

4 Ω R_{ON} , 8-Channel iCMOS Multiplexers with 1.2 V and 1.8 V JEDEC Logic Compliance

FEATURES

- ▶ 4.7 Ω maximum on resistance at 25°C at ± 15 V dual supply
- ▶ 0.5 Ω typical on-resistance flatness at 25°C at ± 15 V dual supply
- ▶ Fully specified at ± 15 V, +12 V, and ± 5 V
- ▶ V_L supply for low-logic level compatibility
 - ▶ 1.8 V JEDEC standard compliant (JESD8-7A)
 - ▶ 1.2 V JEDEC standard compliant (JESD8-12A.01)
- ▶ Rail-to-rail operation
- ▶ Break-before-make switching action
- ▶ 24-lead, 4 mm × 4 mm LFCSP

APPLICATIONS

- ▶ FPGA and microcontroller systems
- ▶ Relay replacement
- ▶ Audio and video routing
- ▶ Automatic test equipment
- ▶ Data acquisition systems
- ▶ Communication systems

GENERAL DESCRIPTION

The ADG1408L is a monolithic iCMOS® eight channel analog multiplexer. The ADG1408L switches one of eight inputs to a common output, as determined by the 3-bit binary address lines, A0, A1, and A2. An EN input is used to enable or disable the device. When disabled, all channels are switched off. When on, each channel conducts equally well in both directions and has an input signal range that extends to the supplies.

An external low voltage V_L supply provides flexibility for lower logic control. The ADG1408L is both 1.2 V and 1.8 V JEDEC standard compliant.

FUNCTIONAL BLOCK DIAGRAM

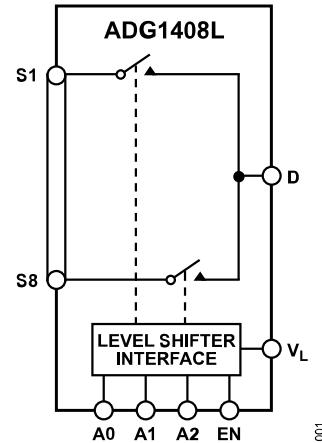


Figure 1. Functional Block Diagram

PRODUCT HIGHLIGHTS

1. 4 Ω typical on resistance at 25°C and at ± 15 V dual supply.
2. 0.5 Ω typical on-resistance flatness at 25°C and at ± 15 V dual supply.
3. V_L supply for low-logic level compatibility.
4. JEDEC standard compliant for both 1.2 V and 1.8 V logic levels.
5. Guaranteed switch off when digital inputs are floating.
6. 24-lead, 4 mm × 4 mm LFCSP.

TABLE OF CONTENTS

Features.....	1	Test Circuits.....	14
Applications.....	1	Terminology.....	17
General Description.....	1	Theory of Operations.....	18
Functional Block Diagram.....	1	Switch Architecture.....	18
Product Highlights.....	1	V _L Flexibility.....	18
Specifications.....	3	1.2 V and 1.8 V JEDEC Compliance.....	18
Operating Supply Voltages.....	3	Initialization Time.....	18
±15 V Dual Supply.....	3	Switches in a Known State.....	18
12 V Single Supply.....	4	Applications Information.....	19
±5 V Dual Supply.....	6	Field Programmable Gate Array (FPGA)	
Continuous Current per Channel, S _x or D.....	7	Low Logic Compliance.....	19
Absolute Maximum Ratings.....	8	V _{OH} and V _{OL} and V _{INH} and V _{INL} Relationship..	19
Thermal Resistance.....	8	Power Supply Rails.....	19
Electrostatic Discharge (ESD) Ratings.....	8	Power Supply Recommendations.....	20
ESD Caution.....	8	Outline Dimensions.....	21
Pin Configuration and Function Descriptions.....	9	Ordering Guide.....	21
Typical Performance Characteristics.....	10	Evaluation Boards.....	21

REVISION HISTORY**5/2023—Revision 0: Initial Version**

SPECIFICATIONS

OPERATING SUPPLY VOLTAGES

Table 1. Operating Supply Voltages

Parameter	Min	Max	Unit
Dual Supply	± 4.5	± 16.5	V
Single Supply	5	16.5	V

±15 V DUAL SUPPLY

$V_{DD} = +15 V \pm 10\%$, $V_{SS} = -15 V \pm 10\%$, GND = 0 V, and $V_L = 1.1 V$ to $1.95 V$, unless otherwise noted.

Table 2. ±15 V Dual-Supply Specifications

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range				V	$V_{DD} = +13.5 V$, $V_{SS} = -13.5 V$
On Resistance, R_{ON}	4		V_{SS} to V_{DD}	Ω typ	$V_S = \pm 10 V$, source current (I_S) = -10 mA, see Figure 25
	4.7	5.7	6.7	Ω max	
On-Resistance Match Between Channels, ΔR_{ON}	0.2		Ω typ	Ω typ	$V_S = \pm 10 V$, $I_S = -10$ mA
	0.78	0.85	1.1	Ω max	
On-Resistance Flatness, $R_{FLAT(ON)}$	0.5		Ω typ	Ω typ	$V_S = \pm 10 V$, $I_S = -10$ mA
	0.72	0.77	0.92	Ω max	
LEAKAGE CURRENTS					
Source Off Leakage, I_S (Off)	± 0.04			nA typ	$V_{DD} = +16.5 V$, $V_{SS} = -16.5 V$
	± 0.2	± 0.6	± 5	nA max	$V_S = \pm 10 V$, drain voltage (V_D) = $\mp 10 V$, see Figure 26
Drain Off Leakage, I_D (Off)	± 0.04			nA typ	$V_S = \pm 10 V$, $V_D = \mp 10 V$, see Figure 26
	± 0.45	± 2	± 30	nA max	
Channel On Leakage, I_D (On), I_D (On)	± 0.1			nA typ	$V_S = V_D = \pm 10 V$, see Figure 27
	± 1.5	± 3	± 30	nA max	
DIGITAL INPUTS					
Input High Voltage, V_{INH}			0.65 * V_L	V min	
Input Low Voltage, V_{INL}			0.35 * V_L	V max	
Input High Current, I_{INH}	55			μA typ	A_x voltage (V_{Ax}) = V_L = 1.8 V, see the Theory of Operations section
	40		90	μA max	
	0.2		65	μA typ	$V_{Ax} = V_L$ = 1.2 V, see the Theory of Operations section
Input Low Current, I_{INL}			0.8	μA max	
Digital Input Capacitance, C_{IN}	5			pF typ	$V_{Ax} = 0 V$
DYNAMIC CHARACTERISTICS					
Transition Time, $t_{TRANSITION}$	160			ns typ	Load resistance (R_L) = 100 Ω , load capacitance (C_L) = 35 pF
	192	223	247	ns max	$V_S = 10 V$, see Figure 28
Break-Before-Make Time Delay, t_{BBM}	40			ns typ	$R_L = 100 \Omega$, $C_L = 35$ pF
	28			ns min	S_1 voltage (V_{S1}) = S_2 voltage (V_{S2}) = 10 V, see Figure 29
Enable Delay On Time, t_{ON} (EN)	117			ns typ	$R_L = 100 \Omega$, $C_L = 35$ pF
	149	166	184	ns max	$V_S = 10 V$, see Figure 30
Enable Delay Off Time, t_{OFF} (EN)	139			ns typ	$R_L = 100 \Omega$, $C_L = 35$ pF
	166	189	207	ns max	$V_S = 10 V$, see Figure 30

SPECIFICATIONS

Table 2. ± 15 V Dual-Supply Specifications (Continued)

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
Charge Injection	-50			pC typ	$V_S = 0$ V, $R_S = 0$ Ω , $C_L = 1$ nF, see Figure 31
Off Isolation	-64			dB typ	$R_L = 50$ Ω , $C_L = 5$ pF, frequency (f) = 1 MHz, see Figure 32
Channel to Channel Crosstalk	-70			dB typ	$R_L = 50$ Ω , $C_L = 5$ pF, f = 1 MHz, see Figure 33
Total Harmonic Distortion, THD	-101			dB typ	$R_L = 10$ k Ω , 15 V p-p, f = 20 kHz, see Figure 35
	-88			dB typ	$R_L = 10$ k Ω , 15 V p-p, f = 100 kHz, see Figure 35
Total Harmonic Distortion Plus Noise, THD + N	0.0013			% typ	$R_L = 10$ k Ω , 15 V p-p, f = 20 kHz, see Figure 35
	0.0039			% typ	$R_L = 10$ k Ω , 15 V p-p, f = 100 kHz, see Figure 35
-3 dB Bandwidth	60			MHz typ	$R_L = 50$ Ω , $C_L = 5$ pF, see Figure 34
Insertion Loss	0.24			dB typ	$R_L = 50$ Ω , $C_L = 5$ pF, f = 1 MHz, see Figure 34
Source Off Capacitance, C_S (Off)	14			pF typ	$V_S = 0$ V, f = 1 MHz
Drain Off Capacitance, C_D (Off)	80			pF typ	$V_S = 0$ V, f = 1 MHz
Drain On Capacitance, C_D (On), Source On Capacitance, C_S (On)	135			pF typ	$V_S = 0$ V, f = 1 MHz
POWER REQUIREMENTS					
Positive Supply Current, I_{DD}	55		95	μ A typ	$V_{DD} = +16.5$ V, $V_{SS} = -16.5$ V
				μ A max	$V_{AX} = 0$ V or V_L
Negative Supply Current, I_{SS}	0.001		1	μ A typ	$V_{AX} = 0$ V or V_L
				μ A max	$V_{AX} = V_L = 1.8$ V
Digital Supply Current, I_{VL}	45		70	μ A typ	$V_{AX} = V_L = 1.8$ V
	30		55	μ A max	$V_{AX} = V_L = 1.2$ V

12 V SINGLE SUPPLY

$V_{DD} = 12$ V $\pm 10\%$, $V_{SS} = 0$ V, GND = 0 V, and $V_L = 1.1$ V to 1.95 V, unless otherwise noted.

Table 3. 12 V Single-Supply Specifications

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 to V_{DD}	V	$V_{DD} = 10.8$ V, $V_{SS} = 0$ V
R_{ON}	6	8	9.5	Ω typ	$V_S = 0$ V to 10 V, $I_S = -10$ mA, see Figure 25
	0.2	0.82	11.2	Ω max	$V_S = 0$ V to 10 V, $I_S = -10$ mA
ΔR_{ON}	0.82	0.85	1.1	Ω typ	$V_S = 0$ V to 10 V, $I_S = -10$ mA
	1.5	2.4	2.7	Ω max	$V_S = 0$ V to 10 V, $I_S = -10$ mA
$R_{FLAT(ON)}$					
LEAKAGE CURRENTS					
I_S (Off)	± 0.04	± 0.2	± 0.6	nA typ	$V_{DD} = 13.2$ V, $V_{SS} = 0$ V
				nA max	$V_S = 1$ V to 10 V, $V_D = 10$ V to 1 V, see Figure 26
I_D (Off)	± 0.04	± 0.45	± 1	nA typ	$V_S = 1$ V to 10 V, $V_D = 10$ V to 1 V, see Figure 26
				nA max	$V_S = V_D = 1$ V to 10 V, see Figure 27
I_D (On), I_S (On)	± 0.06	± 0.44	± 1.3	nA typ	
				nA max	
DIGITAL INPUTS					
V_{INH}				V min	
V_{INL}				V max	
			$0.65 \times V_L$		
			$0.35 \times V_L$		

SPECIFICATIONS

Table 3. 12 V Single-Supply Specifications (Continued)

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
I_{INH}	55		90	μA typ	$V_{Ax} = V_L = 1.8$ V, see the Theory of Operations section
	40		65	μA max	
I_{INL}	0.2		0.8	μA typ	$V_{Ax} = V_L = 1.2$ V, see the Theory of Operations section
				μA max	
Digital C_{IN}	5			pF typ	$V_{Ax} = 0$ V
DYNAMIC CHARACTERISTICS					
$t_{TRANSITION}$	228		370	ns typ	$R_L = 100 \Omega$, $C_L = 35$ pF
	287			ns max	$V_S = 8$ V, see Figure 28
t_{BBM}	90		57	ns typ	$R_L = 100 \Omega$, $C_L = 35$ pF
				ns min	$V_{S1} = V_{S2} = 8$ V, see Figure 29
t_{ON} (EN)	183		304	ns typ	$R_L = 100 \Omega$, $C_L = 35$ pF
	239			ns max	$V_S = 8$ V, see Figure 30
t_{OFF} (EN)	161		247	ns typ	$R_L = 100 \Omega$, $C_L = 35$ pF
	201			ns max	$V_S = 8$ V, see Figure 30
Charge Injection	-12			pC typ	$V_S = 6$ V, $R_S = 0$ Ω , $C_L = 1$ nF, see Figure 31
Off Isolation	-64			dB typ	$R_L = 50 \Omega$, $C_L = 5$ pF, $f = 1$ MHz, see Figure 32
Channel to Channel Crosstalk	-70			dB typ	$R_L = 50 \Omega$, $C_L = 5$ pF, $f = 1$ MHz, see Figure 33
THD	-90			dB typ	$R_L = 10$ k Ω , 5 V p-p, $f = 20$ kHz, see Figure 35
	-83			dB typ	$R_L = 10$ k Ω , 5 V p-p, $f = 100$ kHz, see Figure 35
THD + N	0.0034			% typ	$R_L = 10$ k Ω , 5 V p-p, $f = 20$ kHz, see Figure 35
	0.0068			% typ	$R_L = 10$ k Ω , 5 V p-p, $f = 100$ kHz, see Figure 35
-3 dB Bandwidth	36			MHz typ	$R_L = 50 \Omega$, $C_L = 5$ pF, see Figure 34
Insertion Loss	0.5			dB typ	$R_L = 50 \Omega$, $C_L = 5$ pF, frequency = 1 MHz, see Figure 34
C_S (Off)	20			pF typ	$V_S = 6$ V, $f = 1$ MHz
C_D (Off)	120			pF typ	$V_S = 6$ V, $f = 1$ MHz
C_D , C_S (On)	170			pF typ	$V_S = 6$ V, $f = 1$ MHz
POWER REQUIREMENTS					
I_{DD}	55		95	μA typ	$V_{DD} = 13.2$ V, $V_{SS} = 0$ V
				μA max	$V_{Ax} = 0$ V or V_L
I_{VL}	45		70	μA typ	$V_{Ax} = V_L = 1.8$ V
	30		55	μA max	
				μA typ	$V_{Ax} = V_L = 1.2$ V
				μA max	

SPECIFICATIONS

±5 V DUAL SUPPLY

$V_{DD} = +5 \text{ V} \pm 10\%$, $V_{SS} = -5 \text{ V} \pm 10\%$, $\text{GND} = 0 \text{ V}$, and $V_L = 1.1 \text{ V}$ to 1.95 V , unless otherwise noted.

Table 4. ±5 V Dual-Supply Specifications

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range				V	$V_{DD} = +4.5 \text{ V}$, $V_{SS} = -4.5 \text{ V}$
R_{ON}	7 9	10.5	12	Ω typ Ω max	$V_S = \pm 4.5 \text{ V}$, $I_S = -10 \text{ mA}$, see Figure 25
ΔR_{ON}	0.3 0.78	0.91	1.1	Ω typ Ω max	$V_S = \pm 4.5 \text{ V}$, $I_S = -10 \text{ mA}$
$R_{FLAT(ON)}$	1.5 2.4	2.7	3	Ω typ Ω max	$V_S = \pm 4.5 \text{ V}$; $I_S = -10 \text{ mA}$
LEAKAGE CURRENTS					
I_S (Off)	± 0.02 ± 0.2	± 0.6	± 5	nA typ nA max	$V_{DD} = +5.5 \text{ V}$, $V_{SS} = -5.5 \text{ V}$ $V_S = \pm 4.5 \text{ V}$, $V_D = \mp 4.5 \text{ V}$, see Figure 26
I_D (Off)	± 0.02 ± 0.45	± 0.8	± 20	nA typ nA max	$V_S = \pm 4.5 \text{ V}$, $V_D = \mp 4.5 \text{ V}$, see Figure 26
I_D (On), I_S (On)	± 0.04 ± 0.3	± 1.1	± 22	nA typ nA max	$V_S = V_D = \pm 4.5 \text{ V}$, see Figure 27
DIGITAL INPUTS					
V_{INH}			0.65 $\times V_L$	V min	
V_{INL}			0.35 $\times V_L$	V max	
I_{INH}	55		90	μA typ μA max	$V_{Ax} = V_L = 1.8 \text{ V}$, see the Theory of Operations section
	40		65	μA typ μA max	$V_{Ax} = V_L = 1.2 \text{ V}$, see the Theory of Operations section
I_{INL}	0.2		0.8	μA typ μA max	$V_{Ax} = 0 \text{ V}$
C_{IN}	5			pF typ	
DYNAMIC CHARACTERISTICS					
$t_{TRANSITION}$	314 414	472	517	ns typ ns max	$R_L = 100 \Omega$, $C_L = 35 \text{ pF}$ $V_S = 3 \text{ V}$, see Figure 28
t_{BBM}	90		59	ns typ ns min	$R_L = 100 \Omega$, $C_L = 35 \text{ pF}$ $V_{S1} = V_{S2} = 3 \text{ V}$, see Figure 29
t_{ON} (EN)	265 356	408	445	ns typ ns max	$R_L = 100 \Omega$, $C_L = 35 \text{ pF}$ $V_S = 3 \text{ V}$, see Figure 30
t_{OFF} (EN)	244 316	353	379	ns typ ns max	$R_L = 100 \Omega$, $C_L = 35 \text{ pF}$ $V_S = 3 \text{ V}$, see Figure 30
Charge Injection	-10			pC typ	$V_S = 0 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$, see Figure 31
Off Isolation	-64			dB typ	$R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $f = 1 \text{ MHz}$, see Figure 32
Channel to Channel Crosstalk	-70			dB typ	$R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $f = 1 \text{ MHz}$, see Figure 33
THD	-94 -82			dB typ	$R_L = 10 \text{ k}\Omega$, 5 V p-p , $f = 20 \text{ kHz}$, see Figure 35
THD + N	0.0024 0.0072			% typ % typ	$R_L = 10 \text{ k}\Omega$, 5 V p-p , $f = 100 \text{ kHz}$, see Figure 35
-3 dB Bandwidth	40			MHz typ	$R_L = 10 \text{ k}\Omega$, 5 V p-p , $f = 20 \text{ kHz}$, see Figure 35
Insertion Loss	0.5			dB typ	$R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, see Figure 34
					$R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $f = 1 \text{ MHz}$, see Figure 34

SPECIFICATIONS**Table 4. ± 5 V Dual-Supply Specifications (Continued)**

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
C_S (Off)	20			pF typ	$V_S = 0$ V, $f = 1$ MHz
C_D (Off)	130			pF typ	$V_S = 0$ V, $f = 1$ MHz
C_D, C_S (On)	180			pF typ	$V_S = 0$ V, $f = 1$ MHz
POWER REQUIREMENTS					
I_{DD}	55		95	μ A typ	$V_{DD} = +5.5$ V, $V_{SS} = -5.5$ V
				μ A max	$V_{Ax} = 0$ V or V_L
I_{SS}	0.001		1	μ A typ	$V_{Ax} = 0$ V or V_L
				μ A max	
I_{VL}	45		70	μ A typ	$V_{Ax} = V_L = 1.8$ V
	30		55	μ A max	$V_{Ax} = V_L = 1.2$ V
				μ A typ	
				μ A max	

CONTINUOUS CURRENT PER CHANNEL, SX OR D**Table 5. One Channel On**

Parameter	25°C	85°C	125°C	Unit
CONTINUOUS CURRENT, Sx or D ($\theta_{JA} = 64.04$ °C/W) ¹				
$V_{DD} = +15$ V, $V_{SS} = -15$ V	233	89	29	mA max
$V_{DD} = +12$ V, $V_{SS} = 0$ V	206	84	29	mA max
$V_{DD} = +5$ V, $V_{SS} = -5$ V	198	83	29	mA max

¹ Sx refers to the S1 to S8 pins.

ABSOLUTE MAXIMUM RATINGS

$T_A = 25^\circ\text{C}$, unless otherwise noted.

Table 6. Absolute Maximum Ratings

Parameter	Rating
V_{DD} to V_{SS}	35 V
V_{DD} to GND	-0.3 V to +25 V
V_{SS} to GND	+0.3 V to -25 V
V_L to GND	-0.3 V to +2.25 V
Analog Inputs ¹	$V_{SS} - 0.3 \text{ V}$ to $V_{DD} + 0.3 \text{ V}$, or 30 mA, whichever occurs first
Digital Inputs ²	GND - 0.3 V to 2.25 V, or 30 mA, whichever occurs first
Continuous Current, Sx or D ³	$V_{SS} + 15\%$.
Peak Current, Sx or D (Pulsed at 1 ms, 10% Duty-Cycle Maximum)	532 mA
Temperature	
Operating Range	-40°C to +125°C
Storage Range	-65°C to +150°C
Junction	150°C
Reflow Soldering Peak (RoHS Compliant)	As per JEDEC J-STD-020

¹ Overvoltages at the Ax, EN, Sx, or D pins are clamped by the internal diodes. Limit the current to the maximum ratings given.

² Overvoltages at the Ax and EN digital input pins are clamped by the internal diodes.

³ Sx refers to the S1 to S8.

⁴ See Table 5

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. θ_{JC} is the function to the bottom of the case value.

Table 7. Thermal Resistance

Package Type	θ_{JA}	θ_{JC}	Unit
CP-24-17 ¹	64.04	26.87	°C/W

¹ Thermal impedance simulated values are based on the JEDEC 2S2P thermal test board without thermal vias. See JEDEC JESD-51.

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.

Field induced charged-device model (FICDM) per ANSI/ESDA/JEDEC JS-002.

ESD Ratings for ADG1408L

Table 8. ADG1408L, 24-Lead LFCSP

ESD Model	Withstand Threshold (kV)	Class
HBM ¹	±2.5	2
FICDM	±1.25	C3

¹ For the input and output port to the supplies, for the input and output port to the input and output port, and for all other inputs.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

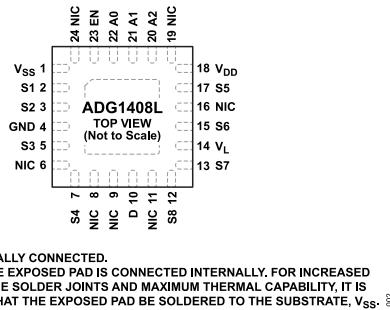


Figure 2. Pin Configuration

Table 9. Pin Function Descriptions

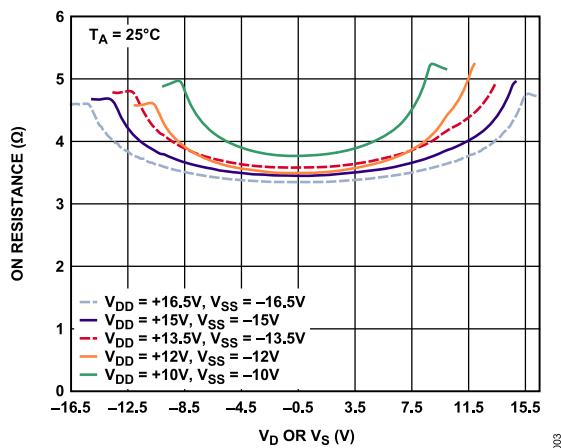
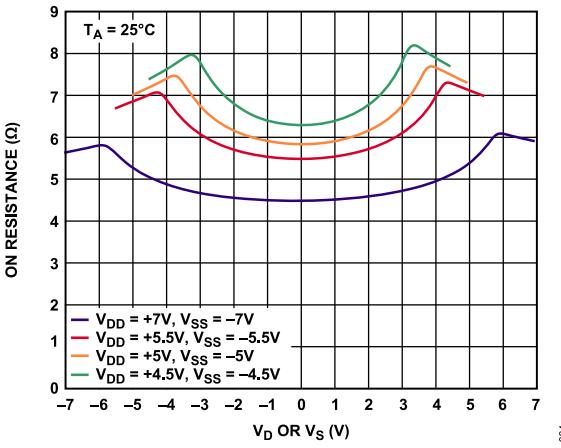
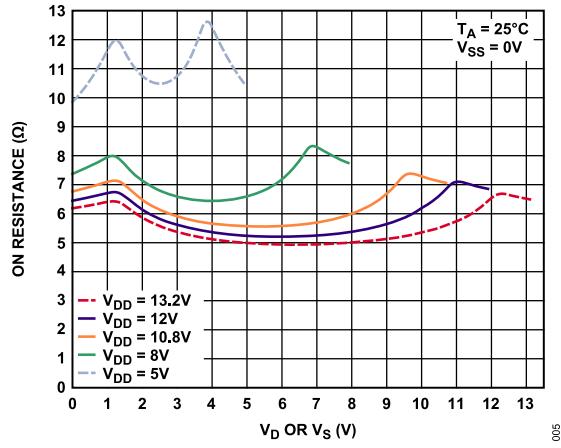
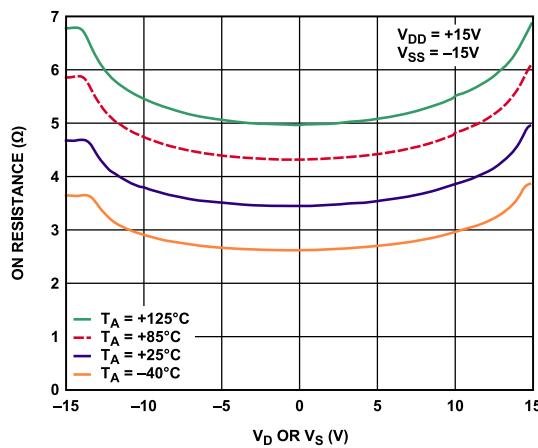
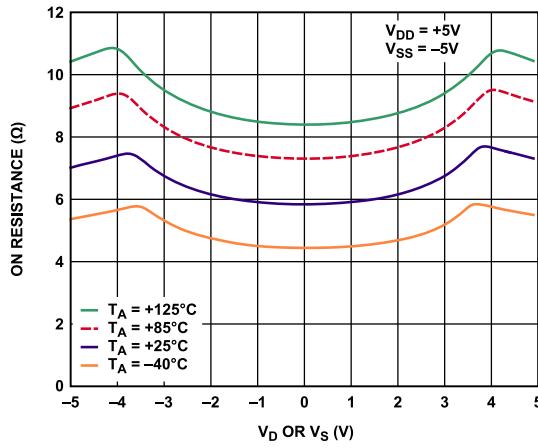
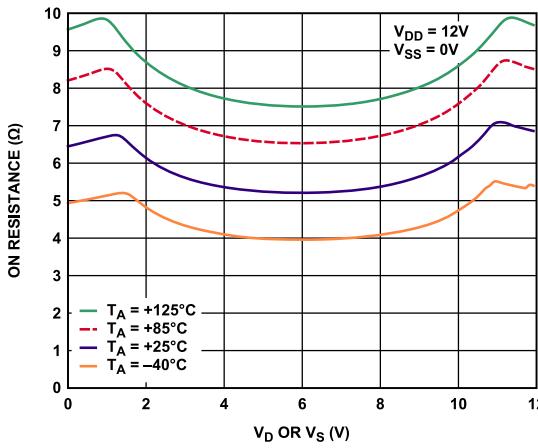






Pin No.	Mnemonic	Description
1	V _{SS}	Most Negative Power Supply Potential. In single-supply applications, V _{SS} can be connected to ground. Decouple the V _{SS} pin using a 0.1 μ F capacitor to GND.
2	S1	Source Terminal 1. S1 can be an input or an output.
3	S2	Source Terminal 2. S2 can be an input or an output.
4	GND	Ground (0 V) Reference.
5	S3	Source Terminal 3. S3 can be an input or an output.
6, 8, 9, 11, 16, 19, 24	NIC	Not Internally Connected.
7	S4	Source Terminal 4. S4 can be an input or an output.
10	D	Drain Terminal. D can be an input or an output.
12	S8	Source Terminal 8. S8 can be an input or an output.
13	S7	Source Terminal 7. S7 can be an input or an output.
14	V _L	Logic Power Supply Potential.
15	S6	Source Terminal 6. S6 can be an input or an output.
17	S5	Source Terminal 5. S5 can be an input or an output.
18	V _{DD}	Most Positive Power Supply Potential. Decouple the V _{DD} pin using a 0.1 μ F capacitor to GND.
20	A2	Logic Control Input 2.
21	A1	Logic Control Input 1.
22	A0	Logic Control Input 0.
23	EN	Active High Digital Input. When the EN pin is low, the ADG1408L is disabled and all switches are turned off. When the EN pin is high, the Ax logic inputs determine which switch is on.
	EPAD	Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the exposed pad be soldered to the substrate, V _{SS} .

Table 10. Truth Table

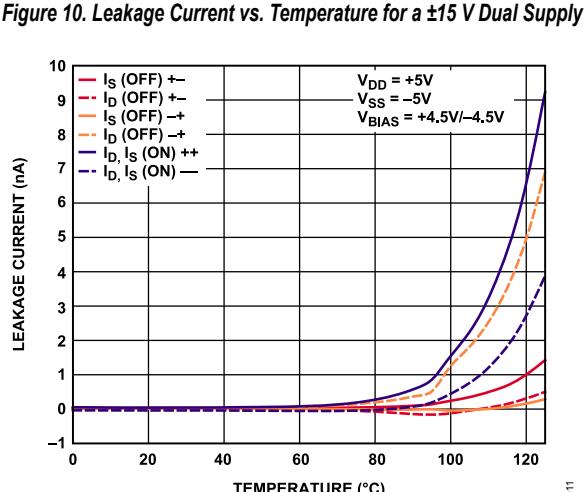
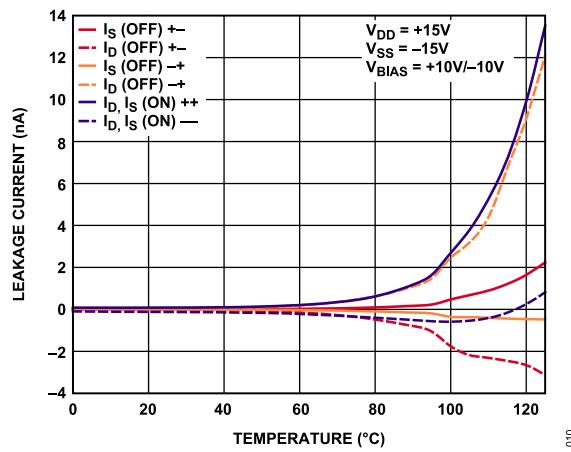
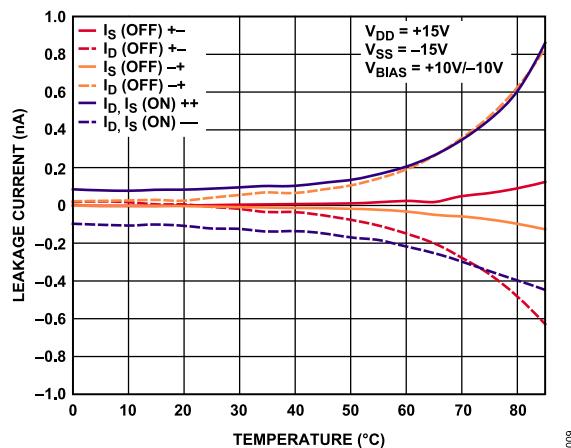
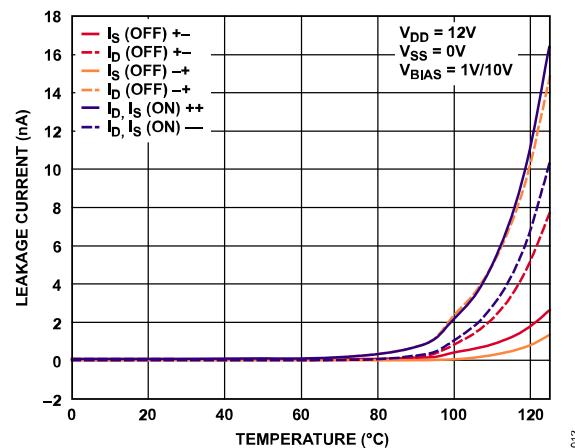
A2	A1	A0	EN	On Switch
X ¹	X ¹	X ¹	0	None
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

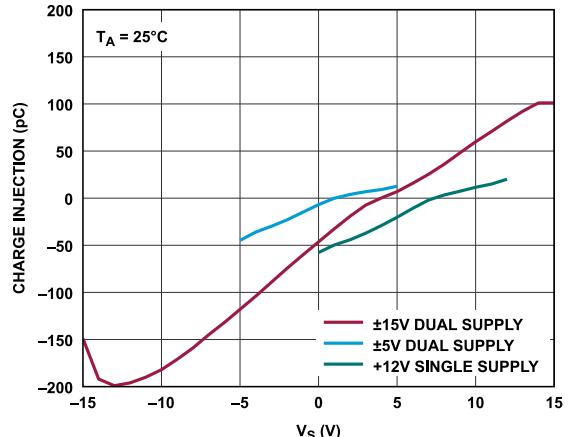
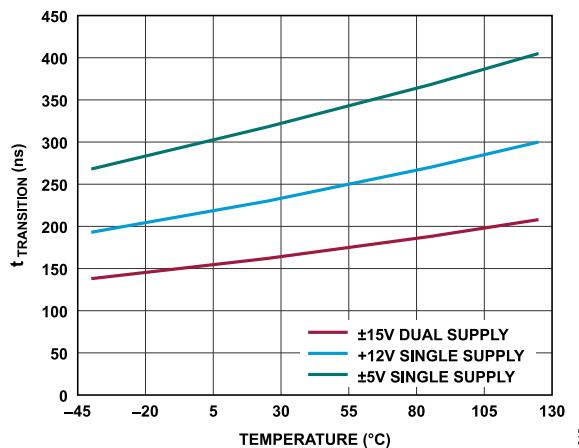
¹ X = don't care.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance vs. V_D or V_S for a Dual SupplyFigure 4. On Resistance vs. V_D or V_S for a Dual SupplyFigure 5. On Resistance vs. V_D or V_S for a Single SupplyFigure 6. On Resistance vs. V_D or V_S over Temperature for a ± 15 V Dual SupplyFigure 7. On Resistance vs. V_D or V_S over Temperature for a ± 5 V Dual SupplyFigure 8. On Resistance vs. V_D or V_S over Temperature for a 12 V Single Supply

TYPICAL PERFORMANCE CHARACTERISTICS



Figure 9. Leakage Current vs. Temperature for a ± 15 V Dual Supply

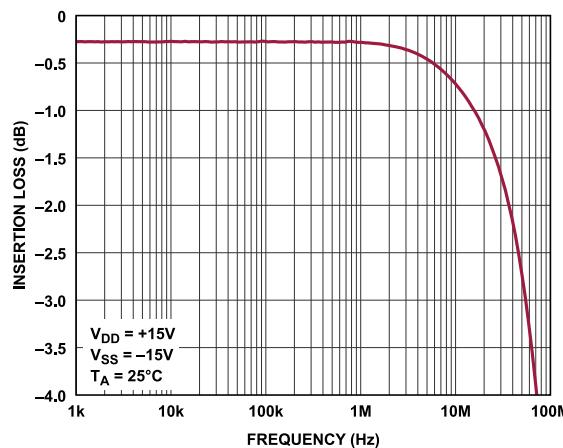
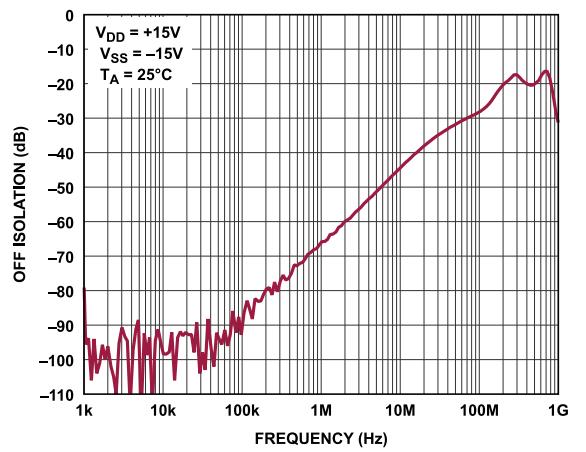
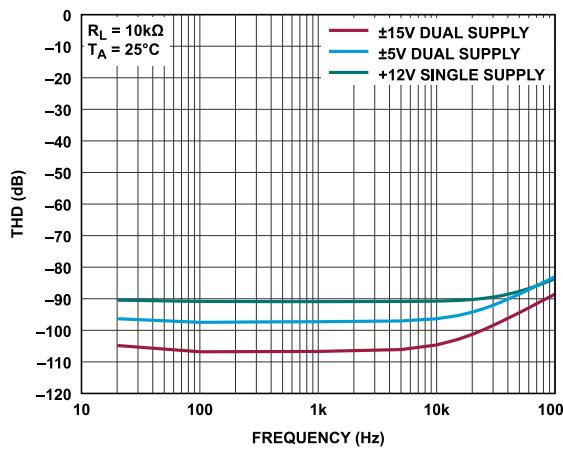
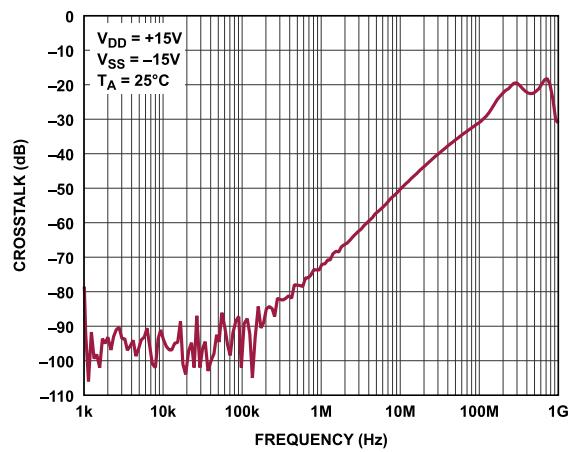
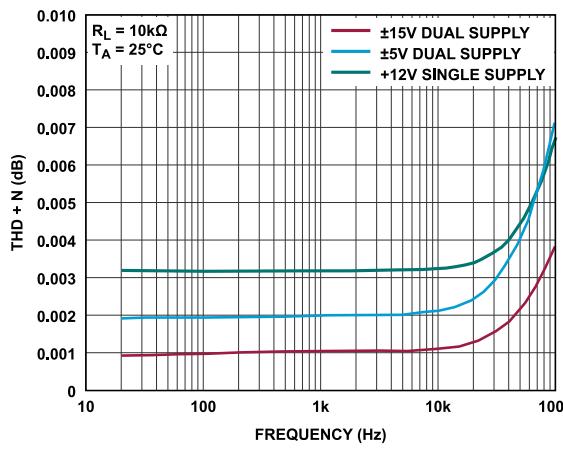

Figure 12. Leakage Current vs. Temperature for a 12 V Single Supply

Figure 13. I_{V_L} vs. Logic Level, A_X or EN Figure 14. Charge Injection vs. V_S

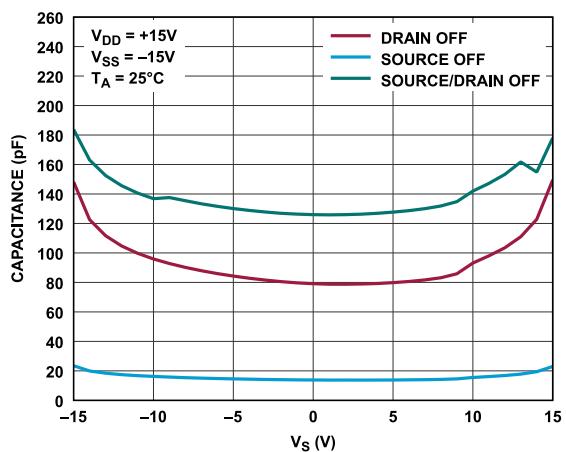

TYPICAL PERFORMANCE CHARACTERISTICS


015

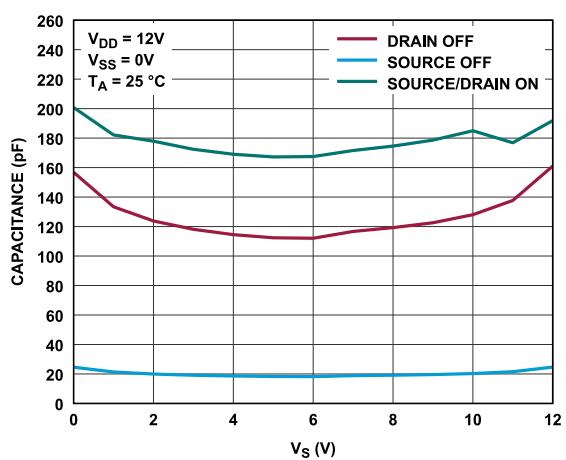

018


016

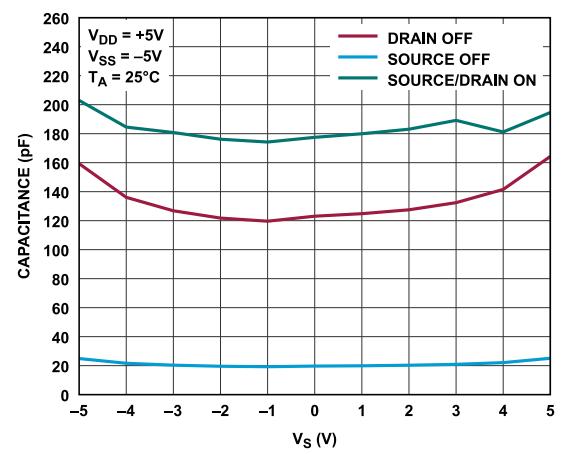
019

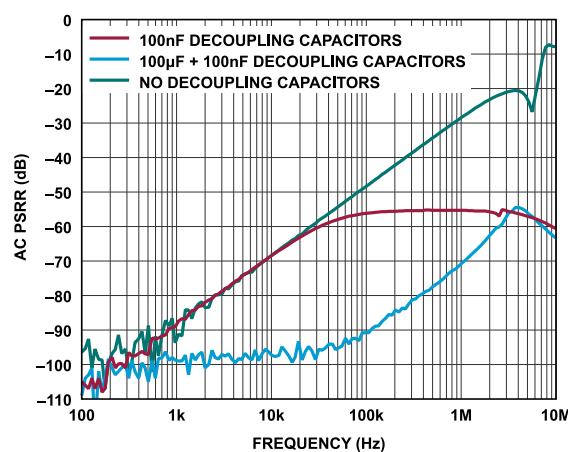


017



020


TYPICAL PERFORMANCE CHARACTERISTICS


J21

J22

J23

J24

TEST CIRCUITS

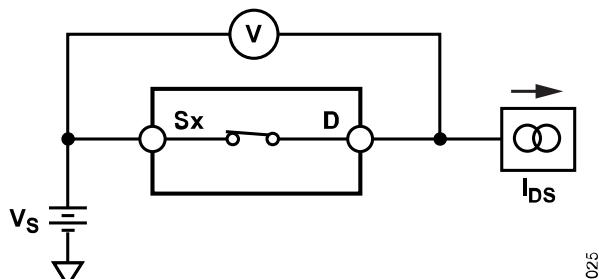


Figure 25. On Resistance

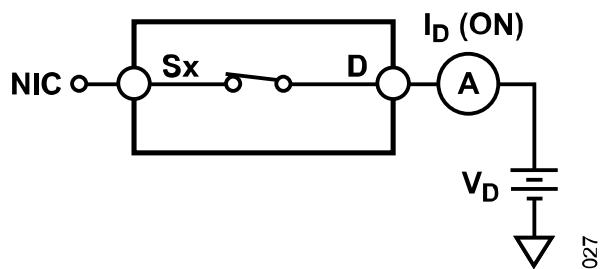


Figure 27. On Leakage

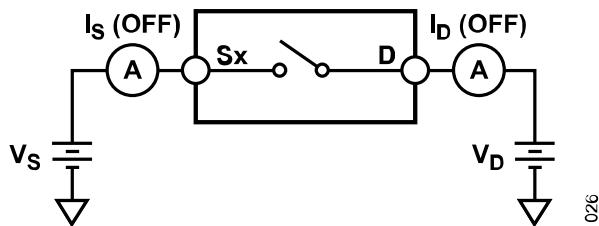
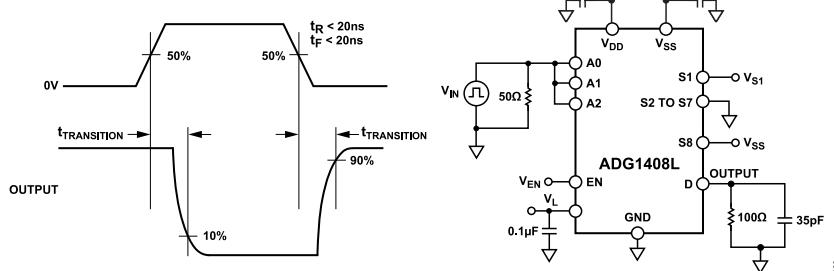
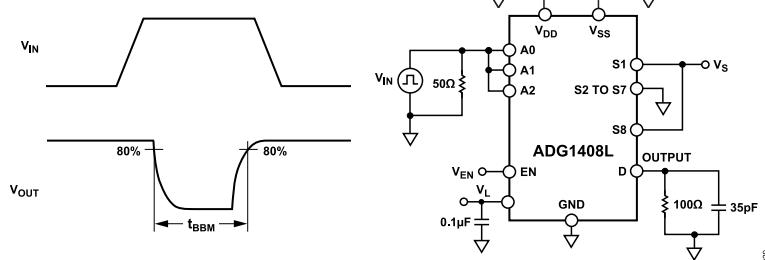




Figure 26. Off Leakage

Figure 28. Address to Output Switching Times, $t_{TRANSITION}$ Figure 29. Break-Before-Make Delay, t_{BBM}

TEST CIRCUITS

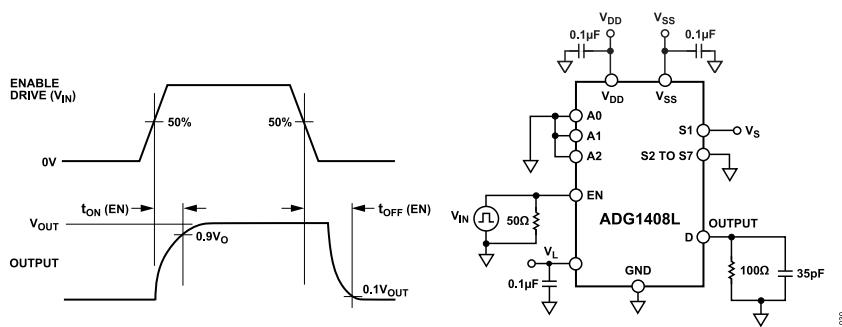
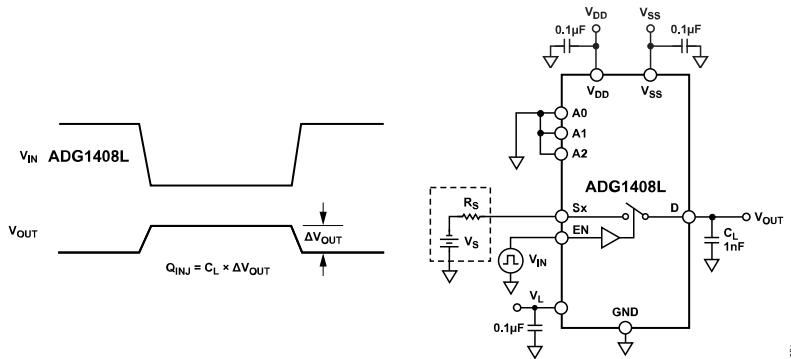


Figure 30. Enable Delay, $t_{ON}(EN)$ and $t_{OFF}(EN)$

Figure 31. Charge Injection

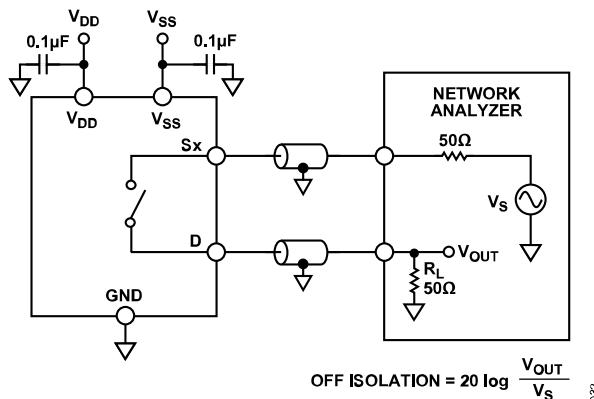


Figure 32. Off Isolation

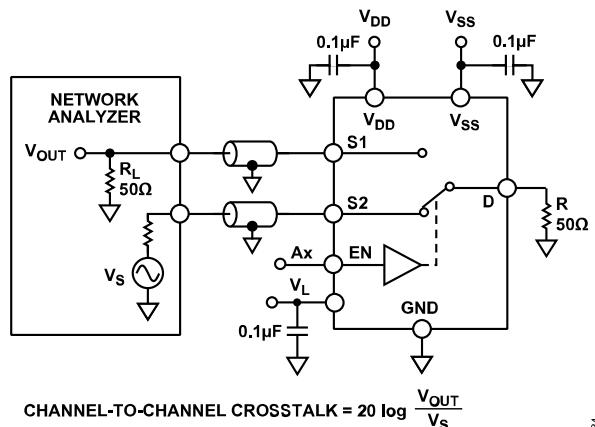


Figure 33. Channel to Channel Crosstalk

TEST CIRCUITS

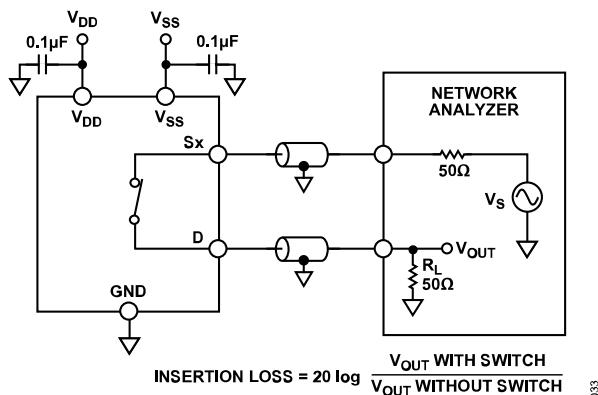


Figure 34. Insertion Loss

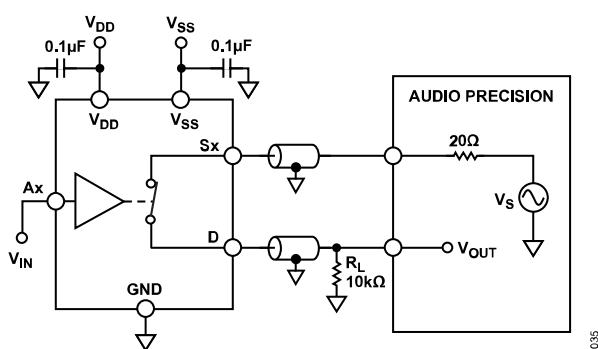


Figure 35. THD + N

TERMINOLOGY

R_{ON}

R_{ON} is the ohmic resistance between D and Sx.

ΔR_{ON}

ΔR_{ON} is the difference between the R_{ON} of any two channels.

R_{FLAT(ON)}

R_{FLAT(ON)} is defined as the difference between the maximum and minimum value of on resistance as measured.

I_S (Off)

I_S (Off) is the source leakage current when the switch is off.

I_D (Off)

I_D (Off) is the drain leakage current when the switch is off.

I_D (On), I_S (On)

I_D (On) and I_S (On) is the channel leakage current when the switch is on.

V_D (V_S)

V_D (V_S) is the analog voltage on Terminal D and Terminal Sx.

C_S (Off)

C_S (Off) is the channel input capacitance for off condition.

C_D (Off)

C_D (Off) is the channel output capacitance for off condition.

C_D (On), C_S (On)

C_D (On) and C_S (On) is the on switch capacitance.

C_{IN}

C_{IN} is the digital input capacitance.

t_{ON} (EN)

t_{ON} (EN) is the delay time between the 50% and 90% points of the digital input and switch on condition.

t_{OFF} (EN)

t_{OFF} (EN) is the delay time between the 50% and 90% points of the digital input and switch off condition.

t_{TRANSITION}

t_{TRANSITION} is the delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

Break-Before-Make Time Delay, t_{BBM}

t_{BBM} is the off time measured between the 80% point of both switches when switching from one address state to another.

V_{INL} and V_{INH}

V_{INL} is the maximum input voltage for Logic 0, and V_{INH} is the minimum voltage for Logic 1.

I_{INL} and I_{INH}

I_{INL} is the low input current of the digital input, and I_{INH} is the high input current of the digital input.

I_{DD} and I_{SS}

I_{DD} is the positive supply current, and I_{SS} is the negative supply current.

Off Isolation

Off Isolation is a measure of unwanted signal coupling through an off channel.

Channel to Channel Crosstalk

Channel to channel crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

-3 dB Bandwidth

The -3 dB bandwidth is the frequency at which the output is attenuated by 3 dB.

On Response

On response is the frequency response of the on switch.

Insertion Loss

Insertion loss is the loss due to the on resistance of the switch.

Total Harmonic Distortion (THD)

THD is the sum of the powers of all harmonic components to the power of the fundamental frequency.

Total Harmonic Distortion Plus Noise (THD + N)

THD + N is the ratio of the harmonic amplitude plus noise of the signal to the fundamental.

AC Power Supply Rejection Ratio (AC PSRR)

AC PSRR is a measure of the ability of a device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The DC voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of the signal on the output to the amplitude of the modulation is the AC PSRR.

THEORY OF OPERATIONS

SWITCH ARCHITECTURE

The ADG1408L is a multiplexer that is compatible with 1.2 V or 1.8 V logic depending on the V_L input.

V_L FLEXIBILITY

An external V_L supply provides logic control flexibility for lower logic levels.

The following V_L conditions must be satisfied for the switch to operate in either 1.2 V or 1.8 V logic operation:

- ▶ 1.2 V logic: $V_L = 1.1$ V to 1.3 V
- ▶ 1.8 V logic: $V_L = 1.65$ V to 1.95 V

1.2 V AND 1.8 V JEDEC COMPLIANCE

The ADG1408L is both 1.2 V and 1.8 V JEDEC standard compliant (normal range) to the digital input threshold.

This compliance with the digital-input threshold ensures the low voltage, complementary metal-oxide semiconductor (CMOS) logic compatibility when operating with a valid logic power supply range.

The following are the switch digital input requirements for both 1.2 V and 1.8 V logic:

- ▶ $V_{INH} = 0.65 \times V_L$
- ▶ $V_{INL} = 0.35 \times V_L$

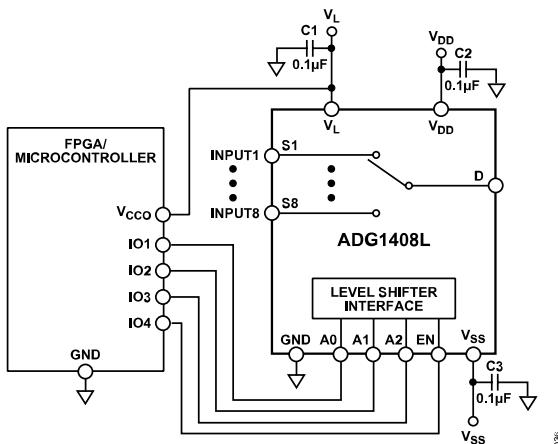
INITIALIZATION TIME

The digital section of the ADG1408L goes through an initialization phase during V_{DD} , V_{SS} , and V_L power-up. After V_{DD} , V_{SS} , and V_L power up, ensure that there is a minimum of 50 μ s from the time of power-up before any digital input is issued.

Ensure that V_{DD} , V_{SS} , and V_L do not drop out during the 50 μ s initialization phase because it may result in an incorrect timing performance of the ADG1408L.

SWITCHES IN A KNOWN STATE

The ADG1408L switches are off when the digital inputs are floating, which prevents unwanted signals passing through the switches. This built-in feature of the ADG1408L eliminates the need for an external pull-down resistor to be installed.


The ADG1408L can pull down floating digital inputs against leakage currents up to half of I_{INH} .

APPLICATIONS INFORMATION

FIELD PROGRAMMABLE GATE ARRAY (FPGA) LOW LOGIC COMPLIANCE

Figure 36 shows a typical application where the ADG1408L is used together with an FPGA or microcontroller. The flexible V_L pin can be tied to the digital supply voltage (V_{CC0}), and the A_x input can be tied directly to the digital IOx ports for ease of use.

The ADG1408L is 1.2 V and 1.8 V JEDEC standard compliant, which ensures that the logic input specifications, V_{INH} and V_{INL} , meet the digital output specifications, minimum V_{OH} and maximum V_{OL} , of the FPGA or microcontroller. Common implementations do not guarantee logic level compatibility, which can introduce implementation risks. The ADG1408L eliminates these risks by complying with the widely accepted 1.2 V and 1.8 V logic level standard.

Figure 36. ADG1408L Typical Application Used with an FPGA or Microcontroller

V_{OH} AND V_{OL} AND V_{INH} AND V_{INL} RELATIONSHIP

It is recommended to confirm that the logic output high (V_{OH}) of the FPGA or microcontroller is higher than the input logic high (V_{INH}). In addition, the logic output low (V_{OL}) of the FPGA or microcontroller must be lower than the input logic low (V_{INL}). Figure 37 shows the 1.2 V logic compatibility relationship between V_{OH} and V_{OL} of the FPGA or the microcontroller with the Ax inputs of the ADG1408L, V_{INH} and V_{INL} .

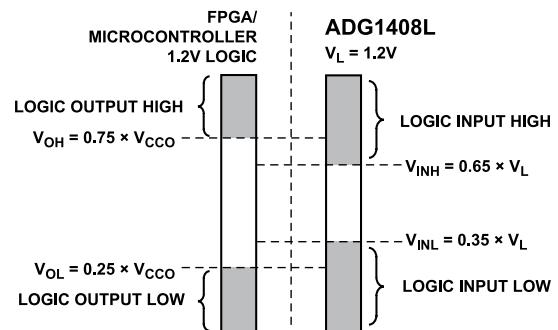


Figure 37. 1.2 V Logic Compatibility Between V_{OH} and V_{OL} and V_{IH} and V_{IL}

Figure 38 shows the 1.8 V logic compatibility relationship between V_{OH} and V_{OL} of the FPGA or the microcontroller with the A_x inputs of the ADG1408L, V_{INH} and V_{INI} .

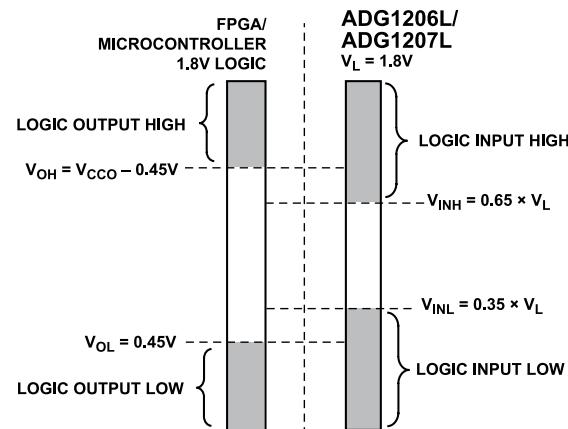
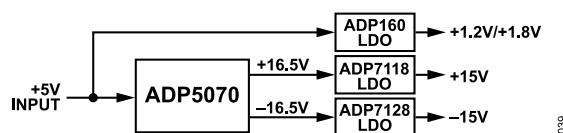


Figure 38. 1.8 V Logic Compatibility Between V_{OH} and V_{OL} and V_{IH} and V_{IL}

POWER SUPPLY RAILS

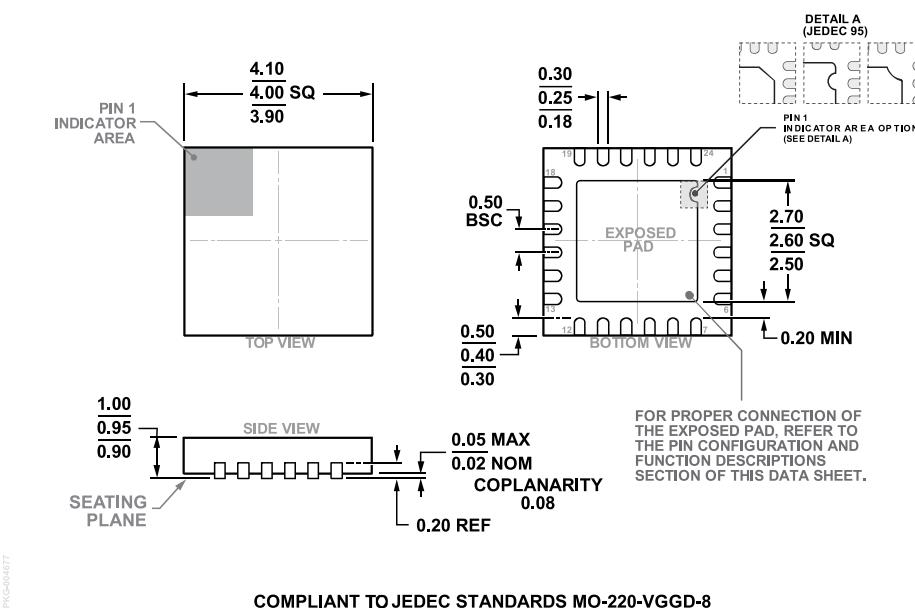
To guarantee correct operation of the ADG1408L, a minimum of 0.1 μ F and 10 μ F decoupling capacitors are required on the V_{DD} , V_{SS} , and V_I supply pins.

The ADG1408L can operate with V_{DD} and V_{SS} dual supplies between ± 4.5 V to ± 16.5 V. The ADG1408L can also operate with a V_{DD} single supply between 5 V to 16.5 V and a V_L between 1.1 V to 1.95 V. However, the V_{DD} to V_{SS} range must not exceed 35 V, and the V_L range must not exceed 2.25 V, as stated in the [Absolute Maximum Ratings](#) section.


It is possible to operate the ADG1408L with asymmetrical supplies or at other voltage supplies within the ranges listed in [Table 1](#). However, the switch characteristics change. These changes include, but are not limited to, the analog signal range, on resistance, leakage, V_{INH} , V_{INL} , and switching times. The typical performance characteristics can be used as a guide to switch the performance vs. the supply voltage (see the [Typical Performance Characteristics](#) section).

APPLICATIONS INFORMATION

POWER SUPPLY RECOMMENDATIONS


Analog Devices, Inc., has a wide range of power management products to meet the requirements of most high performance signal chains.

An example of a symmetrical bipolar power solution is shown in [Figure 39](#). The [ADP5070](#) (dual switching regulator) generates the positive and negative supply rail for the ADG1408L. Also shown in [Figure 39](#) are the two optional positive and negative, low dropout (LDO) regulators, the [ADP7118](#) and [ADP7182](#), respectively, that can reduce the output ripple of the ADP5070 in ultralow noise sensitive applications. The [ADP160](#) generates the logic power supply rail of either 1.2 V or 1.8 V.

Figure 39. Bipolar Power Solution

OUTLINE DIMENSIONS

PN/G408077

09-10-2018-A

COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-8

Figure 40. 24-Lead Lead Frame Chip Scale Package [LFCSP]
4 mm × 4 mm Body and 0.95 mm Package Height
(CP-24-17)
Dimensions shown in millimeters

Updated: May 17, 2023

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Packing Quantity	Package Option
ADG1408LYCPZ-REEL7	-40°C to +125°C	24-Lead LFSCP (4 mm × 4 mm × 0.95 mm with EPAD)	Reel, 1500	CP-24-17

¹ Z = RoHS Compliant Part.

EVALUATION BOARDS

Table 11. Evaluation Boards

Model ¹	Description
EVAL-ADG1408LEBZ	Evaluation Board

¹ Z = RoHS-Compliant Part.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Analog Devices Inc.:](#)

[EVAL-ADG1408LEBZ](#) [ADG1408LYCPZ-REEL7](#)