

Evaluating TxVGAs for Use with RF DACs and Transceivers

FEATURES

Full featured evaluation board for the [ADL6317](#)

SPI control via [SDP-S](#) board

5.0 V single-supply operation

EVALUATION KIT CONTENTS

ADL6317-EVALZ evaluation board

ADDITIONAL HARDWARE REQUIRED

Analog signal generator

Analog signal analyzer

Power supplies (6 V, 5 A)

PC with Windows® XP, Windows 7, or Windows 10 operating system

USB 2.0 port, recommended (USB 1.1-compatible)

[EVAL-SDP-CS1Z \(SDP-S\)](#) controller board

ADDITIONAL SOFTWARE REQUIRED

[Analysis | Control | Evaluation \(ACE\)](#) software

GENERAL DESCRIPTION

The [ADL6317](#) is a transmit variable gain amplifier (VGA) that provides an interface from radio frequency (RF) digital-to-analog converters (DACs), transceivers, and systems on a chip (SoC) to power amplifiers (PAs). Integrated balun and hybrid couplers allow high performance RF capability in the 1.5 GHz to 3.0 GHz frequency range

To optimize performance vs. power level, the [ADL6317](#) includes a voltage variable attenuator (VVA), high linearity amplifiers, and a digital step attenuator (DSA). The devices integrated into the [ADL6317](#) are programmable via a 4-wire serial port interface (SPI).

This user guide describes the evaluation board and software for the [ADL6317](#). See the [ADL6317](#) data sheet for full details, which must be consulted in conjunction with this user guide when using the evaluation board. The [ADL6317](#) evaluation board was fabricated using FR-370HR, Rogers 4350B in four layers.

EVALUATION BOARD PHOTOGRAPH

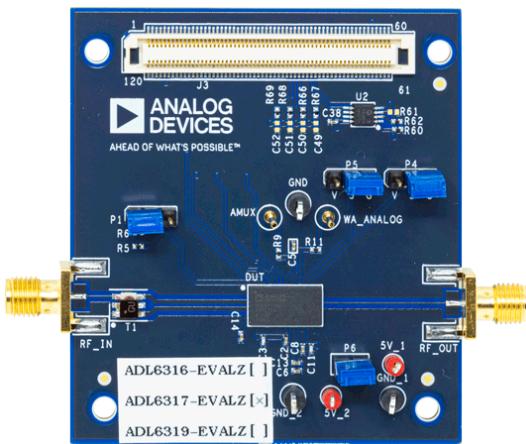


Figure 1. ADL6317 Evaluation Board

20927.001

TABLE OF CONTENTS

Features	1	RF Input	3
Evaluation Kit Contents	1	RF Outputs	3
Additional Hardware Required	1	Signal Path Modes Selection	3
Additional Software Required	1	Evaluation Board Software	4
General Description	1	Software Requirements and Installation	4
Evaluation Board Photograph	1	Installing ADL6317 ACE Plugins	4
Revision History	2	ACE Software Suite	4
Evaluation Board Hardware	3	Configuration and Programming Sequence	5
Power Supply	3	Evaluation Board Schematic	7

REVISION HISTORY

10/2019—Revision 0: Initial Version

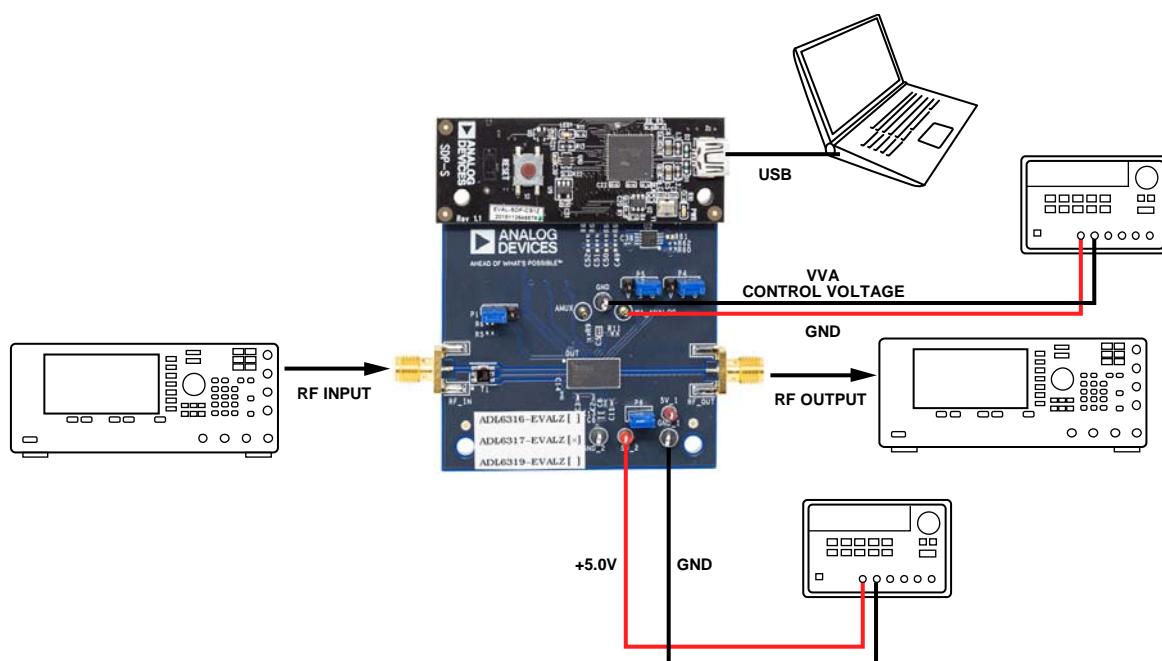
EVALUATION BOARD HARDWARE

The ADL6317-EVALZ evaluation board provides the support circuitry required to operate the [ADL6317](#) in various modes and configurations. Figure 2 shows the typical bench setup to evaluate the performance of the [ADL6317](#).

POWER SUPPLY

The ADL6317-EVALZ evaluation board requires a single, 5.0 V power supply.

RF INPUT


The on-board balun enables single-ended driving. The [ADL6317](#) operates over a frequency range of 1.5 GHz to 3.0 GHz.

RF OUTPUTS

The RF outputs are available on the evaluation board at the RF_OUT SMA connectors, which can drive a load of 50 Ω.

SIGNAL PATH MODES SELECTION

The [ADL6317](#) has two signal path modes. This feature allows two predefined modes of operation to be controlled by the logic level on TXEN, a real-time external pin (Pin 37) with no SPI latency. Table 1 shows the hardware configuration to select the desired mode.

20927-02

Figure 2. [ADL6317](#) Typical Measurement Setup

Table 1. Mode Selection and Setup Registers

TXEN(Pin 37)	Register	Functional Blocks	Description
0	0x0102	DSA attenuation	0 dB to ~15.5 dB range, 0.5dB step
	0x0107	AMP1	Amplifier 1 optimization
	0x0108	AMP1	Amplifier 1 enable
	0x0109	AMP2	Amplifier 2 optimization
	0x010A	AMP2	Amplifier 2 enable
1	0x0112	DSA attenuation	0 dB to ~15.5 dB range, 0.5dB step
	0x0117	AMP1	Amplifier 1 optimization
	0x0118	AMP1	Amplifier 1 enable
	0x0119	AMP2	Amplifier 2 optimization
	0x011A	AMP2	Amplifier 2 enable

EVALUATION BOARD SOFTWARE

The [ADL6317](#) on the ADL6317-EVALZ evaluation board and the [SDP-S](#) controller board are configured with a USB friendly interface to allow programmability of the [ADL6317](#) registers.

SOFTWARE REQUIREMENTS AND INSTALLATION

The [Analysis | Control | Evaluation \(ACE\)](#) software is required to program and control the [ADL6317](#) and the ADL6317-EVALZ evaluation board.

The [ACE](#) software suite allows bit control of the [ADL6317](#) register map via the SPI, and communicates to the [SDP-S](#) controller board via the USB connection. The [SDP-S](#) controller board configures the SPI lines (CS, SDI, SDO, and SCLK) accordingly to communicate to the [ADL6317](#).

Installing the ACE Software Suite

To install the [ACE](#) software suite, take the following steps:

1. Download the software from the [ACE](#) product page.
2. Open the downloaded file to begin the installation process. The default installation path is **C:\Program Files (x86)\Analog Devices\ACE**.
3. If desired, the user can create a desktop icon for the [ACE](#) software. Otherwise, the [ACE](#) executable can be found by clicking **Start > Analog Devices > ACE**.

INSTALLING ADL6317 ACE PLUGINS

When the [ACE](#) software installations are complete, the user must install the evaluation board plugins to the hard drive of the PC.

1. Download [ADL6317 ACE](#) plugins (**Board.ADL631x.1.2019.34200.acezip**) from the ADL6317-EVALZ product page.
2. Double-click the **Board.ADL631x.1.2019.34200.acezip** file to install the evaluation board plugins.
3. Ensure that the **Board.ADL631x.1.2019.34200** and **Chip.ADL631x.1.2019.34200** folders are located inside the **C:\ProgramData\Analog Devices\ACE\Plugins** folder.

ACE SOFTWARE SUITE

Power up the ADL6317-EVALZ evaluation board and connect the USB cable to the PC and to the [SDP-S](#) board mounted on the ADL6317-EVALZ evaluation board.

1. Double-click the [ACE](#) shortcut on the PC desktop of the computer (if created). The software automatically detects the ADL6317-EVALZ evaluation board. The software opens the [ACE](#) plugin view, as shown in Figure 3.

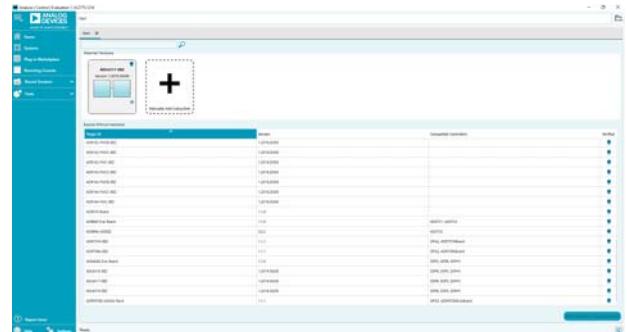


Figure 3. [ACE](#) Plugin View

2. Double-click the **ADL6317-EBZ** board icon, as shown in Figure 4.

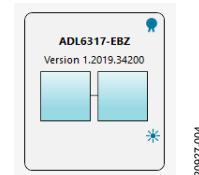


Figure 4. **ADL6317-EBZ** Board Icon

3. The software opens the [ACE](#) chip view as shown in Figure 5.

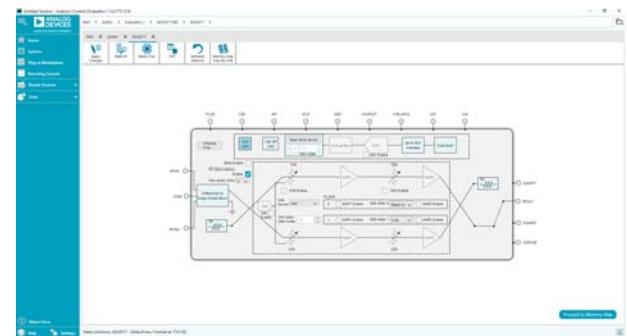


Figure 5. [ACE](#) Chip View

CONFIGURATION AND PROGRAMMING SEQUENCE

To configure and program the evaluation board, take the following steps:

1. Run the [ACE](#) software as explained in the ACE Software Suite.
2. Click **Initialize Chip** (Label A, see Figure 6).
3. Click and adjust the blocks in **Label B** to **Label H**, as shown in Figure 6, if necessary.

4. After changing the block as directed in Step 3, in the [ACE](#) software, click **Apply Changes** (Label K, see Figure 7) to update to [ADL6317](#).
5. To adjust an individual register and bit, click **Proceed to Memory Map**. This button opens the [ADL6317](#) memory map for bit control (see Figure 8). The [ADL6317](#) can be configured by either putting data into **Data(Hex)** column or by clicking a specific bit in the **Data(Binary)** column of the register map (see Figure 8). Click **Apply Changes** to save changes and program the [ADL6317](#).

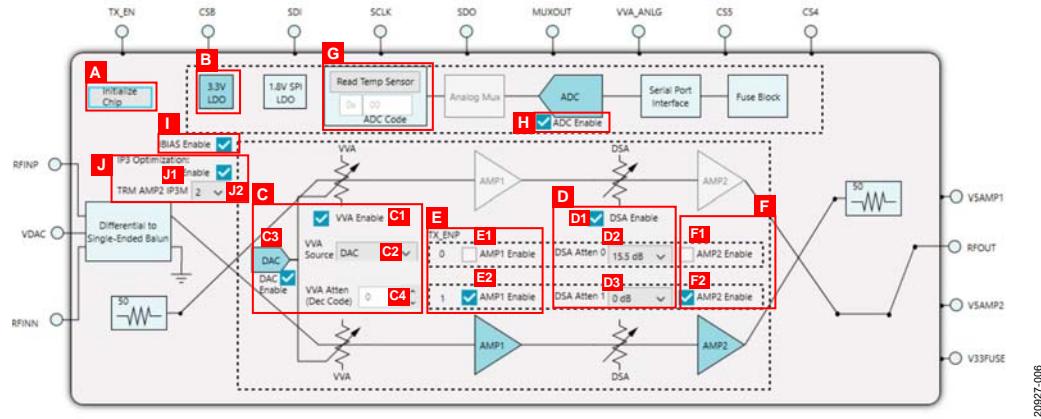


Figure 6. [ADL6317](#) Chip Block Diagram

Table 2. Main Screen Functionality (see Figure 6)

Label	Function
A	Initialize chip button.
B	3.3 V low dropout regulator (LDO) enable.
C	VVA control block.
C1	VVA Enable checkbox.
C2	Selects VVA voltage source: DAC: VVA attenuation set by internal 12-bit DAC, set DAC code (0 to ~4095 range) in VVA Atten (Dec Code) field. VVA_ANALOG: VVA attenuation set by analog voltage applied on ANLG pin.
C3	DAC Enable checkbox for VVA attenuation when the VVA Source field is set to DAC .
C4	VVA Atten (Dec Code) menu. Selects VVA DAC code in decimal (0 to ~4095 range). Higher numbers equal less attenuation.
D	DSA control block, DSA Atten 0 and DSA Atten 1 are selected by the logic level on TXEN (see Table 1).
D1	DSA Enable checkbox.
D2	Set DSA Atten 0 attenuation.
D3	Set DSA Atten 1 attenuation.
E	AMP1 Enable checkbox. AMP1 can be set individually by the logic level on TXEN (see Table 1).
F	AMP2 Enable checkbox. AMP2 can be set individually by the logic level on TXEN (see Table 1).
G	Read Temp Sensor button and ADC Code text fields. These functions are for proportional to absolute temperature (PTAT) ADC code readback.
H	ADC Enable checkbox.
I	IBIAS Enable checkbox. This function enables the bias generator.
J	IP3 Optimization control block.
J1	Enable checkbox for IP3 optimization.
J2	TRM_AMP2_IP3M dropdown menu. Set the TRM_AMP2_IP3 bits value for IP3 optimization.

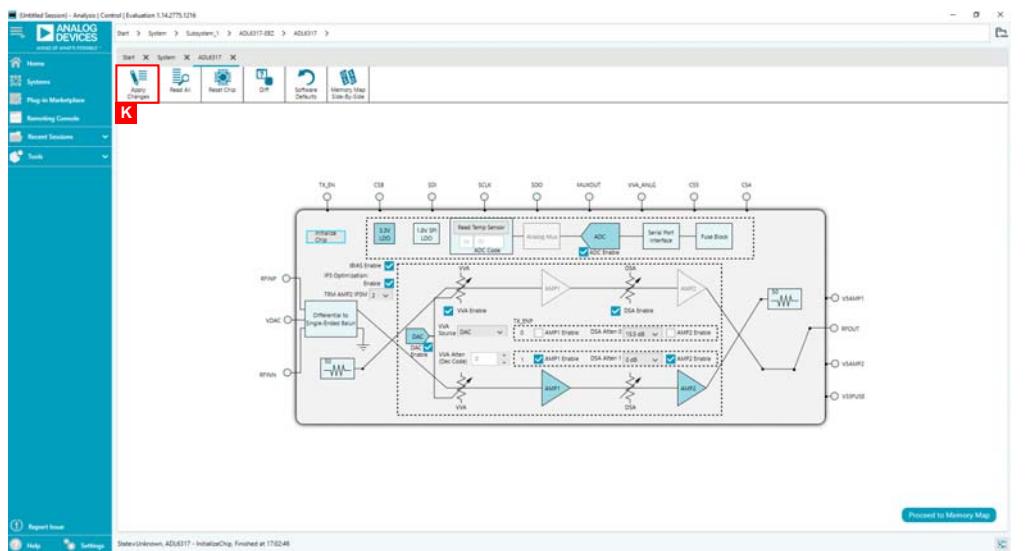


Figure 7. ADL6317-EVALZ ACE Chip View After Chip Initialization

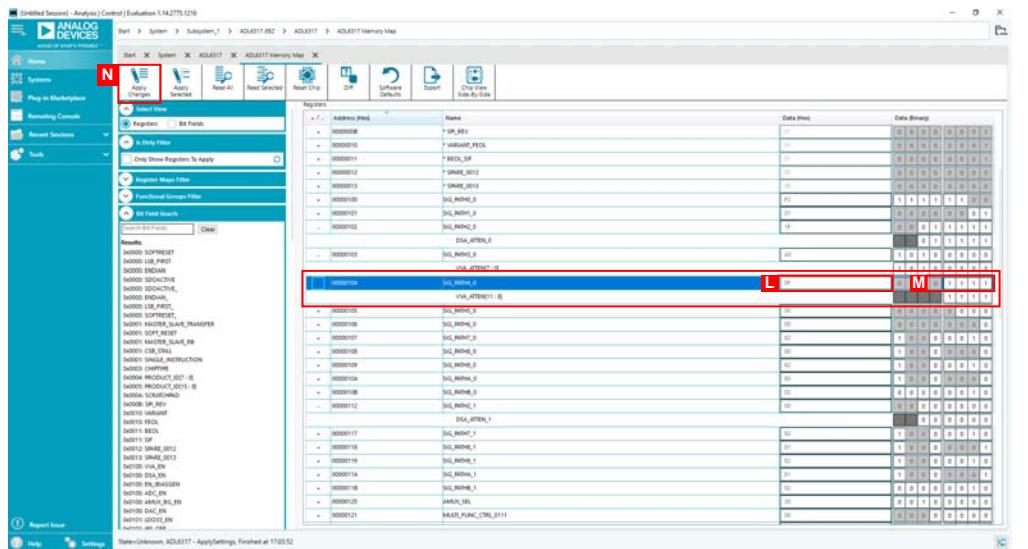


Figure 8. ADL6317-EVALZ ACE Memory Map View

EVALUATION BOARD SCHEMATIC

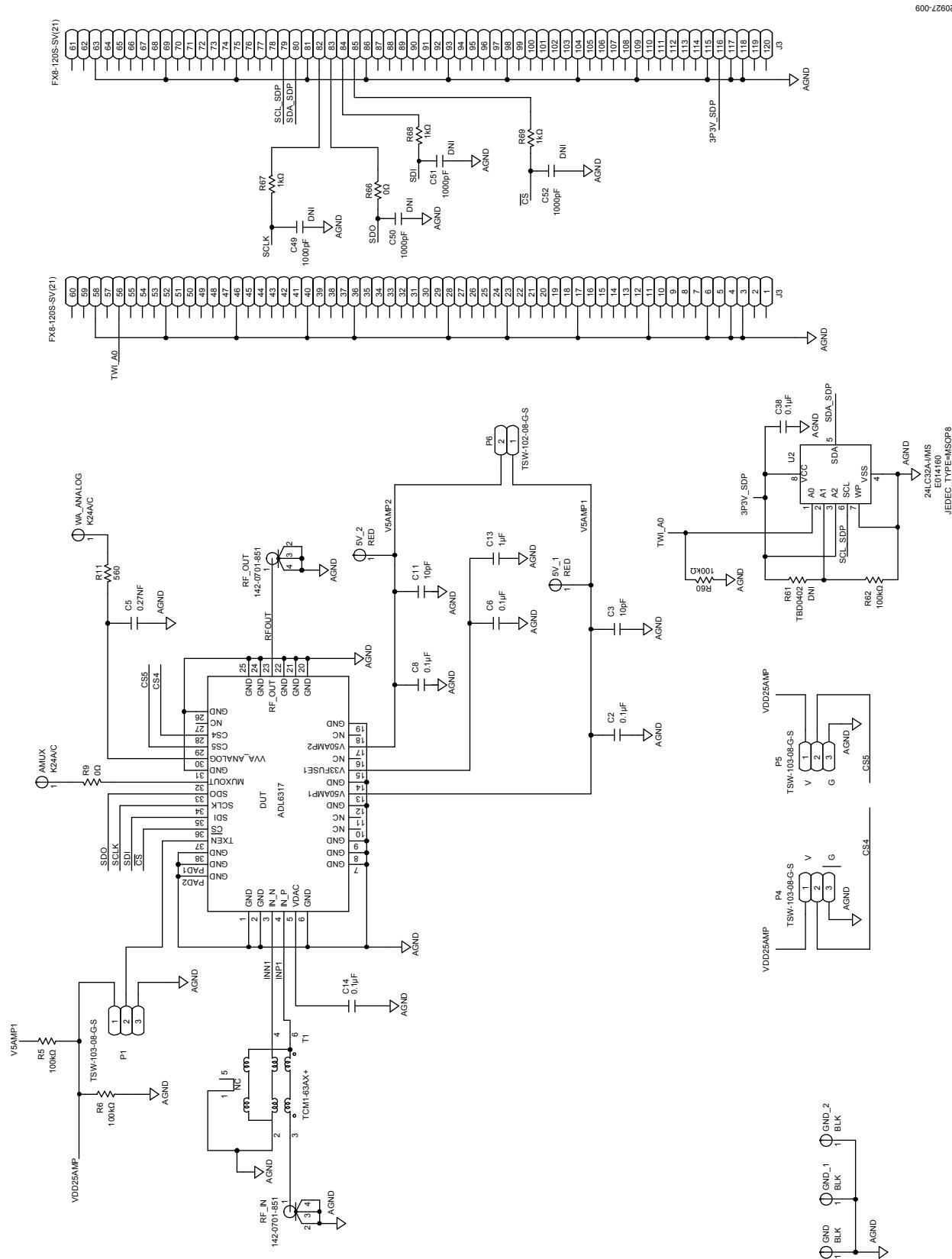


Figure 9. ADL6317-EVALZ Evaluation Board Schematic

NOTES

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. **CONFIDENTIALITY.** This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. **ADDITIONAL RESTRICTIONS.** Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. **TERMINATION.** ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. **LIMITATION OF LIABILITY.** THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS (\$100.00). **EXPORT.** Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. **GOVERNING LAW.** This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Analog Devices Inc.:](#)

[ADL6317-EVALZ](#)