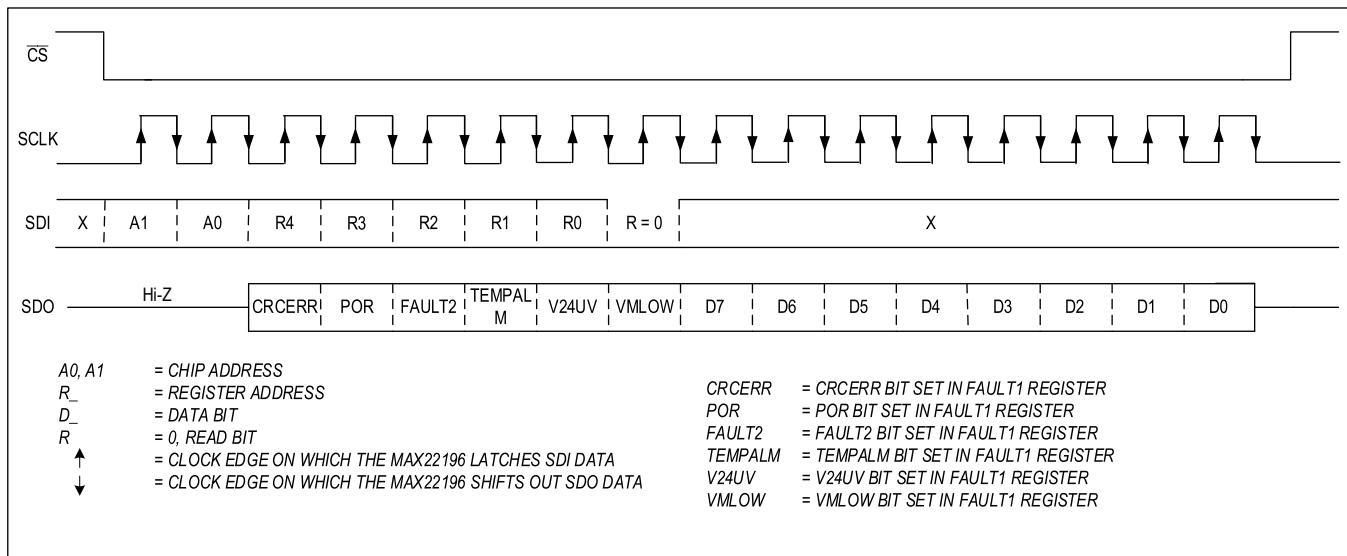


Figure 9. Read Command in SPI Addressable Mode

Daisy-Chain SPI Mode

For systems with more than eight sensor inputs, multiple devices can be daisy-chained to allow access to all data inputs through a single serial interface. The MAX22196 can be operated in daisy-chain SPI mode by setting the DAISY pin high. When using a daisy-chain configuration, connect MOSI to SDI of the first device in the chain. Connect MISO to SDO of the last device in the chain. For all middle links, connect SDI to SDO of the previous device and SDO to SDI of the next device. CS and SCLK of all devices in the chain should be connected together in parallel. See [Figure 10](#) which illustrates a 16-input application in daisy-chain mode, and [Figure 11](#) which shows the SPI command frames with two devices in the chain. [Figure 12](#) to [Figure 15](#) show different SPI timing diagrams for read and write cycles in daisy-chain mode. Note in daisy-chain SPI mode, the feature of clearing fault bits by SPI read or write command is disabled, regardless of FSPICLR bit setting.

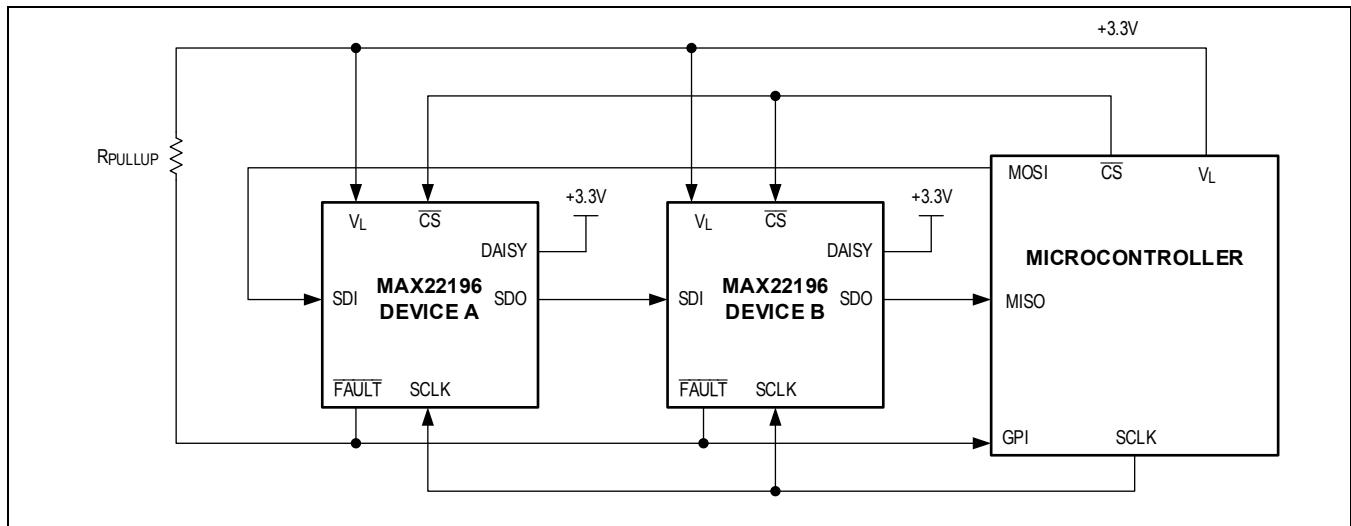


Figure 10. Daisy-Chain SPI Operation

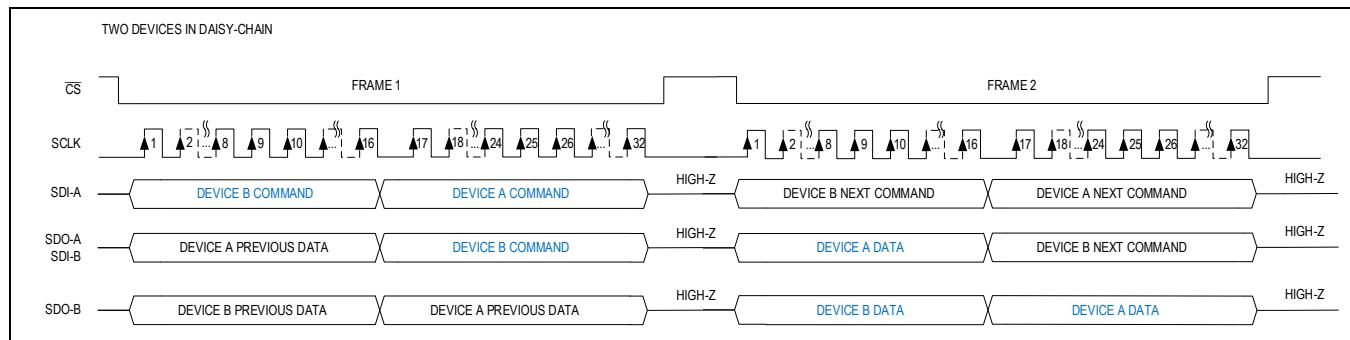


Figure 11. Daisy-Chain SPI Command Diagram

Figure 12 shows the daisy-chain SPI diagram for a write command followed by a prior write cycle. The device provides the status of eight digital input channels (DI8–DI1) and fault bits from the FAULT1 register (F7–F0) in the first and second byte sent on SDO.

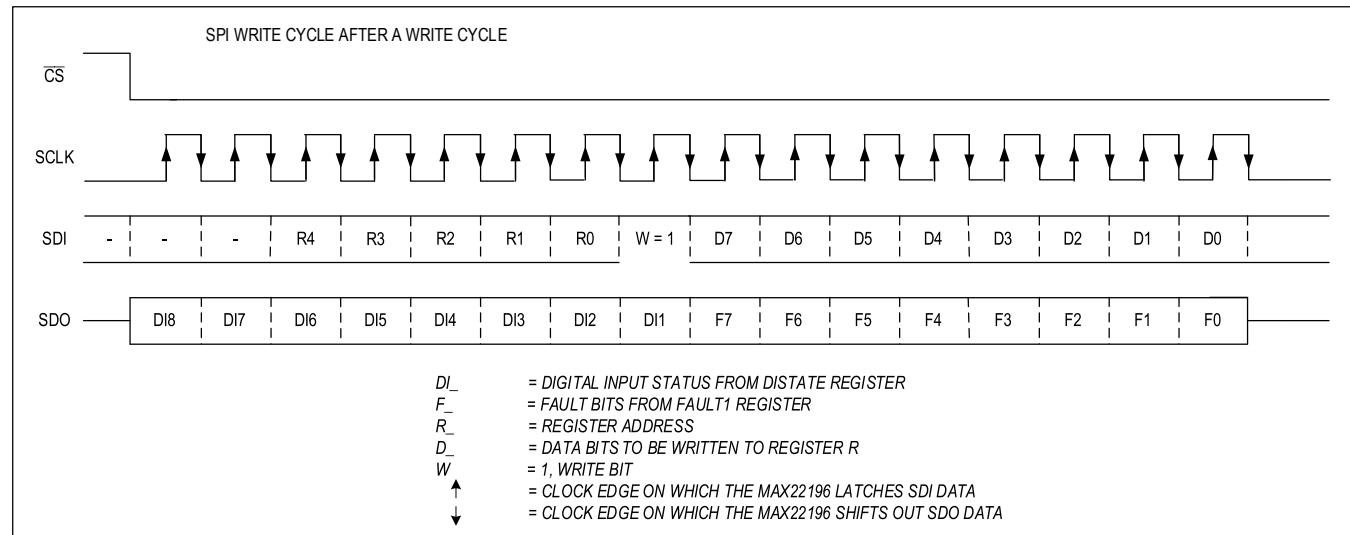


Figure 12. SPI Write Cycle After a Prior Write Cycle in Daisy-Chain Mode

[Figure 13](#) shows the daisy-chain SPI diagram for a write command followed by a prior read cycle. The device provides the status of eight digital input channels (DI8–DI1) as the first byte sent on SDO. The second byte on SDO is the register value from the prior read command.

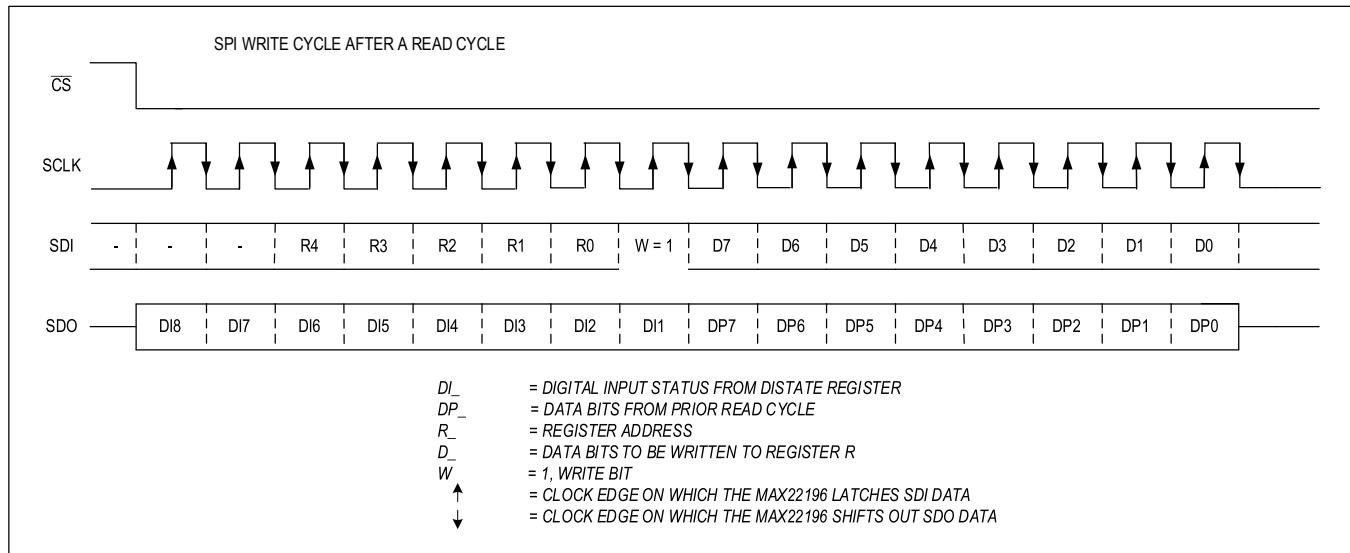


Figure 13. SPI Write Cycle After a Prior Read Cycle in Daisy-Chain Mode

[Figure 14](#) shows the daisy-chain SPI diagram for a read command followed by a prior read cycle. The device provides the status of eight digital input channels (DI8–DI1) as the first byte sent on SDO. The second byte on SDO is the register value from the prior read command.

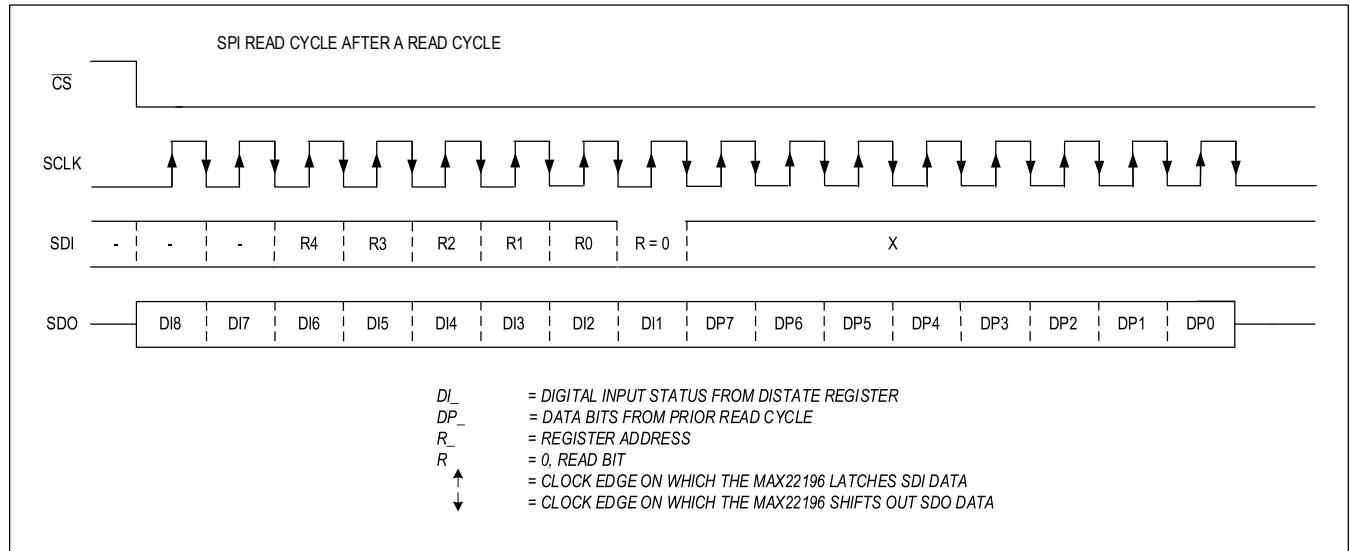


Figure 14. SPI Read Cycle After a Prior Read Cycle in Daisy-Chain Mode

[Figure 15](#) shows the daisy-chain SPI diagram for a read command followed by a prior write cycle. The device provides the status of eight digital input channels (DI8–DI1) and fault bits from the FAULT1 register (F7–F0) in the first and second byte sent on SDO.

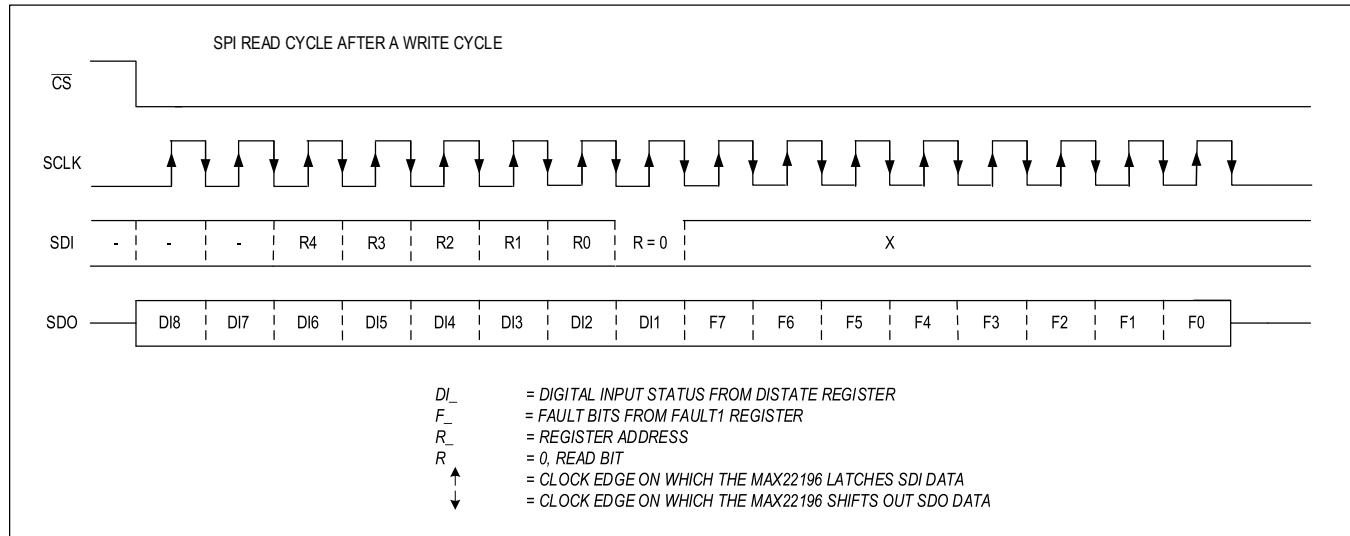


Figure 15. SPI Read Cycle After a Prior Write Cycle in Daisy-Chain Mode

SPI Power Status

Only the SPI I/O buffers are powered from the V_L supply; internal SPI circuits are powered from the V_A supply. Both V_A and V_L must be valid for SPI communication to take place. In addition to powering the SPI circuits, V_A also sustains the SPI memory (configuration and status registers). If power is being supplied through V_{24} , then an auxiliary supply for the memory is also available. The auxiliary supply only sustains memory; it does not allow SPI communication. The auxiliary supply takes over if V_A is lost due to external loading or due to a thermal shutdown event. When the event is over, the device configuration is maintained and fault information is available in the FAULT registers. See [Table 5](#) for power requirement for SPI communication and register configuration.

Table 5. SPI Interface Power Status

V_{24}	V_A	V_L	REGISTER CONTENTS	SPI COMMUNICATION
Valid	Valid	Valid	Data Maintained	Normal Operation
Not Valid	Valid	Valid	Data Maintained	Normal Operation
Valid	Not Valid	X	Data Maintained	\overline{CS} ignored, SDO is High-Z
X	Valid	Not Valid	Data Maintained	\overline{CS} ignored, SDO is High-Z
Not Valid	Not Valid	X	Data Lost	\overline{CS} ignored, SDO is High-Z

X = Don't Care.

CRC Generation

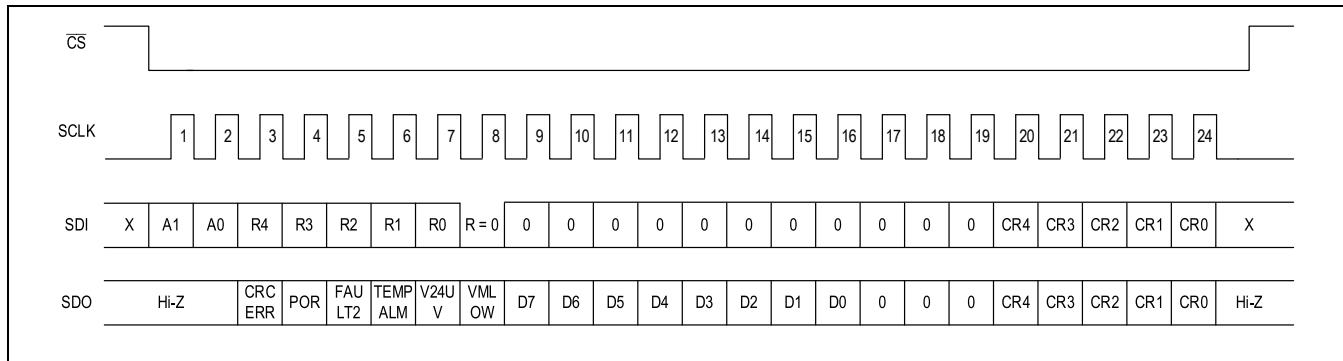
The MAX22196 has an optional CRC error detection on the SPI for both addressable and daisy-chain modes of operation, lengthening the SPI frame by 8 bits as shown in [Table 6](#). Five CRC bits are used to check data integrity during transfer between the device and an external microcontroller. In applications where the integrity of data transferred is not of concern, the CRC bits can be disabled by holding CRCEN pin low and operating in CRC-disabled mode.

When CRC error detection is enabled by setting the CRCEN pin high, the MAX22196:

1. Performs error detection on the SDI data that it receives from the controller and
2. Calculates the CRC on the SDO data and appends a check byte at the end of the SDO data stream that it sends to the controller.

This ensures that both the data it receives from the controller and the data it sends to the controller maintains data integrity.

Once enabled, the CRC value is sent with each SPI command. The 5-bit CRC (CR[4:0]) is based on the generator polynomial $P(x) = x^5 + x^4 + x^2 + 1$ with CRC starting value = 0b11111. When CRC is enabled, the MAX22196 expects a check byte appended to the SDI data stream that it receives. The check byte format (CR[4:0]) can be seen in [Figure 16](#) and [Figure 17](#). Refer to [Application Note 6633](#) for CRC algorithm and programming example.


The 5-bit CRC value is calculated using the first 16 data bits plus the three “0s” in the MSBs of the check byte. The result is then appended to this 19-bit data to create the 24-bit SPI data frame. The MAX22196 verifies the received CRC bits, and if no error is detected, the MAX22196 updates the configuration per the SDI data. If a CRC error is detected, the MAX22196 does not change the configuration, but asserts the CRCERR bit in the FAULT1 register. If the mask bit CRCERR_M in the F1MASK register is not set, the FAULT pin is asserted low.

The check byte that the MAX22196 appends to the SDO data has the format as shown in [Figure 16](#) and [Figure 17](#). The CR[4:0] bits on SDO are calculated based on the 16-bit SDO data plus three “0s”, with two MSB bits considered as 0 during the calculation. This allows the controller to check for the errors on the SDO data received from the MAX22196.

In daisy-chain mode with CRC enabled, the CR[4:0] bits are calculated on all the data sent before the CRC bits, including the first 16 data bits plus the three “0s”. The two MSB bits and data bits 9 to 16 in a read command in the SDI data stream can be 0 or 1 as they have no impact on the MAX22196 configuration, but these bits are used to calculate the CRC bits (CR[4:0]).

Table 6. SPI Frame Length

MODE	DAISY	CRCEN	SPI FRAME LENGTH
Addressable SPI Mode, CRC Disabled	0	0	16-bit
Addressable SPI Mode, CRC Enabled	0	1	24-bit
Daisy-Chain SPI Mode, CRC Disabled	1	0	16-bit per device in the chain
Daisy-Chain SPI Mode, CRC Enabled	1	1	24-bit per device in the chain

Figure 16. Addressable SPI Read Command with CRC Enabled

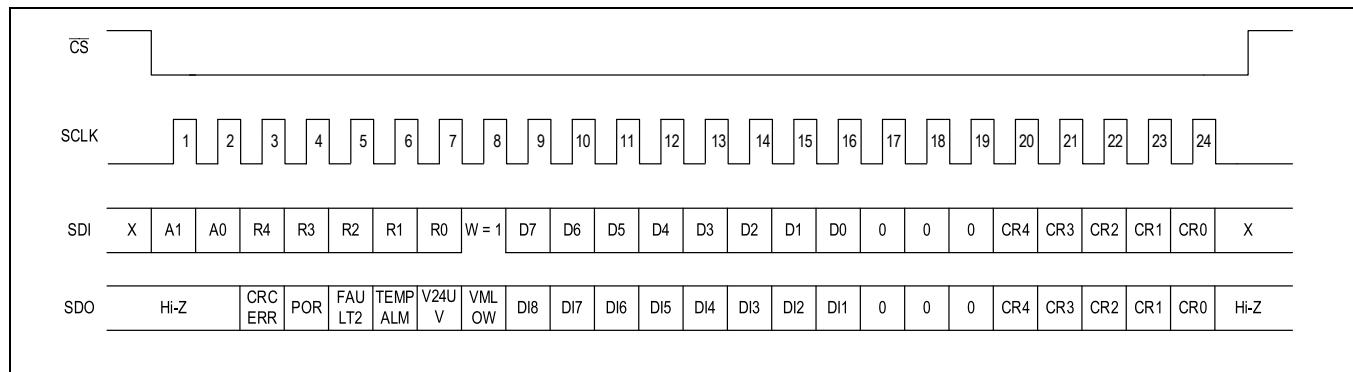


Figure 17. Addressable SPI Write Command with CRC Enabled

Number of Clock Cycles on the SPI

The MAX22196 checks the number of SCLK pulses in each SPI cycle (between $\overline{\text{CS}}$ going low and going high). When CRC is enabled (CRCEN held high), the SPI8CLK bit is set if the number of SCLK pulses is not equal to 24. When CRC is disabled (CRCEN held low), the SPI8CLK bit is set if the number of SCLK pulses is not equal to 16. The SPI command is ignored when wrong number of SCLK pulses is received. In the daisy-chain mode, the SPI8CLK is set when the number of SCLK pulses is not a multiple of 16 (CRC disabled) or 24 (CRC enabled).

Register Map

MAX22196

ADDRESS	RESET	NAME	MSB							LSB
0x00	0x00	<u>DISTATE[7:0]</u>	DI8	DI7	DI6	DI5	DI4	DI3	DI2	DI1
0x01	0x60	<u>FAULT1[7:0]</u>	CRCERR	POR	FAULT2	OTSHDN1	TEMPALM	V24UV	VMLOW	Reserved
0x02	0x26	<u>F1MASK[7:0]</u>	CRCERR_M	Reserved	FAULT2_M	OTSHDN1_M	TEMPALM_M	V24UV_M	VMLOW_M	Reserved
0x03	0x0C	<u>CNFG1[7:0]</u>	HITHR1	SOURCE1	CURR1[1:0]	FLTEN1	DELAY1[2:0]			
0x04	0x0C	<u>CNFG2[7:0]</u>	HITHR2	SOURCE2	CURR2[1:0]	FLTEN2	DELAY2[2:0]			
0x05	0x0C	<u>CNFG3[7:0]</u>	HITHR3	SOURCE3	CURR3[1:0]	FLTEN3	DELAY3[2:0]			
0x06	0x0C	<u>CNFG4[7:0]</u>	HITHR4	SOURCE4	CURR4[1:0]	FLTEN4	DELAY4[2:0]			
0x07	0x0C	<u>CNFG5[7:0]</u>	HITHR5	SOURCE5	CURR5[1:0]	FLTEN5	DELAY5[2:0]			
0x08	0x0C	<u>CNFG6[7:0]</u>	HITHR6	SOURCE6	CURR6[1:0]	FLTEN6	DELAY6[2:0]			
0x09	0x0C	<u>CNFG7[7:0]</u>	HITHR7	SOURCE7	CURR7[1:0]	FLTEN7	DELAY7[2:0]			
0x0A	0x0C	<u>CNFG8[7:0]</u>	HITHR8	SOURCE8	CURR8[1:0]	FLTEN8	DELAY8[2:0]			
0x0B	0x10	<u>GLOBLCFG[7:0]</u>	GPO	LEDINT	LED9	FSPICLR	CLRFILTR	Reserved[1:0]	REFDISHT CFG	
0x0C	0x00	<u>LED[7:0]</u>	LED8	LED7	LED6	LED5	LED4	LED3	LED2	LED1
0x0D	0x10	<u>FAULT2[7:0]</u>	Reserved[2:0]			VAUV	SPI8CLK	OTSHDN2	RFDIO	RFDIS
0x0E	0x24	<u>F2MASK[7:0]</u>	ID[2:0]			VAUV_M	SPI8CLK_M	OTSHDN2_M	RFDIO_M	RFDIS_M
0x0F	0x00	<u>START_STOP[7:0]</u>	CNT8_STA RT	CNT7_STA RT	CNT6_STA RT	CNT5_STA RT	CNT4_STA RT	CNT3_STA RT	CNT2_STA RT	CNT1_STA RT
0x10	0x00	<u>CNT1_LSB[7:0]</u>	CNT1_LSB[7:0]							
0x11	0x00	<u>CNT1_MSB[7:0]</u>	CNT1_MSB[7:0]							
0x12	0x00	<u>CNT2_LSB[7:0]</u>	CNT2_LSB[7:0]							
0x13	0x00	<u>CNT2_MSB[7:0]</u>	CNT2_MSB[7:0]							

ADDRESS	RESET	NAME	MSB							LSB
0x14	0x00	<u>CNT3_LSB[7:0]</u> 1								CNT3_LSB[7:0]
0x15	0x00	<u>CNT3_MSB[7:0]</u>								CNT3_MSB[7:0]
0x16	0x00	<u>CNT4_LSB[7:0]</u> 1								CNT4_LSB[7:0]
0x17	0x00	<u>CNT4_MSB[7:0]</u>								CNT4_MSB[7:0]
0x18	0x00	<u>CNT5_LSB[7:0]</u> 1								CNT5_LSB[7:0]
0x19	0x00	<u>CNT5_MSB[7:0]</u>								CNT5_MSB[7:0]
0x1A	0x00	<u>CNT6_LSB[7:0]</u> 1								CNT6_LSB[7:0]
0x1B	0x00	<u>CNT6_MSB[7:0]</u>								CNT6_MSB[7:0]
0x1C	0x00	<u>CNT7_LSB[7:0]</u> 1								CNT7_LSB[7:0]
0x1D	0x00	<u>CNT7_MSB[7:0]</u>								CNT7_MSB[7:0]
0x1E	0x00	<u>CNT8_LSB[7:0]</u> 1								CNT8_LSB[7:0]
0x1F	0x00	<u>CNT8_MSB[7:0]</u>								CNT8_MSB[7:0]

Register Details

DISTATE (0x0)

Digital Input State. DI_i is the state of the corresponding IN_i pin after filtering.

BIT	7	6	5	4	3	2	1	0
Field	DI8	DI7	DI6	DI5	DI4	DI3	DI2	DI1
Reset	0b0							
Access Type	Read Only							

BITFIELD	BITS	DESCRIPTION	DECODE
DI8	7	IN8 state in normal mode. In counter mode, data is not valid.	0x0: IN8 = OFF state (low in sink modes, or high in source modes) 0x1: IN8 = ON state (high in sink modes, or low in source modes)
DI7	6	IN7 state in normal mode. In counter mode, data is not valid.	0x0: IN7 = OFF state (low in sink modes, or high in source modes) 0x1: IN7 = ON state (high in sink modes, or low in source modes)
DI6	5	IN6 state in normal mode. In counter mode, data is not valid.	0x0: IN6 = OFF state (low in sink modes, or high in source modes) 0x1: IN6 = ON state (high in sink modes, or low in source modes)
DI5	4	IN5 state in normal mode. In counter mode, data is not valid.	0x0: IN5 = OFF state (low in sink modes, or high in source modes) 0x1: IN5 = ON state (high in sink modes, or low in source modes)
DI4	3	IN4 state in normal mode. In counter mode, data is not valid.	0x0: IN4 = OFF state (low in sink modes, or high in source modes) 0x1: IN4 = ON state (high in sink modes, or low in source modes)
DI3	2	IN3 state in normal mode. In counter mode, data is not valid.	0x0: IN3 = OFF state (low in sink modes, or high in source modes) 0x1: IN3 = ON state (high in sink modes, or low in source modes)
DI2	1	IN2 state in normal mode. In counter mode, data is not valid.	0x0: IN2 = OFF state (low in sink modes, or high in source modes) 0x1: IN2 = ON state (high in sink modes, or low in source modes)
DI1	0	IN1 state in normal mode. In counter mode, data is not valid.	0x0: IN1 = OFF state (low in sink modes, or high in source modes) 0x1: IN1 = ON state (high in sink modes, or low in source modes)

FAULT1 (0x1)

FAULT1 Register Sources

BIT	7	6	5	4	3	2	1	0
Field	CRCERR	POR	FAULT2	OTSHDN1	TEMPALM	V24UV	VMLOW	Reserved
Reset	0b0	0b1	0b1	0b0	0b0	0b0	0b0	0b0
Access Type	Read Clears All	Read Clears All	Read, Ext	Read Clears All				

BITFIELD	BITS	DESCRIPTION	DECODE
CRCERR	7	CRC error detected in SPI frame. CRC error detection is enabled when CRCEN is held high.	0x0: No SPI CRC error was detected. 0x1: An SPI CRC error was detected.
POR	6	Power On Reset (POR)	0x0: Normal operating condition 0x1: A power-on-reset (POR) event was detected. All registers are reset to power-on-reset/default values.
FAULT2	5	FAULT2 Register Bits. This is the logical OR of the unmasked bits in the FAULT2 register. The bit is	0x0: No unmasked bit in the FAULT2 register is set. 0x1: At least one of the unmasked bits in the FAULT2 register is set.

BITFIELD	BITS	DESCRIPTION	DECODE
		automatically cleared when the unmasked bits in the FAULT2 register are cleared. To mask the FAULT2 register bits, refer to the F2MASK register.	
OTSHDN1	4	Thermal Shutdown	0x0: Normal operating condition 0x1: Thermal Shutdown threshold (150°C, typ) has been exceeded. All input channels, input sink or source currents and LED matrix are turned off to reduce power dissipation. GPO drivers, SPI interface and internal regulator remain active.
TEMPALM	3	Temperature Alarm	0x0: Normal operating condition 0x1: Temperature Alarm threshold (115°C, typ) has been exceeded. The device is in normal operating condition.
V24UV	2	V ₂₄ Undervoltage Monitor	0x0: The V ₂₄ supply voltage is above the V ₂₄ undervoltage threshold. 0x1: The V ₂₄ supply voltage is below the V ₂₄ undervoltage threshold.
VMLOW	1	V _M Voltage Comparator Output Status	0x0: The input voltage of the V _M comparator is higher than 0.81V (rising, typ). 0x1: The input voltage of the V _M comparator is lower than 0.78V (falling, typ).
Reserved	0	Reserved	Reserved

F1MASK (0x2)

Mask bits controlling assertion of the FAULT̄ pin on the FAULT1 register events.

BIT	7	6	5	4	3	2	1	0
Field	CRCERR_M	Reserved	FAULT2_M	OTSHDN1_M	TEMPALM_M	V24UV_M	VMLOW_M	Reserved
Reset	0b0	0b0	0b1	0b0	0b0	0b1	0b1	0b0
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
CRCERR_M	7	CRC Error Mask	0x0: CRCERR unmasked. The FAULT̄ pin is asserted when a CRC error is detected. 0x1: CRCERR masked. The FAULT̄ pin is not asserted when a CRC error is detected.
Reserved	6	Reserved	Reserved
FAULT2_M	5	FAULT2 Mask	0x0: FAULT2 unmasked. The FAULT̄ pin is asserted when an unmasked bit in the FAULT2 register is set. 0x1: FAULT2 masked. The FAULT̄ pin is not asserted when an unmasked bit in the FAULT2 register is set.
OTSHDN1_M	4	Thermal Shutdown Mask	0x0: OTSHDN1 unmasked. The FAULT̄ pin is asserted when thermal shutdown threshold temperature (150°C, typ) is exceeded. 0x1: OTSHDN1 masked. The FAULT̄ pin is not asserted when thermal shutdown threshold temperature (150°C, typ) is exceeded.
TEMPALM_M	3	Temperature Alarm Mask	0x0: TEMPALM unmasked. The FAULT̄ pin is asserted when temperature alarm threshold (115°C, typ) is exceeded. 0x1: TEMPALM masked. The FAULT̄ pin is not asserted

BITFIELD	BITS	DESCRIPTION	DECODE
			when temperature alarm threshold (115°C, typ) is exceeded.
V24UV_M	2	V ₂₄ Undervoltage Mask	0x0: V24UV unmasked. The FAULT pin is asserted when V ₂₄ is below its undervoltage threshold. 0x1: V24UV masked. The FAULT pin is not asserted when V ₂₄ is below its undervoltage threshold.
VMLOW_M	1	V _M Low Voltage Mask	0x0: VMLOW unmasked. The FAULT pin is asserted when V _M is below the V _M comparator threshold. 0x1: VMLOW masked. The FAULT pin is not asserted when V _M is below the V _M comparator threshold.
Reserved	0	Reserved	Reserved

CNFG1 (0x3)

IN1 Channel Configuration

BIT	7	6	5	4	3	2	1	0
Field	HITHR1	SOURCE1	CURR1[1:0]		FLTEN1	DELAY1[2:0]		
Reset	0b0	0x0	0b00		0b1	0b100		
Access Type	Write, Read	Write, Read	Write, Read		Write, Read	Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
HITHR1	7	Channel 1 Voltage Threshold Selection for DI Modes	0x0: In DI modes (CURR1[1:0] = 0x00, 0x01, 0x02), IN1 voltage threshold is low. 0x1: In DI modes (CURR1[1:0] = 0x00, 0x01, 0x02), IN1 voltage threshold is high.
SOURCE1	6	Channel 1 Digital Input Sink or Source Mode Selection	0x0: Sink Mode 0x1: Source Mode
CURR1	5:4	The CURR1[1:0] bits select the channel 1 sink or source current scaling factor relative to the current set by the REFDI resistor. Refer to Table 1 for CNFG_ register configuration in different input modes.	0x0: Sink or source current is turned off. Input comparator threshold is set to HTL mode. 0x1: 1x Current 0x2: 3x Current 0x3: TTL operation with sink or source current off
FLTEN1	3	Channel 1 Glitch Filter Enable	0x0: Input glitch filter is disabled. 0x1: Input glitch filter is enabled.
DELAY1	2:0	Channel 1 Input Glitch Filter Delay	0x0: 50µs 0x1: 100µs 0x2: 400µs 0x3: 800µs 0x4: 1.6ms 0x5: 3.2ms 0x6: 12.8ms 0x7: 20ms

CNFG2 (0x4)

IN2 Channel Configuration

BIT	7	6	5	4	3	2	1	0

Field	HITHR2	SOURCE2	CURR2[1:0]	FLTEN2	DELAY2[2:0]
Reset	0b0	0x0	0b00	0b1	0b100
Access Type	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
HITHR2	7	Channel 2 Voltage Threshold Selection for DI Modes	0x0: In DI modes (CURR2[1:0] = 0x00, 0x01, 0x02), IN2 voltage threshold is low. 0x1: In DI modes (CURR2[1:0] = 0x00, 0x01, 0x02), IN2 voltage threshold is high.
SOURCE2	6	Channel 2 Digital Input Sink or Source Mode Selection	0x0: Sink Mode 0x1: Source Mode
CURR2	5:4	The CURR2[1:0] bits select the channel 2 sink or source current scaling factor relative to the current set by the REFDI resistor. Refer to Table 1 for CNFG_ register configuration in different input modes.	0x0: Sink or source current is turned off. Input comparator threshold is set to HTL mode. 0x1: 1x Current 0x2: 3x Current 0x3: TTL operation with sink or source current off
FLTEN2	3	Channel 2 Glitch Filter Enable	0x0: Input glitch filter is disabled. 0x1: Input glitch filter is enabled.
DELAY2	2:0	Channel 2 Input Glitch Filter Delay	0x0: 50µs 0x1: 100µs 0x2: 400µs 0x3: 800µs 0x4: 1.6ms 0x5: 3.2ms 0x6: 12.8ms 0x7: 20ms

CNFG3 (0x5)

IN3 Channel Configuration

BIT	7	6	5	4	3	2	1	0
Field	HITHR3	SOURCE3	CURR3[1:0]		FLTEN3	DELAY3[2:0]		
Reset	0b0	0x0	0b00		0b1	0b100		
Access Type	Write, Read	Write, Read	Write, Read		Write, Read	Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
HITHR3	7	Channel 3 Voltage Threshold Selection for DI Modes	0x0: In DI modes (CURR3[1:0] = 0x00, 0x01, 0x02), IN3 voltage threshold is low. 0x1: In DI modes (CURR3[1:0] = 0x00, 0x01, 0x02), IN3 voltage threshold is high.
SOURCE3	6	Channel 3 Digital Input Sink or Source Mode Selection	0x0: Sink Mode 0x1: Source Mode
CURR3	5:4	The CURR3[1:0] bits select the channel 3 sink or source current scaling factor relative to the current set by the REFDI resistor. Refer to Table 1 for	0x0: Sink or source current is turned off. Input comparator threshold is set to HTL mode. 0x1: 1x Current 0x2: 3x Current 0x3: TTL operation with sink or source current off

BITFIELD	BITS	DESCRIPTION	DECODE
		CNFG_ register configuration in different input modes.	
FLTEN3	3	Channel 3 Glitch Filter Enable	0x0: Input glitch filter is disabled. 0x1: Input glitch filter is enabled.
DELAY3	2:0	Channel 3 Input Glitch Filter Delay	0x0: 50µs 0x1: 100µs 0x2: 400µs 0x3: 800µs 0x4: 1.6ms 0x5: 3.2ms 0x6: 12.8ms 0x7: 20ms

CNFG4 (0x6)

IN4 Channel Configuration

BIT	7	6	5	4	3	2	1	0	
Field	HITHR4	SOURCE4	CURR4[1:0]		FLTEN4	DELAY4[2:0]			
Reset	0b0	0x0	0b00		0b1	0b100			
Access Type	Write, Read	Write, Read	Write, Read		Write, Read	Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
HITHR4	7	Channel 4 Voltage Threshold Selection for DI Modes	0x0: In DI modes (CURR4[1:0] = 0x00, 0x01, 0x02), IN4 voltage threshold is low. 0x1: In DI modes (CURR4[1:0] = 0x00, 0x01, 0x02), IN4 voltage threshold is high.
SOURCE4	6	Channel 4 Digital Input Sink or Source Mode Selection	0x0: Sink Mode 0x1: Source Mode
CURR4	5:4	The CURR4[1:0] bits select the channel 4 sink or source current scaling factor relative to the current set by the REFDI resistor. Refer to Table 1 for CNFG_ register configuration in different input modes.	0x0: Sink or source current is turned off. Input comparator threshold is set to HTL mode. 0x1: 1x Current 0x2: 3x Current 0x3: TTL operation with sink or source current off
FLTEN4	3	Channel 4 Glitch Filter Enable	0x0: Input glitch filter is disabled. 0x1: Input glitch filter is enabled.
DELAY4	2:0	Channel 4 Input Glitch Filter Delay	0x0: 50µs 0x1: 100µs 0x2: 400µs 0x3: 800µs 0x4: 1.6ms 0x5: 3.2ms 0x6: 12.8ms 0x7: 20ms

CNFG5 (0x7)

IN5 Channel Configuration

BIT	7	6	5	4	3	2	1	0
Field	HITHR5	SOURCE5	CURR5[1:0]		FLTEN5	DELAY5[2:0]		
Reset	0b0	0x0	0b00		0b1	0b100		
Access Type	Write, Read	Write, Read	Write, Read		Write, Read	Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
HITHR5	7	Channel 5 Voltage Threshold Selection for DI Modes	0x0: In DI modes (CURR5[1:0] = 0x00, 0x01, 0x02), IN5 voltage threshold is low. 0x1: In DI modes (CURR5[1:0] = 0x00, 0x01, 0x02), IN5 voltage threshold is high.
SOURCE5	6	Channel 5 Digital Input Sink or Source Mode Selection	0x0: Sink Mode 0x1: Source Mode
CURR5	5:4	The CURR5[1:0] bits select the channel 5 sink or source current scaling factor relative to the current set by the REFDI resistor. Refer to Table 1 for CNFG_ register configuration in different input modes.	0x0: Sink or source current is turned off. Input comparator threshold is set to HTL mode. 0x1: 1x Current 0x2: 3x Current 0x3: TTL operation with sink or source current off
FLTEN5	3	Channel 5 Glitch Filter Enable	0x0: Input glitch filter is disabled. 0x1: Input glitch filter is enabled.
DELAY5	2:0	Channel 5 Input Glitch Filter Delay	0x0: 50µs 0x1: 100µs 0x2: 400µs 0x3: 800µs 0x4: 1.6ms 0x5: 3.2ms 0x6: 12.8ms 0x7: 20ms

CNFG6 (0x8)

IN6 Channel Configuration

BIT	7	6	5	4	3	2	1	0
Field	HITHR6	SOURCE6	CURR6[1:0]		FLTEN6	DELAY6[2:0]		
Reset	0b0	0x0	0b00		0b1	0b100		
Access Type	Write, Read	Write, Read	Write, Read		Write, Read	Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
HITHR6	7	Channel 6 Voltage Threshold Selection for DI Modes	0x0: In DI modes (CURR6[1:0] = 0x00, 0x01, 0x02), IN6 voltage threshold is low. 0x1: In DI modes (CURR6[1:0] = 0x00, 0x01, 0x02), IN6 voltage threshold is high.
SOURCE6	6	Channel 6 Digital Input Sink or Source Mode Selection	0x0: Sink Mode 0x1: Source Mode
CURR6	5:4	The CURR6[1:0] bits select the channel 6 sink or source current scaling factor relative to the current	0x0: Sink or source current is turned off. Input comparator threshold is set to HTL mode.

BITFIELD	BITS	DESCRIPTION	DECODE
		set by the REFDI resistor. Refer to Table 1 for CNFG_ register configuration in different input modes.	0x1: 1x Current 0x2: 3x Current 0x3: TTL operation with sink or source current off
FLTEN6	3	Channel 6 Glitch Filter Enable	0x0: Input glitch filter is disabled. 0x1: Input glitch filter is enabled.
DELAY6	2:0	Channel 6 Input Glitch Filter Delay	0x0: 50µs 0x1: 100µs 0x2: 400µs 0x3: 800µs 0x4: 1.6ms 0x5: 3.2ms 0x6: 12.8ms 0x7: 20ms

CNFG7 (0x9)

IN7 Channel Configuration

BIT	7	6	5	4	3	2	1	0
Field	HITHR7	SOURCE7	CURR7[1:0]		FLTEN7	DELAY7[2:0]		
Reset	0b0	0x0	0b00		0b1	0b100		
Access Type	Write, Read	Write, Read	Write, Read		Write, Read	Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
HITHR7	7	Channel 7 Voltage Threshold Selection for DI Modes	0x0: In DI modes (CURR7[1:0] = 0x00, 0x01, 0x02), IN7 voltage threshold is low. 0x1: In DI modes (CURR7[1:0] = 0x00, 0x01, 0x02), IN7 voltage threshold is high.
SOURCE7	6	Channel 7 Digital Input Sink or Source Mode Selection	0x0: Sink Mode 0x1: Source Mode
CURR7	5:4	The CURR7[1:0] bits select the channel 7 sink or source current scaling factor relative to the current set by the REFDI resistor. Refer to Table 1 for CNFG_ register configuration in different input modes.	0x0: Sink or source current is turned off. Input comparator threshold is set to HTL mode. 0x1: 1x Current 0x2: 3x Current 0x3: TTL operation with sink or source current off
FLTEN7	3	Channel 7 Glitch Filter Enable	0x0: Input glitch filter is disabled. 0x1: Input glitch filter is enabled.
DELAY7	2:0	Channel 7 Input Glitch Filter Delay	0x0: 50µs 0x1: 100µs 0x2: 400µs 0x3: 800µs 0x4: 1.6ms 0x5: 3.2ms 0x6: 12.8ms 0x7: 20ms

CNFG8 (0xA)

IN8 Channel Configuration

BIT	7	6	5	4	3	2	1	0
Field	HITHR8	SOURCE8	CURR8[1:0]		FLTEN8	DELAY8[2:0]		
Reset	0b0	0x0	0b00		0b1	0b100		
Access Type	Write, Read	Write, Read	Write, Read		Write, Read	Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
HITHR8	7	Channel 8 Voltage Threshold Selection for DI Modes	0x0: In DI modes (CURR8[1:0] = 0x00, 0x01, 0x02), IN8 voltage threshold is low. 0x1: In DI modes (CURR8[1:0] = 0x00, 0x01, 0x02), IN8 voltage threshold is high.
SOURCE8	6	Channel 8 Digital Input Sink or Source Mode Selection	0x0: Sink Mode 0x1: Source Mode
CURR8	5:4	The CURR8[1:0] bits select the channel 8 sink or source current scaling factor relative to the current set by the REFDI resistor. Refer to Table 1 for CNFG_ register configuration in different input modes.	0x0: Sink or source current is turned off. Input comparator threshold is set to HTL mode. 0x1: 1x Current 0x2: 3x Current 0x3: TTL operation with sink or source current off
FLTEN8	3	Channel 8 Glitch Filter Enable	0x0: Input glitch filter is disabled. 0x1: Input glitch filter is enabled.
DELAY8	2:0	Channel 8 Input Glitch Filter Delay	0x0: 50µs 0x1: 100µs 0x2: 400µs 0x3: 800µs 0x4: 1.6ms 0x5: 3.2ms 0x6: 12.8ms 0x7: 20ms

GLOBLCFG (0xB)

Global Configuration

BIT	7	6	5	4	3	2	1	0
Field	GPO	LEDINT	LED9	FSPICLR	CLRFILTR	Reserved[1:0]		REFDISHTCFG
Reset	0b0	0b0	0b0	0b1	0b0	0x0		0b0
Access Type	Write, Read		Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
GPO	7	Configure LO1 - LO6 Outputs to be LED Matrix or GPO Drivers	0x0: LO1 - LO6 are open-drain outputs driving the 3x3 LED matrix. The LEDs are turned on or off using the LED register and the LED9 bit in the GLOBLCFG register if the LEDINT bit is 0, or controlled autonomously by IN1 - IN8 input status and V_m comparator status if the LEDINT bit is 1. 0x1: LO1 - LO6 are push-pull logic outputs that are driven high or low using the LED1 to LED6 bits in the LED register. The LEDINT bit is "don't care" in this mode.

BITFIELD	BITS	DESCRIPTION	DECODE
LEDINT	6	LED Matrix User Control or Autonomous Control Selection	0x0: When the GPO bit is 0, the LO1 - LO6 pins are controlled by the LED1 - LED8 bits in the LED register, and the LED9 bit in the GLOBLCFG register. This bit is "don't care" when the GPO bit is 1. 0x1: When the GPO bit is 0, the LO1 - LO6 pins are controlled autonomously based on the status of the IN_ pins. LED1 to LED8 reflect the IN1 to IN8 input status respectively. LED9 is controlled by the VMLOW bit in the FAULT1 register. This bit is "don't care" when the GPO bit is 1.
LED9	5	LED9 Control	0x0: When both the GPO bit and LEDINT bit are 0, LED9 is turned off. When GPO = 1 or LEDINT = 1, LED9 bit is disregarded. 0x1: When both the GPO bit and LEDINT bit are 0, LED9 is turned on. When GPO = 1 or LEDINT = 1, LED9 bit is disregarded.
FSPICLR	4	Configures how the bits in the FAULT1 register are cleared	0x0: Fault bits in the FAULT1 register, except OTSHDN1 bit, are cleared automatically during a successful (no error) SPI read or write command. Bit FAULT2 is cleared when all unmasked fault bits in the FAULT2 register are cleared by reading it. 0x1: Fault bits in FAULT1 register are only cleared when the FAULT1 register is read.
CLRFILTR	3	Fix all input glitch filters to mid-scale value	0x0: All input filters operate normally. 0x1: All input glitch filters are fixed at mid-scale value for the chosen delay. The filters resume normal operation when CLRFILTR is set to 0.
Reserved	2:1	Reserved	Reserved
REFDISHTCFG	0	REFDI Pin Short Detection Enable	0x0: Disables the detection of a short-circuit condition on the REFDI pin 0x1: Enable the detection of a short-circuit condition on the REFDI pin

LED (0xC)

LED or GPO On or Off Control Register

BIT	7	6	5	4	3	2	1	0
Field	LED8	LED7	LED6	LED5	LED4	LED3	LED2	LED1
Reset	0b0							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
LED8	7	LED8 Control	0x0: LED8 is turned off, when the GPO bit and LEDINT bit are both 0. 0x1: LED8 is turned on, when the GPO bit and LEDINT bit are both 0.
LED7	6	LED7 Control	0x0: LED7 is turned off, when the GPO bit and LEDINT bit are both 0. 0x1: LED7 is turned on, when the GPO bit and LEDINT bit are both 0.
LED6	5	LED6 or LO6 Control	0x0: LED6 is turned off when the GPO and LEDINT bits are both 0, or the LO6 pin is driven low when the GPO bit is 1. 0x1: LED6 is turned on when the GPO and LEDINT bits

BITFIELD	BITS	DESCRIPTION	DECODE
			are both 0, or the LO6 pin is driven high when the GPO bit is 1.
LED5	4	LED5 or LO5 Control	0x0: LED5 is turned off when the GPO and LEDINT bits are both 0, or the LO5 pin is driven low when the GPO bit is 1. 0x1: LED5 is turned on when the GPO and LEDINT bits are both 0, or the LO5 pin is driven high when the GPO bit is 1.
LED4	3	LED4 or LO4 Control	0x0: LED4 is turned off when the GPO and LEDINT bits are both 0, or the LO4 pin is driven low when the GPO bit is 1. 0x1: LED4 is turned on when the GPO and LEDINT bits are both 0, or the LO4 pin is driven high when the GPO bit is 1.
LED3	2	LED3 or LO3 Control	0x0: LED3 is turned off when the GPO and LEDINT bits are both 0, or the LO3 pin is driven low when the GPO bit is 1. 0x1: LED3 is turned on when the GPO and LEDINT bits are both 0, or the LO3 pin is driven high when the GPO bit is 1.
LED2	1	LED2 or LO2 Control	0x0: LED2 is turned off when the GPO and LEDINT bits are both 0, or the LO2 pin is driven low when the GPO bit is 1. 0x1: LED2 is turned on when the GPO and LEDINT bits are both 0, or the LO2 pin is driven high when the GPO bit is 1.
LED1	0	LED1 or LO1 Control	0x0: LED1 is turned off when the GPO and LEDINT bits are both 0, or the LO1 pin is driven low when the GPO bit is 1. 0x1: LED1 is turned on when the GPO and LEDINT bits are both 0, or the LO1 pin is driven high when the GPO bit is 1.

FAULT2 (0xD)

FAULT2 Register Sources

BIT	7	6	5	4	3	2	1	0
Field	Reserved[2:0]		VAUV	SPI8CLK	OTSHDN2	RFdio	RFdis	
Reset	0x0		0x1	0b0	0b0	0b0	0b0	
Access Type	Read Only		Read Clears All					

BITFIELD	BITS	DESCRIPTION	DECODE
Reserved	7:5	Reserved	Reserved
VAUV	4	VA Undervoltage Monitor	0x0: The VA supply voltage is above the VA undervoltage threshold. 0x1: The VA supply voltage is below the VA undervoltage threshold.
SPI8CLK	3	Number of SCLK Cycles Error	0x0: No SPI SCLK cycle error. In the addressable SPI mode, the MAX22196 has received a number of clock cycles equal to 24 if CRC is enabled, or 16 if CRC is disabled. In the daisy-chain mode, the device has received a number of clock cycles equal to a multiple of 24 if CRC is enabled, or a multiple of 16 if CRC is

BITFIELD	BITS	DESCRIPTION	DECODE
			disabled. 0x1: SPI SCLK cycle error. In the addressable SPI mode, the MAX22196 has received a number of clock cycles not equal to 24 if CRC is enabled, or 16 if CRC is disabled. In the daisy-chain mode, the device has received a number of clock cycles not equal to a multiple of 24 if CRC is enabled, or a multiple of 16 if CRC is disabled. The SPI command is ignored when wrong number of SCLK pulses is received.
OTSHDN2	2	System Thermal Shutdown	0x0: System Thermal Shutdown threshold (165°C, typ) has not been exceeded. 0x1: System Thermal Shutdown threshold (165°C, typ) has been exceeded. All input channels, input sink or source currents, LED matrix, GPO drivers, SPI interface and internal regulator are turned off to reduce power dissipation.
RFDIO	1	Open-Circuit Error Detected on the REFDI Pin	0x0: Normal operating condition 0x1: An open-circuit condition is detected on the REFDI pin. This bit is 1 when thermal shutdown happens, because REFDI function turns off in thermal shutdown. No action on the input channels when this condition occurs.
RFDIS	0	Short-circuit fault is detected on the REFDI pin. The short-circuit detection on the REFDI pin is enabled by setting the REFDISHTCFG bit to 1. If REFDISHTCFG is 0, the RFDIS fault keeps the previous latched value when the short-circuit detection is on.	0x0: Normal operating condition 0x1: A short-circuit condition is detected on the REFDI pin. All the input channels are disabled as long as the short-circuit condition on REFDI is present.

F2MASK (0xE)

Mask bits controlling assertion of the FAULT2 bit in the FAULT1 register. The FAULT2 bit is the logic OR of all the bits in the FAULT2 register which are not masked.

BIT	7	6	5	4	3	2	1	0
Field		ID[2:0]		VAUV_M	SPI8CLK_M	OTSHDN2_M	RFDIO_M	RFDIS_M
Reset		0x1		0x0	0b0	0b1	0b0	0b0
Access Type		Read Only		Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
ID	7:5	Chip ID	
VAUV_M	4	V _A Undervoltage Mask	0x0: VAUV unmasked. The FAULT2 bit in the FAULT1 register follows the VAUV bit setting. 0x1: VAUV masked. The FAULT2 bit in the FAULT1 register does not change if the VAUV bit changes.
SPI8CLK_M	3	Mask for Number of SCLK Cycles Error	0x0: SPI8CLK unmasked. The FAULT2 bit in the FAULT1 register follows the SPI8CLK bit setting. 0x1: SPI8CLK masked. The FAULT2 bit in the FAULT1 register does not change if the SPI8CLK bit changes.
OTSHDN2_M	2	System Thermal Shutdown Mask	0x0: OTSHDN2 unmasked. The FAULT2 bit in the FAULT1 register follows the OTSHDN2 bit setting. 0x1: OTSHDN2 masked. The FAULT2 bit in the FAULT1 register does not change if the OTSHDN2 bit changes.

BITFIELD	BITS	DESCRIPTION	DECODE
RFDIO_M	1	Mask for Open-Circuit Error on the REFDI Pin	0x0: RFDIO unmasked. The FAULT2 bit in the FAULT1 register follows the RFDIO bit setting. 0x1: RFDIO masked. The FAULT2 bit in the FAULT1 register does not change if the RFDIO bit changes.
RFDIS_M	0	Mask for Short-Circuit Error on the REFDI Pin	0x0: RFDIS unmasked. The FAULT2 bit in the FAULT1 register follows the RFDIS bit setting. 0x1: RFDIS masked. The FAULT2 bit in the FAULT1 register does not change if the RFDIS bit changes.

START_STOP (0xF)

Per-Channel Start/Stop Bits for Counter Mode

BIT	7	6	5	4	3	2	1	0
Field	CNT8_START	CNT7_START	CNT6_START	CNT5_START	CNT4_START	CNT3_START	CNT2_START	CNT1_START
Reset	0x0							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
CNT8_START	7	Channel 8 Start/Stop Bit for Counter Mode	0x0: Channel 8 counter is stopped. 0x1: Channel 8 counter is enabled, counting down to zero.
CNT7_START	6	Channel 7 Start/Stop Bit for Counter Mode	0x0: Channel 7 counter is stopped. 0x1: Channel 7 counter is enabled, counting down to zero.
CNT6_START	5	Channel 6 Start/Stop Bit for Counter Mode	0x0: Channel 6 counter is stopped. 0x1: Channel 6 counter is enabled, counting down to zero.
CNT5_START	4	Channel 5 Start/Stop Bit for Counter Mode	0x0: Channel 5 counter is stopped. 0x1: Channel 5 counter is enabled, counting down to zero.
CNT4_START	3	Channel 4 Start/Stop Bit for Counter Mode	0x0: Channel 4 counter is stopped. 0x1: Channel 4 counter is enabled, counting down to zero.
CNT3_START	2	Channel 3 Start/Stop Bit for Counter Mode	0x0: Channel 3 counter is stopped. 0x1: Channel 3 counter is enabled, counting down to zero.
CNT2_START	1	Channel 2 Start/Stop Bit for Counter Mode	0x0: Channel 2 counter is stopped. 0x1: Channel 2 counter is enabled, counting down to zero.
CNT1_START	0	Channel 1 Start/Stop Bit for Counter Mode	0x0: Channel 1 counter is stopped. 0x1: Channel 1 counter is enabled, counting down to zero.

CNT1 LSB (0x10)

Channel 1 Counter LSB Byte

BIT	7	6	5	4	3	2	1	0
Field	CNT1 LSB[7:0]							

Reset	0x00	
Access Type	Read Only	

BITFIELD	BITS	DESCRIPTION
CNT1_LSB	7:0	Least significant byte of current count value for channel 1 counter. Readable only if the CNT1_START bit in the START_STOP register is 0, otherwise reading this location returns 0.

CNT1_MSB (0x11)

Channel 1 Counter MSB Byte

BIT	7	6	5	4	3	2	1	0
Field	CNT1_MSB[7:0]							
Reset	0x00							
Access Type	Read Only							

BITFIELD	BITS	DESCRIPTION
CNT1_MSB	7:0	Most significant byte of current count value for channel 1 counter. Readable only if the CNT1_START bit in the START_STOP register is 0, otherwise reading this location returns 0.

CNT2_LSB (0x12)

Channel 2 Counter LSB Byte

BIT	7	6	5	4	3	2	1	0
Field	CNT2_LSB[7:0]							
Reset	0x00							
Access Type	Read Only							

BITFIELD	BITS	DESCRIPTION
CNT2_LSB	7:0	Least significant byte of current count value for channel 2 counter. Readable only if the CNT2_START bit in the START_STOP register is 0, otherwise reading this location returns 0.

CNT2_MSB (0x13)

Channel 2 Counter MSB Byte

BIT	7	6	5	4	3	2	1	0
Field	CNT2_MSB[7:0]							
Reset	0x00							
Access Type	Read Only							

BITFIELD	BITS	DESCRIPTION
CNT2_MSB	7:0	Most significant byte of current count value for channel 2 counter. Readable only if the CNT2_START bit in the START_STOP register is 0, otherwise reading this location returns 0.

CNT3 LSB (0x14)

Channel 3 Counter LSB Byte

BIT	7	6	5	4	3	2	1	0
Field	CNT3_LSB[7:0]							
Reset	0x00							
Access Type	Read Only							

BITFIELD	BITS	DESCRIPTION
CNT3_LSB	7:0	Least significant byte of current count value for channel 3 counter. Readable only if the CNT3_START bit in the START_STOP register is 0, otherwise reading this location returns 0.

CNT3 MSB (0x15)

Channel 3 Counter MSB Byte

BIT	7	6	5	4	3	2	1	0
Field	CNT3_MSB[7:0]							
Reset	0x00							
Access Type	Read Only							

BITFIELD	BITS	DESCRIPTION
CNT3_MSB	7:0	Most significant byte of current count value for channel 3 counter. Readable only if the CNT3_START bit in the START_STOP register is 0, otherwise reading this location returns 0.

CNT4_LSB (0x16)

Channel 4 Counter LSB Byte

BIT	7	6	5	4	3	2	1	0
Field	CNT4_LSB[7:0]							
Reset	0x00							
Access Type	Read Only							

BITFIELD	BITS	DESCRIPTION
CNT4_LSB	7:0	Least significant byte of current count value for channel 4 counter. Readable only if the CNT4_START bit in the START_STOP register is 0, otherwise reading this location returns 0.

CNT4_MSB (0x17)

Channel 4 Counter MSB Byte

BIT	7	6	5	4	3	2	1	0
Field	CNT4_MSB[7:0]							
Reset	0x00							
Access Type	Read Only							

BITFIELD	BITS	DESCRIPTION
CNT4_MSB	7:0	Most significant byte of current count value for channel 4 counter. Readable only if the CNT4_START bit in the START_STOP register is 0, otherwise reading this location returns 0.

CNT5_LSB (0x18)

Channel 5 Counter LSB Byte

BIT	7	6	5	4	3	2	1	0
Field	CNT5_LSB[7:0]							
Reset	0x00							
Access Type	Read Only							

BITFIELD	BITS	DESCRIPTION
CNT5_LSB	7:0	Least significant byte of current count value for channel 5 counter. Readable only if the CNT5_START bit in the START_STOP register is 0, otherwise reading this location returns 0.

CNT5_MSB (0x19)

Channel 5 Counter MSB Byte

BIT	7	6	5	4	3	2	1	0
Field	CNT5_MSB[7:0]							
Reset	0x00							
Access Type	Read Only							

BITFIELD	BITS	DESCRIPTION
CNT5_MSB	7:0	Most significant byte of current count value for channel 5 counter. Readable only if the CNT5_START bit in the START_STOP register is 0, otherwise reading this location returns 0.

CNT6_LSB (0x1A)

Channel 6 Counter LSB Byte

BIT	7	6	5	4	3	2	1	0
Field	CNT6_LSB[7:0]							
Reset	0x00							
Access Type	Read Only							

BITFIELD	BITS	DESCRIPTION
CNT6_LSB	7:0	Least significant byte of current count value for channel 6 counter. Readable only if the CNT6_START bit in the START_STOP register is 0, otherwise reading this location returns 0.

CNT6_MSB (0x1B)

Channel 6 Counter MSB Byte

BIT	7	6	5	4	3	2	1	0
Field	CNT6_MSB[7:0]							

Reset	0x00	
Access Type	Read Only	

BITFIELD	BITS	DESCRIPTION
CNT6_MSB	7:0	Most significant byte of current count value for channel 6 counter. Readable only if the CNT6_START bit in the START_STOP register is 0, otherwise reading this location returns 0.

CNT7_LSB (0x1C)

Channel 7 Counter LSB Byte

BIT	7	6	5	4	3	2	1	0
Field	CNT7_LSB[7:0]							
Reset	0x00							
Access Type	Read Only							

BITFIELD	BITS	DESCRIPTION
CNT7_LSB	7:0	Least significant byte of current count value for channel 7 counter. Readable only if the CNT7_START bit in the START_STOP register is 0, otherwise reading this location returns 0.

CNT7_MSB (0x1D)

Channel 7 Counter MSB Byte

BIT	7	6	5	4	3	2	1	0
Field	CNT7_MSB[7:0]							
Reset	0x00							
Access Type	Read Only							

BITFIELD	BITS	DESCRIPTION
CNT7_MSB	7:0	Most significant byte of current count value for channel 7 counter. Readable only if the CNT7_START bit in the START_STOP register is 0, otherwise reading this location returns 0.

CNT8_LSB (0x1E)

Channel 8 Counter LSB Byte

BIT	7	6	5	4	3	2	1	0
Field	CNT8_LSB[7:0]							
Reset	0x00							
Access Type	Read Only							

BITFIELD	BITS	DESCRIPTION
CNT8_LSB	7:0	Least significant byte of current count value for channel 8 counter. Readable only if the CNT8_START bit in the START_STOP register is 0, otherwise reading this location returns 0.

CNT8_MSB (0x1F)

Channel 8 Counter MSB Byte

BIT	7	6	5	4	3	2	1	0
Field	CNT8_MSB[7:0]							
Reset	0x00							
Access Type	Read Only							

BITFIELD	BITS	DESCRIPTION
CNT8_MSB	7:0	Most significant byte of current count value for channel 8 counter. Readable only if the CNT8_START bit in the START_STOP register is 0, otherwise reading this location returns 0.

Applications Information

Power Supply Sequencing

The MAX22196 does not require special power supply sequencing. The logic interface supply (V_L) is set independently from the field supply (V_{24}) or LDO output (V_A) levels.

Power Supply Decoupling

To reduce ripple and the chance of introducing data errors, bypass V_{24} and V_A with $1\mu F$ ceramic capacitors to GND and bypass V_L with $0.1\mu F$ ceramic capacitor to GND, respectively. Place the bypass capacitors as close as possible to the power supply input pins.

PCB Layout Recommendations

The PCB designer should follow some critical recommendations in order to get the best performance from the design.

- Keep the input/output traces as short as possible. To keep signal paths low-inductance, avoid using vias.
- Have a solid ground plane underneath the entire EP area with multiple thermal vias for best thermal performance.
- Maximize the metal coverage for all layers, especially for top and bottom layer to optimize the heat dissipation.
- Use 2oz copper for top and bottom layer if possible so that more heat can be drawn to the PCB.
- Maximize the number of vias under the package for thermal purposes. If possible, fill the via with copper, which further enhances the vertical heat transfer through the PCB.

Powering V_A Supply Externally

The V_A pin can alternatively be powered by an external 3V to 5.5V supply. In this configuration, disable the on-chip regulator by connecting REGEN pin to GND. This configuration reduces the power dissipation in the chip by $1.3mA \times (V_{24} - 5V)$, typical. When powering the MAX22196 from an external 3.3V or 5V supply on V_A , V_{24} must be powered by external 24V supply for source configurations. If the MAX22196 is only operated in sink or TTL configurations, V_{24} can be powered by the external V_A supply, and a 24V supply is not needed.

When V_{24} is powered by the V_A supply, the device always indicates a 24V undervoltage fault due to the V24UV bit in the FAULT1 register, and the $\overline{\text{FAULT}}$ pin is always active (low) if the bit is unmasked in the F1MASK register. To overcome this, set bit V24UV_M in the F1MASK register to 1.

Isolating the SPI

A companion digital isolator, the MAX14483, is optimized to support the MAX22196. The MAX14483 is a six-channel, 3.75kVRMS, low-power digital isolator ideal for interfacing to low-voltage products such as microcontrollers or FPGAs.

[Figure 18](#) demonstrates two MAX22196 devices in daisy-chain operation, showing SPI signals, control signals, and power monitoring signal isolated between the field and logic side of the design. A single MAX14483 can be used for multiple MAX22196 devices. [Figure 19](#) demonstrates two MAX22196 devices operated in addressable SPI mode, meaning they share a common chip select ($\overline{\text{CS}}$) signal from the SPI controller (MCU or FPGA).

The addressable SPI mode can accommodate up to four devices sharing a common $\overline{\text{CS}}$ signal. When more than four devices are required in a module, daisy-chain configuration can be used. In daisy-chain mode, the number of SPI clock cycles per read or write command is $N \times 16$ with CRC disabled, or $N \times 24$ with CRC enabled, where N is the number of devices in the daisy chain, creating a longer SPI read/write delay.

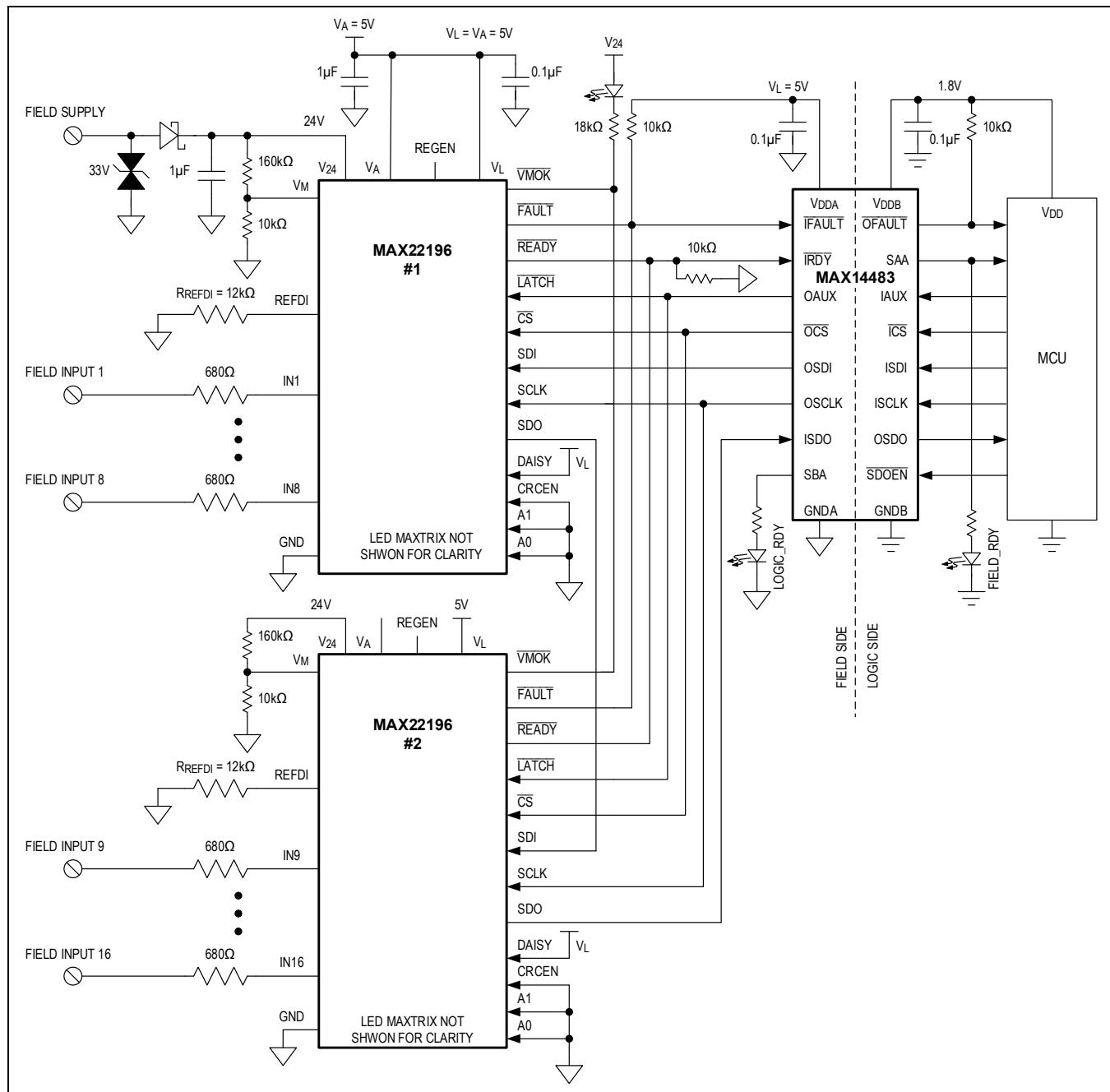


Figure 18. 16-Channel Digital Input with Isolated SPI Daisy-Chain Mode

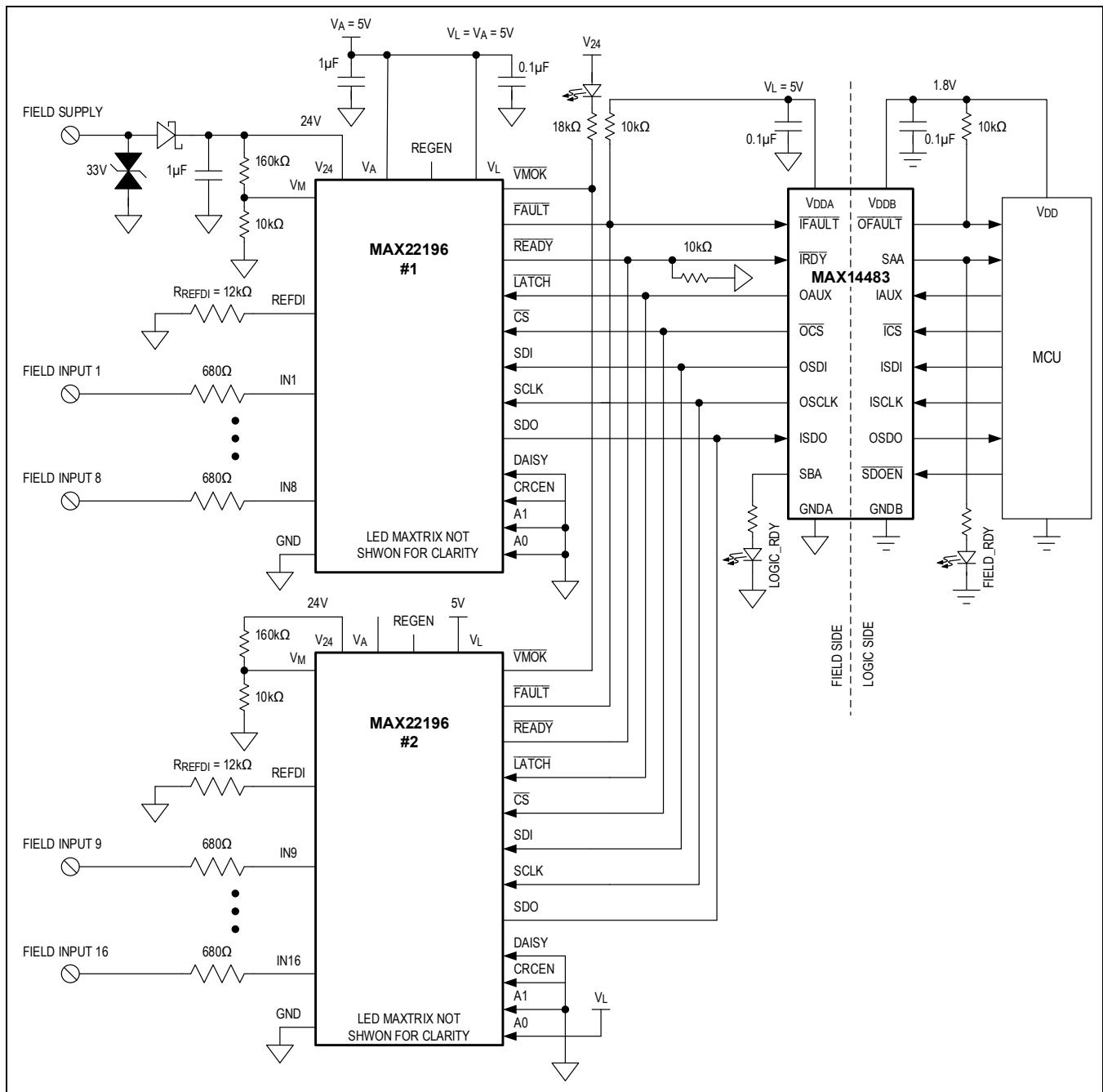


Figure 19. 16-Channel Digital Input with Isolated Addressable SPI Mode

LED Matrix Power Dissipation

Heating due to high power dissipation is one of the main challenges in digital input modules. Assuming 2mA average current to light an LED and all LEDs are on simultaneously, the power dissipation of the LED matrix, including the LEDs, series resistors and internal switches, can be estimated as $5V \times 9 \times 2mA = 90mW$. When V_A is powered by the internal LDO (REGEN unconnected), the power dissipation due to the LDO loss with a maximum 30V field supply is $(30V - 5V) \times 9 \times 2mA = 450mW$. In a 16-channel digital input module, the power dissipation due to LED matrix and LDO loss can be as high as 900mW. In such applications, it is recommended to power the V_A supply externally (REGEN connected to GND) using an on-board step-down DC-DC converter. Assuming the DC-DC converter output is 3.3V with 90% efficiency,

the power dissipation of the LED matrix can be reduced to $3.3V \times 9 \times 2mA = 59.4mW$. The DC-DC converter loss is only $5.94mW$. [Figure 20](#) illustrates the 16-channel digital input module with V_A powered by the onboard DC-DC converter.

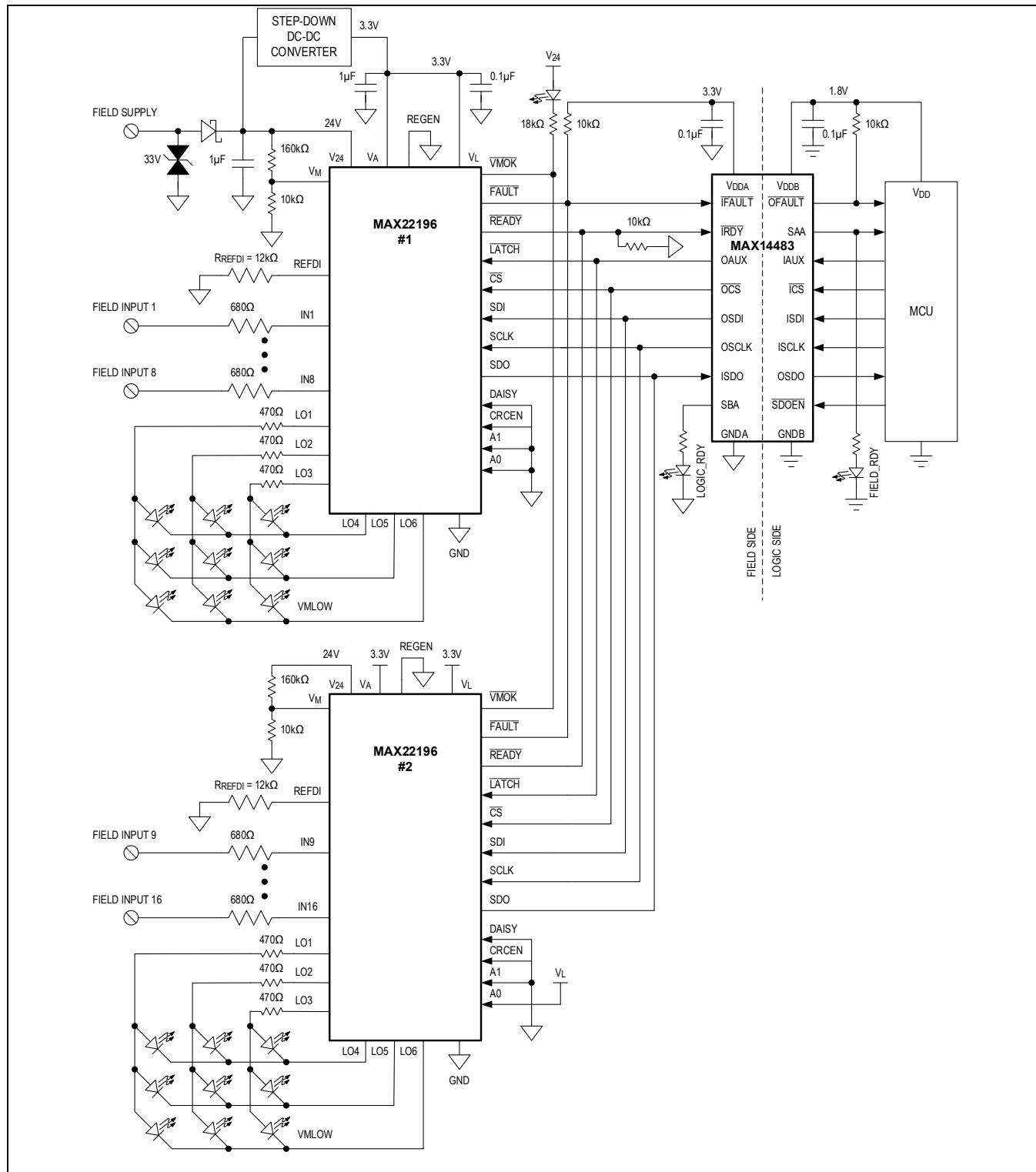


Figure 20. 16-Channel Digital Input Module with V_A and V_L Powered by External DC-DC Converter

IEC 61131-2 EMC Requirements

The MAX22196 is required to operate reliably in harsh industrial environments. The device can meet the transient immunity requirements as specified in IEC 61131-2, including Electrostatic Discharge (ESD) per IEC 61000-4-2, Electrical Fast Transient/Burst (EFT) per IEC 61000-4-4, and Surge Immunity per IEC 61000-4-5. Analog Devices, Inc.'s proprietary process technology provides robust input channels and field supply with internal ESD structures and high Absolute Maximum Ratings (see the [Absolute Maximum Ratings](#) section), but external components are also required to absorb excessive energy from ESD and surge transients. The circuit with external components shown in [Figure 21](#) allows the device to meet and exceed the transient immunity requirements as specified in IEC 61131-2 and related IEC 61000-4-x standards. The system shown in [Figure 21](#), using the components shown in [Table 7](#), is designed to be robust against ESD, EFT, and Surge specifications as listed in [Table 8](#). In all these tests, the part or DUT is soldered onto a properly designed application board (e.g., the MAX22196EVKIT#) with necessary external components.

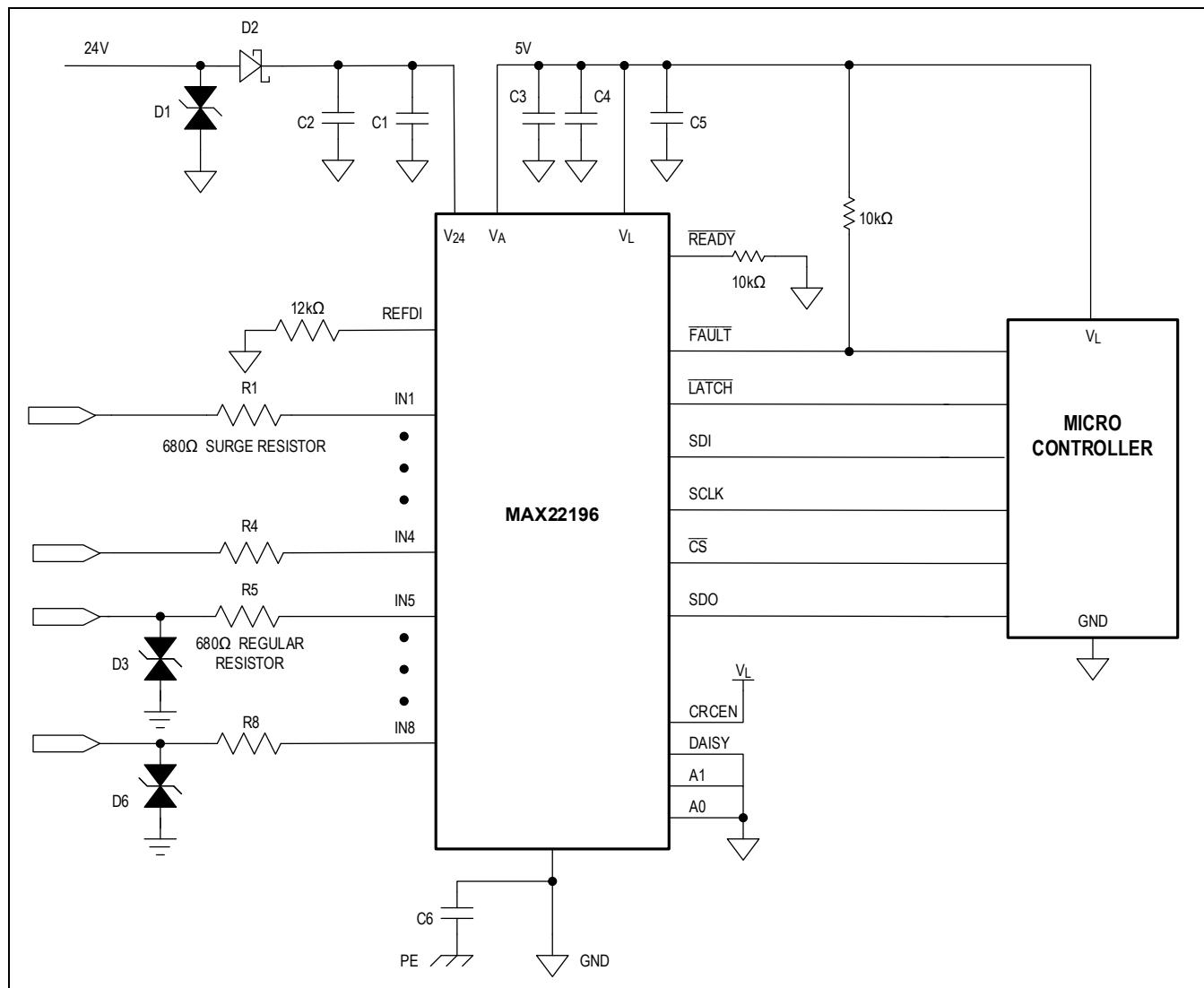


Figure 21. Typical EMC Protection Circuitry for the MAX22196

Table 7. Recommended Components for EMC Protection

COMPONENT	DESCRIPTION	REQUIRED / RECOMMENDED / OPTIONAL
C1	0.1 μ F, 100V low ESR ceramic capacitor	Recommended
C2	1 μ F, 100V low ESR ceramic capacitor	Required
C3	0.1 μ F, 16V low ESR ceramic capacitor	Recommended
C4	1 μ F, 16V low ESR ceramic capacitor	Required
C5	0.1 μ F, 16V low ESR ceramic capacitor	Required
C6	3300pF, 2220 safety rated Y capacitor	Recommended
R1–R4	680 Ω , 2512, 1.5W pulse withstanding resistor (CMB0207, RPC2512, CRCW2512-IF or similar)	Required
R5–R8	680 Ω , 0603, 0.1W resistor	Required
D1	Bidirectional TVS diode, SMAJ33CA (42 Ω) or SM30T39CAY (2 Ω)	Required
D2	Schottky diode for reverse current protection	Required
D3–D6	Bidirectional TVS diode, SMAJ33CA (42 Ω)	Required
All other resistors	0603 0.1W resistors	Required
All LEDs (not shown in Figure 21)	LED for visual input status indication	Recommended

Table 8. Transient Immunity Test Results

TEST	RESULT
IEC 61000-4-2 Electrostatic Discharge (ESD)	Contact ESD
	Air-Gap ESD
IEC 61000-4-4 Electrical Fast Transient (EFT)	Input Line
IEC 61000-4-5 Surge Immunity (1.2/50 μ s, 42 Ω)	Line-to-Ground
	Line-to-Line
	Power Supply

ESD Protection of Field Inputs

The input resistor limits the energy into the MAX22196 IN_ pins and protects the internal ESD structure from excessive transient energy. An input series resistor is required and should be rated to withstand such ESD levels. The MAX22196 input channels can withstand up to $\pm 8\text{kV}$ ESD contact discharge and $\pm 15\text{kV}$ ESD air-gap discharge with an input series resistor of 680 Ω or larger. The input resistor value shifts the field voltage switching threshold scaled by the input current; thus, it determines the input characteristics of the application. The package of the resistor should be large enough to prevent the arcing across the two resistor pads. Arcing depends on the ESD level applied to the field input and the application's pollution degree.

EFT Protection of Field Inputs

The input channels can withstand up to $\pm 4\text{kV}$, 5kHz or 100kHz fast transients ([Figure 22](#)) with performance criterion A, normal operation within specification limits. A capacitive coupling clamp is used to couple the fast transients (burst) from the EFT generator to the field inputs of the MAX22196 without any galvanic connection to the MAX22196 input pins.

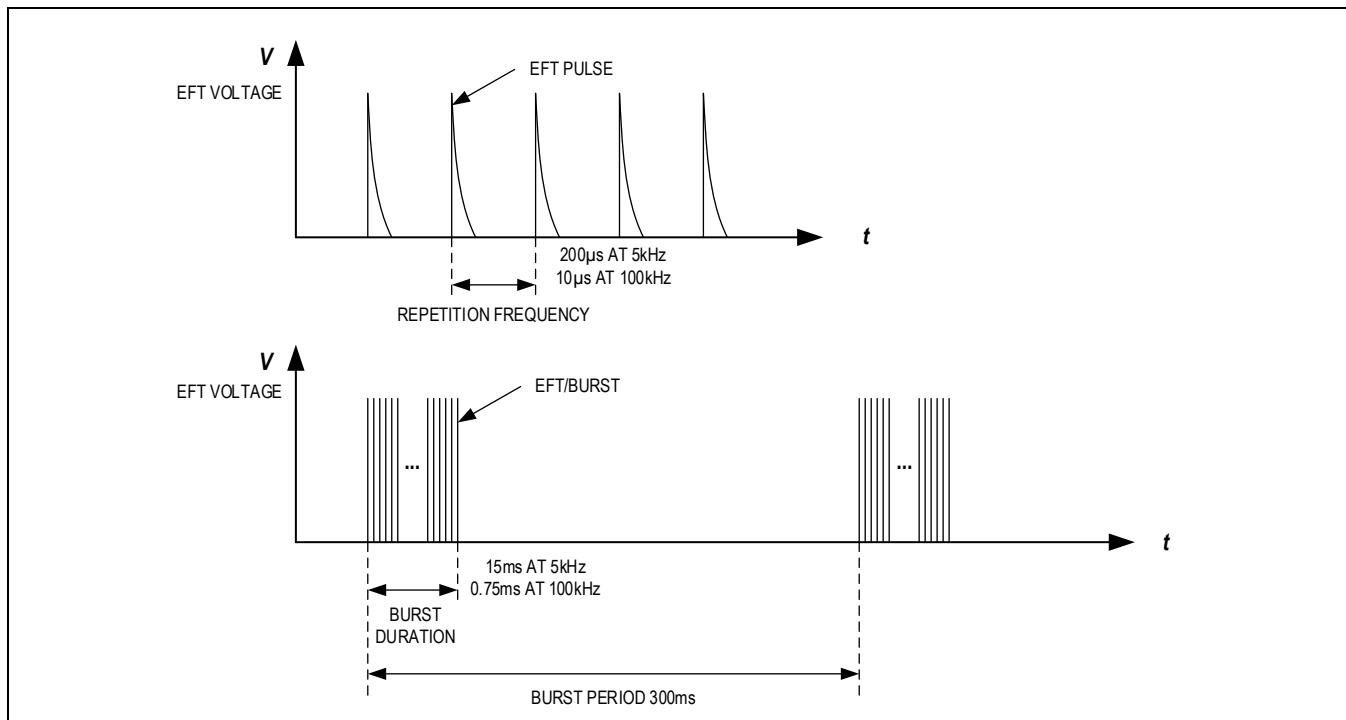


Figure 22. Electrical Fast Transient/Burst Waveform

Surge Protection of Field Inputs

In order to protect the IN_{_} pins against IEC 61000-4-5 surges ([Figure 23](#) and [Figure 24](#)), two options exist. The first option is to use a series pulse withstanding resistor as illustrated on IN1 to IN4 in [Figure 21](#). A pulse resistor greater or equal to 680Ω should be used to withstand $\pm 1\text{kV}/42\Omega$, 1.2/50µs surge pulses. The pulse resistor should support dissipation of the surge energy. Examples of suitable resistors are CMB0207 MELF, RPC2512 or CRCW2512-IF thick film as well as others. The required resistor value is defined by the Type 1, 2, 3, or other input characteristics. Capacitors for filtering should not be connected to the IN_{_} pins. Higher levels of surge tolerance can be achieved by using higher series resistor values on IN_{_} inputs: doubling the resistor value doubles the surge tolerance. However, higher resistor values increase the field threshold voltages, scaled by $I_{IN} \times R_{IN}$. Ensure that the threshold voltages meet the IEC 61131-2 limits.

The second option, which can result in a smaller overall footprint, is to use a bidirectional TVS to GND at the field input with a low-power series resistor, as shown on IN5 to IN8 in [Figure 21](#). The TVS must be able to absorb the surge energy and has the function of limiting the peak voltage so that the resistor only sees a low differential voltage during the surge transient. Suitable TVS include SMAJ33CA, SPT02-236, or PDFN3-32 which has a smaller footprint, offering protection against $\pm 1\text{kV}/42\Omega$ surges.

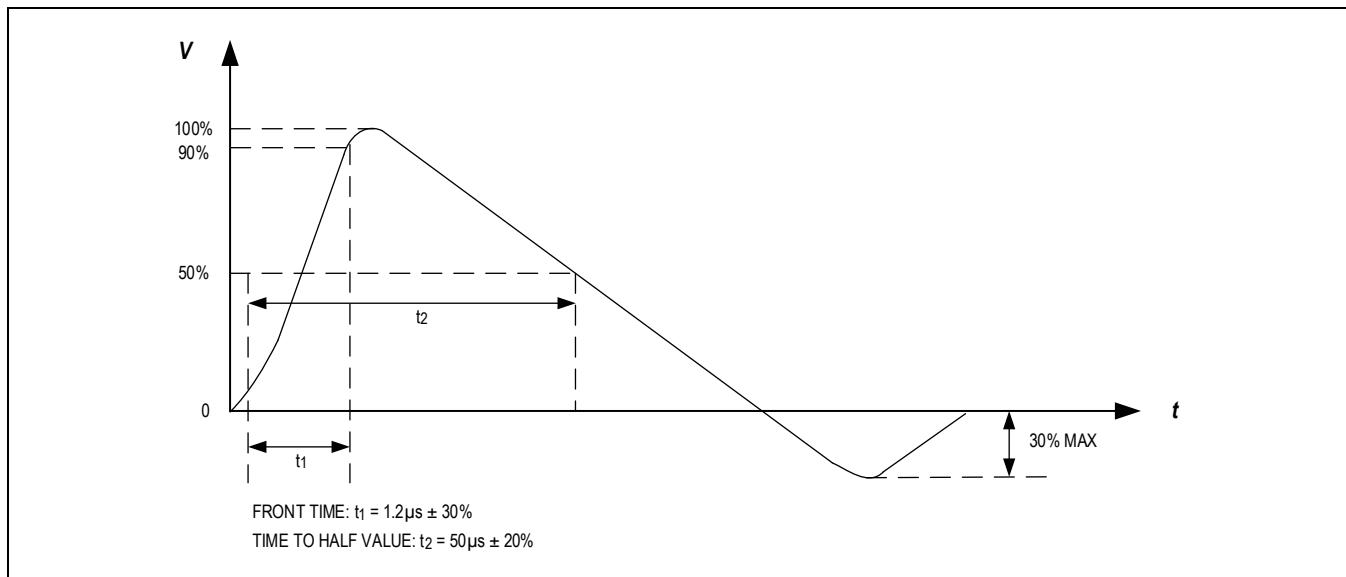
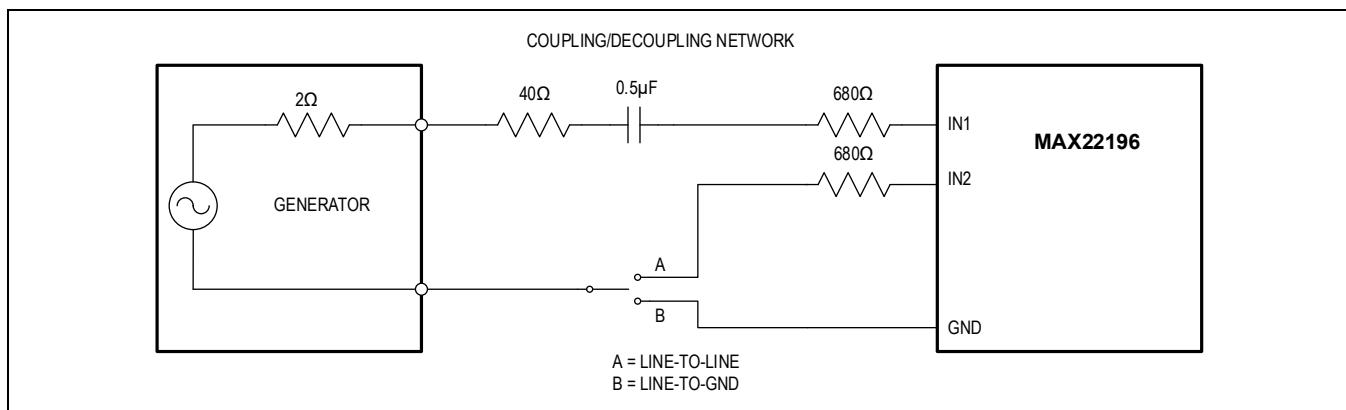


Figure 23. IEC 61000-4-5 1.2/50 μ s Surge Voltage Waveform

Figure 24. IEC 61000-4-5 Surge Testing Method

Surge Protection of the 24V Field Supply

In order to protect the V₂₄ pin against $\pm 500\text{V}/42\Omega$, 1.2 $\mu\text{s}/50\mu\text{s}$ surges (Figure 23), an SMAJ33CA TVS can be applied to the V₂₄ pin, along with a series Schottky diode for reverse current protection. To protect against $\pm 500\text{V}/2\Omega$, 1.2 $\mu\text{s}/50\mu\text{s}$ surges, an SM30T39CAY TVS can be applied to the V₂₄ pins.

Typical Application Circuits

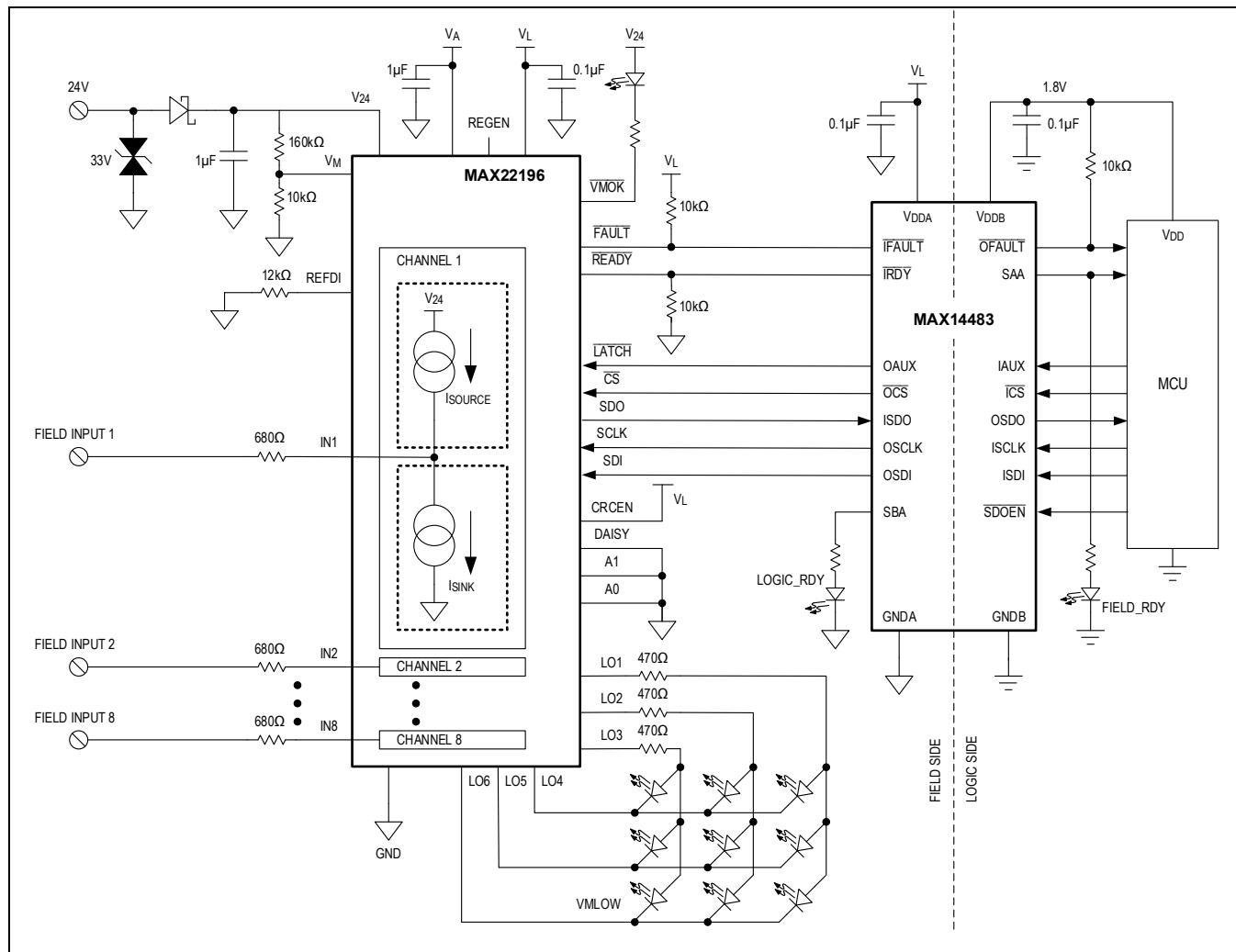


Figure 25. Eight-Channel Isolated Sink or Source Digital Input Module

Ordering Information

PART NUMBER	TEMP RANGE	PIN-PACKAGE
MAX22196ATJ+	-40°C to 125°C	32-TQFN
MAX22196ATJ+T	-40°C to 125°C	32-TQFN

+Denotes lead(Pb)-free/RoHS-compliant package.

T = Tape and Reel.

Chip Information

PROCESS: BiCMOS

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	03/23	Release for Market Intro	—

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Analog Devices Inc.:](#)

[MAX22196ATJ+](#) [MAX22196ATJ+T](#)