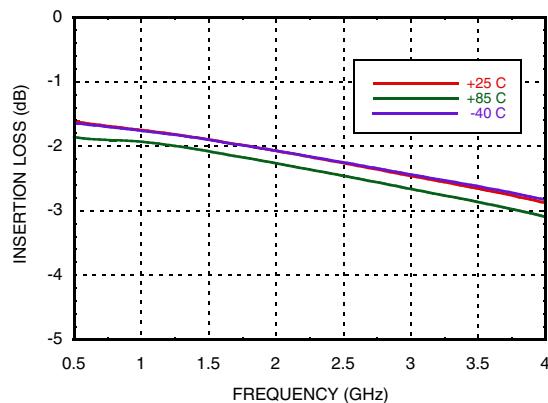
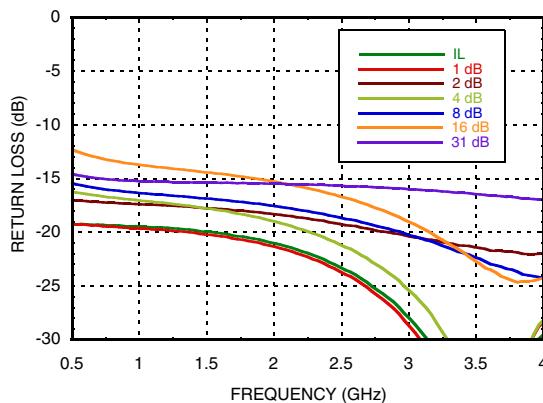
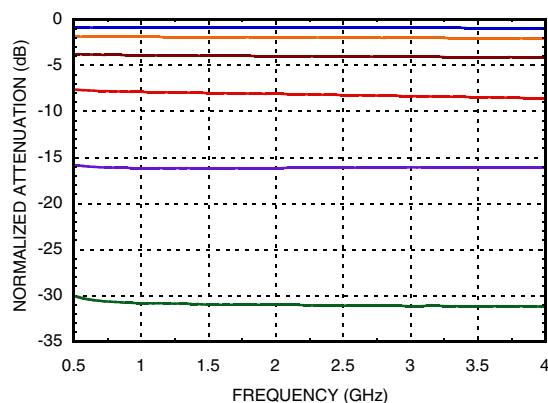
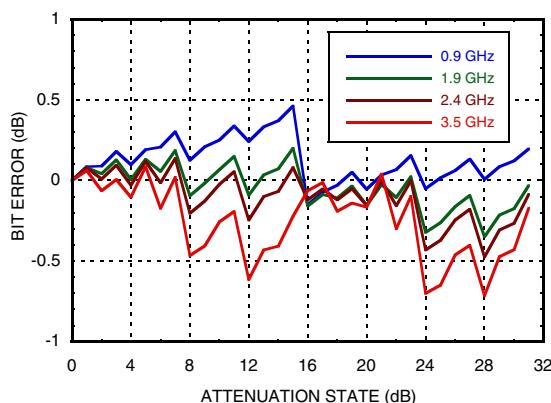
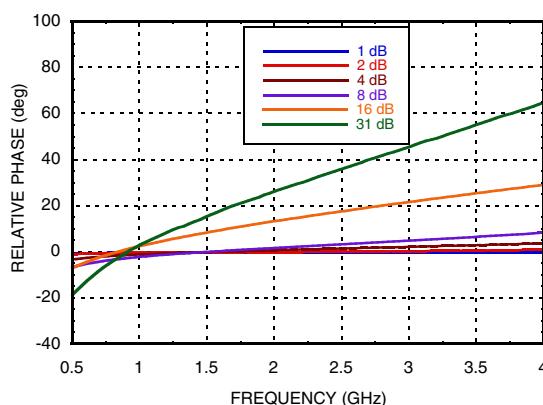

**1 dB LSB GaAs MMIC 5-BIT DIGITAL
ATTENUATOR, 0.7 - 3.8 GHz**
Typical Applications

The HMC273AMS10G(E) is ideal for:

- Cellular; UMTS/3G Infrastructure
- ISM, MMDS, WLAN, WiMAX
- Microwave Radio & VSAT
- Test Equipment and Sensors





Features


- RoHS Compliant Product
- 1 dB LSB Steps to 31 dB
- Single Positive Control Per BIT
- ± 0.2 dB Typical Bit Error
- Miniature MSOP 10 Package: 14.8mm²
- Included in the HMC-DK004 Designer's Kit

Functional Diagram

Electrical Specifications,

$T_A = +25^\circ C$, $Vdd = +3V$ to $+5V$ & $Vctl = 0/Vdd$ (Unless Otherwise Stated)

Parameter	Frequency	Min.	Typical	Max.	Units
Insertion Loss	0.7 - 1.4 GHz 1.4 - 2.3 GHz 2.3 - 2.7 GHz 2.7 - 3.8 GHz		1.8 2.3 2.5 2.9	2.4 2.9 3.1 3.5	dB dB dB dB
Attenuation Range	0.7 - 3.8 GHz		31		dB
Return Loss (RF1 & RF2, All Atten. States)	0.7 - 1.4 GHz 1.4 - 2.7 GHz 2.7 - 3.8 GHz	10 11 12	14 15 16		dB dB dB
Attenuation Accuracy: (Referenced to Insertion Loss)					
All Attenuation States	0.7 - 1.4 GHz 1.4 - 2.2 GHz 2.2 - 2.7 GHz 2.7 - 3.8 GHz		$\pm (0.30 + 3\%$ of Atten. Setting) Max $\pm (0.30 + 4\%$ of Atten. Setting) Max $\pm (0.40 + 5\%$ of Atten. Setting) Max $\pm (0.50 + 5\%$ of Atten. Setting) Max		dB dB dB dB
Input Power for 0.1 dB Compression	$Vdd = 5V$ $Vdd = 3V$	0.7 - 3.8 GHz	28 26		dBm dBm
Input Third Order Intercept Point (Two-tone Input Power = 0 dBm Each Tone)	$Vdd = 5V$ $Vdd = 3V$	0.7 - 3.8 GHz	46 45		dBm dBm
Switching Characteristics t_{RISE} , t_{FALL} (10/90% RF) t_{ON} , t_{OFF} (50% CTL to 10/90% RF)		0.7 - 3.8 GHz	1250 1300		ns ns

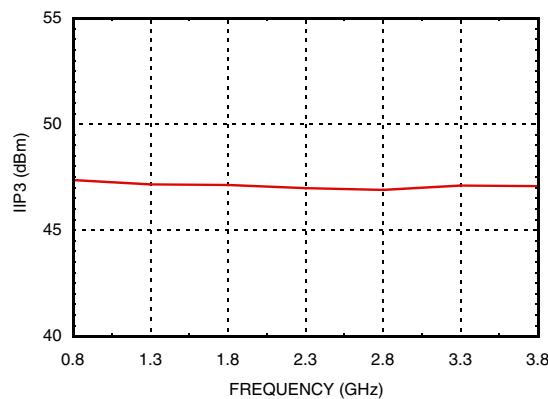
**1 dB LSB GaAs MMIC 5-BIT DIGITAL
ATTENUATOR, 0.7 - 3.8 GHz**
Insertion Loss vs. Temperature

Return Loss RF1, RF2
(Only Major States are Shown)

Normalized Attenuation
(Only Major States are Shown)

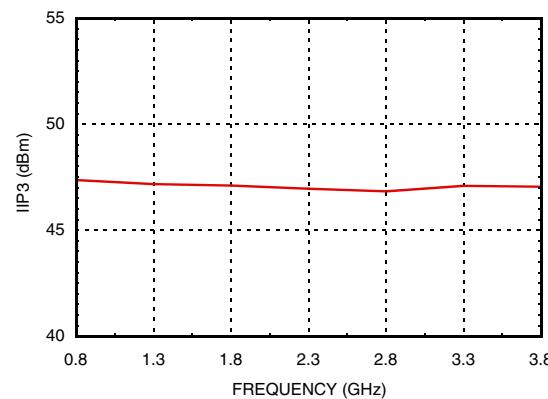
Bit Error vs. Attenuation State

Bit Error vs. Frequency
(Only Major States are Shown)


Relative Phase vs. Frequency
(Only Major States are Shown)

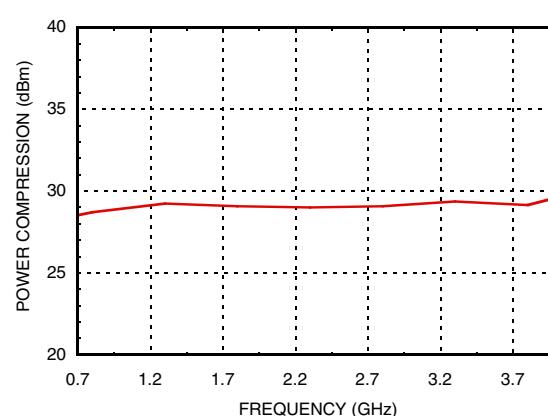
Note: All Data Typical Over Voltage (+3V to +5V)

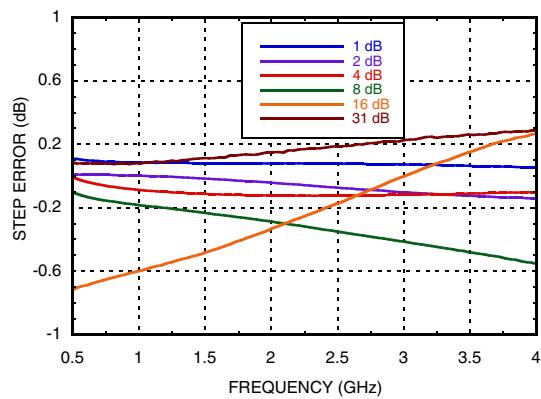
For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106

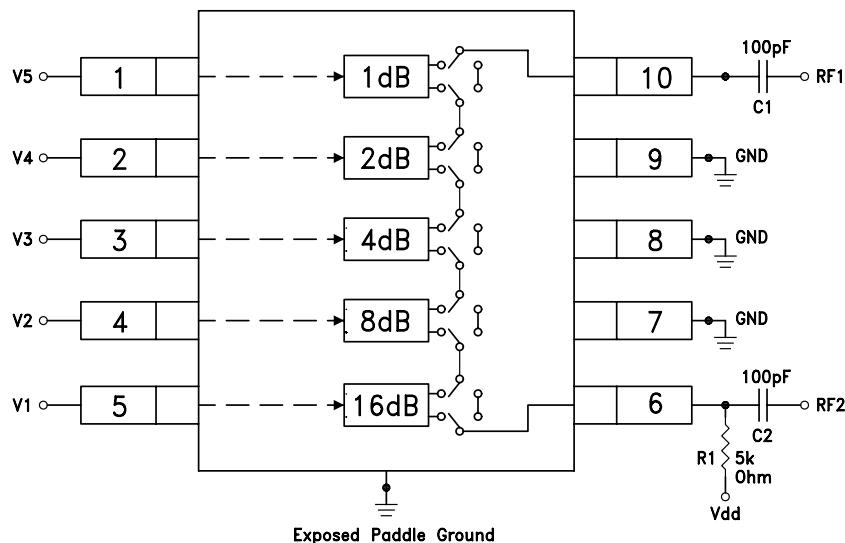

Phone: 781-329-4700 • Order online at www.analog.com

Application Support: Phone: 1-800-ANALOG-D

**Input IP3 Vs. Frequency @ VDD= 3V,
 $T_A = +25^\circ C$**


**Input IP3 vs. Frequency @ VDD= 5V,
 $T_A = +25^\circ C$**


**P0.1dB Vs. Frequency @ VDD= 3V,
 $T_A = +25^\circ C$**



**P0.1dB Vs. Frequency @ VDD= 5V
 $T_A = +25^\circ C$**

**Step Error Vs. Frequency
(Only Major States are Shown)**

1 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.7 - 3.8 GHz
Application Circuit

DC blocking capacitors C1 & C2 are required on RF1 & RF2. Choose C1 = C2 = 100 ~ 300 pF to allow lowest customer specific frequency to pass with minimal loss. R1 = 5K Ohm is required to supply voltage to the circuit through either PIN 6 or PIN 10.

Truth Table

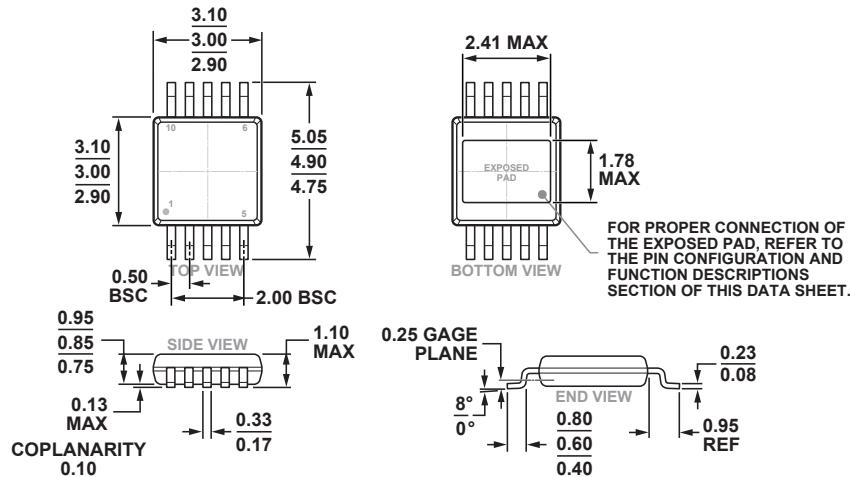
Control Voltage Input					Attenuation Setting RF1 - RF2
V1 16 dB	V2 8 dB	V3 4 dB	V4 2 dB	V5 1 dB	
High	High	High	High	High	Reference I.L.
High	High	High	High	Low	1 dB
High	High	High	Low	High	2 dB
High	High	Low	High	High	4 dB
High	Low	High	High	High	8 dB
Low	High	High	High	High	16 dB
Low	Low	Low	Low	Low	31 dB Max. Atten.

Any combination of the above states will provide an attenuation approximately equal to the sum of the bits selected.

Control Voltages

State	Bias Condition
Low	0 to +0.2 V @ < 1uA Max
High	Vdd ± 0.2V @ 1uA Max

Note: Vdd = +3V to 5V ± 0.2V


Absolute Maximum Ratings

Control Voltage (V1 - V5)	Vdd + 0.5 V
Bias Voltage (Vdd)	+8.0 Vdc
Channel Temperature	150 °C
Continuous Pdiss	0.68 W
Thermal Resistance	95°C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
RF Input Power	+26 dBm
ESD Sensitivity (HBM)	Class 1A

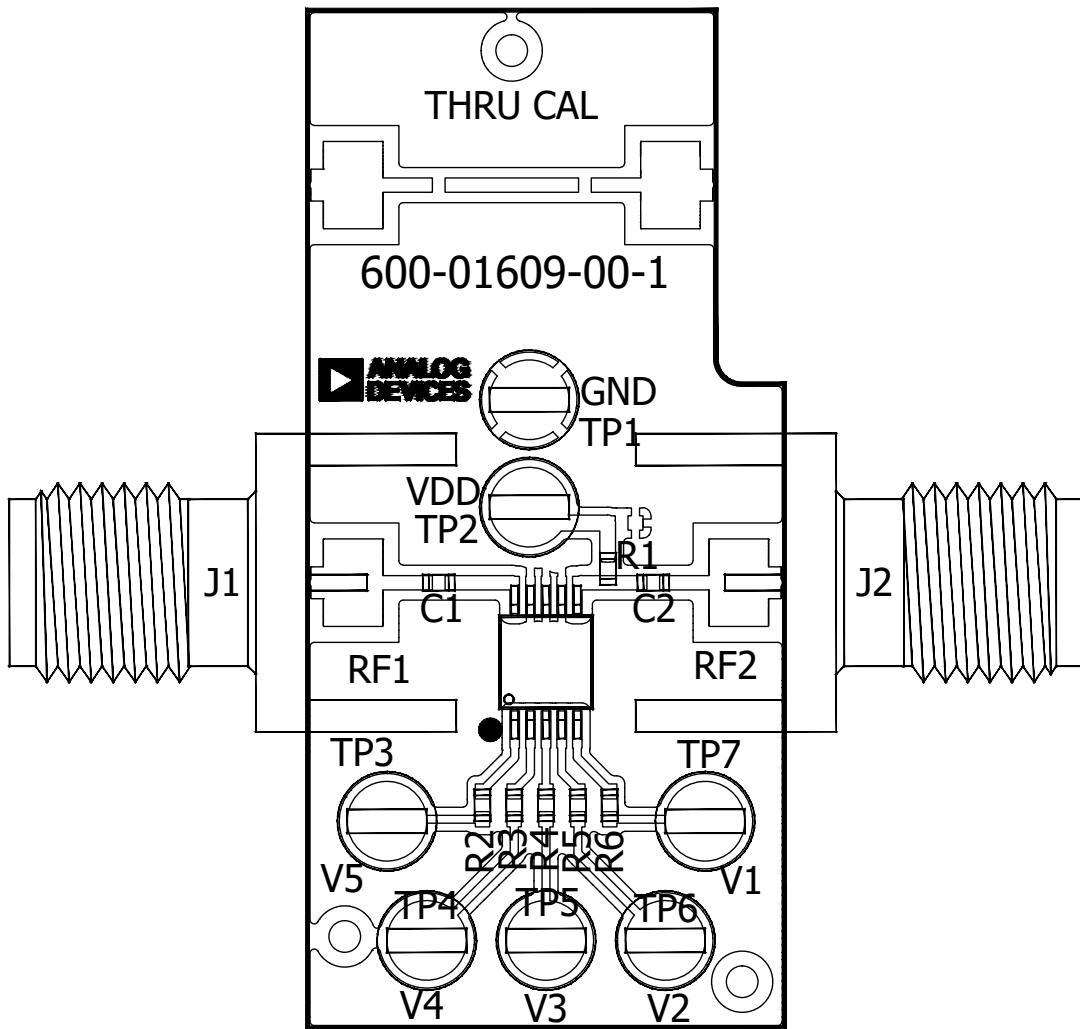
**ELECTROSTATIC SENSITIVE DEVICE
OBSERVE HANDLING PRECAUTIONS**

1 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.7 - 3.8 GHz

Outline Drawing

COMPLIANT TO JEDEC STANDARDS MO-187-BA-T

10-Lead Mini Small Outline Package with Exposed Pad [MINI_SO_EP]
(RH-10-3)
Dimensions shown in millimeters


03-02-2015-C

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC273AMS10GE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL3 ^[1]	273A XXXX

[1] Max peak reflow temperature of 260 °C

[2] 4 - Digit lot number XXXX

**1 dB LSB GaAs MMIC 5-BIT DIGITAL
ATTENUATOR, 0.7 - 3.8 GHz**
Evaluation Circuit Board

List of Materials for Evaluation PCB EV1HMC273AMS10G^[1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3 - J6	DC Pin
R1	5 kOhm Resistor, 0402 Chip
R2, R3, R4	100 Ohm Resistor, 0402 Chip
C1, C2	0402 Chip Capacitor, Select for Lowest Frequency of Operation
U1	HMC273AMS10GE Digital Attenuator
PCB ^[2]	EV1HMC273AMS10G Evaluation PCB 1.5" x 1.5"

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed ground paddle should be connected directly to the ground plane similar to that shown below. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board as shown is available from Analog Devices, upon request.

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Analog Devices Inc.:](#)

[HMC273AMS10GETR](#) [HMC273AMS10GE](#) [EV1HMC273AMS10G](#)