

Low Noise, Low Power, Wide Bandwidth, 3-Axis MEMS Accelerometer

FEATURES

- ▶ Ultralow noise density: 44 $\mu\text{g}/\sqrt{\text{Hz}}$ (XY) and 55 $\mu\text{g}/\sqrt{\text{Hz}}$ (Z)
- ▶ Low power consumption
 - ▶ High performance: 520 μA
 - ▶ Ultra-low power: 33 μA
- ▶ Wide bandwidth: 8 kHz
 - ▶ Relative flatness with equalization: <0.5 dB
 - ▶ Relative flatness without equalization: <3.5 dB
- ▶ Low latency: group delay <85 μs
- ▶ Digital features
 - ▶ 16-bit ADC
 - ▶ Multiprotocol serial interfaces: SPI or I²C
 - ▶ Multiprotocol audio data output: I²S, TDM, and PDM
 - ▶ Programmable LPF and HPF
 - ▶ Data synchronous or asynchronous sampling
 - ▶ Output FIFO: 320 word
- ▶ Built-in features for system-level power savings
 - ▶ Single tap, double tap, or triple tap detection
 - ▶ Activity and inactivity detection
 - ▶ Configurable interrupt modes
- ▶ Integrated temperature sensor
- ▶ Voltage range options
 - ▶ V_S with internal regulators: 2.25 V to 3.6 V (or V_{1P8} at 1.8 V)
 - ▶ V_{DDIO} : 1.14 V to 3.6 V (1.62 V to 3.6 V for full temperature range)
- ▶ Electromechanical self test
- ▶ 10,000 g mechanical shock survival
- ▶ RoHS compliant
- ▶ Operating temperature range: -40°C to +125°C
- ▶ 14-terminal, 2.9 mm × 2.8 mm × 0.87 mm, LGA package

FUNCTIONAL BLOCK DIAGRAM

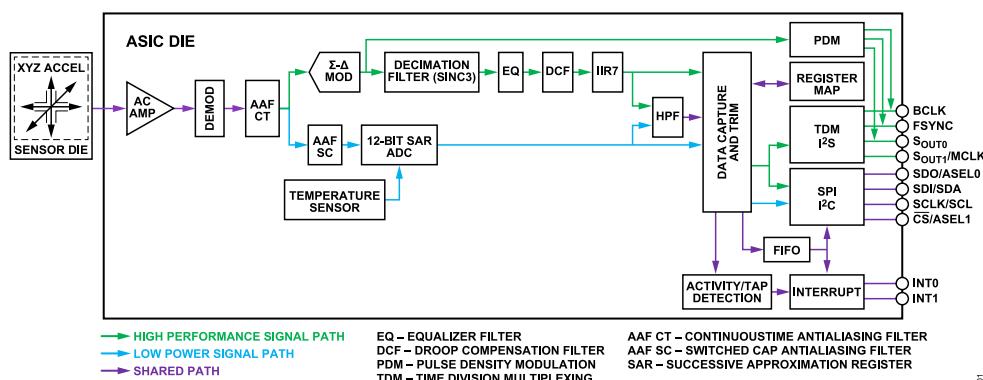


Figure 1. Functional Block Diagram

TABLE OF CONTENTS

Features.....	1	Additional Features.....	41
General Description.....	1	Free Fall Detection.....	41
Applications.....	1	Tap Detection.....	41
Functional Block Diagram.....	1	External Clock.....	42
Specifications.....	4	External Trigger.....	42
Timing Specifications.....	7	External Synchronization.....	42
Digital Timing Diagrams.....	10	Self Test.....	46
Absolute Maximum Ratings.....	12	User Register Protection.....	46
Thermal Resistance.....	12	Concurrent Operating Modes.....	46
Recommended Soldering Profile.....	12	Interrupts.....	46
ESD Caution.....	12	Status Flags and Error Handling.....	46
Pin Configuration and Function Descriptions.....	13	Latency.....	48
Typical Performance Characteristics.....	14	Low Latency Mode.....	48
Theory of Operation.....	22	Serial Communications.....	50
Mechanical Device Operation.....	22	SPI Bus Sharing.....	50
Operating Modes.....	22	Register Map.....	51
Standby Mode.....	22	Analog Devices Device ID Register.....	53
Measurement Mode.....	22	Analog Devices MEMS Device ID Register.....	54
Selectable Measurement Ranges.....	22	Part ID Register.....	54
Digital Output.....	22	Part ID and Revision ID Register.....	54
Temperature Sensor.....	23	Serial Number 0 Register.....	54
Axes of Acceleration Sensitivity.....	23	Serial Number 1 Register.....	55
Power Sequencing.....	23	Serial Number 2 Register.....	55
Power Supply Description.....	24	Serial Number 3 Register.....	55
Overrange Protection.....	24	Serial Number 4 Register.....	56
Self Test.....	24	Serial Number 5 Register.....	56
Filter.....	25	Serial Number 6 Register.....	56
Noise.....	29	Device Sensor Parameter Registers.....	57
Power Savings Features.....	30	Status 0 Register (Clear on Read).....	58
Operating Modes.....	30	Status 1 Register (Clear on Read).....	59
Motion Detection.....	31	Status 2 Register (Clear on Read).....	60
Activity Detection.....	31	Status 3 Register (Clear on Read).....	61
Inactivity Detection.....	31	X Axis Data Output Read (High Byte, Bits[15:8]) Register.....	61
Linking Activity and Inactivity Detection.....	32	X Axis Data Output Read (Low Byte, Bits[7:0]) Register.....	62
FIFO.....	34	Y Axis Data Output Read (High Byte, Bits[15:8]) Register.....	62
System-Level Power Savings.....	34	Y Axis Data Output Read (Low Byte, Bits[7:0]) Register.....	62
Data Recording and Event Context.....	34	Z Axis Data Output Read (High Byte, Bits[15:8]) Register.....	62
FIFO Configuration.....	35	Z Axis Data Output Read (Low Byte, Bits[7:0]) Register.....	63
FIFO Modes.....	35	Temperature Data Output Read (High Byte) Register.....	63
FIFO Interrupts.....	35	Temperature Data Output Read (Low Byte) and Sensor DSM Register.....	63
FIFO Watermark.....	35	FIFO Read Data (from FIFO Block) Register...	64
FIFO Ready.....	35		
FIFO Overrun.....	35		
FIFO Full.....	35		
Communications.....	36		
SPI Instructions.....	36		
I ² C Interface.....	36		
I ² S/TDM Interface.....	37		
PDM Interface.....	39		

TABLE OF CONTENTS

FIFO Status Registers.....	64
Miscellaneous 0 (Read Only) Register.....	64
Miscellaneous 1 (Read Only) Register.....	65
Sensor DSM Register.....	65
Clock Control Register.....	66
OP_MODE Register.....	66
Digital Enable Register.....	67
Data Ready and I ² C Communication Port Configuration Register.....	68
NVM (EFUSE) User Control Register.....	69
Register Reset.....	70
Interrupt Pin 0 Enables MAP0 Register.....	70
Interrupt Pin 0 Enables MAP1 Register.....	71
Interrupt Pin 1 Enables MAP0 Register.....	72
Interrupt Pin 1 Enables MAP1 Register.....	73
FIFO Configuration 0 Register.....	74
FIFO Configuration 1 Register.....	75
Serial Port Configuration 0 Register.....	75
Serial Port Configuration 1 Register.....	76
Serial Port Configuration 2 Register.....	76
SYNC and Serial Port Configuration Register..	77
PDM Configuration Register.....	78
Activity, Inactivity, and PDM Control Register..	78
Activity and Inactivity and Self-Test Control Register.....	79
Activity Threshold (High Byte) Register.....	80
Activity Threshold (Low Byte) Register.....	80
Timed Activity (High Byte, Bits[23:16]) Register.....	81
Timed Activity (Mid Byte, Bits[15:7]) Register..	81
Timed Activity (Low Byte, Bits[7:0]) Register...	81
Inactivity Threshold (High Byte) Register.....	82
Inactivity Threshold (Low Byte) Register.....	82
Timed Inactivity (High Byte, Bits[23:16]) Register.....	82
Timed Inactivity (Mid Byte, Bits[15:8]) Register.....	83
Timed Inactivity (Low Byte, Bits[7:0]) Register.....	83
Tap Threshold Register.....	83
Tap Duration Register.....	84
Tap Latency Wait Time Register.....	84
Tap Window Register.....	84
Tap Configuration Register.....	85
Undervoltage and Overrange Configuration Register.....	86
SAR Trigger and Digital Filter Configuration Register.....	87
X-Axis SAR User Offset Register.....	88
Y-Axis SAR User Offset Register.....	88
Z-Axis SAR User Offset Register.....	88
X-Axis DSM User Offset Register.....	88
Y-Axis DSM User Offset Register.....	89
Z-Axis DSM User Offset Register.....	89
Digital Filter Configuration Register.....	89
User Temperature Sensor Control Registers...	91
MISO and Gain Scaler Configuration Register.....	92
SOUT0 Pad Control Register.....	93
MCLK Pad Register.....	93
BCLK Pad Register.....	94
FSYNC Pad and Resync Configuration Register.....	94
INT0 Pad Control Register.....	95
INT1 Pad Control Register.....	96
Applications Information.....	97
Application Examples.....	97
Device Configuration.....	97
Power Supply Requirements.....	100
Interrupts.....	101
Using an External Clock.....	102
Mechanical Considerations for Mounting.....	102
PCB Footprint.....	102
Outline Dimensions.....	103
Ordering Guide.....	103
Models, Measurement Ranges, and Communications Interface.....	103
Evaluation Boards.....	103

REVISION HISTORY

8/2024—Revision 0: Initial Version

SPECIFICATIONS

$T_A = 25^\circ\text{C}$, supply voltage (V_S) = 3.3 V, x-axis and y-axis acceleration = 0 g, z-axis acceleration = 1 g, and full-scale range = ± 15 g, and high performance (HP) mode, unless otherwise noted.

Table 1. Specifications

Parameter	Test Conditions/ Comments	Min	Typ	Max	Unit
SENSOR INPUT					
Full-Scale Range (FSR)	Each axis				
Nonlinearity ^{1,2}	User selectable Percentage of full scale range (FSR) ± 15 g, ± 30 g ± 60 g	$\pm 15, \pm 30, \pm 60$		± 0.2 ± 0.7	g %FSR %FSR
Total Harmonic Distortion (THD)	13.37 g at 1 kHz		0.1		%FSR
Cross-Axis Sensitivity ³			± 2	± 2.5	%
Sensor Resonant Frequency ⁴	X-axis and Y-axis Z-axis		8.3 6.2		kHz kHz
Quality Factor ⁴	X-axis and Y-axis Z-axis		3.0 1.7		
SENSITIVITY	Each axis				
Sensitivity	± 15 g ± 30 g ± 60 g		2000 1000 500		LSB/g LSB/g LSB/g
Scale Factor	± 15 g ± 30 g ± 60 g		500 1000 2000		$\mu\text{g}/\text{LSB}$ $\mu\text{g}/\text{LSB}$ $\mu\text{g}/\text{LSB}$
Sensitivity Error at 25°C	X-axis and Y-axis Z-axis		1.6 3.1		% %
Sensitivity Change due to Temperature	$T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$		± 0.02		%/ $^\circ\text{C}$
OUTPUT RESOLUTION	Each axis				
All g Ranges	$\Sigma\Delta$ modulator, DSM (high performance) Successive approximation register, SAR (low power) ⁵		16 12		Bits Bits
0 g OFFSET	Each axis				
0 g Output for X_{OUT} , Y_{OUT} , and Z_{OUT} ^{1,6}		-450	± 150	+450	mg
0 g Offset vs. Temperature	$T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$		2.0		$\text{mg}/^\circ\text{C}$
Bias Repeatability ⁷	X-axis and Y-axis Z-axis		220 400		μg μg
Vibration Rectification Error (VRE)	Offset due to 7.5 g RMS vibration, in 1 g field		100		mg
NOISE PERFORMANCE					
Noise Density					
High Performance (HP) Mode ⁸	X-axis and Y-axis Z-axis		44 55		$\mu\text{g}/\sqrt{\text{Hz}}$ $\mu\text{g}/\sqrt{\text{Hz}}$
Reduced Bandwidth (RBW) Mode	X-axis and Y-axis Z-axis		58 67		$\mu\text{g}/\sqrt{\text{Hz}}$ $\mu\text{g}/\sqrt{\text{Hz}}$
Low Power (LP) Mode	X-axis and Y-axis Z-axis		110 140		$\mu\text{g}/\sqrt{\text{Hz}}$ $\mu\text{g}/\sqrt{\text{Hz}}$
Very Low Power (VLP) Mode	X-axis and Y-axis Z-axis		360 360		$\mu\text{g}/\sqrt{\text{Hz}}$ $\mu\text{g}/\sqrt{\text{Hz}}$

SPECIFICATIONS

Table 1. Specifications (Continued)

Parameter	Test Conditions/ Comments	Min	Typ	Max	Unit
Ultra-Low Power (ULP) Mode	X-axis and Y-axis		650		$\mu\text{g}/\sqrt{\text{Hz}}$
	Z-axis		650		$\mu\text{g}/\sqrt{\text{Hz}}$
Heart Sounds (HS) Mode	X-axis and Y-axis		220		$\mu\text{g}/\sqrt{\text{Hz}}$
	Z-axis		230		$\mu\text{g}/\sqrt{\text{Hz}}$
Output Noise ⁹					
HP Mode	X-axis and Y-axis		3.9		mg RMS
	Z-axis		4.9		mg RMS
RBW Mode	X-axis and Y-axis		3.7		mg RMS
	Z-axis		4.3		mg RMS
LP Mode	X-axis and Y-axis		5.0		mg RMS
	Z-axis		6.3		mg RMS
VLP Mode	X-axis and Y-axis		8.0		mg RMS
	Z-axis		8.0		mg RMS
ULP Mode	X-axis and Y-axis		4.6		mg RMS
	Z-axis		4.7		mg RMS
HS Mode	X-axis and Y-axis		5.0		mg RMS
	Z-axis		5.3		mg RMS
Velocity Random Walk (VRW)	X-axis and Y-axis		23		mm/sec./ $\sqrt{\text{hr}}$
	Z-axis		30		mm/sec./ $\sqrt{\text{hr}}$
Bias Stability	All axes		15		μg
BANDWIDTH	All configurable filters set to default				
Bandwidth (-3 dB Corner)					
HP Mode			8000		Hz
RBW Mode			4000		Hz
LP Mode			2000		Hz
VLP Mode			500		Hz
ULP Mode			50		Hz
HS Mode			400		Hz
Relative Flatness					
HP Mode					
Without Digital Correction (<5 kHz)	X-axis and Y-axis		3.5		dB
	Z-axis		4.5		dB
With Digital Correction (<7.6 kHz)	X-axis and Y-axis		0.5		dB
	Z-axis		0.5		dB
RBW Mode					
Without Digital Correction (<4 kHz)	X-axis and Y-axis		1.5		dB
	Z-axis		2		dB
SELF TEST					
Self-Test Delta (ST Δ) ¹⁰	X-axis and Y-axis	2.0	3.8	5.5	g
	Z-axis	1.8	2.9	4.0	g
POWER SUPPLY					
Operating Voltage Range (V _S)		2.25		3.6	V
Input and Output Voltage Range (V _{DDIO})	T _A = -25°C to +85°C	1.14		3.6	V
	T _A = -40°C to +125°C	1.62		3.6	V
V _{1P8} with Internal Low Dropout Regulator (LDO) Bypassed	V _{SUPPLY} = 0 V	1.62	1.8	1.98	V
Supply Reset Threshold (V _{RESET})				1.2	V
Hold Time		1			ms

SPECIFICATIONS

Table 1. Specifications (Continued)

Parameter	Test Conditions/ Comments	Min	Typ	Max	Unit
Rise Time	0 V to 90% of V_S			4	ms
Supply Current ¹¹	LDO enabled				
HP Mode		520			µA
RBW Mode		350			µA
LP Mode		200			µA
VLP Mode		44			µA
ULP Mode		33			µA
HS Mode		32			µA
Standby		6.8			µA
Turn-On Time ¹²				2	ms
Standby to Valid Data Time				3	ms
Power-Up to Standby					
CLOCK			1024		kHz
Internal Oscillator					
DELAYS					
Group Delay					
Default Mode	X-axis and Y-axis	350			µs
	Z-axis	370			µs
Low Latency Mode ¹³	X-axis and Y-axis	80			µs
	Z-axis	85			µs
TEMPERATURE SENSOR ^{1, 14}					
Output at 25°C		550			LSB
Sensitivity		10.2			LSB/°C
Sensitivity Error		0.06			%
ENVIRONMENTAL					
Operating Temperature Range		-40		+125	°C

¹ Typical value based on characterization, not tested in production.

² Nonlinearity is measured with a DC input stimulus.

³ Cross-axis sensitivity is defined as coupling between any two axes. Typical value based on characterization, not tested in production.

⁴ Typical value defined based on design and simulation. It is not tested in production.

⁵ Note that the lower 4 bits of the SAR are zeros, which is to match the 16-bit DSM.

⁶ Different supplies and measurement range settings can cause a shift in performance.

⁷ Repeatability provides an estimate for long-term drift in the bias, as observed during 500 hours of high-temperature operating life (HTOL) at 125°C and 1000 cycles of temperature cycle testing (TCT). Repeatability represents the root sum square (RSS) of the bias drift associated with HTOL and TCT.

⁸ Noise density values with equalization filter enabled.

⁹ RMS noise with default bandwidth setting used for each power mode.

¹⁰ Self-test change is defined as the positive self-test output (when positive beam deflection is asserted) minus the negative self-test output (when negative beam deflection is asserted). Different supplies and g ranges cause different self-test changes.

¹¹ Supply current is measured with default configurations with the XYZ channels enabled. Supply current may increase when additional features (temperature sensor, first in, first out (FIFO), or external analog-to-digital converter (ADC) for example) are enabled.

¹² Refer to the [Power Supply Requirements](#) section for the minimum supply rise time requirement.

¹³ Low latency mode bypasses optional filters. See the [Latency](#) section for more information including configuration settings.

¹⁴ Nominal values for temperature sensor output with HIGH_GAIN_TEMP = 0.

SPECIFICATIONS

TIMING SPECIFICATIONS

Table 2. I²C Input and Output Levels and Timing ($T_A = 25^\circ\text{C}$, $V_S = 3.3\text{ V}$, and $V_{DDIO} = 3.3\text{ V}$)¹

Parameter	Symbol	Test Conditions/ Comments	I ₂ C_HSM_EN = 0 (Fast Mode)		I ₂ C_HSM_EN = 1 (High Speed Mode)		Unit
			Min	Max	Min	Max	
DC INPUT LEVELS							
Input Voltage							
Low Level	V_{IL}						V
High Level	V_{IH}						V
Hysteresis of Schmitt Trigger Inputs	V_{HYS}						V
Input Current	I_{IL}	$0.1 \times V_{DDIO} < V_{IN} < 0.9 \times V_{DDIO}$	-10	+10			μA
DC OUTPUT LEVELS							
Output Voltage	V_{OL}	Low level current ($I_{OL} = 7\text{ mA}$)					
Low Level	V_{OL1}	$V_{DDIO} > 2\text{ V}$		0.4			V
	V_{OL2}	$V_{DDIO} \leq 2\text{ V}$			0.2 $\times V_{DDIO}$		V
Output Current	V_{IH}						V
Low Level	I_{OL}	$V_{OL} = 0.4\text{ V}$	20				mA
		$V_{OL} = 0.6\text{ V}$	6				mA
AC INPUT LEVELS							
SCL Frequency			0.01	1	0.01	3.4	MHz
SCL High Time	t_{HIGH}		260		60		ns
SCL Low Time	t_{LOW}		500		160		ns
Start Setup Time	t_{SUSTA}		260		160		ns
Start Hold Time	t_{HDSTA}		260		160		ns
SDA Setup Time	t_{SUDAT}		50		10		ns
SDA Hold Time	t_{HDDAT}		0		0		ns
Stop Setup Time	t_{SUSTO}		360		160		ns
Bus Free Time	t_{BUF}		500				ns
SCL Input Rise Time	t_{RCL}			120		80	ns
SCL Input Fall Time	t_{FCL}			120		80	ns
SDA Input Rise Time	t_{RDA}			120		160	ns
SDA Input Fall Time	t_{FDA}			120		160	ns
Width of Spike to Suppress	t_{SP}	Not shown in Figure		50		10	ns
AC OUTPUT LEVELS							
Propagation Delay		Load capacitance ($C_{LOAD} = 500\text{ pF}$)					
Data	t_{VDDAT}		97	450	27	135	ns
Acknowledge	t_{VACK}			450			ns
Output Fall Time	t_F	Not shown in Figure	$20 \times (V_{DDIO}/5.5)$	120			ns

¹ Timing may be different with I₂C_SDA_SLOW enabled.

SPECIFICATIONS

Table 3. SPI Digital Input and Output ($T_A = 25^\circ\text{C}$, $V_S = 3.3\text{ V}$, and $V_{DDIO} = 3.3\text{ V}$)

Parameter	Symbol	Test Conditions/Comments	Limit ¹		Unit
			Min	Max	
DIGITAL INPUT					
Low Level Input Voltage	V_{IL}			$0.3 \times V_{DDIO}$	V
High Level Input Voltage	V_{IH}		$0.7 \times V_{DDIO}$	V	
Low Level Input Current	I_{IL}	Input voltage (V_{IN}) = V_{DDIO}		-0.1	μA
High Level Input Current	I_{IH}	$V_{IN} = 0\text{ V}$	0.1		μA
DIGITAL OUTPUT					
Low Level Output Voltage	V_{OL}	$I_{OL} = I_{OL, MIN}$		$0.2 \times V_{DDIO}$	V
High Level Output Voltage	V_{OH}	$I_{OH} = I_{OH, MAX}$	$0.8 \times V_{DDIO}$	V	
Low Level Output Current	I_{OL}	$V_{OL} = V_{OL, MAX}$	1		mA
High Level Output Current	I_{OH}	$V_{OH} = V_{OH, MIN}$		-2	mA

¹ Limits based on characterization results, not production tested.

Table 4. SPI Timing ($T_A = 25^\circ\text{C}$, $V_S = 3.3\text{ V}$, and $V_{DDIO} = 3.3\text{ V}$)

Parameter	Limit ^{1, 2, 3}			Description
	Min	Max	Unit	
f_{CLK}	0.1	8	MHz	Clock frequency
t_{CSS}	100		ns	\overline{CS} setup time
t_{CSH}	0.02	1000	μs	\overline{CS} hold time
t_{CSD}	20		ns	\overline{CS} disable time
t_{SU}	20		ns	Data setup time
t_{HD}	20		ns	Data hold time
t_{HIGH}	50		ns	Clock high time
t_{LOW}	50		ns	Clock low time
t_{CLE}	25		ns	Clock enable time
t_V	0	50	ns	Output valid from clock low (not shown in timing diagrams)
t_{DIS}	0	25	ns	Output disable time (not shown in timing diagrams)

¹ Limits based on design targets; not production tested.

² The timing values are measured corresponding to the input thresholds (V_{IL} and V_{IH}) given in Table 3.

³ Maximum loading should not exceed 12 pF.

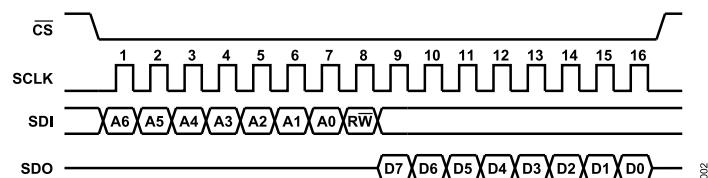


Figure 2. SPI Timing Diagram—Single-Byte Read

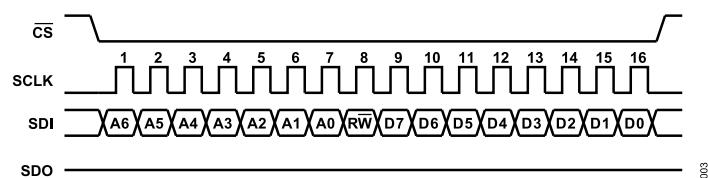


Figure 3. SPI Timing Diagram—Single-Byte Write

SPECIFICATIONS

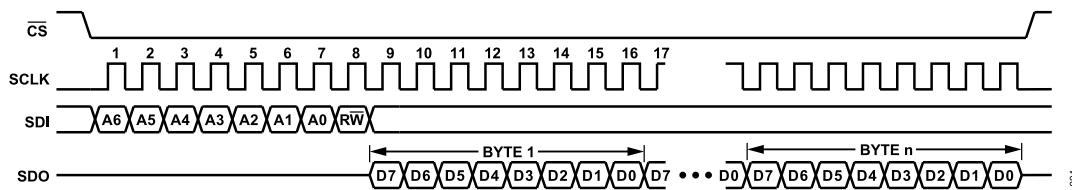


Figure 4. SPI Timing Diagram—Multibyte Read

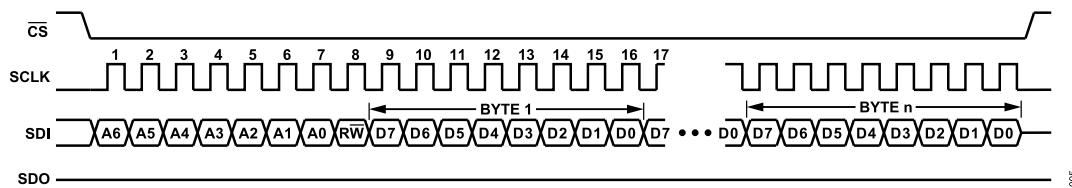


Figure 5. SPI Timing Diagram—Multibyte Write

Table 5. I²S, TDM, and PDM Timing ($T_A = 25^\circ\text{C}$, $V_S = 3.3\text{ V}$, and $V_{DDIO} = 3.3\text{ V}$)

Parameter	Min	Max	Unit	Description
SERIAL PORT				
t_{BL}	18		ns	BCLK low pulse width (controller and subordinate modes)
t_{BH}	18		ns	BCLK high pulse width (controller and subordinate modes)
f_{BCLK}	0.768	24.576	MHz	BCLK frequency
t_{LS}	3		ns	FSYNC setup, time to BCLK rising (subordinate mode)
t_{LH}	5		ns	FSYNC hold, time from BCLK rising (subordinate mode)
f_{SYNC}	4	96	kHz	FSYNC frequency
t_{TS}		6	ns	BCLK falling to FSYNC timing skew (controller mode)
t_{SOD}	0	30	ns	S_{OUTx} delay, time from BCLK falling (controller and subordinate modes), V_{DDIO} at 1.62 V minimum
	0	80	ns	S_{OUTx} delay, time from BCLK falling (controller and subordinate modes), V_{DDIO} at 1.14 V minimum
t_{SOTD}	0	15	ns	BCLK falling to S_{OUTx} driven in tristate mode
t_{SOTX}	0	15	ns	BCLK falling to S_{OUTx} tristated in tristate mode
PDM OUTPUT				
f_{PDM_CLK}	0.768	24.576	MHz	PDM clock frequency
t_{HOLD}	35	46	ns	PDM data hold time

SPECIFICATIONS

DIGITAL TIMING DIAGRAMS

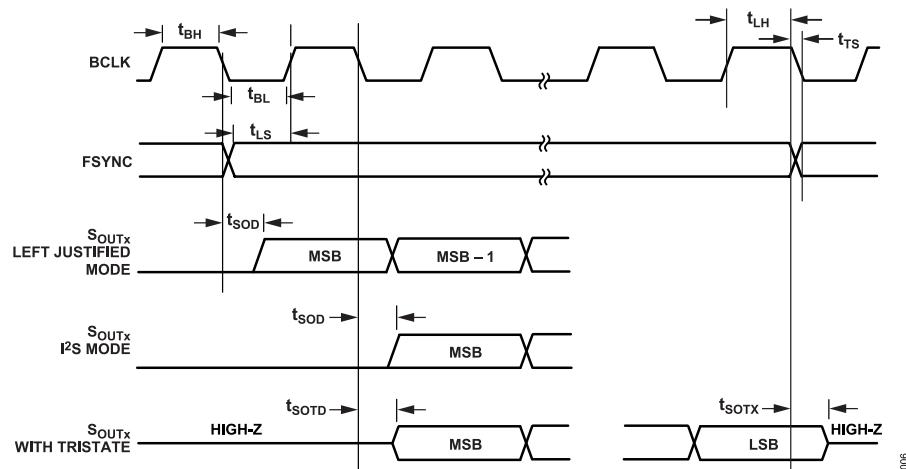
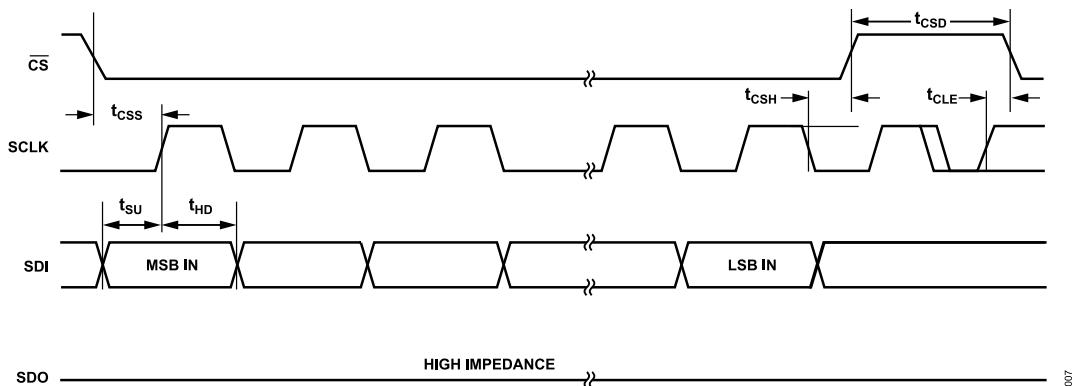


Figure 6. I²S/TDM Serial Output Port Timing Diagram

Figure 7. SPI Port Timing Diagram

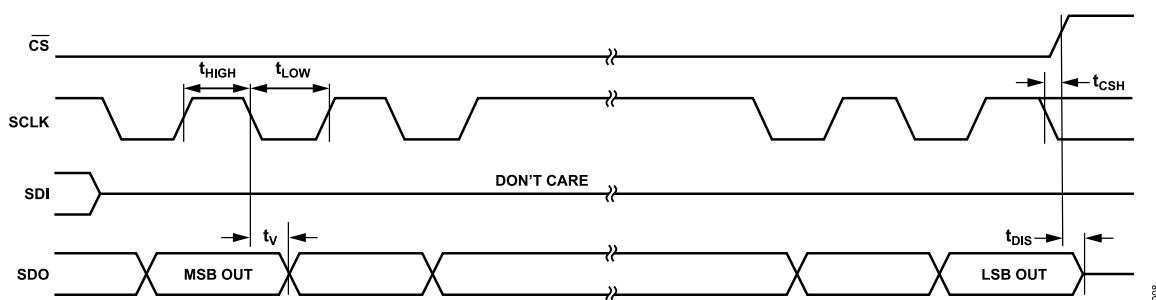
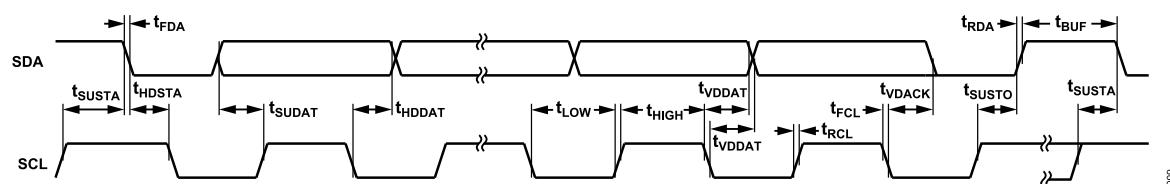



Figure 8. Timing Diagram for SPI Send Instructions

Figure 9. I²C Port Timing Diagram

SPECIFICATIONS

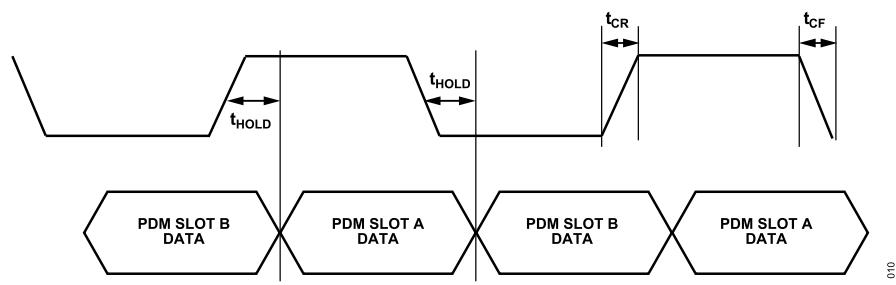


Figure 10. PDM Output Timing Diagram

ABSOLUTE MAXIMUM RATINGS

Table 6. Absolute Maximum Ratings

Parameter	Rating
Mechanical Shock (Any Axis, 0.2 ms)	10,000 g
V_S	-0.3 V to +4.0 V
V_{DDIO}	-0.3 V to +4.0 V
V_{1P8} Configured as Input	-0.3 V to +2.0 V
Digital Inputs (FSYNC, SCLK/SCL, SDI/SDA, SDO/ASEL0, CS/ASEL1, SOUT0, SOUT1/MCLK, and BCLK)	-0.3 V to $V_{DDIO} + 0.3$ V
Temperature Range (Storage)	-55°C to +150°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to PCB design and operating environment. Careful attention to PCB thermal design is required.

Thermal resistance values specified in Table 7 are simulated based on JEDEC specs (unless specified otherwise) and should be used in compliance with JESD51-12.

θ_{JA} is the natural convection junction-to-ambient thermal resistance measured in a one cubic foot sealed enclosure, θ_{JC} is the junction-to-case thermal resistance, Ψ_{JT} is the junction-to-top of the package thermal resistance, and Ψ_{JB} is the junction-to-bottom of the package thermal resistance.

Table 7. Package Characteristics

Package Type	θ_{JA}	θ_{JC}	Ψ_{JT}	Ψ_{JB}	Unit
CC-14-3	71.3	46.0	2.9	47.0	°C/W

RECOMMENDED SOLDERING PROFILE

Figure 11 and Table 8 provide details about the recommended soldering profile.

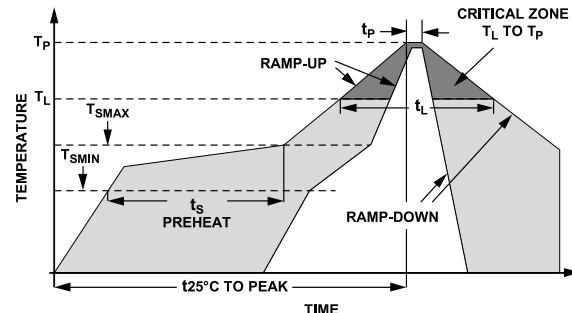


Figure 11. Recommended Soldering Profile

Table 8. Recommended Soldering Profile

Profile Feature	Condition
Average Ramp Rate (T_L to T_P)	3°C/sec maximum
Preheat	3°C/sec maximum
Minimum Temperature (T_{SMIN})	100°C
Maximum Temperature (T_{SMAX})	150°C
Time (T_{SMIN} to T_{SMAX})/(t_S)	60 sec to 120 sec
T_{SMAX} to T_L Ramp-Up Rate	3°C/sec maximum
Time Maintained Above Liquidous (T_L)	60 sec to 150 sec
Liquidous Temperature (T_L)	183°C
Time (t_L)	60 sec to 150 sec
Peak Temperature (T_P)	240 + 0/-5°C
Time Within 5°C of Actual Peak Temperature (t_P)	10 sec to 30 sec
Ramp-Down Rate	6°C/sec maximum
Time 25°C to Peak Temperature	6 minutes maximum

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

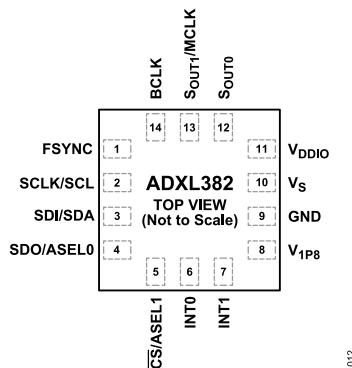


Figure 12. Pin Configuration (Top View)

Table 9. Pin Function Descriptions

Pin No.	Mnemonic	SPI	I ² S/TDM	I ² C	PDM
1	FSYNC	Interrupt Input in FIFO Trigger Mode (Optional)	Frame Sync (FSYNC)	Interrupt Input in FIFO Trigger Mode (Optional)	SOUT1
2	SCLK/SCL	SPI, Clock (SCLK)	Not Applicable	I ² C, Serial Clock (SCL)	Not Applicable
3	SDI/SDA	SPI, Serial Data Input (SDI)	Not Applicable	I ² C, Serial Data (SDA)	Not Applicable
4	SDO/ASEL0	SPI, Serial Data Output (SDO)	Not Applicable	I ² C, Address Select 0 (ASEL0)	Not Applicable
5	CS/ASEL1	SPI, Chip Select	Not Applicable	I ² C, Address Select 1 (ASEL1)	Not Applicable
6	INT0	Interrupt 0	Interrupt 0	Interrupt 0	Interrupt 0
7	INT1	Interrupt 1	Interrupt 1	Interrupt 1	Interrupt 1
8	V _{1P8}	Internally Regulated Voltage (External 1.8 V When V _S Grounded)	Internally Regulated Voltage (External 1.8 V When V _S Grounded)	Internally Regulated Voltage (External 1.8 V When V _S Grounded)	Internally Regulated Voltage (External 1.8 V When V _S Grounded)
9	GND	Ground	Ground	Ground	Ground
10	V _S	Supply Voltage	Supply Voltage	Supply Voltage	Supply Voltage
11	V _{DDIO}	Input and Output Supply			
12	S _{OUT0}	Not Applicable	Data Channel 0 (S _{OUT0})	Not Applicable	Data Channel 0 (S _{OUT0})
13	S _{OUT1} / MCLK	Not Applicable	MCLK or Data Channel 1 (S _{OUT1})	Not Applicable	Not Applicable
14	BCLK	Not Applicable	Bit Clock (BCLK)	Not Applicable	Bit Clock (BCLK)

TYPICAL PERFORMANCE CHARACTERISTICS

$T_A = 25^\circ\text{C}$, $V_S = 3.3\text{ V}$, x-axis and y-axis acceleration = 0 g, z-axis acceleration = 1 g, full-scale range = $\pm 15\text{ g}$, and default settings for other registers, unless otherwise noted.

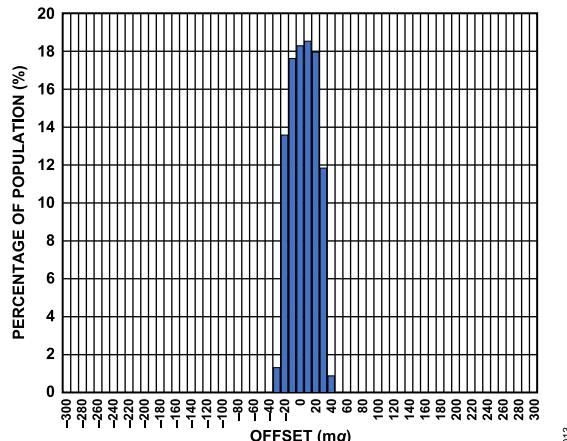


Figure 13. X-Axis Zero g Offset at 25°C , $V_S = 3.3\text{ V}$

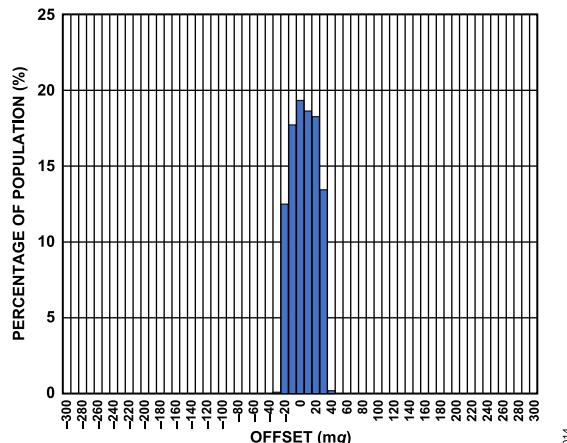


Figure 14. Y-Axis Zero g Offset at 25°C , $V_S = 3.3\text{ V}$

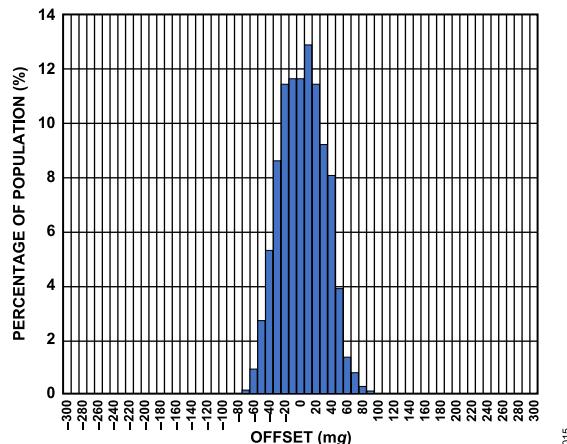


Figure 15. Z-Axis Zero g Offset at 25°C , $V_S = 3.3\text{ V}$

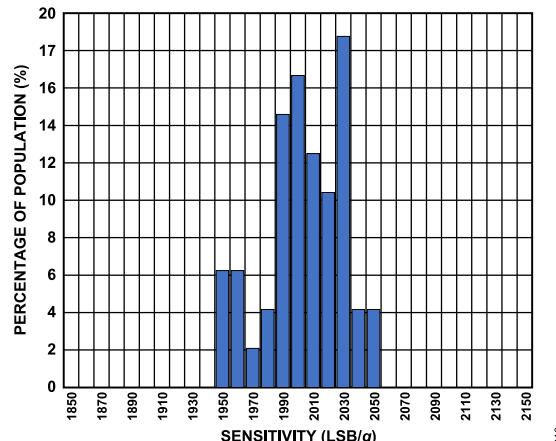


Figure 16. X-Axis Sensitivity at 25°C , $V_S = 3.3\text{ V}$, $\pm 15\text{ g}$ Range

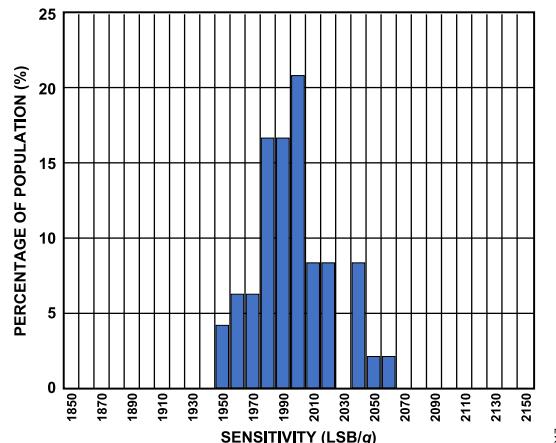


Figure 17. Y-Axis Sensitivity at 25°C , $V_S = 3.3\text{ V}$, $\pm 15\text{ g}$ Range

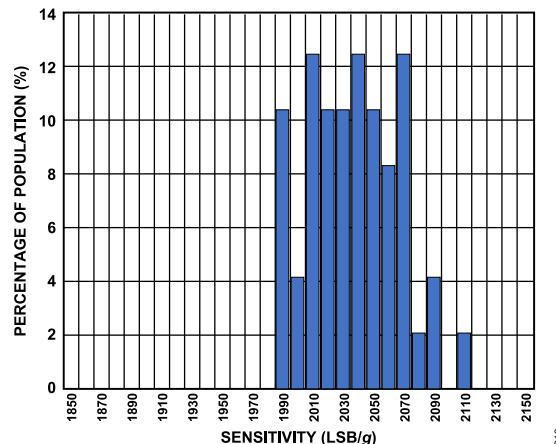
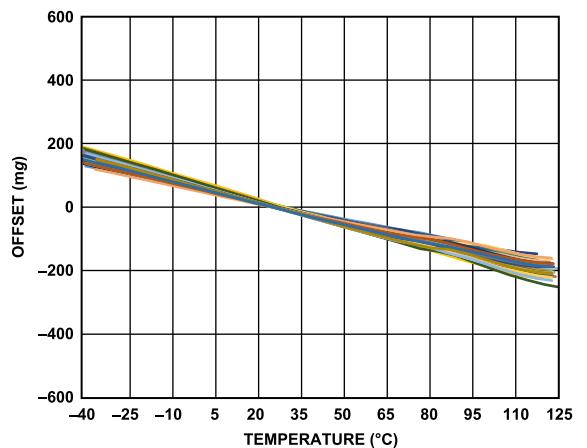
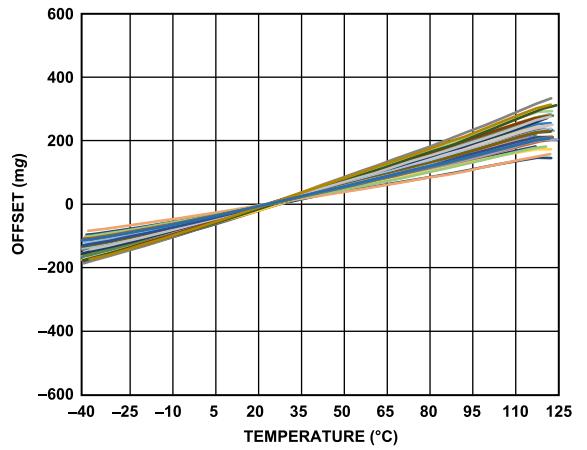
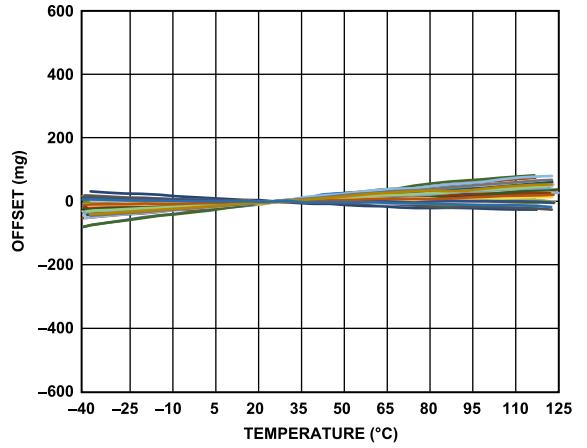
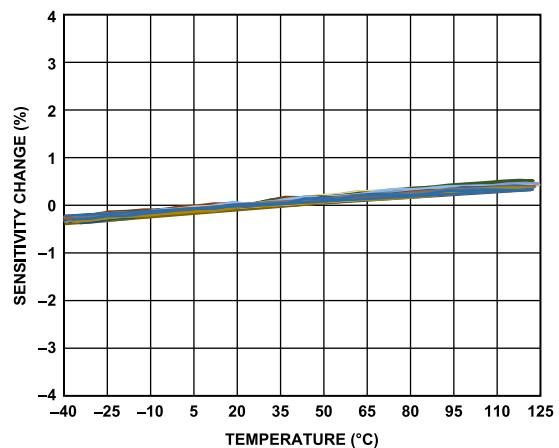
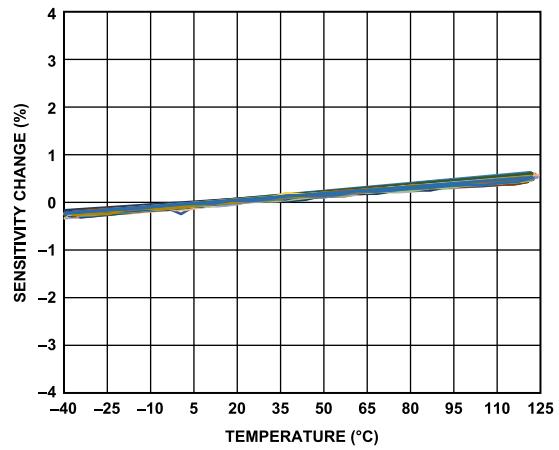
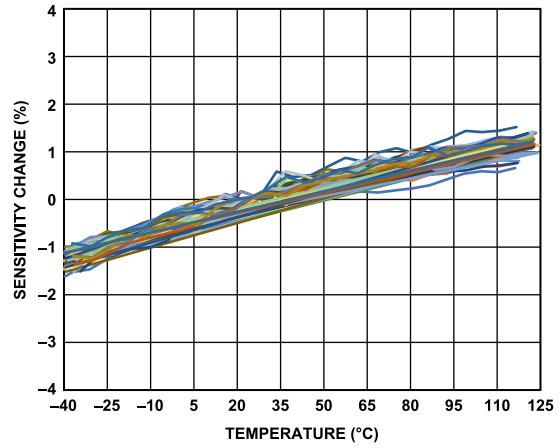
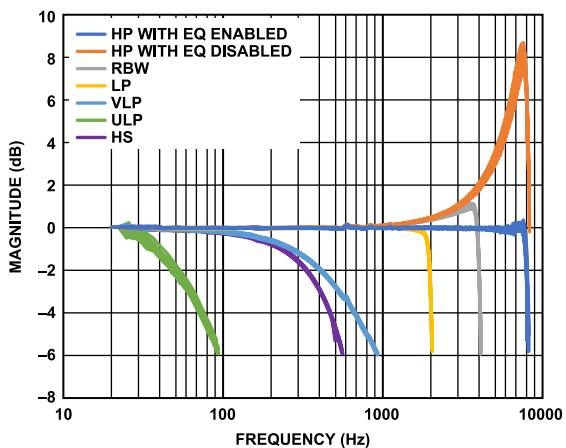
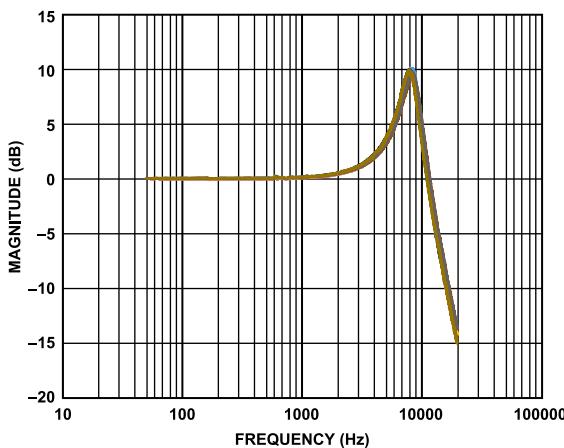
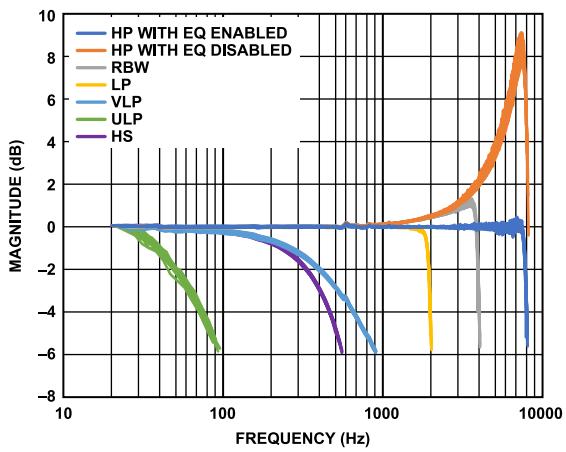
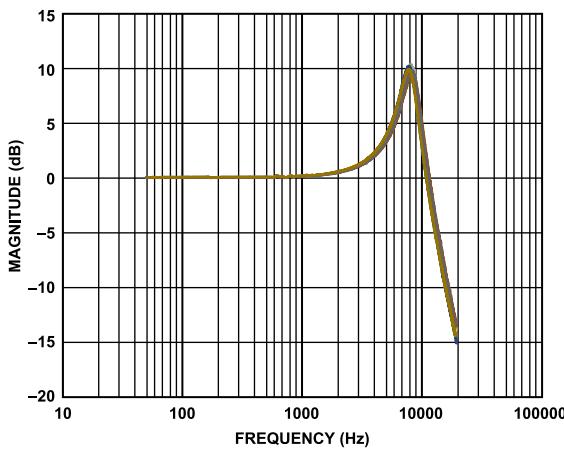
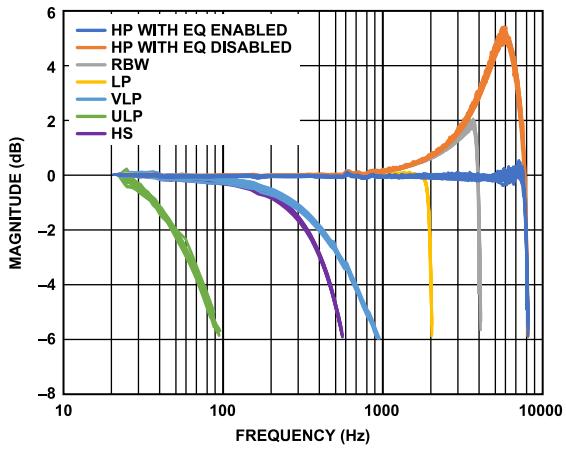
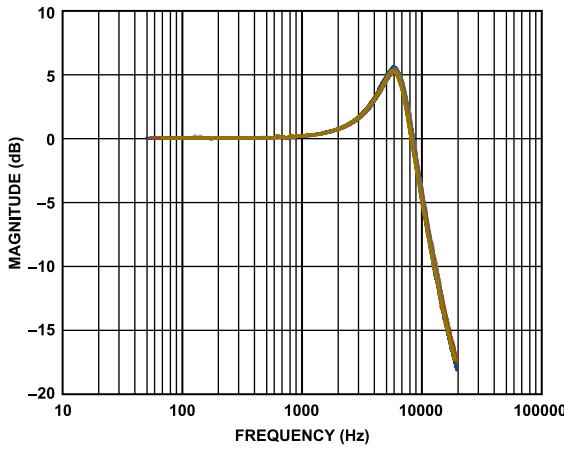














Figure 18. Z-Axis Sensitivity at 25°C , $V_S = 3.3\text{ V}$, $\pm 15\text{ g}$ Range

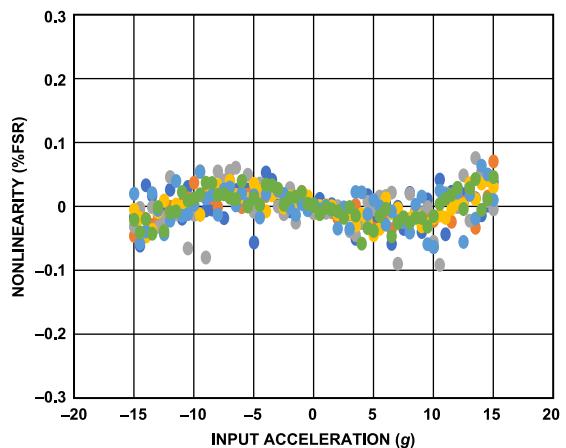

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 19. X-Axis Offset vs. Temperature at 25°C, $V_S = 3.3$ VFigure 20. Y-Axis Offset vs. Temperature at 25°C, $V_S = 3.3$ VFigure 21. Z-Axis Offset vs. Temperature at 25°C, $V_S = 3.3$ VFigure 22. X-Axis Sensitivity Change vs. Temperature at 25°C, $V_S = 3.3$ VFigure 23. Y-Axis Sensitivity Change vs. Temperature at 25°C, $V_S = 3.3$ VFigure 24. Z-Axis Sensitivity Change vs. Temperature at 25°C, $V_S = 3.3$ V

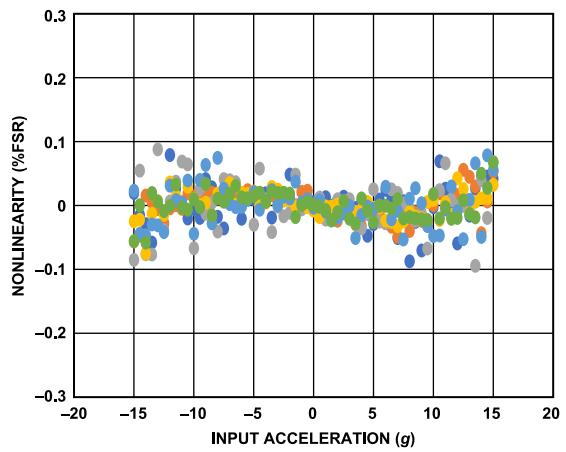
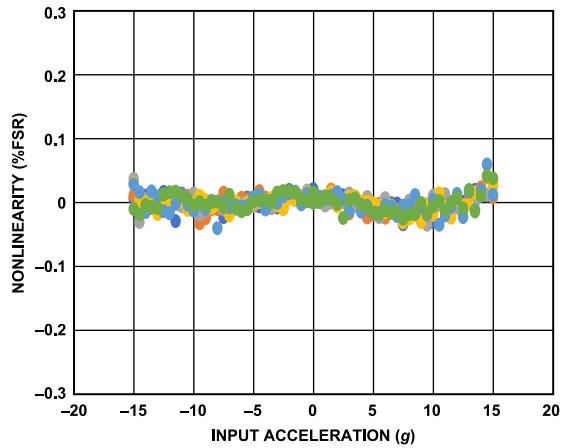
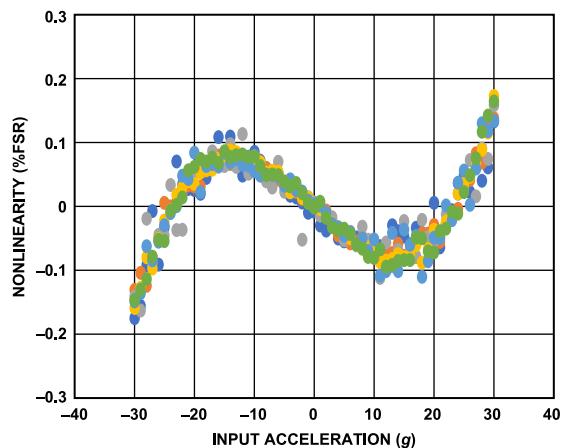
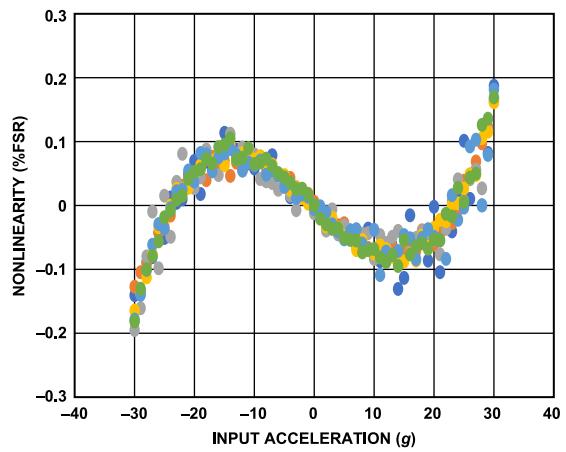
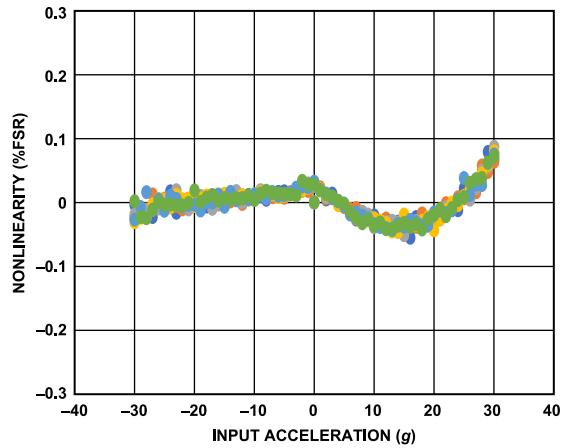

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 25. X-Axis Frequency Response at 25°C, $V_S = 3.3$ VFigure 28. X-Axis PDM Frequency Response at 25°C, $V_S = 3.3$ VFigure 26. Y-Axis Frequency Response at 25°C, $V_S = 3.3$ VFigure 29. Y-Axis PDM Frequency Response at 25°C, $V_S = 3.3$ VFigure 27. Z-Axis Frequency Response at 25°C, $V_S = 3.3$ VFigure 30. Z-Axis PDM Frequency Response at 25°C, $V_S = 3.3$ V


TYPICAL PERFORMANCE CHARACTERISTICS


031


032


033

034

035

036

TYPICAL PERFORMANCE CHARACTERISTICS

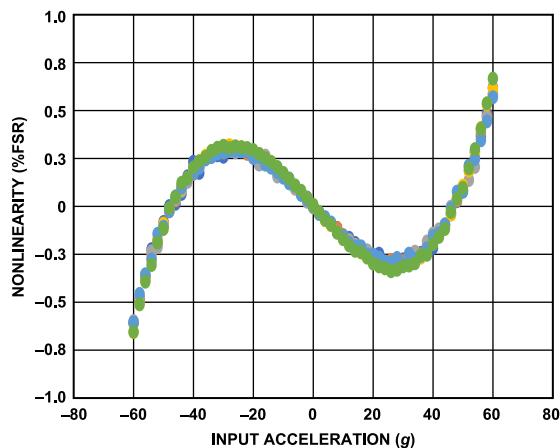


Figure 37. X-Axis ± 60 g Nonlinearity at 25°C ,
 $V_S = 3.3$ V

037

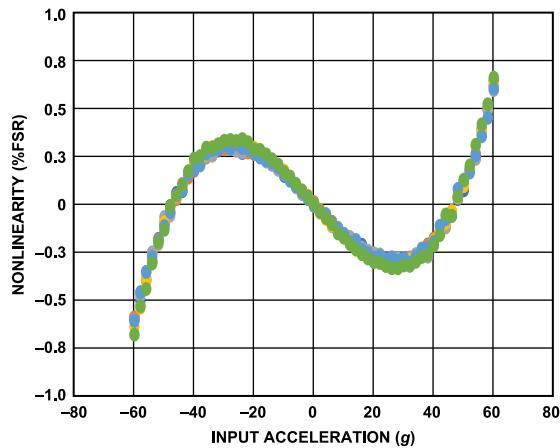


Figure 38. Y-Axis ± 60 g Nonlinearity at 25°C ,
 $V_S = 3.3$ V

038

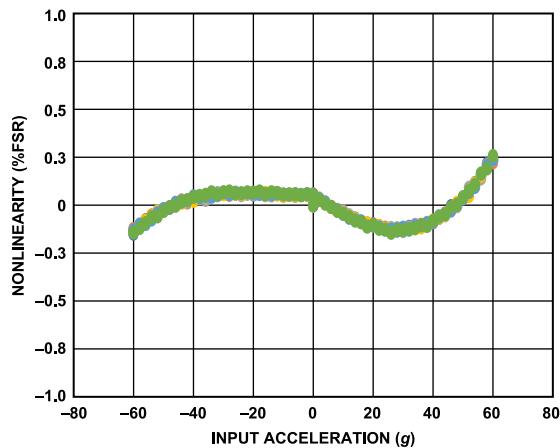


Figure 39. Z-Axis ± 60 g Nonlinearity at 25°C ,
 $V_S = 3.3$ V

039

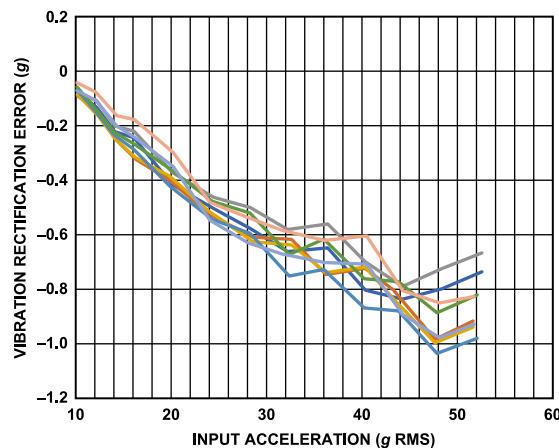


Figure 40. X-Axis Vibration Rectification Error, X-Axis in $+1$ g Field, ± 15 g Range, $V_S = 3.3$ V

040

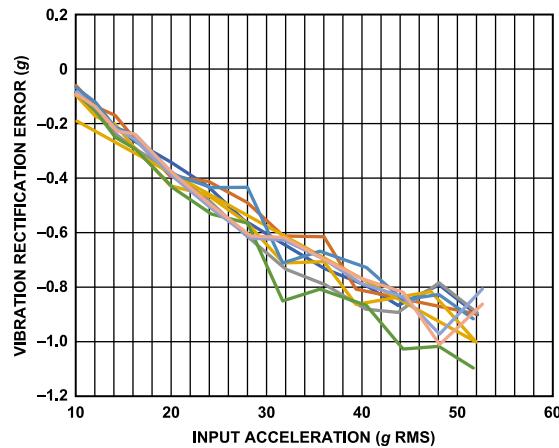
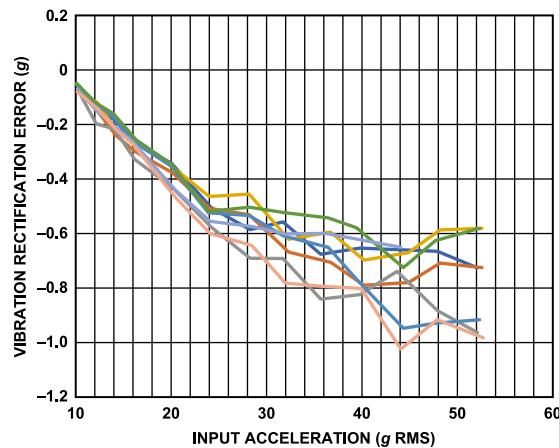
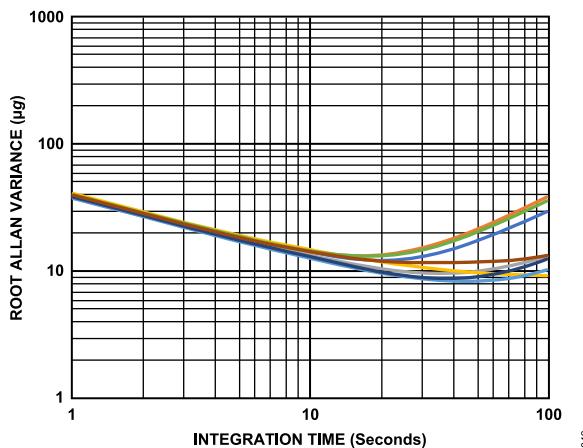
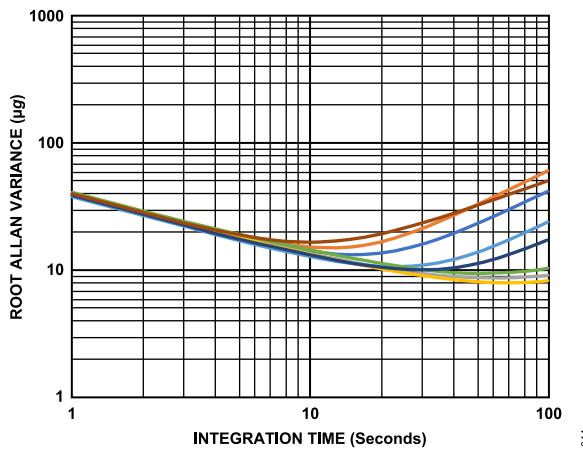
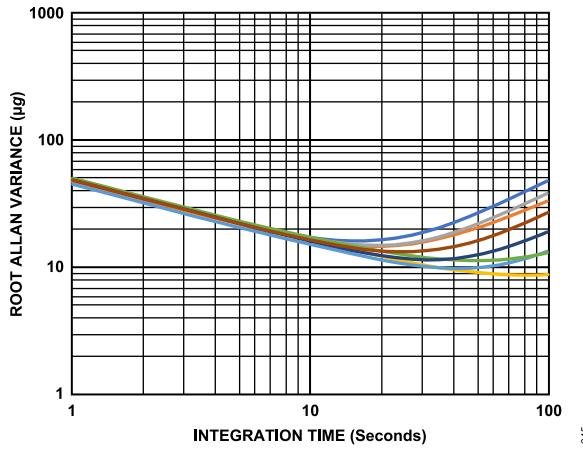
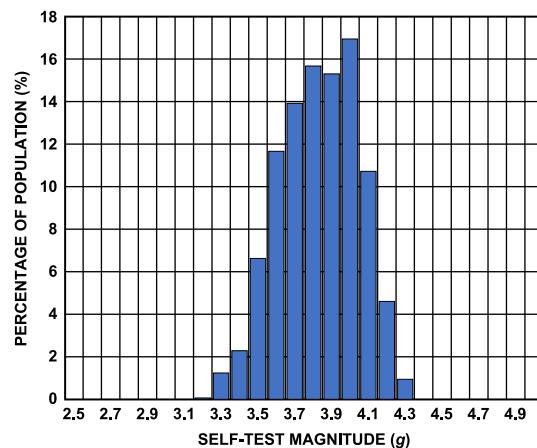
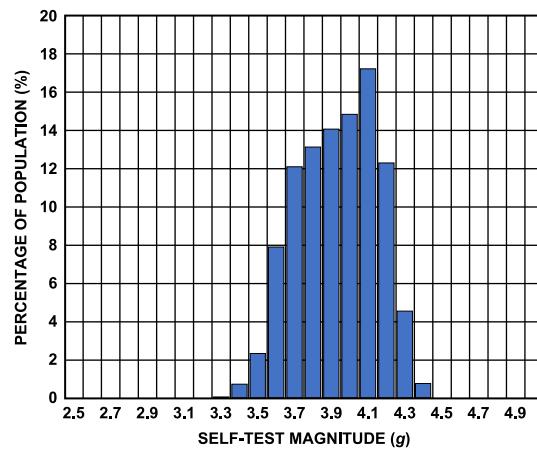
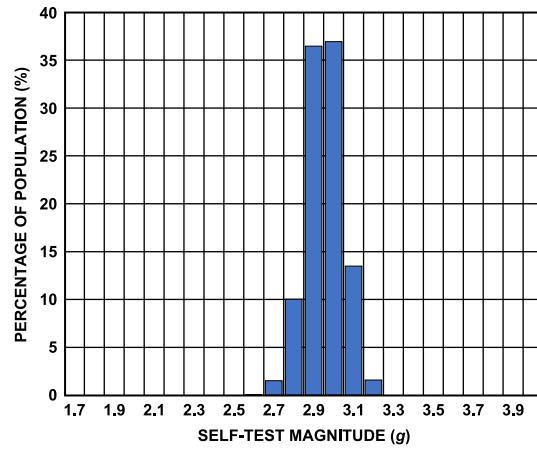
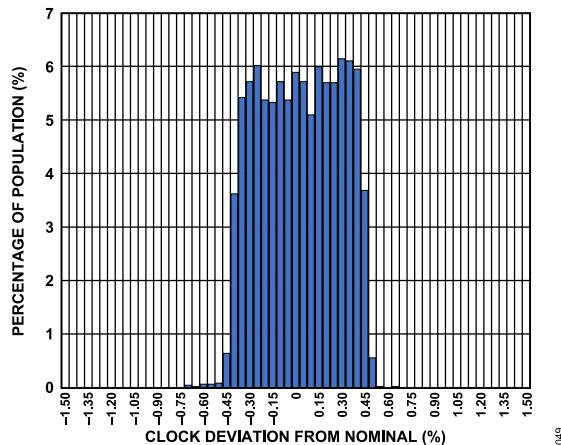
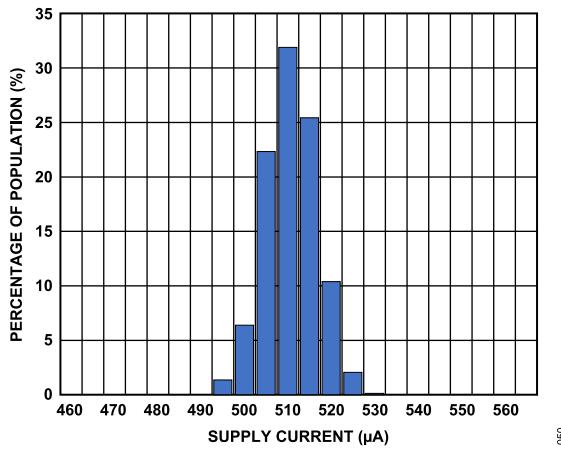
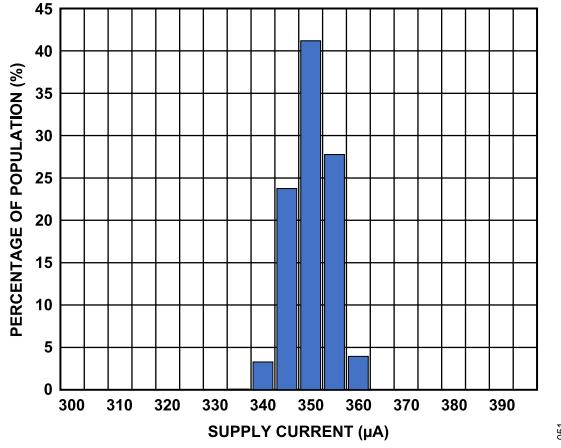
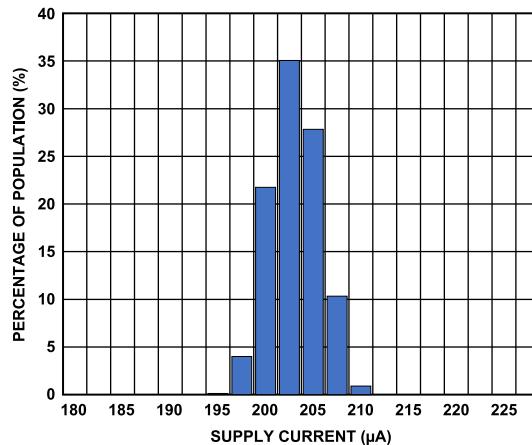
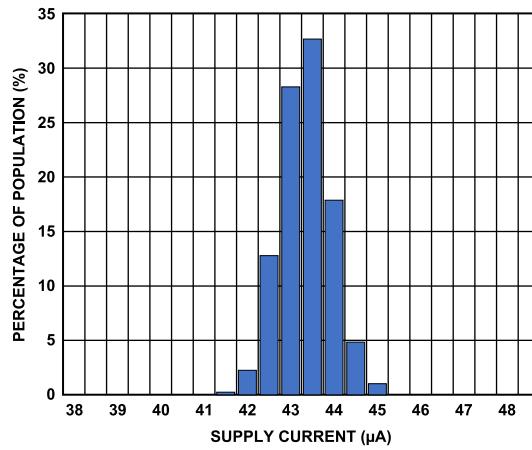
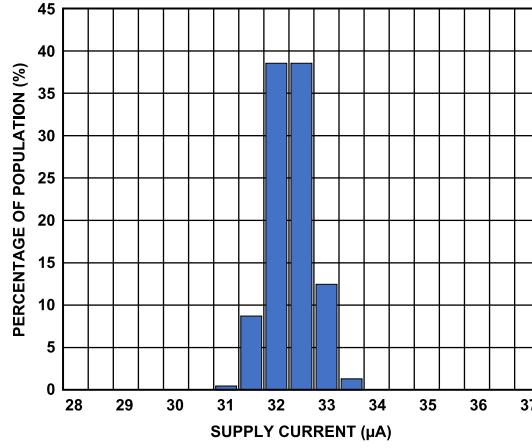


Figure 41. Y-Axis Vibration Rectification Error, Y-Axis in $+1$ g Field, ± 15 g Range, $V_S = 3.3$ V

041







Figure 42. Z-Axis Vibration Rectification Error, Z-Axis in $+1$ g Field, ± 15 g Range, $V_S = 3.3$ V

042

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 43. X-Axis Root Allan Variance at 25°C , $V_S = 3.3\text{ V}$ Figure 44. Y-Axis Root Allan Variance at 25°C , $V_S = 3.3\text{ V}$ Figure 45. Z-Axis Root Allan Variance at 25°C , $V_S = 3.3\text{ V}$ Figure 46. X-Axis Self Test Magnitude at 25°C , $V_S = 3.3\text{ V}$ Figure 47. Y-Axis Self-Test Magnitude at 25°C , $V_S = 3.3\text{ V}$ Figure 48. Z-Axis Self-Test Magnitude at 25°C , $V_S = 3.3\text{ V}$

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 49. Clock Deviation from Nominal at 25°C, $V_S = 3.3$ VFigure 50. HP Mode Supply Current at 25°C, 3-Axis, $V_S = 3.3$ VFigure 51. RBW Mode Supply Current at 25°C, 3-Axis, $V_S = 3.3$ VFigure 52. LP Mode Supply Current at 25°C, 3-Axis, $V_S = 3.3$ VFigure 53. VLP Mode Supply Current at 25°C, 3-Axis, $V_S = 3.3$ VFigure 54. ULP Mode Supply Current at 25°C, 3-Axis, $V_S = 3.3$ V

TYPICAL PERFORMANCE CHARACTERISTICS

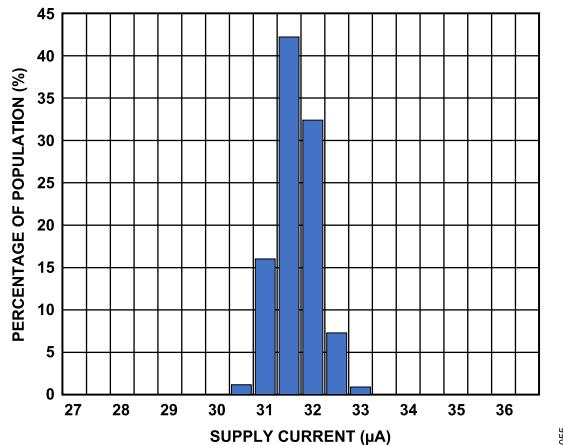


Figure 55. HS Mode Supply Current at 25°C, 1-Axis, $V_S = 3.3$ V

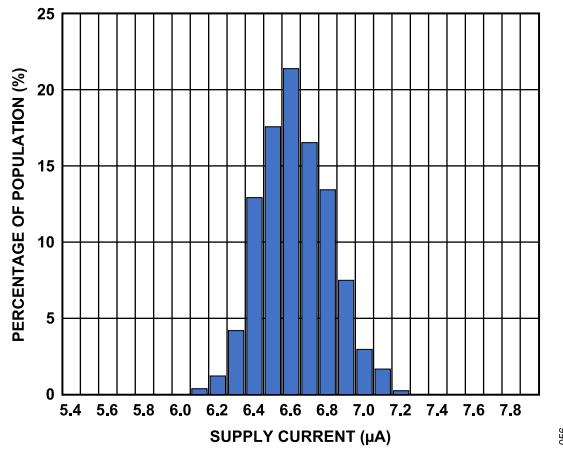


Figure 56. Standby Mode Supply Current at 25°C, $V_S = 3.3$ V

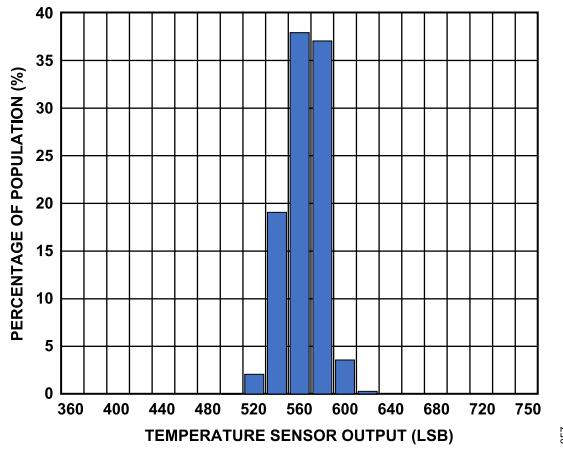


Figure 57. Temperature Sensor Output at 25°C,
HIGH_GAIN_TEMP = 0, $V_S = 3.3$ V

THEORY OF OPERATION

The ADXL382 is a complete 3-axis acceleration measurement system. The device measures both dynamic accelerations resulting from motion, shock, and vibration as well as static acceleration such as tilt. Acceleration is reported digitally from the device using SPI or I²C protocols and/or I²S/TDM/PDM. Built-in digital logic enables autonomous operation and implements functionality that enhances system level power savings.

The micromachined, sensing elements are fully differential, comprising the lateral x-axis and y-axis sensor and the vertical, teeter totter z-axis sensors. The x-axis and y-axis sensors and the z-axis sensors go through separate signal paths that minimize offset drift and noise.

The ADXL382 include anti-aliasing filters before the high resolution Σ-Δ ADC and a decimation filter after. The following two signal paths are supported:

- ▶ High performance using the 16-bit DSM
- ▶ Low power using the 12-bit SAR

These signal paths can be used independently or concurrently (see the [Concurrent Operating Modes](#) section for more information). User-selectable ODR and filter corners are provided.

MECHANICAL DEVICE OPERATION

The moving component of the sensor is a polysilicon surface-micromachined structure that is built on top of a silicon wafer. Polysilicon springs suspend the structure over the surface of the wafer and provide a resistance against acceleration forces.

Deflection of the structure is measured using differential capacitors that consist of independent fixed plates and plates attached to the moving mass. Acceleration deflects the structure and unbalances the differential capacitor, resulting in a sensor output whose amplitude is proportional to acceleration. Phase sensitive demodulation determines the magnitude and polarity of the acceleration.

OPERATING MODES

The ADXL382 has seven primary operating modes with more modes available when operating concurrently (see the [Concurrent Operating Modes](#) section for more information).

Table 10. Operating Modes

Mode	Signal Path
Standby	Not applicable
High Performance (HP)	16-bit DSM (high performance signal chain)
Reduce Bandwidth (RBW)	16-bit DSM (high performance signal chain)
Low Power (LP)	16-bit DSM (high performance signal chain)
Very Low Power (VLP)	12-bit SAR (low power signal chain)
Ultra-Low Power (ULP)	12-bit SAR (low power signal chain)
Heart Sounds (HS)	12-bit SAR (low power signal chain)

STANDBY MODE

Placing the ADXL382 in standby suspends measurement and reduces current consumption to 6.8 μA (typical). Standby mode is used for power conservation and device configuration. FIFO data is preserved and no new interrupts are generated (see [Interrupts](#) section for more details).

The ADXL382 powers up in standby with all sensor functions turned off. Note that any changes to the device configuration must be made with the device in standby. If changes are made while the ADXL382 is in measurement mode, these changes may be effective for only part of a measurement. Ensure that a change of the data capture configuration only occurs in standby mode.

MEASUREMENT MODE

Measurement mode refers to any of the operating modes that use the DSM or SAR signal path (every mode except standby mode in [Table 10](#)). When operating in measurement mode, the user can choose between several power consumption modes or operate in concurrent mode (one DSM mode and one SAR mode operating concurrently).

Note that after entering measurement mode, a 2 ms wait time must be observed before reading acceleration data to allow the output time to settle after entering measurement mode.

SELECTABLE MEASUREMENT RANGES

The ADXL382 has selectable measurement ranges of ±15 g, ±30 g, and ±60 g. Acceleration samples are always converted by an ADC; therefore, sensitivity scales with the g range. Ranges and corresponding sensitivity values are listed in [Table 1](#). When the input exceeds the full-scale range, the output data may not be accurate temporarily. The sensor is not damaged as long as the acceleration remains less than the absolute maximum rating. [Table 6](#) lists the absolute maximum ratings for acceleration, indicating the acceleration level that can cause permanent damage to the ADXL382.

DIGITAL OUTPUT

[Figure 58](#) shows the ADXL382 application circuit. The communications interface is either SPI or I²C for the configuration, and the serial data interface is either SPI/I²C, I²S, or PDM (see the [Serial Communications](#) section for additional information).

The ADXL382 includes an internal configurable digital band-pass filter. Both the high-pass and low-pass poles of the filter are adjustable, as detailed in the [Filter](#) section. The ADXL382 powers up in standby mode. A particular mode can be chosen by setting the OP_MODE register (Register 0x26).

[Figure 58](#) shows a 0.1 μF capacitor on the V_S, V_{DDIO}, and V_{PP} pins. If the power supply is noisy, additional filtering may be required. An additional 1 μF capacitor can be added to the V_S and V_{DDIO} supplies in parallel with the 0.1 μF capacitors.

THEORY OF OPERATION

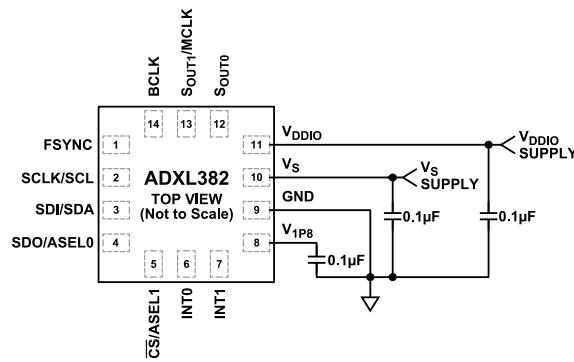


Figure 58. ADXL382 Application Circuit

TEMPERATURE SENSOR

The ADXL382 includes an integrated 12-bit temperature sensor, which the system designer can use to monitor the internal system temperature or to improve the temperature stability of the device via calibration.

The temperature sensor built in the ADXL382 is trimmed at room temperature before shipping; therefore, it can even be used to monitor the absolute temperature. To get even better accuracy, users can measure and calibrate the initial bias of the ADXL382 at some known temperature in mass production.

To use the temperature sensor for calibration of the acceleration signal, it is sufficient to correlate acceleration to temperature sensor output, rather than to absolute temperature. In this case, it is not necessary to convert the temperature reading to an absolute temperature; therefore, calibration of the initial bias is not required.

The designer can configure the device to save data from the temperature sensor in the FIFO. Temperature samples, whether read from the output registers or from the FIFO, update concurrently with acceleration (and ADC) samples, unless these samples are turned off. When the temperature channel is enabled, the ODR is always 100 Hz. If the ODR is faster than this on the other channels (x-axis, y-axis, or z-axis channels), temperature data is repeated until a new temperature sample is available.

AXES OF ACCELERATION SENSITIVITY

Figure 59 shows the axes of acceleration sensitivity. Note that the digital output increases when accelerated along the sensitive axis.

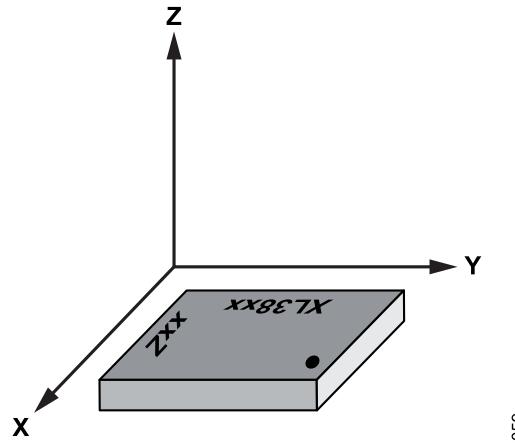


Figure 59. Axes of Acceleration Sensitivity

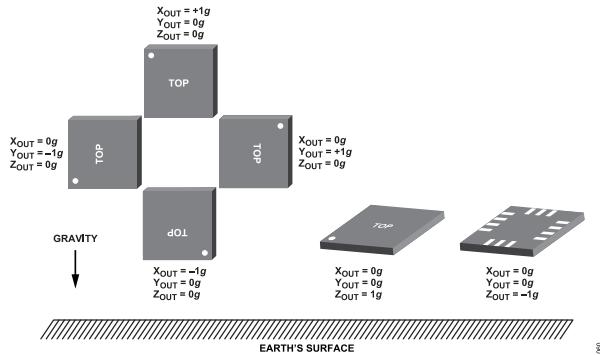


Figure 60. Output Response vs. Orientation to Gravity

POWER SEQUENCING

The ADXL382 uses internal LDO regulators to generate the 1.8 V power for the internal analog and digital supplies. This 1.8 V regulated voltage is sent to the V_{1P8} pin as an output. When using the LDO regulator, connect V_S to a voltage source between 2.25 V and 3.6 V.

To disable the internal LDO regulators, tie V_S to ground before using an external 1.8 V supply to power V_{1P8}. Refer to the [Power Supply Requirements](#) section for more information.

If necessary V_{1P8} and V_{DDIO} can be powered from the same external 1.8 V supply so that both are powered at the same time. In this case, proper decoupling and low frequency isolation are important to maintain the noise performance of the sensor.

V_S, V_{DDIO}, and V_{1P8} (if enabled as inputs) can be powered up in any sequence.

THEORY OF OPERATION

POWER SUPPLY DESCRIPTION

The ADXL382 have three different power supply domains: V_S , V_{1P8} , and V_{DDIO} . The internal analog and digital circuitry operates at 1.8 V nominal.

V_S

V_S is 2.25 V to 3.6 V, which is the input range to the two LDO regulators that generate the nominal 1.8 V outputs for V_{1P8} (which requires a 100 nF capacitor). Connect V_S to ground to disable the LDO regulators, which allows driving V_{1P8} from an external source.

V_{1P8}

V_{1P8} is the supply voltage for the internal logic circuitry. A separate LDO regulator decouples the digital supply noise from the analog signal path. If this is driven by an external supply, it must be 1.8 V \pm 10%, and V_S must be grounded.

V_{DDIO}

The V_{DDIO} value determines the logic high level for communication interface ports, as well as the interrupt pins.

V_{DDIO} can operate as low as 1.14 V min (-25°C to $+85^{\circ}\text{C}$) and 1.62 V min (for the full temperature range).

OVERRANGE PROTECTION

To avoid electrostatic capture of the proof mass when the accelerometer is subject to input acceleration beyond its full-scale range, all sensor drive clocks turn off for 0.5 ms. The overrange protection activates when the input acceleration exceeds the threshold (see Table 11). Note that this threshold may vary from part to part ($\pm 25\%$ from the nominal value).

When an overrange event occurs, the response is determined by the `DIG_OUT_DURING_OR` bits in Register 0x48. During an overrange event, the data can be configured to remain at full-scale with the correct sign, hold the previous data before the overrange event, or do nothing to the data. The overrange protection can be disabled if desired (`DIS_OR_PROTECTION` = 1). Overrange detection still occurs, but no active protection occurs. To disable detection completely, set `DIS_OR_DETECTION` equal to 1.

Table 11. Overrange Protection Threshold

Range (g)	X/Y Nominal Threshold (g)	Z Nominal Threshold (g)
15	110	70
30	190	130
60	270	190

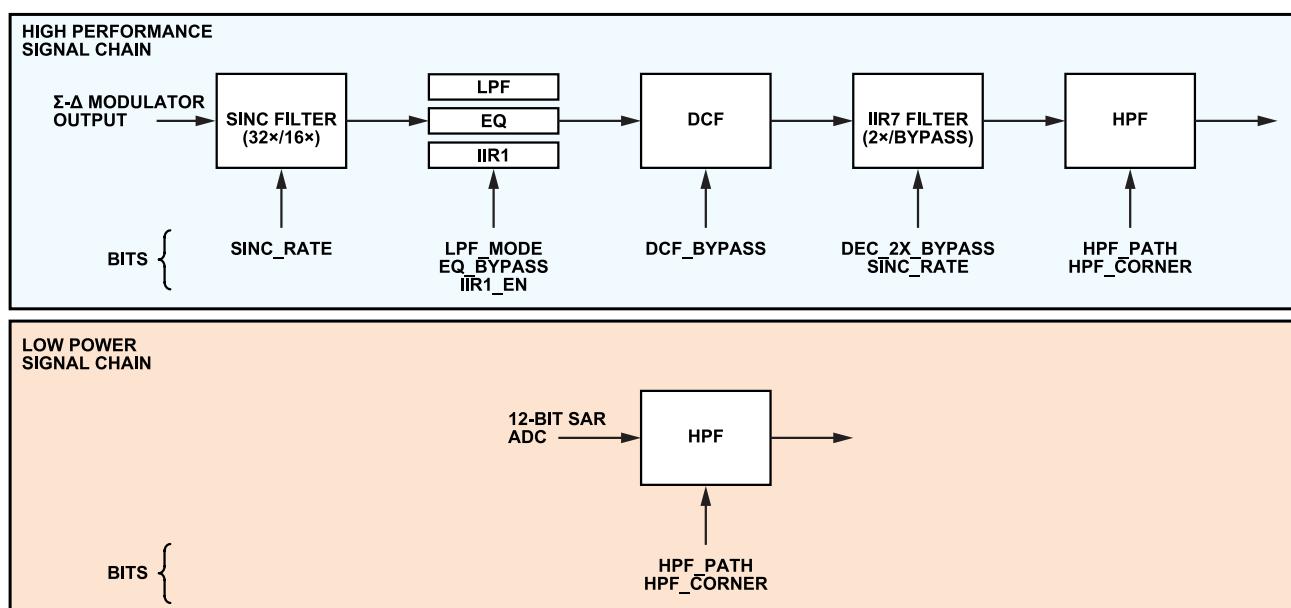
SELF TEST

The ADXL382 incorporates a self-test feature that effectively tests the mechanical and electronic system. Enabling self test stimulates the sensor electrostatically to produce an output corresponding to the test signal applied as well as the mechanical force exerted. This feature must be enabled using the ± 15 g range.

Take the following steps to run a self-test measurement:

1. Set the ADXL382 operational mode (HP, RBW, LP, VLP, ULP, or HS) and set the ± 15 g range. Both `OP_MODE` and `RANGE` bits are in the `OP_MODE` register (Register 0x26).
2. Enable the X, Y, and Z axes by setting the `MODE_CHANNEL_EN` bits in the `DIG_EN` register (Register 0x27). In HS operational mode, only enable a singular axis (X, Y, or Z).
3. Enable the positive self-test force (ST_{POSITIVE}) by setting the `ST_MODE` bit and `ST_FORCE` bit to b'1 in the `SNSR_AXIS_EN` register (Register 0x38).
4. Read the acceleration data for at least 25 samples. The user must record the acceleration data value.
5. Enable the negative self-test force (ST_{NEGATIVE}) by changing self-test direction, setting the `ST_DIR`, `ST_FORCE`, and `ST_MODE` bits to b'1 in the `SNSR_AXIS_EN` register (Register 0x38).
6. Read the acceleration data for at least 25 samples. The user must record the acceleration data value.
7. Subtract the data collected in Step 6 from the data collected in Step 4 to determine the magnitude of the self-test delta: $ST\Delta = ST_{\text{POSITIVE}} - ST_{\text{NEGATIVE}}$.
8. Compare the $ST\Delta$ magnitude to the limits in Table 1. If the magnitudes are within the minimum and maximum specifications, the ADXL382 passed the self test. Otherwise, the ADXL382 failed the self test and must be flagged for further investigation.

THEORY OF OPERATION


FILTER

The ADXL382 provides digital filtering options to maintain optimal noise performance. The user has access to seven different filter options for maximized user configurability. The filters available include the equalizer filter, digital low-pass filter, digital high-pass filter, low latency infinite impulse response filter, and decimation filters (sinc filter, droop compensation filter (DCF), and infinite impulse response filter).

The filter signal path is shown in [Figure 61](#). [Table 12](#) summarizes filter availability by operational modes. Refer to the [Latency](#) section for information on filter latency.

Table 12. ADXL382 Filter Options by Operational Mode

Filter	Operational Mode Supported
Equalizer (EQ) Filter	HP
Low-Pass Filter (LPF)	HP, RBW, or LP
High-Pass Filter (HPF)	HP, RBW, LP, VLP, ULP, or HS
First-Order Infinite Impulse Response (IIR1) Filter	HP, RBW, or LP
Sinc Filter	HP, RBW, or LP
Droop Compensation Filter (DCF)	HP, RBW, or LP
Seventh-Order Infinite Impulse Response (IIR7) Filter	HP, RBW, or LP

Figure 61. ADXL382 Filter Path

THEORY OF OPERATION

Fourth-Order Equalizer Filter (EQ)

The ADXL382 includes a fourth-order digital equalizer filter designed to flatten the sensor frequency response to increase the sensing bandwidth up to 8 kHz (see Figure 62).

The EQ feature is only available when operating in HP mode. The EQ is automatically bypassed in other operational modes. The EQ, IIR1, and LPF cannot be used concurrently.

The FILTER register (Register 0x50) is used to disable the EQ. In HP operational mode, the user must set the LPF_MODE bits in

the FILTER register (Register 0x50, Bits[5:4]) to b'00 and set the IIR1_EN bit in the TRIG_CFG register (Register 0x49, Bit 5) to b'0 prior to enabling the EQ (default configuration). The EQ_BYPASS bit in Register FILTER (Register 0x50, Bit 6) is set to b'0 by default to enable EQ. The user must set the EQ_BYPASS bit to b'1 to bypass the EQ. The EQ is automatically bypassed in all other operational modes.

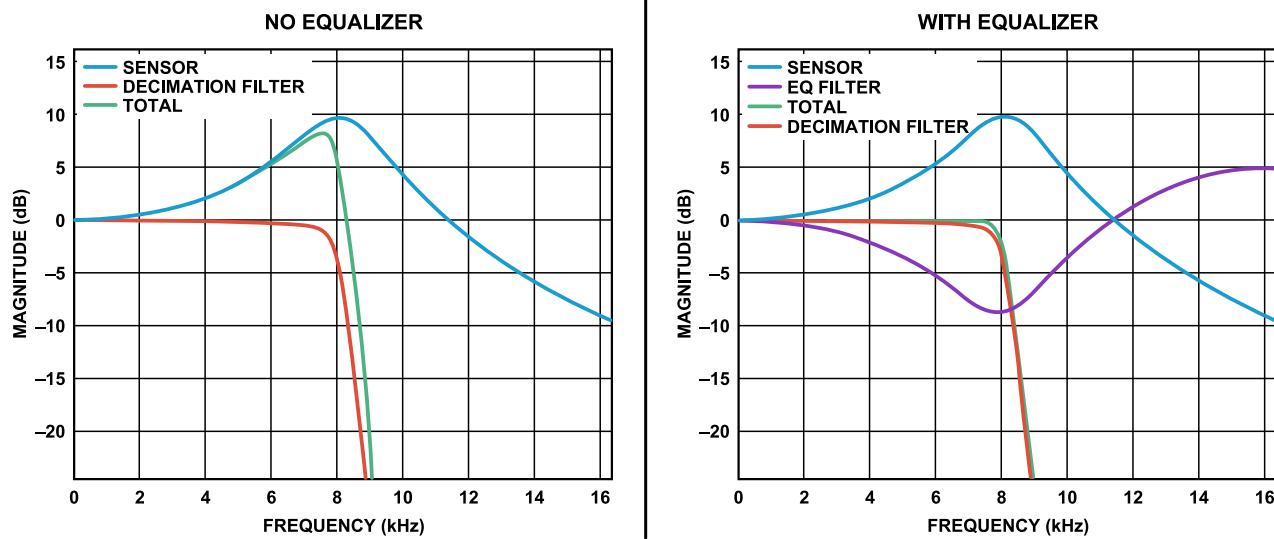


Figure 62. ADXL382 Filter Frequency Response—Equalizer Effect

THEORY OF OPERATION

Digital LPF

The digital LPF in the ADXL382 provides an improved noise performance in a reduced bandwidth setting. The LPF is a second-order infinite impulse response filter that supports three different user-configurable cutoff frequencies: $\frac{1}{4} \times \text{ODR}$, $\frac{1}{8} \times \text{ODR}$, and $\frac{1}{16} \times \text{ODR}$. The LPF is disabled by default.

The LPF feature is only available when operating in the high-performance signal chain (HP, RBW, and LP operational modes). The EQ, IIR1, and LPF cannot be used concurrently.

The FILTER register (Register 0x50) is used to enable the LPF. In HP operational mode, the user must set the EQ_BYPASS bit in the FILTER register (Register 0x50) to b'1 and set the IIR1_EN bit to b'0 in the TRIG_CFG register (Register 0x49) prior to enabling the LPF. In RBW and LP operational modes, the user must set the IIR1_EN bit in the TRIG_CFG register (Register 0x49) to b'0 prior to enabling the LPF.

The LPF is then enabled by setting the LPF_MODE bits in the FILTER register (Register 0x50) to the desired value:

- ▶ No low-pass filtering (b'00)
- ▶ Cutoff frequency is $\frac{1}{4} \times \text{ODR}$ (b'01)
- ▶ Cutoff frequency is $\frac{1}{8} \times \text{ODR}$ (b'10)
- ▶ Cutoff frequency is $\frac{1}{16} \times \text{ODR}$ (b'11)

Digital HPF

The digital HPF in the ADXL382 includes a programmable corner frequency. The HPF is disabled by default.

The FILTER register (Register 0x50) is used to enable the HPF. The HPF_PATH bit in the FILTER register must be set to the desired signal path. When the HPF_PATH bit is set to b'0, the HPF is set to the low power signal chain, and when the HPF_PATH bit is set to b'1, the HPF is set to the high performance signal chain. Refer to the [Operating Modes](#) section for more details on high performance modes (DSM signal path) and low power modes (SAR signal chain). Once the HPF_PATH bit is set, the HPF_CORNER bits are set to the desired value. [Table 13](#) shows the different available values for the HPF corner frequency.

Table 13. HPF Corner Frequency Values

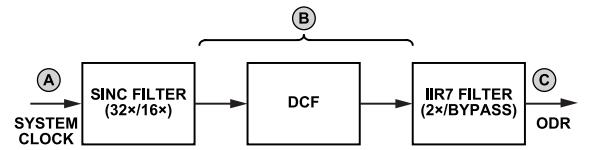
HPF_CORNER Bits Value	Corner Frequency Value (Hz)
b'000	Not applicable (no high-pass filtering)
b'001	24.7E-4 $\times \text{ODR}$
b'010	6.2084E-4 $\times \text{ODR}$
b'011	1.5545E-4 $\times \text{ODR}$
b'100	0.3862E-4 $\times \text{ODR}$
b'101	0.0954E-4 $\times \text{ODR}$
b'110	0.0238E-4 $\times \text{ODR}$

First-Order Low Latency Infinite Impulse Response Filter (IIR1)

The first-order IIR1 in the ADXL382 provides an improved noise performance in a low group delay setting. The IIR1 supports a 5 kHz cutoff frequency and is disabled by default. Refer to the [Latency](#) section for more information on the latency with various filters enabled.

The IIR1 feature is only supported for the high performance signal chain (HP, RBW, or LP operational modes). The EQ, IIR1, and LPF cannot be used concurrently.

The TRIG_CFG register (Register 0x49) is used to enable the IIR1. In HP operational mode, the user must set the EQ_BYPASS bit to b'1 and the LPF_MODE bits to b'00 in the FILTER register (Register 0x50) prior to enabling the IIR1. In RBW or LP operational modes, the user must set the LPF_MODE bits in the FILTER register (Register 0x50) to b'00 prior to enabling the IIR1.


The IIR1 is then enabled by setting the IIR1_EN bit in the TRIG_CFG register (Register 0x49) to b'1.

Decimation Filters

The decimation filters in the ADXL382 provide an improved noise performance to the customer. The ADC output is first decimated by a third-order sinc filter. Then, the DCF, a second-order FIR, is designed to correct for the drooping effect of the sinc filter. The signal is further decimated by a seven-order IIR filter. The output of the decimation filters is a variable ODR in a function of the decimation occurring previously in the signal path. Note that the rounding method is configurable. Use the FLOOR rounding method to improve DC performance when using the HPF. The FLOOR rounding method minimizes the DC offset that is introduced when truncating the data to 16 bits and is defined as follows:

- ▶ If the signal is negative, it increments the data value by 1.
- ▶ If the signal is positive, the data is left unchanged.

[Table 14](#) lists the ODR as a function of the different decimation filter settings. The decimation filters are only supported for the high performance signal chain (HP, RBW, or LP operational modes).

Figure 63. Decimation Filter Architecture

Table 14. ADXL382 Decimation Filter-HP Mode

A (kHz)	SINC_RATE Bit, Register 0x49, Bit 6	DEC_2X_BYPASS		C (kHz), ODR
	B (kHz)	Bit 7		
1024	b'0 (32x)	32	b'0	16
			b'1	32

THEORY OF OPERATION

Table 14. ADXL382 Decimation Filter-HP Mode (Continued)

SINC RATE		DEC_2X_BYPASS	
Bit, Register		Bit Register 0x49,	
A (kHz)	0x49, Bit 6	B (kHz)	Bit 7
	b'1 (16 \times)	64	Not applicable
			64

Third-Order Sinc Filter (SINC)

The third-order sinc filter is designed to reduce the quantization noise of the $\Sigma\Delta$ ADC. The sinc filter can be set either to 32 \times (default) or 16 \times . The user can use the DCF to compensate for the droop of the sinc filter.

The TRIG_CFG register (Register 0x49) is used to change the decimation of the sinc filter. By default, the SINC_RATE bit in the TRIG_CFG register (Register 0x49, Bit 6) is set to b'0 for a 32 \times decimation. The user must set the SINC_RATE bit to b'1 to set the sinc filter to a 16 \times decimation (see Table 14). When the SINC_RATE bit is set to b'1, the IIR7 is bypassed automatically.

Droop Compensation Filter (DCF)

The DCF is designed to compensate the droop of the sinc filter. The DCF is optimized for the 32 \times decimation of the sinc filter. Bypass the DCF if the sinc filter is set to a 16 \times decimation.

The FILTER register (Register 0x50) is used to disable the DCF. By default, the DCF_BYPASS bit in the FILTER register (Register 0x50, Bit 7) is set to b'0 to compensate the droop of the sinc filter. The user must set the DCF_BYPASS bit in the FILTER register to b'1 to bypass the DCF.

Seventh-Order Infinite Impulse Response Filter (IIR7)

The IIR7 is designed to provide an improved noise performance to the customer. The IIR7 is a 2 \times decimation filter.

The TRIG_CFG register (Register 0x49) is used to disable the IIR7. By default, the DEC_2X_BYPASS bit in the TRIG_CFG register (Register 0x49, Bit 7) is set to b'0 for a 2 \times decimation. The user must set the DEC_2X_BYPASS bit to b'1 to bypass the IIR7 (see Table 14). When the SINC_RATE bit in the TRIG_CFG register (Register 0x49, Bit 6) is set to b'1, the IIR7 is bypassed automatically.

THEORY OF OPERATION

NOISE

The ADXL382 has several operating modes and dynamic range options. Each of these impacts noise performance (see Table 15).

The ADXL382 offers many options for controlling the tradeoff between power consumption, dynamic range, and noise performance.

Table 15. ADXL382 Noise Performance vs. Dynamic Range and Operating Mode

Operational Mode	Dynamic Range (g)	Noise Density ($\mu\text{g}/\sqrt{\text{Hz}}$)		RMS Output Noise (mg)	
		XY	Z	XY	Z
High Performance (HP)	15	44	55	3.9	4.3
	30	56	60	5.0	5.4
	60	85	74	7.6	6.6
Reduced Bandwidth (RBW)	15	58	67	3.7	4.3
	30	81	75	5.1	4.7
	60	140	99	8.6	6.3
Low Power (LP)	15	110	140	5.0	6.3
	30	140	150	6.2	6.7
	60	200	180	9.1	8.0
Very Low Power (VLP)	15	360	360	8.1	8.0
	30	640	580	14	13
	60	1260	1130	28	25
Ultra-Low Power (ULP)	15	650	650	4.6	4.7
	30	1280	1150	9.1	8.2
	60	2480	2300	17.5	16.3
Heart Sound Mode (1-Axis)	15	220	230	5.0	5.3
	30	400	380	9.0	8.6
	60	780	740	17.4	16.6

POWER SAVINGS FEATURES

The ADXL382 includes several features (as described in the following sections) for enabling power savings at the system level, as well as at the device level.

OPERATING MODES

The ADXL382 has the following seven standard operating modes:

- ▶ Standby
- ▶ High performance (HP)
- ▶ Reduced bandwidth (RBW)
- ▶ Low power (LP)
- ▶ Very low power (VLP)
- ▶ Ultra-low power (ULP)
- ▶ Heart sounds (HS)

When using modes concurrently, 13 unique operating modes are available (for example, HP mode and ULP mode: the OP_MODE bits set to 4'b1110). See the OP_MODE bits, Bits[3:0] in the OP_MODE register (Register 0x26) for more details about each mode.

The ADXL382 supports seven modes of operation to prioritize performance, low power, or bandwidth depending on the needs of the application. These modes are configured through the use of the four bits within the OP_MODE bits.

Switching between any two modes must be first done by transitioning through standby mode, which must be done explicitly through register commands because the ADXL382 does not manage this aspect. Switching to standby ensures that all clocks and datapaths are correctly configured and flushed to a known state.

Table 16. Modes of Operation

Operational Mode	Bandwidth ¹	Signal Path	System Clock	FIFO	SPI/I ² C	TDM	OP_MODE (Register 0x26, Bits[3:0])
Standby	Not applicable	Not applicable	Not applicable	No	Yes	No	4'b0000
HS (1-Axis)	400 Hz	SAR	256 kHz	Yes	Yes	No	4'b0001
ULP	50 Hz	SAR	256 kHz	Yes	Yes	No	4'b0010
VLP	500 Hz	SAR	256 kHz	Yes	Yes	No	4'b0011
LP	2000 Hz	Σ-Δ	1024 kHz	Yes	Yes	Yes	4'b0100
RBW	4000 Hz	Σ-Δ	1024 kHz	Yes	Yes	Yes	4'b1000
HP	8000 Hz	Σ-Δ	1024 kHz	Yes	Yes	Yes	4'b1100

¹ Bandwidth with DEC_2X_BYPASS = 0, SINC_RATE = 0, and LPF disabled.

POWER SAVINGS FEATURES

MOTION DETECTION

The ADXL382 features built-in logic that detects activity (presence of acceleration above a threshold) and inactivity (lack of acceleration above a threshold). Activity and inactivity events can be used as triggers to manage the accelerometer mode of operation, trigger an interrupt to a host processor, and/or autonomously drive a motion switch.

Detection of an activity or inactivity event is indicated in the STATUSx registers (Register 0x11 through Register 0x14) and can be configured to generate an interrupt. Note that motion detection (activity, inactivity, or tap detection) are only functional for the low power operational modes (VLP, ULP, and HS modes).

ACTIVITY DETECTION

An activity event is detected when acceleration remains more than a specified threshold for a specified time period on any of the axes. If any axis exceeds the threshold, an activity event occurs unless that axis is disabled.

Referenced and Absolute Configurations

Activity detection can be configured as referenced or absolute.

When using absolute activity detection, acceleration samples are compared to a user set threshold to determine whether motion is present. For example, if a threshold of 0.5 g is set, and the acceleration on the z-axis is 1 g for longer than the user defined activity time, the activity status asserts.

In many applications, it is advantageous for activity detection not to be based on an absolute threshold but to be based on a deviation from a reference point or orientation, which is particularly useful because it removes the effect on activity detection of the static 1 g imposed by gravity. When an accelerometer is stationary, its output can reach 1 g, even when it is not moving. In absolute activity, when the threshold is set to less than 1 g, activity is immediately detected in this case.

In the referenced configuration, activity is detected when acceleration samples are at least a user set amount more than an internally defined reference for the user defined amount of time, as described in the following equation:

$$\text{ABS}(\text{Acceleration} - \text{Reference}) > \text{Threshold} \quad (1)$$

Consequently, activity is detected only when acceleration has deviated sufficiently from the initial orientation. The reference for activity detection is calculated when activity detection is engaged in the following scenarios:

- ▶ When the activity function is turned on and measurement mode is engaged
- ▶ If link mode is enabled when inactivity is detected and activity detection begins
- ▶ If link mode is not enabled when activity is detected and activity detection repeats

The referenced configuration results in a sensitive activity detection that detects even the most subtle motion events.

When using the referenced configuration, it is important to note that the ADXL382 still uses the absolute thresholds when it first enters measurement mode, which becomes important if an inactivity threshold <1 g is desired. In this case, the device must enter measurement mode with a threshold greater than 1 g. The inactivity threshold can then be lowered to the desired level (while still in measurement mode), which allows the ADXL382 to set the thresholds around the 1 g offset on the z-axis.

Fewer False Positives

Ideally, the intent of activity detection is to wake up a system only when motion is intentional, ignoring noise or small, unintentional movements. In addition to being sensitive to subtle motion events, the ADXL382 activity detection algorithm is designed to be robust in filtering out undesired triggers.

The ADXL382 activity detection functionality includes a timer to filter out unwanted motion and ensure that only sustained motion is recognized as activity. The duration of this timer, as well as the acceleration threshold, are user adjustable from one sample (that is, no timer) to up to 20 seconds of motion.

INACTIVITY DETECTION

An inactivity event is detected when acceleration remains less than a specified threshold for a specified time on all the axes. All three axes (if enabled) must be less than the inactivity thresholds for an inactivity event to occur. Inactivity detection is also configurable as referenced or absolute.

When using absolute inactivity detection, acceleration samples are compared to a user set threshold for the user set time to determine the absence of motion. Inactivity is detected when enough consecutive samples are all less than the threshold. The absolute configuration of inactivity must be used for implementing free fall detection.

When using referenced inactivity detection, inactivity is detected when acceleration samples are within a user specified amount of an internally defined reference for a user defined amount of time, as described in the following equation:

$$\text{ABS}(\text{Acceleration} - \text{Reference}) < \text{Threshold} \quad (2)$$

The reference for inactivity detection is calculated when:

- ▶ The inactivity function is turned on, and the ADXL382 enters measurement mode.
- ▶ An inactivity event is detected.

Each time an inactivity event is detected, the reference is updated, which becomes important when using an inactivity timer. The reference is not updated until the timer expires. In dynamic environments, the reference not being updated until the timer expires can

POWER SAVINGS FEATURES

lead to the ADXL382 becoming stuck in a state where it is looking for inactivity, but the acceleration is outside the threshold limits.

LINKING ACTIVITY AND INACTIVITY DETECTION

The activity and inactivity detection functions can be used concurrently and processed manually by a host processor, or these functions can be configured to interact in several other ways, which is explained in further detail in the following sections.

Default Mode

The user must enable the activity and inactivity functions because these functions are not automatically enabled by default. After the user enables the activity and inactivity functions, the ADXL382 exhibits the following behavior when it enters default mode: both activity and inactivity detection remain enabled, and all interrupts must be serviced by a host processor; that is, a processor must read each interrupt before it is cleared and can be used again.

Default mode operation is illustrated in the flowchart in Figure 64.

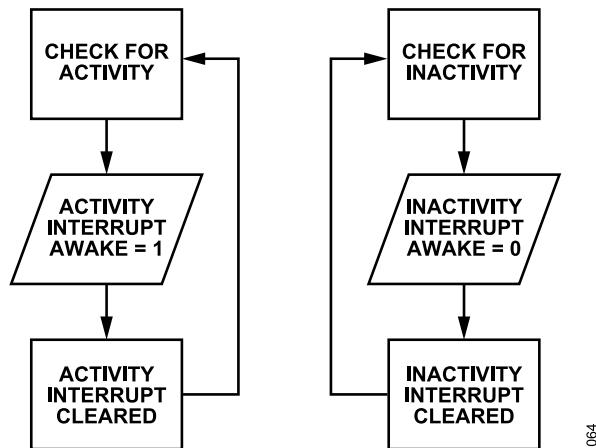
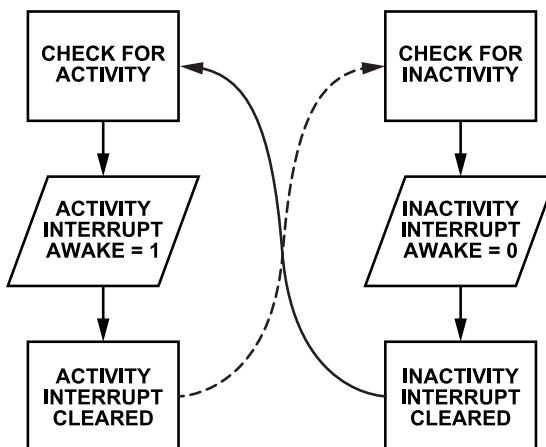


Figure 64. Flowchart Illustrating Activity and Inactivity Operation in Default Mode


064

Linked Mode

In linked mode, activity and inactivity detection are linked to each other in a way so that only one of the functions is enabled at any given time. As soon as activity is detected, the ADXL382 is assumed to be moving and stops looking for activity. Inactivity is expected as the next event. Therefore, only inactivity detection operates.

Similarly, when inactivity is detected, the ADXL382 is assumed to be stationary. Therefore, activity is expected as the next event, and only activity detection operates.

In linked mode, an activity interrupt is enabled first after power-up. Each interrupt must be serviced by a host processor before the next interrupt is enabled. Linked mode operation is shown in the flowchart in Figure 65.

065

Figure 65. Activity and Inactivity Operation in Linked Mode

In standby mode, linked mode must always be enabled. Switching from default mode to linked mode while in another operating mode (for example, HP, ULP, and so on) can cause the state machine to enter a fuzzy state where it is searching for both activity and inactivity simultaneously.

POWER SAVINGS FEATURES

Loop Mode

In loop mode, motion detection operates as described in the [Linked Mode](#) section; however, interrupts must not be serviced by a host processor. This configuration simplifies the implementation of commonly used motion detection and enhances power savings by reducing the amount of power used in bus communications.

Similar to linked mode, activity interrupt is enabled first after power-up in loop mode, which means the ADXL382 is currently waiting for an activity event. For immediate inactivity measurement, set a low activity threshold (for example, <1 mg). Then, adjust the threshold to the desired level for the application without going back to standby mode, which prevents the ADXL382 from getting stuck searching for activity upon power-up.

Loop mode operation is shown in the flowchart in [Figure 66](#).

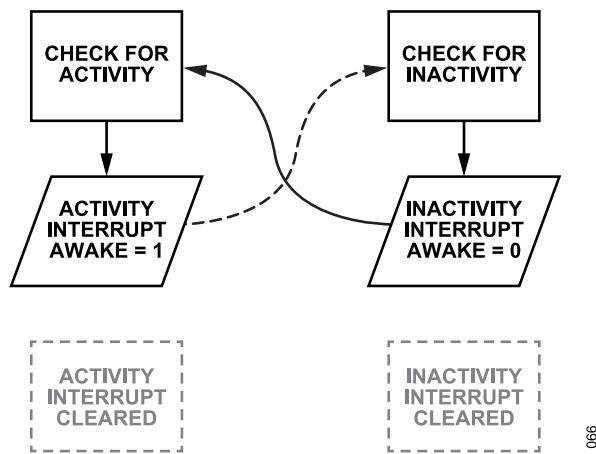


Figure 66. Activity and Inactivity in Loop Mode

FIFO

The ADXL382 includes a 320-word FIFO buffer. The FIFO provides benefits primarily in two ways: system-level power savings and data recording and event context.

SYSTEM-LEVEL POWER SAVINGS

Appropriate use of the FIFO enables system-level power savings by enabling the host processor to sleep for extended periods of time while the accelerometer collects data. Alternatively, using the FIFO to collect data can unburden the host while it tends to other tasks.

DATA RECORDING AND EVENT CONTEXT

The FIFO can be used in a triggered mode to record all data leading up to an activity detection event, thereby providing context for the event. In the case of a system that identifies impact events, for example, the accelerometer can keep the entire system off while it stores acceleration data in its FIFO and looks for an activity event. When the impact event occurs, data that was collected prior to the event is frozen in the FIFO. The accelerometer can then wake the rest of the system and transfer this data to the host processor, thereby providing context for the impact event.

Generally, the more context available, the more intelligent decisions a system can achieve, making a deep FIFO especially useful. While operating in ULP mode (50 Hz output data rate), the ADXL382 FIFO can store up to more than 2.1 seconds of data, providing a clear picture of events prior to an activity trigger.

All FIFO modes of operation, as well as the structure of the FIFO and instructions for retrieving data from it, are described in further detail in the [FIFO Modes](#) section. Note that when retrieving data from the FIFO, all axes (also known as the whole sample size) of interest must be read in a burst (or multibyte) read operation to avoid data loss or misalignment.

The FIFO size changes to accommodate the number of enabled channels. If only three channels are enabled, the FIFO size is 318 instead of 320 (see [Table 17](#)), which ensures that the data stored in the FIFO is a whole data set (for example, the x-axis, y-axis, and z-axis and the temperature data). The address auto-increment function disables when the FIFO_DATA address (Register 0x1D) is used, so that data can be read continuously from the FIFO as a multibyte transaction. In cases where the starting address of a multibyte transaction is less than the FIFO address, the address auto-increments until reaching the FIFO address, and then stops at the FIFO address.

Table 17. FIFO Location vs. Enabled Channels

SRAM Address	Enabled Channels ¹					
	X	X/Y	X/T	X/Y/Z	X/Y/T	X/Y/Z/T
0	X	X	X	X	X	X
1	X	Y	T	Y	Y	Y
2	X	X	X	Z	T	Z
3	X	Y	T	X	X	T
4	X	X	X	Y	Y	X
...

Table 17. FIFO Location vs. Enabled Channels (Continued)

SRAM Address	Enabled Channels ¹					
	X	X/Y	X/T	X/Y/Z	X/Y/T	X/Y/Z/T
315	X	Y	T	X	X	T
316	X	X	X	Y	Y	X
317	X	Y	T	Z	T	Y
318	X	X	X	Unused	Unused	Z
319	X	Y	T	Unused	Unused	T

¹ X is the X-axis, Y is the Y-axis, Z is the Z-Axis, and T is temperature.

The FIFO also has a channel ID function that can be enabled in Register 0x30 (FIFO_CFG0), Bit 6 (FIFO_CH_ID). This channel ID precedes each data sample with a 2-bit identification describing what channel the next data sample is. The channel ID for each axis is shown in [Table 18](#). This channel ID does not take up a FIFO SRAM location and can be read by reading Register 0x1D (FIFO_DATA). A multibyte read of Register 0x1D gives the channel ID followed by the data sample for all enabled channels (see [Table 19](#)).

Table 18. FIFO Channel ID Description

Channel	Abbreviation	Channel ID
X-Axis Acceleration	X	0b00
Y-Axis Acceleration	Y	0b01
Z-Axis Acceleration	Z	0b10
Temperature	T	0b11

Table 19. FIFO Location vs. Enabled Channels with Channel ID Enabled

SRAM Address	Enabled Channels with Channel ID Enabled	
	X/Y/Z	X/Y/Z/T
Not Applicable	X ID	X ID
0	X	X
Not Applicable	Y ID	Y ID
1	Y	Y
Not Applicable	Z ID	Z ID
2	Z	Z
Not Applicable	X ID	X ID
3	X	X
...
Not Applicable	X ID	T ID
315	X	T
Not Applicable	Y ID	X ID
316	Y	X
Not Applicable	Z ID	Y ID
317	Z	Y
Not Applicable	Not applicable	Z ID
318	Unused	Z
Not Applicable	Not applicable	T ID
319	Unused	T

FIFO

FIFO CONFIGURATION

The FIFO can be configured by writing to the FIFO configuration registers, FIFO_CFG0 and FIFO_CRG1 (Register 0x30 and Register 0x31). The FIFO mode, number of FIFO entries, and channel ID enable can all be configured to optimize performance in various applications.

FIFO MODES

The ADXL382 has the following FIFO modes:

- ▶ FIFO disabled
- ▶ Normal (also referred to as oldest saved or First N)
- ▶ Stream (also referred to as Last N)
- ▶ Trigger

When the FIFO is disabled (Register 0x30, Bits[5:4] (FIFO_MODE) = 0b00), no data samples are stored, and a FIFO read returns 0.

When in normal mode (Register 0x30, Bits[5:4] (FIFO_MODE) = 0b01), the FIFO accumulates data until it is full and then stops, which is indicated by FIFO_FULL (Register 0x11, Bit 1) = 1. Additional data is only collected when space is made available by reading samples out of the FIFO buffer.

When in stream mode (Register 0x30, Bits[5:4] (FIFO_MODE) = 0b10), new data is continuously written to the FIFO whether it is full or not. When the FIFO is full, the oldest data set (for example, the X, Y, Z, and T data sample) is discarded to make room for the new data set. In this way, the most recent data is always preserved in the FIFO buffer. Stream mode is useful for unburdening a host processor. The processor can tend to other tasks while data is being collected in the FIFO. When the FIFO fills to a certain number of samples (specified by FIFO_SAMPLES in Register 0x30, Bit 0 and Register 0x31, Bits[7:0]), it triggers a FIFO watermark interrupt (if this interrupt is enabled). At this point, the host processor can read the contents of the entire FIFO and then return to its other tasks as the FIFO fills again.

When in trigger mode (Register 0x30, Bits[5:4] (FIFO_MODE) = 0b11), the FIFO saves samples before and after a trigger event. This trigger event can be either an activity event or an external interrupt. In this mode, new data samples are collected continuously whether the FIFO is full or not (similar to stream mode). Once a trigger event occurs (either an activity event or an external interrupt), the FIFO continues to collect a set number of data samples. The number of data samples it collects after the trigger event is set by the value in the FIFO_SAMPLES bits (Register 0x30, Bit 0 and Register 0x31, Bits[7:0]).

To enable an external interrupt triggered FIFO mode, set the FIFO_EXT_TRIG bit (Register 0x30, Bit 3) to 1. Once this bit is set to 1, an external interrupt sent to the FSYNC pin triggers a FIFO capture.

FIFO INTERRUPTS

The FIFO has several interrupts that can be mapped to the INT0 and INT1 pins. Interrupt mapping is controlled by using Register 0x2B (INT0_MAP0) through Register 0x2E (INT1_MAP1).

FIFO WATERMARK

The FIFO_WATERMARK bit (Register 0x11, Bit 3) is set when the number of samples stored in the FIFO is equal to or exceeds the number of samples specified by the FIFO_SAMPLES bits (Register 0x30, Bit 0 and Register 0x31, Bits[7:0]). In order for an interrupt to be triggered, the ADXL382 must be in either FIFO normal mode or FIFO stream mode, and the FIFO_WATERMARK bit must be mapped to INT0 or INT1.

The FIFO_WATERMARK bit is cleared automatically when enough samples are read from the FIFO so that the number of samples remaining is lower than the value set by the user in the FIFO_SAMPLES bits.

FIFO READY

The FIFO_READY bit (Register 0x11, Bit 4) asserts if there is at least one valid sample available in the FIFO output buffer. This bit is cleared when no valid data is available in the FIFO.

FIFO OVERRUN

The FIFO_OVERRUN bit (Register 0x11, Bit 2) is set when the FIFO has overrun or overflow, indicating that new data has replaced unread data, which may indicate a full FIFO that has not yet been emptied or a clocking error caused by a slow SPI transaction. The FIFO_OVERRUN bit is only available for FIFO normal mode and trigger mode.

The FIFO_OVERRUN bit is cleared automatically when the contents of the FIFO are read. Likewise, when the FIFO is disabled, the FIFO_OVERRUN bit is cleared.

FIFO FULL

The FIFO_FULL bit (Register 0x11, Bit 1) is set when the FIFO collects 320 samples (or 318 samples if exactly three channels are enabled; see Table 17).

COMMUNICATIONS

SPI INSTRUCTIONS

The digital interface of the ADXL382 is implemented with system-level power savings in mind. The following features enhance power savings:

- ▶ Burst reads and writes reduce the number of SPI communication cycles required to configure the ADXL382 and retrieve data.
- ▶ Concurrent operation of activity and inactivity detection enables set and forget operation. Loop mode further reduces communications power by enabling the clearing of interrupts without processor intervention.
- ▶ The FIFO is implemented such that consecutive samples can be read continuously via a multibyte read of unlimited length; therefore, a one read FIFO instruction can clear the entire contents of the FIFO. In many other accelerometers, each read instruction retrieves a single sample only.

For this device, the clock polarity and clock phase are both zero ($CPOL = CPHA = 0$), which means that data bits must be read on the rising clock edge, and data bits are transitioned on the falling clock edge. The chip select pin, \overline{CS} , activates the SPI. As long as \overline{CS} is high, the ADXL382 ignores any signals present on the SCLK or SDI pins, and the output SDO is in a high impedance state. When \overline{CS} is in a low logic state, data can be transferred to and from the microcontroller. During transitions of \overline{CS} from high to low or vice versa, SCLK is set to low by the microcontroller, ensuring that proper communication is initiated with the ADXL382.

I²C INTERFACE

The ADXL382 conforms to the *UM10204 I²C-Bus Specification and User Manual*, Rev. 03—19 June 2007, available from NXP Semiconductor.

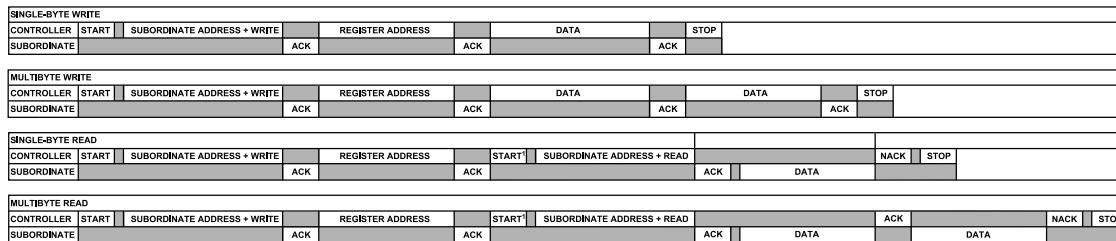


Figure 68. I²C Device Addressing (Read from Data Registers)

With the ASEL0 and ASEL1 pins high, the 7-bit I²C address is 0x54 as shown in Figure 67. The I²C address is followed by the R/W bit as shown in Figure 68. This translates to 0xA6 for a write and 0xA7 for a read. Alternate I²C addresses are shown in Table 20.

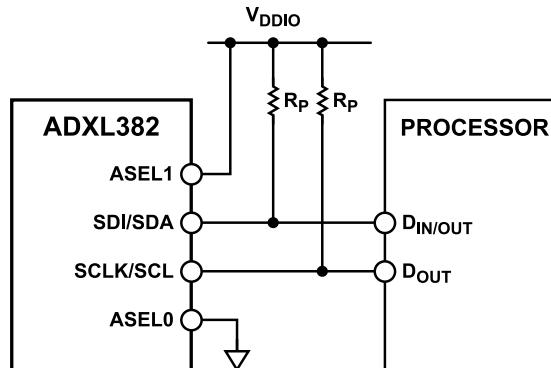


Figure 67. I²C Example Connection Diagram (Address 0x54)

Table 20. I²C Address Selection

ASEL0	ASEL1	I ² C Address
Low	Low	0x1D
High	Low	0x53
Low	High	0x54
High	High	0x55

If other devices are connected to the same I²C bus, the nominal operating voltage level of these other devices cannot exceed V_{DDIO} by more than 0.3 V. External pull-up resistors, R_P , are necessary for proper I²C operation (see Figure 67). Refer to the *UM10204 I²C-Bus Specification and User Manual*, Rev. 03—19 June 2007, when selecting pull-up resistor values to ensure proper operation.

COMMUNICATIONS

I²S/TDM INTERFACE

The ADXL382 constantly streams data out of the I²S port. This protocol is suitable for obtaining high speed, synchronous accelerometer data. The ADXL382 can act as either a controller or a subordinate on the I²S bus. When operating as a controller, the BCLK and FSYNC pins are configured as output pins (see Figure 69). When operating as a subordinate, the BCLK and FSYNC pins are configured as input pins (see Figure 70).

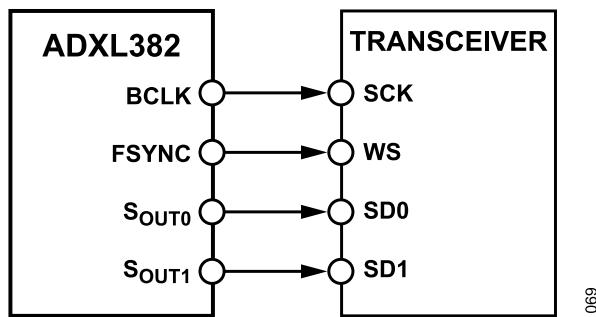


Figure 69. I²S/TDM Wiring Diagram with ADXL382 in Controller Mode

Table 21. Supported Controller Modes (BCLK and FSYNC Are Outputs)

Output Format	Power Mode	BCLK Frequency	FSYNC Frequency	Word Width	Output Data Rate	Data Output Pins
I ² S or TDM2	HP	1024 kHz	32 kHz	16 bit	16 kHz	S _{OUT0} and S _{OUT1}
		1024 kHz	16 kHz	32 bit	16 kHz	S _{OUT0} and S _{OUT1}
		512 kHz	16 kHz	16 bit	16 kHz	S _{OUT0} and S _{OUT1}
	RBW	512 kHz	16 kHz	16 bit	8 kHz	S _{OUT0} and S _{OUT1}
		512 kHz	8 kHz	32 bit	8 kHz	S _{OUT0} and S _{OUT1}
		256 kHz	8 kHz	16 bit	8 kHz	S _{OUT0} and S _{OUT1}
	LP	256 kHz	8 kHz	16 bit	4 kHz	S _{OUT0} and S _{OUT1}
		256 kHz	4 kHz	32 bit	4 kHz	S _{OUT0} and S _{OUT1}
		128 kHz	4 kHz	16 bit	4 kHz	S _{OUT0} and S _{OUT1}
TDM4	HP	1024 kHz	16 kHz	16 bit	16 kHz	S _{OUT0} or S _{OUT1}
	RBW	512 kHz	8 kHz	16 bit	8 kHz	S _{OUT0} or S _{OUT1}
	LP	256 kHz	4 kHz	16 bit	4 kHz	S _{OUT0} or S _{OUT1}

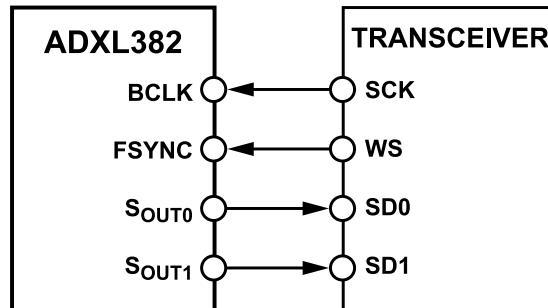


Figure 70. I²S/TDM Wiring Diagram with ADXL382 in Subordinate Mode

Controller Mode (Internal Clock)

When in controller mode, the ADXL382 operates at a nominal clock speed of 1024 kHz with a nominal frame frequency of 16 kHz. The BCLK and FSYNC pins are provided as outputs for other devices on the I²S bus. In this mode, the device supports a word width of 16 bits, 24 bits, or 32 bits. TDM2 and TDM4 are also supported. See Table 21 for a list of supported controller modes.

COMMUNICATIONS

Subordinate Mode (External Clocks)

When in subordinate mode, BCLK and FSYNC must be provided as inputs on their respective pins. The BCLK frequency must be an integer multiple of 1024 kHz such that it can be divided down to 1024 kHz by setting The EXT_CLK_RATE bits in Register CLK_CTRL (Register 0x25, Bits[7:4]).

In this mode, the ADXL382 supports a word width of 16 bits, 24 bits, or 32 bits. TDM2, TDM4, and TDM8 are also supported. See [Table 22](#) for a list of example subordinate modes. Note that

there are many more configurations that are also supported by the ADXL382. [Table 22](#) a list of a few examples for reference. If another combination of BCLK and FSYNC is required, the following rules must be followed:

- ▶ If BCLK is used as a system clock, it must be divisible to the required 1024 kHz for the system clock.
- ▶ The supported FSYNC rates of 16, 32, 48, or 96 kHz (in HP mode) must be used. When using RBW or LP mode, note that, FSYNC scales down.

Table 22. ADXL382 Example Subordinate Modes with No Empty Data Slots¹ (BCLK and FSYNC Are Inputs)

Output Format ²	Power Mode	BCLK Frequency ³	FSYNC Frequency ⁴	Word Width	Output Data Rate ⁵	Data Output Pins
I ² S or TDM2	HP	6144 kHz	96 kHz	32 bit	16 kHz	S _{OUT0} and S _{OUT1}
	HP and RBW	3072 kHz	48 kHz	32 bit	16 kHz	S _{OUT0} and S _{OUT1}
		2048 kHz	32 kHz	32 bit	8 kHz	S _{OUT0} and S _{OUT1}
	HP, RBW, and LP	1024 kHz	16 kHz	32 bit	16 kHz	S _{OUT0} and S _{OUT1}
		1024 kHz	16 kHz	32 bit	8 kHz	S _{OUT0} and S _{OUT1}
		1024 kHz	16 kHz	32 bit	4 kHz	S _{OUT0} and S _{OUT1}
TDM4	HP and RBW	6144 kHz	48 kHz	32 bit	16 kHz	S _{OUT0} or S _{OUT1}
		6144 kHz	48 kHz	32 bit	8 kHz	S _{OUT0} or S _{OUT1}
	HP, RBW, and LP	3072 kHz	24 kHz	32 bit	16 kHz	S _{OUT0} or S _{OUT1}
		2048 kHz	16 kHz	32 bit	8 kHz	S _{OUT0} or S _{OUT1}
		1024 kHz	16 kHz	16 bit	4 kHz	S _{OUT0} or S _{OUT1}
TDM8	HP and RBW	12,288 kHz	48 kHz	32 bit	16 kHz	S _{OUT0} or S _{OUT1}
		12,288 kHz	48 kHz	32 bit	8 kHz	S _{OUT0} or S _{OUT1}
	HP, RBW, and LP	4096 kHz	16 kHz	32 bit	16 kHz, 8 kHz, 4 kHz	S _{OUT0} or S _{OUT1}
		2048 kHz	16 kHz	16 bit	16 kHz, 8 kHz, 4 kHz	S _{OUT0} or S _{OUT1}

¹ X-axis, y-axis, z-axis, and temperature data enabled in Register 0x27. Note that this table is not a comprehensive list. This table represents example configurations with no empty data slots.

² Note that TDM2, TDM4, and TDM8 are examples. The ADXL382 TDM protocol supports anywhere from 1 to 8 channels.

³ BCLK must be provided externally on the BCLK pin. The frequency must be an integer multiple of 1024 kHz such that it can be divided down to 1024 kHz by setting the EXT_CLK_RATE bits (Register 0x25, Bits[7:4]).

⁴ FSYNC must be provided externally on the FSYNC pin.

⁵ Maximum ADXL382 output data rate for HP, RBW, and LP modes are 32 kHz, 16 kHz, and 8 kHz, respectively.

COMMUNICATIONS

Signals

The ADXL382 uses a 3-wire or 4-wire I²S/TDM interface, comprising one continuous serial clock, one synchronization signal, and two serial data channels. There are numerous naming conventions for these channels. The ADXL382 uses the same terminology and symbols as the A²B family of transceivers from Analog Devices, Inc. See [Table 23](#) for a comparison of the names used in the I²S specification against the names used in the ADXL382.

[Table 23. I²S Signal Names](#)

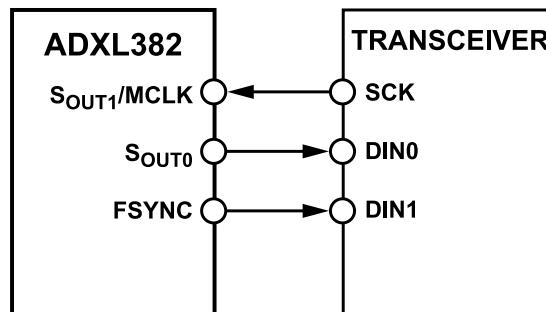
I ² S Specification		ADXL382	
Full Name	Symbol	Pin Description	Mnemonic
Continuous Serial Clock	SCLK	Bit clock	BCLK
Word Select	WS	Frame sync	FSYNC
Serial Data	SD	Data transmit	S _{OUT0} and S _{OUT1}

BCLK

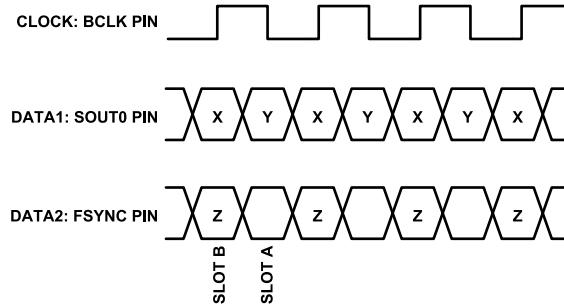
The bit clock (BCLK) line controls the timing of transactions between the controller (A²B transceiver or another controller) and subordinate (ADXL382). This clock can be supplied externally to the BCLK pin (Pin 14) or driven internally from the device. The incoming clock frequency must be a number such that it can be divided down to the expected internal clock for the ADXL382. Set the external clock divide factor (EXT_CLK_RATE in Register 0x25, Bits[7:4]) such that the incoming clock frequency can be divided by 1024 kHz.

Sync (FSYNC) Signal

In I²S, the FSYNC signal indicates the start of a new acceleration sample. The signal alternates between high and low states (with a 50% duty cycle) to indicate whether the sample is for the left or right channel. In TDM mode, the FSYNC signal has a single pulse that is one BCLK cycle wide (set SPT_FSYNC_MODE in the FIFO_CFG0 register (Register 0x32, Bit 3) = 1). This pulse is then followed by up to eight data slots depending on the number of BCLK cycles sent and word width chosen.


Data Transmit (S_{OUTx}) Signal

In I²S mode, data is sent over both of the S_{OUT0} and S_{OUT1} pins. If enabled, S_{OUT0} contains the x-axis and y-axis data. If enabled, S_{OUT1} contains the z-axis and temperature data.


In TDM2 mode, data is sent over both of the S_{OUT0} and S_{OUT1} pins. In other TDM modes (for example, TDM4 or TDM8), data is sent over only one data pin (either the S_{OUT0} or S_{OUT1} pin, which is configured in the SPT_SOUT_SEL bit in the SPT_CFG2 register (Register 0x34, Bit 7)). In this case, four data slots are required if the x-axis, y-axis, z-axis, and temperature data are enabled (see Register 0x27, DIG_EN).

PDM INTERFACE

The ADXL382 PDM port uses a 3-wire interface (see [Figure 71](#)): one clock line and two data lines. The two data lines are high performance, 1-bit PDM outputs (S_{OUT0} and FSYNC). The one-bit data is asserted on the data line on either the rising or falling edge of the system clock to allow the user to stream data from all three acceleration channels (x-axis, y-axis, and z-axis). As shown in [Figure 72](#) (the example PDM data slot configuration), the S_{OUT0} pin contains the x-axis and y-axis data, and the FSYNC pin contains the z-axis data. Note that, in this example, there is no data on the falling edge for the FSYNC pin, and the output is set to high impedance.

[Figure 71. PDM Wiring Diagram with ADXL382](#)

[Figure 72. Example PDM Port Data Format](#)

The pulse density indicates acceleration magnitude and sign. For example, if the ADXL382 is configured in 15 g mode, a 0% PDM density indicates a negative full-scale range (-15 g). A 50% PDM density indicates 0 g and a 100% PDM density indicates a positive full scale range (+15 g). The PDM_POL bit (Register 0x37, Bit 7) inverts the polarity of the data so that 0% PDM density is a positive full-scale range.

The PDM data slots are configurable in Register 0x36 (PDM_CFG). Slot B corresponds to the rising edge on BCLK, and Slot A corresponds to the falling edge on BCLK. The PDM_SOUT0_SLOTB and PDM_SOUT0_SLOTB bits configure which channels are enabled on the S_{OUT0} pin. The PDM_SOUT1_SLOTB and PDM_SOUT1_SLOTB bits configure which channels are enabled on the FSYNC pin. For example, to match the configuration shown in [Figure 72](#), set Register 0x36 to a value of 0x31, which maps the x-axis to Slot B and the y-axis to Slot A on the S_{OUT0} pin, and the

COMMUNICATIONS

z-axis to Slot B on the FSYNC pin. See [Figure 10](#) for the PDM timing requirements.

For PDM, the clock provided on the BLCK pin must meet the requirements in [Table 5](#) for f_{PDM_CLK} , and the external clock divider must be set to a value that sets the ADXL382 clock to a valid value (either 768 kHz or 1.024 MHz). Because latency is often important in audio applications, it is most common to set the system clock to 768 kHz as described in the [Low Latency Mode](#) section.

If BCLK is 3.072 MHz, set the EXT_CLK_RATE bits (Register 0x25, Bits[7:4]) to 0'b0011, which divides the 3.072 MHz clock by 4 to get to the 768 kHz system clock that the ADXL382 can operate at with low latency. Note that it is important to configure the device in low latency mode if using a 768 kHz system clock. See the [Low Latency Mode](#) section for more details.

ADDITIONAL FEATURES

FREE FALL DETECTION

Many digital output accelerometers include a built-in free fall detection feature. In the ADXL382, this function can be implemented using an inactivity interrupt. Refer to the [Example: Implementing Free Fall Detection](#) section for more details, including suggested threshold and timing values.

TAP DETECTION

The tap interrupt function is capable of detecting either single, double, or triple taps.

Note that when using a tap threshold less than 1 g, tilting the ADXL382 may also result in a tap event. The following parameters are shown in [Figure 73](#) for a valid single, double, and triple tap event, respectively:

- ▶ The TAP_THRESH register (Register 0x43) sets the acceleration threshold for a tap detection event.
- ▶ The maximum tap duration time is defined by the TAP_DUR register (Register 0x44). The tap duration time represents the maximum time that an event must be more than the tap threshold set in TAP_THRESH register (Register 0x43) to qualify as a tap event.
- ▶ The tap wait time is defined as the time where an event must be less than the threshold to be registered as a tap event. The tap wait time is 2.5 ms.
- ▶ The tap latency time is defined by the TAP_LATENT register (Register 0x45). It is the waiting period from the end of the first tap until the start of the time window where a second tap can be detected.

- ▶ The TAP_WINDOW register (Register 0x46) is the tap duration time where an additional tap can be detected (second or third tap). Although a second tap must begin after the latency time has expired, it does not have to finish before the end of the time defined by the TAP_WINDOW register. If only a singular tap is required, set TAP_WINDOW to 0.

Additionally, triple tap detection can be enabled by setting the TRIPLE_TAP_EN bit (Register 0x47, TAP_CFG, Bit 2) to b'1. Tap detection can only be implemented on one axis. The tap detection axis is set by the TAP_AXIS bits in the TAP_CFG register (Register 0x47, Bits[1:0]).

The tap detection status is read with the SINGLE_TAP, DOUBLE_TAP, and TRIPLE_TAP bits located in the STATUS1 register (Register 0x12, Bit 0, Bit 1 and Bit 2, respectively). The tap detection behaves as follow:

- ▶ If only the single tap function is in use, the single tap interrupt is triggered when the acceleration goes to less than the threshold, if the value of time stored in the TAP_DUR register (Register 0x44) has not been exceeded.
- ▶ If both single tap and double tap functions are in use, the single tap interrupt is triggered when the double tap event is either validated or invalidated.
- ▶ If single tap, double tap, and triple tap functions are in use, the single tap and double tap interrupts are triggered when the triple tap event is either validated or invalidated.

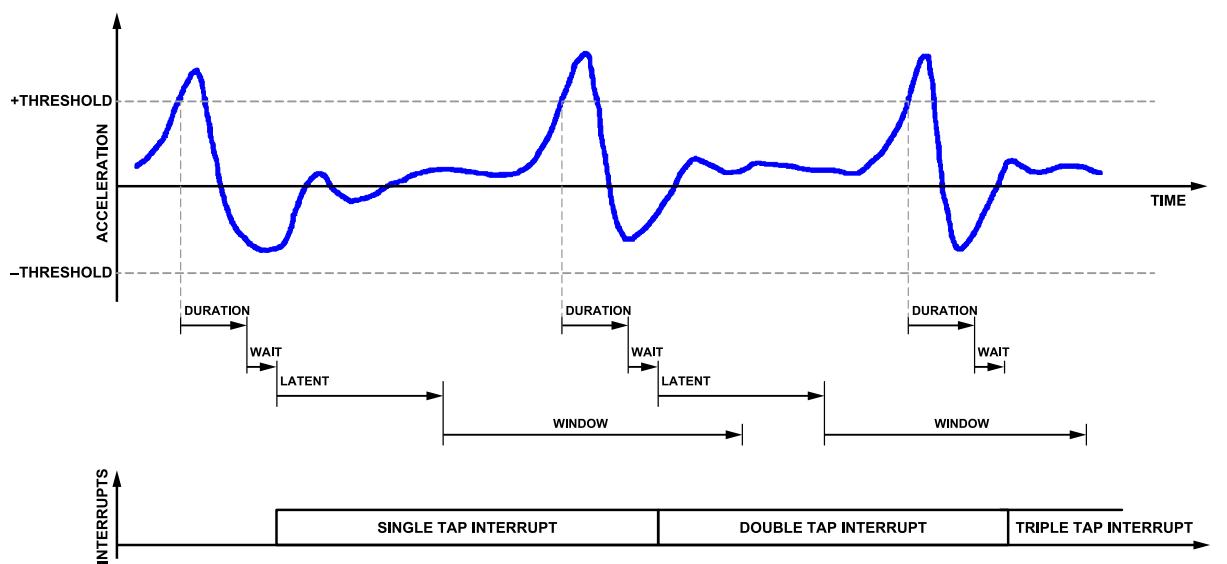


Figure 73. Tap Interrupt Function with Valid Single Tap, Double Tap, and Triple Tap

ADDITIONAL FEATURES

EXTERNAL CLOCK

The ADXL382 has a nominal clock frequency of 1.024 MHz that, by default, serves as the time base for internal operations.

An external clock can be used to improve clock frequency accuracy. To achieve tighter tolerances, a more accurate clock can be provided externally. Additionally, the external clock is commonly used with features such as external sync.

The external clock can be provided on either MCLK or BCLK. This clock can range from 1.024 MHz to 24.576 MHz. The clock must be an integer multiple of the nominal clock such that it can be divided down to fit the intended nominal clock frequency by setting the internal divider (EXT_CLK_RATE bits, Register 0x25, Bits[7:4]). The external clock must be divided down to the expected system clock (1024 kHz if using HP, RBW, or LP modes or 256 kHz if using VLP, ULP, HS modes). See [Table 16](#) for more information.

Note that the external clock can only be configured when it is in standby mode, and this clock must be set before setting a mode of operation.

Refer to the [Using an External Clock](#) section for more details, including register settings and recommended external clock values.

EXTERNAL TRIGGER

For applications that require a precisely timed acceleration measurement, the ADXL382 features an option to synchronize acceleration sampling to an external trigger. This feature is only supported for the low power signal chain (VLP, ULP, and HS operational modes). The external trigger can be used with either an internal or external clock.

When an external trigger pulse is sent, the ADXL382 outputs one sample data. The user can use this feature to sample data intermittently, which can enable system-level power savings.

The TRIG_CFG register (Register 0x49) is used to set the external trigger features. The external trigger can be provided on either FSYNC or INT1 by using the TRIG_SRC bit (Bit 1, Register 0x49). The external trigger feature is enabled by setting the TRIG_MODE bit (Register 0x49, Bit 0) to 1.

When external triggering is enabled, it is up to the user to ensure that the sampling frequency meets system requirements.

Because of the internal timing requirements, the trigger signal applied must meet the following criteria:

- The trigger signal must be active high.
- When using the internal oscillator clock, the pulse width of the trigger signal must be at least 5.7 μ s.
- Two consecutive trigger pulses must be at least 5.7 μ s apart.
- The maximum sampling frequency that is supported must be equal to the maximum ODR.

- There is no minimum sampling frequency. However, to avoid aliasing, the user must not sample lower than the Nyquist frequency.

EXTERNAL SYNCHRONIZATION

For applications that require a precisely timed acceleration measurement, the ADXL382 features an option to synchronize acceleration sampling to an external synchronization signal. This feature is only supported for the high-performance signal chain (HP, RBW, or LP operational modes). External synchronization can be used with either an internal or external clock.

When an external synchronization frequency is set, the ADXL382 shifts the phase of the data ready (DRDY) signal to match the external synchronization signal. The user can use this feature for systems requiring multiple sensors to have precisely synchronized data sampling. Furthermore, the user can use the interpolation feature to oversample or undersample with improved accuracy.

The SYNC_CFG register (Register 0x35) is used to set the external synchronization features. The external synchronization signal can be provided on either FSYNC or INT1 by using the SYNC_SRC bit in Register 0x35, Bit 6. The external synchronization feature is set by setting the SYNC_MODE bit (Register 0x35, Bits[5:4]) to the desired value. External synchronization may require an external clock and DRDY. Refer to the [External Clock](#) section and the [Interrupts](#) section to map the DRDY signal to an interrupt pin.

The three possible synchronization options for the ADXL382 are no external synchronization (SYNC_MODE = b'00), external synchronization (SYNC_MODE = b'01), and external synchronization with an interpolation filter (SYNC_MODE = b'10).

Because of internal timing requirements of the ADXL382, the external synchronization signal applied must meet the following criteria:

- The external synchronization signal must be active high.
- The pulse width of the external synchronization signal must be at least 5.7 μ s.
- Two consecutive pulses must be at least 5.7 μ s apart.

ADDITIONAL FEATURES

No External Synchronization or Interpolation (SYNC_MODE = b'00)

When SYNC_MODE bits in the SYNC_CFG register (Register 0x35, Bits[5:4]) are set to 0, the ADXL382 is in its default external synchronization mode. The ADXL382 has no external synchronization and does not require an external signal to synchronize to. The ADXL382 data sampling is synchronized to the system clock. This

mode supports an internal or external clock by using the CLK_SRC bits in the CLK_CTRL register (Register 0x25, Bits[1:0]).

This mode is commonly used when an external processor retrieves the data from the ADXL382 asynchronously. The device samples the data and outputs a DRDY signal each time a new sample becomes available (see [Figure 74](#)).

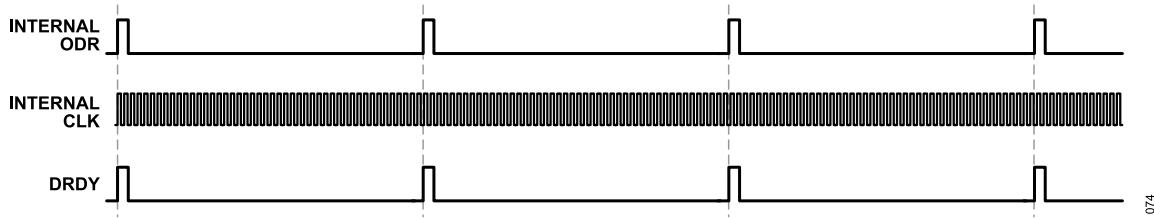


Figure 74. No External Synchronization (SYNC_MODE = b'00)

ADDITIONAL FEATURES

External Synchronization with External Clock (SYNC_MODE = b'01)

External synchronization requires an external synchronization signal to align the decimation filter output to a specific clock edge, which provides full external synchronization. In this mode, ODR must be an integer multiple of the synchronization signal frequency. The DRDY signal synchronizes with the external synchronization pulse (see Figure 75).

The user must provide an external clock that meets the timing requirements (see Table 120). Refer to the [Using an External Clock](#) section for more details on how to set up an external clock, including register settings and recommended external clock values.

The ADXL382 is synchronized to every sync pulse it receives, which means the sync signal can have a lower frequency than the internal ODR.

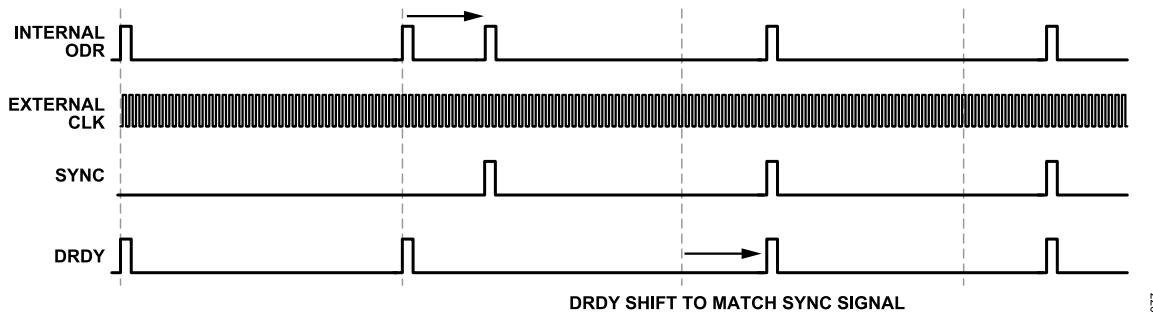


Figure 75. External Synchronization with External Clock (SYNC_MODE = b'01)

077

ADDITIONAL FEATURES

External Synchronization with Interpolation (SYNC_MODE = b'10)

Synchronization with the interpolation filter enabled (SYNC_MODE = b'10, Register 0x36, Bits[5:4]) allows the user to sample asynchronously, oversample, or undersample with improved accuracy. This mode is commonly used when syncing is required, but no external clock can be provided. While not being required, an external clock can be used to improve clock frequency accuracy.

The data interpolation is calculated by computing a linear average between the previous two data samples at the time a sync pulse is active high (see Figure 76). Interpolation increases group delay relative to external sync with external clock mode; however, it guarantees a fixed 1/ODR delay (see Figure 77). The interpolation

calculation delay of the interpolation filter is equal to 2.15 μ s (see Figure 77).

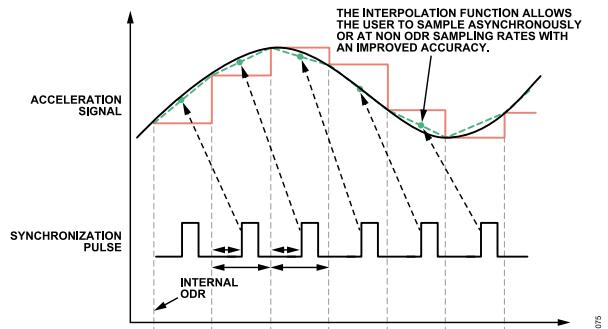


Figure 76. Data Interpolation Scheme

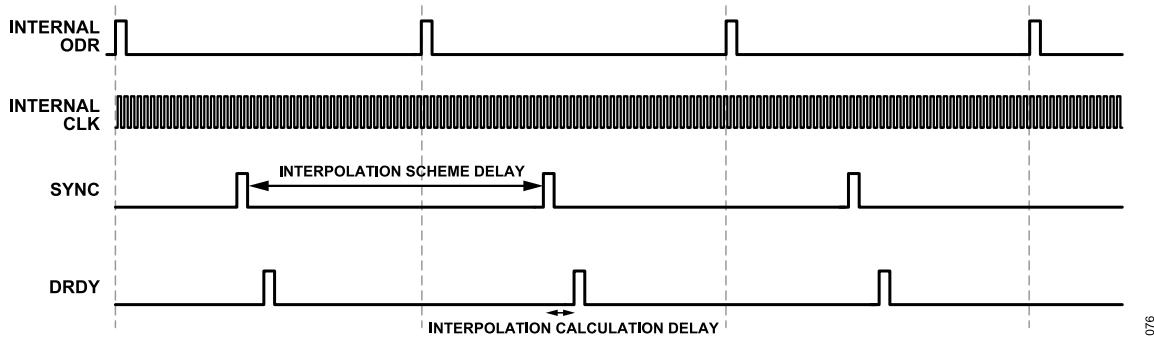


Figure 77. External Synchronization with Interpolation (SYNC_MODE = b'10)

ADDITIONAL FEATURES

SELF TEST

The ADXL382 incorporates a self-test feature that effectively tests its mechanical and electronic systems simultaneously. When the self-test function is invoked, an electrostatic force is applied to the mechanical sensor. This electrostatic force moves the mechanical sensing element in the same manner as acceleration, and it is an additive to the acceleration experienced by the ADXL382.

USER REGISTER PROTECTION

The ADXL382 supports a single event upset (SEU) detection feature for user register protection. When the parity enable register bit (PARITY_ERR, Register 0x20, Bit 5) is set high, the SEU detection feature is enabled on all controllable and /writable register bits (by iterating through all register addresses to calculate the 1-bit sum of all of the register bit positions). If there is a mismatch between the old (stored and valid) parity bit and the current (calculated and valid) parity bit, an SEU parity error generates.

Either a sticky event bit (PARITY_ERR_STICKY, Register 0x11, Bit 0) or a live event bit (PARITY_ERR, Register 0x20, Bit 5) can be mapped to an interrupt pin if desired.

An internal 100 Hz clock is used to generate a periodic SEU detection event. Each of these events triggers a parity calculation if the PARITY_EN bit (Register 0x27, Bit 0) is set high. The current and old parity bit are stored for comparison. If there is any mismatch between the valid current parity and the valid old parity, a parity error generates.

If a parity error occurs, perform a software or hardware reset.

CONCURRENT OPERATING MODES

The SAR paths modes (ULP and VLP) can be combined with any one of the Σ - Δ modes (HP, RBW, and LP) for concurrent data sampling. In concurrent mode, the HP, RBW, and LP data is only available on the audio port (I²S/TDM/PDM) and the ULP and VLP data is accessed via the control port (SPI or I²C).

Note that the HPF is selectable for either the DSM or SAR signal path, but it is not available for both signal paths in concurrent mode.

It is possible to use external synchronization pulses (SYNC_MODE (Register 0x35, Bits[5:4]) = 0b01 or 0b10) for the low noise signal path (HP, RBW, and LP modes), and the FIFO_EXT_TRIG bit (Register 0x30, Bit 3) pulses for the low power signal path (ULP, VLP, and HS modes) at the same time. Further details regarding this can be found in the [External Trigger](#) section.

INTERRUPTS

Several of the built-in functions of the ADXL382 can trigger interrupts to alert the host processor of certain status conditions. Interrupts can be mapped to either (or both) of the two designated output pins, INT0 and INT1, by setting any of the appropriate bits in Register 0x2B to Register 0x2E. All functions can be used

simultaneously. If multiple interrupts are mapped to one pin, the OR combination of the interrupts determines the status of the pin.

If no functions are mapped to an interrupt pin, that pin is automatically configured to a high impedance (high-Z) state. These INTx pins are also placed in a high-Z state when reset.

The INTx pins can be connected to the interrupt input of a host processor where interrupts are responded to with an interrupt routine.

Because multiple functions can be mapped to the same pin, the STATUSx registers (Register 0x11 to Register 0x14) can be used to determine which condition caused the interrupt to trigger.

Clear interrupts by one of the following ways:

- ▶ Reading the STATUSx registers clears interrupts (for example, activity, inactivity, undervoltage flag sticky, or parity error sticky).
- ▶ Reading from the data registers, Register 0x14 to Register 0x1B, clears the DRDY interrupt. Note that every enabled channel must be read to clear the interrupt
- ▶ Reading enough data from the FIFO buffer so that interrupt conditions are no longer met clears the FIFO ready and FIFO overrun interrupts. To clear the FIFO_WATERMARK interrupt, the user must also read the FIFO_WATERMARK bit in the STATUS0 register (Register 0x11, Bit 3) and de-assert the chip select line if using SPI communication

Both interrupt pins are push and pull low impedance pins and have bus keepers when the pins are not internally driven.

To prevent interrupts from being falsely triggered during configuration, disable interrupts while their settings, such as thresholds, timings, or other values, are configured.

STATUS FLAGS AND ERROR HANDLING

The ADXL382 supports several error and status flags that give information about register health, NVM status, FIFO status, activity and inactivity, tap detection, and mechanical overrange and undervoltage monitoring (STATUS0 to STATUS3, Registers 0x11 to Register 0x14).

NVM Status

The EFUSE_BUSY_REGERR_STICKY bit in the STATUS0 register (Register 0x11, Bit 5) indicates that a register write has occurred while the NVM was still busy. This bit stays asserted until the STATUS0 register is read. A software or hardware reset is required to clear this error.

The PARITY_ERR_STICKY bit in the STATUS0 register (Register 0x11, Bit 0) indicates that a SEU error has occurred. See the [User Register Protection](#) section for more information on handling this error.

The NVM_IRQ bit in the STATUS1 register (Register 0x12, Bit 7) indicates that an uncorrectable error has been detected from

ADDITIONAL FEATURES

the EFUSE controller checker or the external check enable. The NVM_IRQ bit is an accumulation interrupt status of the EFUSE controller error or with the user NVM_ECC_DET bit and the user NVM_CRC_ERR bit interrupts in the STATUS2 register (Register 0x13, Bit 5 and Bit3, respectively); a user can invoke an EFUSE refresh, an error correcting code (ECC) check, and/or a cyclic redundancy check (CRC) using NVM_CTL register (Register 0x29). A result of any errors can trigger interrupt alarm in the STATUS0 and STATUS2 registers.

An NVM error can be cleared by reading the STATUSx registers or performing a software or hardware reset.

Overrange

Two bits are related to overrange protection on the ADXL382: OVER_RANGE and OVER_RANGE_STICKY in the STATUS1 register (Register 0x12, Bit 3 and Bit 4, respectively). The OVER_RANGE bit indicates that the acceleration input is currently exceeding the overrange threshold. This bit is live and asserts and de-asserts automatically. The OVER_RANGE_STICKY bit indicates that an overrange event has occurred at some point since the last time the STATUS1 register was read. Reading the STATUS1 regis-

ter clears this bit. See the [Overrange Protection](#) section for more information about this protection and the overrange thresholds.

There are several configuration options for overrange protection (see [Table 24](#)). To disable this feature completely, set the DIS_OR_DETECTION bit in the OR_CFG register (Register 0x48, Bit 3) to 1. To disable the active overrange protection, but keep the overrange detection, set the DIS_OR_PROTECTION bit in the OR_CFG register (Register 0x48, Bit 2) to 1.

The user can also configure what happens to the data output during an overrange event as follows:

- ▶ Full-scale code with correct sign (data is railed in the same direction as the input acceleration)
- ▶ Hold previous data value before overrange event (data is frozen at the value just before the overrange event occurred)
- ▶ Do nothing to the data

Note that when using PDM communication, the data always defaults to full-scale code with the same sign as the input acceleration.

Table 24. Overrange Protection Options

Settings	Overrange Protection?	Overrange Detection?	Register Configuration
Completely Enable (Default)	Yes	Yes	Register 0x48, Bits[2:3] = 00
Completely Disable	No	No	Register 0x48, Bit 3 = 1
Detection Only	No	Yes	Register 0x48, Bit 2 = 1

LATENCY

The ADXL382 offer several options for controlling the trade-off between output noise and latency (or group delay) to accommodate a wide range of system requirements.

There are several filters that can be enabled or bypassed to optimize latency. Using a filter with a lower cutoff frequency introduces more delay to the signal chain but improves output noise. Conversely, less aggressive filtering results in more output noise but less delay. The optimal compromise between these two parameters depends on system implementation.

Figure 78 shows three different configurations to optimize latency: a default configuration, low latency + IIR1, and low latency mode. Note that Figure 78 shows the latency of the entire signal chain up to the last digital filter. When streaming data using I²S or TDM, there is also a serial port delay of up to one frame. For example, a 48 kHz FSYNC results in a serial port delay of up to 20.8 μ s.

LOW LATENCY MODE

The ADXL382 offers an option to lower latency by running the device at 768 kHz instead of 1024 kHz. This mode is only supported with the use of an external clock. Refer to the [Using an External Clock](#) section for more details, including register settings. Low latency mode allows the ODR to go up to 48 kHz. Ensure that the provided BCLK and FSYNC signals are fast enough to support this data rate (for example, BCLK = 3.072 MHz and FSYNC = 48 kHz). Low latency mode increases power consumption; however, it significantly decreases latency.

To enable this mode on the ADXL382, set the SINC_RATE bit in the TRIG_CFG register (Register 0x49, Bit 6) to b'1 and bypass the following filters: EQ, DCF, IIR7, and IIR1 (optional).

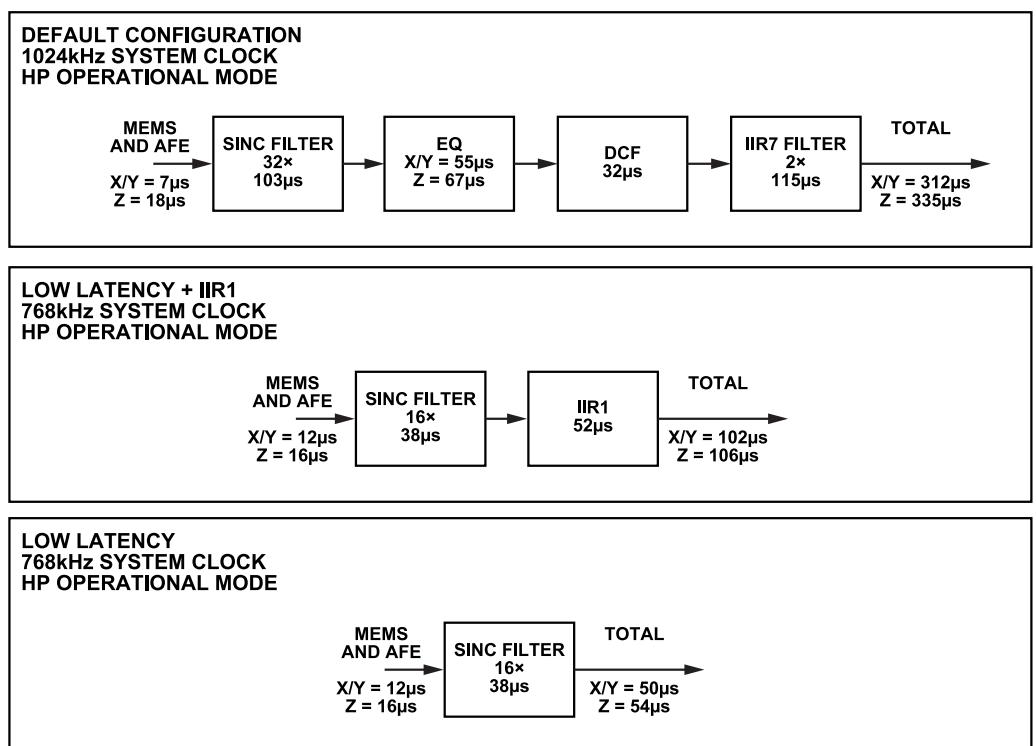


Figure 78. ADXL382 Latency vs. Filter Options

Table 25. Filter Latency in HP Mode

System Clock	MEMS and AFE (μ s)	SINC (μ s), SINC_RATE		EQ (μ s) ¹	IIR1 (μ s) ¹	LPF (μ s) ¹	DCF (μ s)	IIR7 (μ s)	HPF (μ s)
		0	1						
768 kHz	X/Y	10	70	40	X/Y	45	55	See Table 26	45
	Z	15	70	40	Z	55	55	See Table 26	45
1024 kHz	X/Y	10	100	30	X/Y	100	80	See Table 26	35
	Z	15	100	30	Z	110	80	See Table 26	35

¹ The EQ, IIR1, and LPF filters all share the same filter engine. Only one can be enabled at a time.

LATENCY

Table 26. LPF and HPF Latency in HP Mode

System Clock	LPF (μs), LPF_MODE						HPF (μs), HPF_CORNER					
	0	1	2	3	0	1	2	3	4	5	6	
768 kHz	Not applicable	60	90	170	Not applicable	2.2	0.6	0.1	0.04	0.009	0.002	
1024 kHz	Not applicable	90	135	255	Not applicable	1.7	0.4	0.1	0.03	0.007	0.002	

SERIAL COMMUNICATIONS

Table 27. SPI Write Command in Half Duplex

Command	Bit															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SDI	A6	A5	A4	A3	A2	A1	A0	0	D7	D6	D5	A4	D3	D2	D1	D0
SDO	High-Z															

Table 28. SPI Read Command in Half Duplex

Command	Bit															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SDI	A6	A5	A4	A3	A2	A1	A0	1	NE							
SDO	High-Z	D7	D6	D5	A4	D3	D2	D1	D0							

Table 29. SDO Command Bit Definitions

Bit Name	Position	Description	Definition
A[6:0]	15 ... 9	Address field	Defines the address of the register from which data is read or to which data is written.
R/W	8	Read/write bit	Differentiates the SDI command as either read or write. 1: read 0: write
D[7:0]	7 ... 0	Data field	Write command: contains data to be written to the register at the [A6:A0] bits. Read command: no function, contents are ignored.

Table 30. SDO Response Bit Definitions

Bit Name	Position	Description	Definition
High-Z[7:0]	15 ... 8	High impedance	Undriven bits.
D[7:0]	7 ... 0	Data field	This 8-bit data field contains the data from the register address in Bits[A6:A0].

SPI BUS SHARING

When using the ADXL382 on the same SPI bus as another sensor, additional protection may be needed to maintain ultralow noise performance, which is especially important if the other device uses a SPI clock of 15 MHz or greater.

REGISTER MAP

Table 31. ADXL382 Register Summary

Reg	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	R/W
0x00	DEVID_AD	[7:0]	DEVID_AD								0xAD	R
0x01	DEVID_MST	[7:0]	DEVID_MST								0x1D	R
0x02	PART_ID	[7:0]	PART_ID[11:4]								0x17	R
0x03	PART_ID_REV_ID	[7:0]	PART_ID[3:0]				REV_ID				0xE2	R
0x04	SERIAL_NUMBE_R_0	[7:0]	FAB			ASCII0[5:1]					0x00	R
0x05	SERIAL_NUMBE_R_1	[7:0]	ASCII0[0]	ASCII1					ASCII2[5]		0x00	R
0x06	SERIAL_NUMBE_R_2	[7:0]	ASCII2[4:0]					BCD[6:4]			0x00	R
0x07	SERIAL_NUMBE_R_3	[7:0]	BCD[3:0]			WAFER[4:1]					0x00	R
0x08	SERIAL_NUMBE_R_4	[7:0]	WAFER[0]	XCO							0x00	R
0x09	SERIAL_NUMBE_R_5	[7:0]	YCO					PARITY			0x00	R
0x0A	SERIAL_NUMBE_R_6	[7:0]	SN6_RESERVED								0x00	R
0x0B	DEV_DELTA_Q_X	[7:0]	DEV_DELTA_Q_X								0x00	R
0x0C	DEV_DELTA_Q_Y	[7:0]	DEV_DELTA_Q_Y								0x00	R
0x0D	DEV_DELTA_Q_Z	[7:0]	DEV_DELTA_Q_Z								0x00	R
0x0E	DEV_DELTA_F0_X	[7:0]	DEV_DELTA_F0_X								0x00	R
0x0F	DEV_DELTA_F0_Y	[7:0]	DEV_DELTA_F0_Y								0x00	R
0x10	DEV_DELTA_F0_Z	[7:0]	DEV_DELTA_F0_Z								0x00	R
0x11	STATUS0	[7:0]	NVM_BUSY_STATUS	NVM_DONE	EFUSE_BU SY_REGER R_STICKY	FIFO_READ Y	FIFO_WATE RMARK	FIFO_OVER RUN	FIFO_FULL	PARITY_ER R_STICKY	0x80	R
0x12	STATUS1	[7:0]	NVM_IRQ	INACT	ACT	OVER_RAN GE_STICKY	OVER_RAN GE	TRIPLE_TA P	DOUBLE_TA P	SINGLE_TA P	0x00	R
0x13	STATUS2	[7:0]	NVM_ECC_DONE	RESERVED	NVM_ECC_DET	NVM_CRC_DONE	NVM_CRC_ERR	RESERVED	UV_FLAG_STICKY	UV_FLAG	0x04	R
0x14	STATUS3	[7:0]	RESERVED						DATA_REA DY		0x00	R
0x15	XDATA_H	[7:0]	XDATA_H								0x00	R
0x16	XDATA_L	[7:0]	XDATA_L								0x00	R
0x17	YDATA_H	[7:0]	YDATA_H								0x00	R
0x18	YDATA_L	[7:0]	YDATA_L								0x00	R
0x19	ZDATA_H	[7:0]	ZDATA_H								0x00	R
0x1A	ZDATA_L	[7:0]	ZDATA_L								0x00	R
0x1B	TDATA_H	[7:0]	TDATA_H								0x00	R
0x1C	TDATA_L	[7:0]	TDATA_L			XSENS_DSM					0x00	R
0x1D	FIFO_DATA	[7:0]	FIFO_DATA								0x00	R
0x1E	FIFO_STATUS0	[7:0]	FIFO_ENTRIES[7:0]								0x00	R

REGISTER MAP

Table 31. ADXL382 Register Summary (Continued)

Reg	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	R/W
0x1F	FIFO_STATUS1	[7:0]	RESERVED				FIFO_ENTR IES[8]				0x00	R
0x20	MISC0	[7:0]	XL382	PARITY_REG	PARITY_ER	GAIN_SCALER_XY				0x00	R	
0x21	MISC1	[7:0]	RESERVED				GAIN_SCALER_Z				0x00	R
0x24	SENS_DSM	[7:0]	YSENS_DSM				ZSENS_DSM				0x00	R
0x25	CLK_CTRL	[7:0]	EXT_CLK_RATE				RESERVED		CLK_SRC		0x00	R/W
0x26	OP_MODE	[7:0]	RANGE		PDM_MODE	AUDIO_MODE	OP_MODE				0x00	R/W
0x27	DIG_EN	[7:0]	MODE_CHANNEL_EN				FIFO_EN	RESERVED	INT01_EVE NT	PARITY_EN	0x00	R/W
0x28	SAR_I2C	[7:0]	I2C_BYPAS S	I2C_HSM_E N	I2C_SDA_S LOW	RESERVED				DRDY_SEL	0x00	R/W
0x29	NVM_CTL	[7:0]	NVM_CTL_ECC_CHEC K	NVM_CTL_CRC_CHEC K	RESERVED				RESERVED		0x00	R/W
0x2A	REG_RESET	[7:0]	RESERVED						SOFT_RESET	RESERVED	0x00	R/W
0x2B	INT0_MAP0	[7:0]	NVM_BUSY _INT0	INACT_INT0	ACT_INT0	RESERVED	FIFO_WATE RMARK_IN TO	FIFO_OVER RUN_INTO	FIFO_FULL _INT0	DATA_RDY _INT0	0x80	R/W
0x2C	INT0_MAP1	[7:0]	NVM_DONE _INT0	NVM_IRQ_I NT0	UV_FLAG_I NT0	OVER_RAN GE_INT0	PARITY_ER R_INT0	TRIPLE_TA P_INT0	DOUBLE_TA P_INT0	SINGLE_TA P_INT0	0x00	R/W
0x2D	INT1_MAP0	[7:0]	NVM_BUSY _INT1	INACT_INT1	ACT_INT1	RESERVED	FIFO_WATE RMARK_IN T1	FIFO_OVER RUN_INT1	FIFO_FULL _INT1	DATA_RDY _INT1	0x00	R/W
0x2E	INT1_MAP1	[7:0]	NVM_DONE _INT1	NVM_IRQ_I NT1	UV_FLAG_I NT1	OVER_RAN GE_INT1	PARITY_ER R_INT1	TRIPLE_TA P_INT1	DOUBLE_TA P_INT1	SINGLE_TA P_INT1	0x80	R/W
0x30	FIFO_CFG0	[7:0]	FIFO_READ _RESET	FIFO_CH_I D	FIFO_MODE		FIFO_EXT_ TRIG	RESERVED		FIFO_SAMP LES[8]	0x00	R/W
0x31	FIFO_CFG1	[7:0]	FIFO_SAMPLES[7:0]								0x00	R/W
0x32	SPT_CFG0	[7:0]	SPT_SLOT_WIDTH		SPT_BCLK_ POL	SPT_FSYN C_POL	SPT_FSYN C_MODE	SPT_DATA_FORMAT			0x00	R/W
0x33	SPT_CFG1	[7:0]	SPT_XTRA_ SAMP	SPT_TRI_S TATE	SPT_Y_SLOT			SPT_X_SLOT			0x08	R/W
0x34	SPT_CFG2	[7:0]	SPT_SOUT_ SEL	SPT_DUAL_ MODE	SPT_TEMP_SLOT			SPT_Z_SLOT			0x1A	R/W
0x35	SYNC_CFG	[7:0]	RESERVED	SYNC_SRC	SYNC_MODE		BCLK_SRC	FSYNC_SRC		0x00	R/W	
0x36	PDM_CFG	[7:0]	PDM_FSYNC_SLOTB		PDM_FSYNC_SLOTA	PDM_SOUT0_SLOTB		PDM_SOUT0_SLOTA	PDM_SOUT0_SLOTA		0x00	R/W
0x37	ACT_INACT_CT L	[7:0]	PDM_POL	ACT_INACT _HPF	LINKLOOP		INACT_EN	ACT_EN		0x00	R/W	
0x38	SNSR_AXIS_EN	[7:0]	ST_MODE	ST_FORCE	ST_DIR	RESERVED		ACT_INACT_AXIS_EN			0x00	R/W
0x39	THRESH_ACT_H	[7:0]	RESERVED				THRESH_ACT[10:8]				0x00	R/W
0x3A	THRESH_ACT_L	[7:0]	THRESH_ACT[7:0]						THRESH_ACT[7:0]		0x00	R/W
0x3B	TIME_ACT_H	[7:0]	TIME_ACT[23:16]						TIME_ACT[23:16]		0x00	R/W
0x3C	TIME_ACT_M	[7:0]	TIME_ACT[15:8]						TIME_ACT[15:8]		0x00	R/W
0x3D	TIME_ACT_L	[7:0]	TIME_ACT[7:0]						TIME_ACT[7:0]		0x00	R/W
0x3E	THRESH_INACT _H	[7:0]	RESERVED				THRESH_INACT[10:8]				0x00	R/W
0x3F	THRESH_INACT _L	[7:0]	THRESH_INACT[7:0]						THRESH_INACT[7:0]		0x00	R/W

REGISTER MAP

Table 31. ADXL382 Register Summary (Continued)

Reg	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	R/W
0x40	TIME_INACT_H	[7:0]									0x00	R/W
0x41	TIME_INACT_M	[7:0]									0x00	R/W
0x42	TIME_INACT_L	[7:0]									0x00	R/W
0x43	TAP_THRESH	[7:0]									0x00	R/W
0x44	TAP_DUR	[7:0]									0x00	R/W
0x45	TAP_LATENT	[7:0]									0x00	R/W
0x46	TAP_WINDOW	[7:0]									0x00	R/W
0x47	TAP_CFG	[7:0]									0x00	R/W
0x48	OR_CFG	[7:0]									0x00	R/W
0x49	TRIG_CFG	[7:0]	DEC_2X_BYPASS	SINC_RATE	IIR1_EN						0x00	R/W
0x4A	X_SAR_OFFSET	[7:0]									0x00	R/W
0x4B	Y_SAR_OFFSET	[7:0]									0x00	R/W
0x4C	Z_SAR_OFFSET	[7:0]									0x00	R/W
0x4D	X_DSM_OFFSET	[7:0]									0x00	R/W
0x4E	Y_DSM_OFFSET	[7:0]									0x00	R/W
0x4F	Z_DSM_OFFSET	[7:0]									0x00	R/W
0x50	FILTER	[7:0]	DCF_BYPASS	EQ_BYPASS		LPF_MODE	HPF_PATH				0x00	R/W
0x55	USER_TEMP_SENS_0	[7:0]									0x00	R/W
0x56	USER_TEMP_SENS_1	[7:0]	USER_TEMP_TRIM_EN	HIGH_GAIN_TEMP		RESERVED					0x00	R/W
0x58	MISO	[7:0]	RESERVED	GAIN_SCALER_BYPASS							0x00	R/W
0x59	SOUT0	[7:0]									0x00	R/W
0x5A	MCLK	[7:0]									0x00	R/W
0x5B	BCLK	[7:0]									0x00	R/W
0x5C	FSYNC	[7:0]	SYNC_RESET								0x00	R/W
0x5D	INT0	[7:0]	INT0_POL								0x00	R/W
0x5E	INT1	[7:0]	INT1_POL								0x00	R/W

ANALOG DEVICES DEVICE ID REGISTER

Address: 0x00, Reset: 0xAD, Name: DEVID_AD

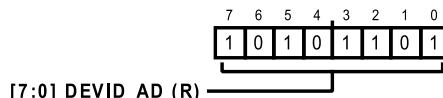


Table 32. Bit Descriptions for DEVID_AD

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	DEVID_AD		This register contains the Analog Devices device ID.	0xAD	R

REGISTER MAP

ANALOG DEVICES MEMS DEVICE ID REGISTER

Address: 0x01, Reset: 0x1D, Name: DEVID_MST

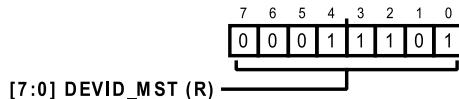


Table 33. Bit Descriptions for DEVID_MST

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	DEVID_MST		This register contains the Analog Devices MEMS device ID.	0x1D	R

PART ID REGISTER

Address: 0x02, Reset: 0x17, Name: PART_ID

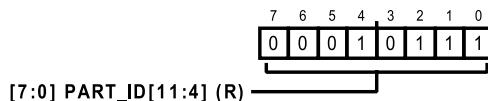


Table 34. Bit Descriptions for PART_ID

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	PART_ID[11:4]		This register contains the device ID (382 = 17E in hex).	0x17	R

PART ID AND REVISION ID REGISTER

Address: 0x03, Reset: 0xE2, Name: PART_ID_REV_ID

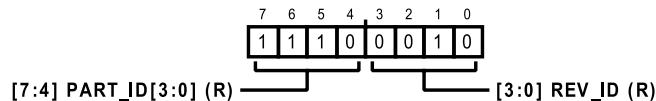


Table 35. Bit Descriptions for PART_ID_REV_ID

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	PART_ID[3:0]		This register contains the device ID (382 = 17E in hex).	0xE	R
[3:0]	REV_ID		This register contains the product revision ID.	0x2	R

SERIAL NUMBER 0 REGISTER

Address: 0x04, Reset: 0x00, Name: SERIAL_NUMBER_0

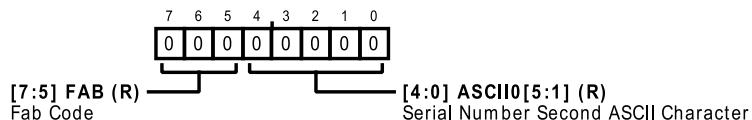


Table 36. Bit Descriptions for SERIAL_NUMBER_0

Bits	Bit Name	Settings	Description	Reset	Access
[7:5]	FAB		Fab Code. This register is part of a 56-bit product serial number. The fab code is an upper case alphabetic character that represents the wafer fabrication facility. Four binary bits are used to support up to 8 wafer fabrication facilities, the fourth bit is always 0. 0b0000 = A = TSMC-Fab 8. 0b0001 = B = TSMC-Fab 3. All other codes are undefined.	0x0	R
[4:0]	ASCII0[5:1]		Serial Number Second ASCII Character. This register is part of a 56-bit product serial number. An upper case A through Z alphabetic character or 0 through 9 numeric character is represented by a 6-bit binary field. Coding starts at 0b000000 = 0 up to 0b001001 = 9, 0b001010 = A up to 0b100011 = Z, and 0b100100 to 0b111111 are not used.	0x0	R

REGISTER MAP

SERIAL NUMBER 1 REGISTER

Address: 0x05, Reset: 0x00, Name: SERIAL_NUMBER_1

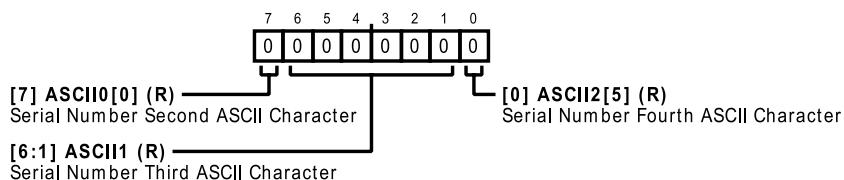


Table 37. Bit Descriptions for SERIAL_NUMBER_1

Bits	Bit Name	Settings	Description	Reset	Access
7	ASCII0[0]		Serial Number Second ASCII Character. This register is part of a 56-bit product serial number. An upper case A through Z alphabetic character or 0 through 9 numeric character is represented by a 6-bit binary field. Coding starts at 0b000000 = 0 up to 0b001001 = 9, 0b001010 = A up to 0b100011 = Z, and 0b100100 to 0b111111 are not used.	0x0	R
[6:1]	ASCII1		Serial Number Third ASCII Character. This register is part of a 56-bit product serial number. An upper case A through Z alphabetic character or 0 through 9 numeric character is represented by a 6-bit binary field. Coding starts at 0b000000 = 0 up to 0b001001 = 9, 0b001010 = A up to 0b100011 = Z, and 0b100100 to 0b111111 are not used.	0x0	R
0	ASCII2[5]		Serial Number Fourth ASCII Character. This register is part of a 56-bit product serial number. An upper case A through Z alphabetic character or 0 through 9 numeric character is represented by a 6-bit binary field. Coding starts at 0b000000 = 0 up to 0b001001 = 9, 0b001010 = A up to 0b100011 = Z, and 0b100100 to 0b111111 are not used.	0x0	R

SERIAL NUMBER 2 REGISTER

Address: 0x06, Reset: 0x00, Name: SERIAL_NUMBER_2

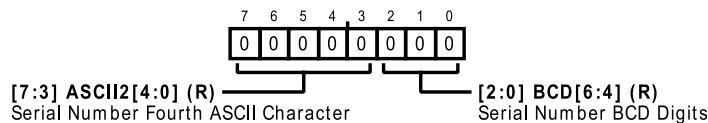
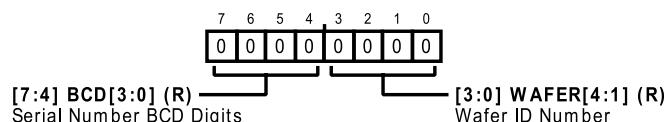



Table 38. Bit Descriptions for SERIAL_NUMBER_2

Bits	Bit Name	Settings	Description	Reset	Access
[7:3]	ASCII2[4:0]		Serial Number Fourth ASCII Character. This register is part of a 56-bit product serial number. An upper case A through Z alphabetic character or 0 through 9 numeric character is represented by a 6-bit binary field. Coding starts at 0b000000 = 0 up to 0b001001 = 9, 0b001010 = A up to 0b100011 = Z, and 0b100100 to 0b111111 are not used.	0x0	R
[2:0]	BCD[6:4]		Serial Number BCD Digits. This register is part of a 56-bit product serial number. This field represents a three-digit decimal number. All three digits are treated as one decimal number having a range of 000 to 999 using a 10-bit binary field. All numbers are padded to the left by zeroes in the event that the three-digit number is less than Decimal 100.	0x0	R

SERIAL NUMBER 3 REGISTER

Address: 0x07, Reset: 0x00, Name: SERIAL_NUMBER_3

REGISTER MAP

Table 39. Bit Descriptions for SERIAL_NUMBER_3

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	BCD[3:0]		Serial Number BCD Digits. This register is part of a 56-bit product serial number. This field represents a three-digit decimal number. All three digits are treated as one decimal number having a range of 000 to 999 using a 10-bit binary field. All numbers are padded to the left by zeroes in the event that the three-digit number is less than Decimal 100.	0x0	R
[3:0]	WAFER[4:1]		Wafer ID Number. This register is part of a 56-bit product serial number. It is a 1 through 31 decimal number. A 5-bit binary value is used to support this field. Wafer Number 0 is not supported.	0x0	R

SERIAL NUMBER 4 REGISTER

Address: 0x08, Reset: 0x00, Name: SERIAL_NUMBER_4

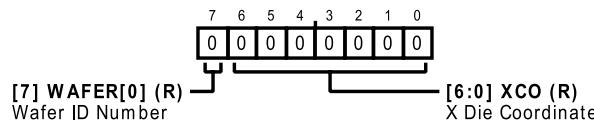


Table 40. Bit Descriptions for SERIAL_NUMBER_4

Bits	Bit Name	Settings	Description	Reset	Access
7	WAFER[0]		Wafer ID Number. This register is part of a 56-bit product serial number. It is a 1 through 31 decimal number. A 5-bit binary value is used to support this field. Wafer Number 0 is not supported.	0x0	R
[6:0]	XCO		X Die Coordinate. This register is part of a 56-bit product serial number. It is the XCO[8:2] X die coordinate, and has nine bits for Integer -256 to Integer +256.	0x0	R

SERIAL NUMBER 5 REGISTER

Address: 0x09, Reset: 0x00, Name: SERIAL_NUMBER_5

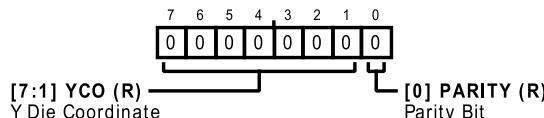


Table 41. Bit Descriptions for SERIAL_NUMBER_5

Bits	Bit Name	Settings	Description	Reset	Access
[7:1]	YCO		Y Die Coordinate. This register is part of a 56-bit product serial number.	0x0	R
0	PARITY		Parity Bit. This register is part of a 56-bit product serial number.	0x0	R

SERIAL NUMBER 6 REGISTER

Address: 0x0A, Reset: 0x00, Name: SERIAL_NUMBER_6

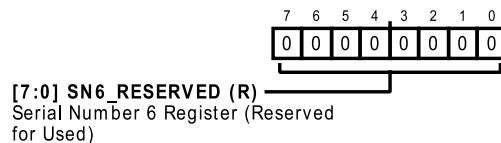


Table 42. Bit Descriptions for SERIAL_NUMBER_6

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	SN6_RESERVED		Serial Number 6 Register (Reserved for Used). This register is part of a 56-bit product serial number. [7:5] = YCO[2:0] = Y Die Coordinate. It has nine bits for Integer -256 to Integer +256. [3:0] = CRC[3:0] = 4 bit CRC for the content of the 51-bit serial number value.	0x0	R

REGISTER MAP

DEVICE SENSOR PARAMETER REGISTERS

Address: 0x0B, Reset: 0x00, Name: DEV_DELTA_Q_X

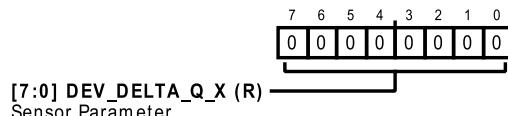


Table 43. Bit Descriptions for DEV_DELTA_Q_X

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	DEV_DELTA_Q_X		Sensor Parameter. Deviation of X sensor quality factor from the nominal value. Data in two's complement format. Resolution = 0.005. The sensor quality factor at ambient temperature can be calculated by $Q_{XL382} = Q_{NOMINAL} + 0.005 \times DEV_DELTA_Q$.	0x0	R

Address: 0x0C, Reset: 0x00, Name: DEV_DELTA_Q_Y

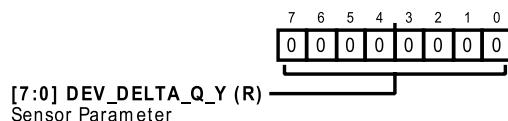


Table 44. Bit Descriptions for DEV_DELTA_Q_Y

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	DEV_DELTA_Q_Y		Sensor Parameter. Deviation of Y sensor quality factor from the nominal value. Data in two's complement format. Resolution = 0.005. The sensor quality factor at ambient temperature can be calculated by $Q_{XL382} = Q_{NOMINAL} + 0.005 \times DEV_DELTA_Q$.	0x0	R

Address: 0x0D, Reset: 0x00, Name: DEV_DELTA_Q_Z

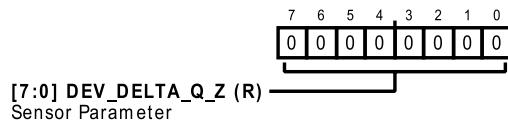


Table 45. Bit Descriptions for DEV_DELTA_Q_Z

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	DEV_DELTA_Q_Z		Sensor Parameter. Deviation of Z sensor quality factor from the nominal value. Data in two's complement format. Resolution = 0.004. The sensor quality factor at ambient temperature can be calculated by $Q_{XL382} = Q_{NOMINAL} + 0.004 \times DEV_DELTA_Q$.	0x0	R

Address: 0x0E, Reset: 0x00, Name: DEV_DELTA_F0_X

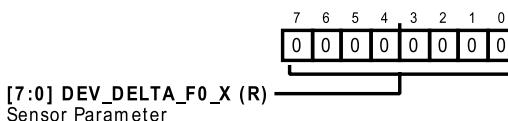


Table 46. Bit Descriptions for DEV_DELTA_F0_X

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	DEV_DELTA_F0_X		Sensor Parameter. Deviation of X sensor resonant frequency from the nominal value. Data in two's complement format. Resolution = 15 Hz. Refer to Table 1 for the Nominal F0 value. The sensor resonant frequency can be calculated by $F0_{XL382} (\text{Hz}) = F0_{NOMINAL} (\text{Hz}) + 15 \text{ Hz} \times DEV_DELTA_F0$.	0x0	R

REGISTER MAP

Address: 0x0F, Reset: 0x00, Name: DEV_DELTA_F0_Y

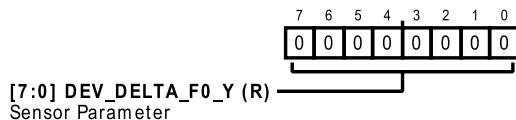


Table 47. Bit Descriptions for DEV_DELTA_F0_Y

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	DEV_DELTA_F0_Y		Sensor Parameter. Deviation of Y sensor resonant frequency from the nominal value. Data in two's complement format. Resolution = 15 Hz. Refer to Table 1 for the Nominal F0 value. The sensor resonant frequency can be calculated by $F0_{XL382} \text{ (Hz)} = F0_{NOMINAL} \text{ (Hz)} + 15 \text{ Hz} \times \text{DEV_DELTA_F0}$.	0x0	R

Address: 0x10, Reset: 0x00, Name: DEV_DELTA_F0_Z

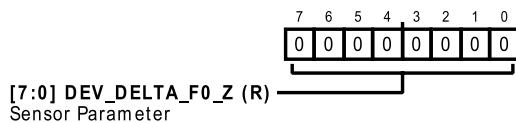


Table 48. Bit Descriptions for DEV_DELTA_F0_Z

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	DEV_DELTA_F0_Z		Sensor Parameter. Deviation of Z sensor resonant frequency from the nominal value. Data in two's complement format. Resolution = 10 Hz. Refer to Table 1 for the Nominal F0 value. The sensor resonant frequency can be calculated by $F0_{XL382} \text{ (Hz)} = F0_{NOMINAL} \text{ (Hz)} + 10 \text{ Hz} \times \text{DEV_DELTA_F0}$.	0x0	R

STATUS 0 REGISTER (CLEAR ON READ)

Address: 0x11, Reset: 0x80, Name: STATUS0

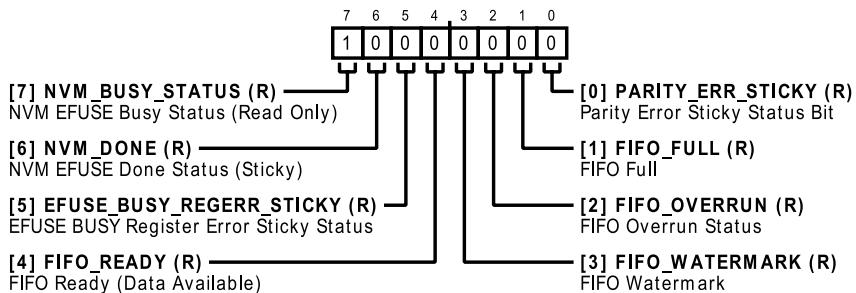


Table 49. Bit Descriptions for STATUS0

Bits	Bit Name	Settings	Description	Reset	Access
7	NVM_BUSY_STATUS		NVM EFUSE Busy Status (Read Only). When power-on-reset (POR) or a soft reset occurs, EFUSE is refreshed, which takes about 2.2 ms. When this refresh occurs, EFUSE is busy during refresh right after power is stable. The NVM_BUSY_STATUS bit is high (default) right out of POR or soft reset. It remains high until EFUSE refresh is complete. Once EFUSE refresh is completed, this bit is clear. The NVM_EFUSE_BUSY bit can be monitored at the INT0 pin out of reset. NVM_BUSY_STATUS is set again (default) during POR and soft reset.	0x1	R
6	NVM_DONE		NVM EFUSE Done Status (Sticky). When POR or a soft reset occurs, EFUSE is refreshed which takes about 2.2 ms. When this is completed, it clears NVM_BUSY_STATUS to 0 and sets NVM_DONE to 1. Default value at POR is 1'b0. This NVM_DONE register bit is clear on read.	0x0	R

REGISTER MAP

Table 49. Bit Descriptions for STATUS0 (Continued)

Bits	Bit Name	Settings	Description	Reset	Access
5	EFUSE_BUSY_REGERR_STICKY		EFUSE BUSY Register Error Sticky Status. When register write occurs during EFUSE_BUSY = 1, an alarm triggers and reports sticky status.	0x0	R
4	FIFO_READY		FIFO Ready (Data Available). 1 indicates that there is at least one sample available in the FIFO output buffer.	0x0	R
3	FIFO_WATERMARK		FIFO Watermark. 1 indicates that the FIFO contains at least the desired number of samples, as set in the FIFO_SAMPLES register. FIFO_WATERMARK is asserted when the next sample (above the value) is written to the FIFO. FIFO_WATERMARK behaves like an interrupt event which contributes to an interrupt output. It clears on read. If using SPI for the FIFO data read, the CS line must be deasserted as well to clear the FIFO_WATERMARK bit and interrupt (if mapped to an interrupt pin).	0x0	R
2	FIFO_OVERRUN		FIFO Overrun Status. In FIFO stream and trigger mode, the assertion of FIFO_OVERRUN indicates FIFO contents are overwritten with most updated motion or thermal sensor data. FIFO read pointer is advanced to first axis of oldest sample set in the FIFO. The first time read after FIFO_OVERRUN assertion always returns the first axis data of the sample set. FIFO_OVERRUN is not specified in FIFO normal mode.	0x0	R
1	FIFO_FULL		FIFO Full. FIFO_FULL is set when the FIFO collects 320 samples (or 318 samples if exactly three channels are enabled).	0x0	R
0	PARITY_ERR_STICKY		Parity Error Sticky Status Bit. This bit can be trigger high by a Parity Error Event 0 → 1 or a parity error to its live status (PARITY_ERR) trigger. (The INT01_EVENT register bit can be used, and the default is to a live status trigger.) A single register read clears the parity error sticky bit.	0x0	R

STATUS 1 REGISTER (CLEAR ON READ)

Address: 0x12, Reset: 0x00, Name: STATUS1

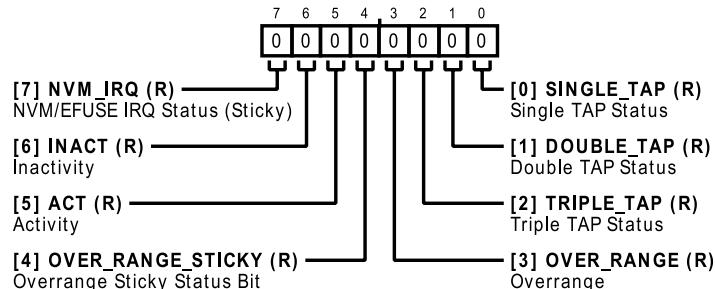


Table 50. Bit Descriptions for STATUS1

Bits	Bit Name	Settings	Description	Reset	Access
7	NVM_IRQ		NVM/EFUSE IRQ Status (Sticky). When uncorrectable error is detected from either EFUSE controller checker or external check enable, this bit is set. The NVM_IRQ register is an accumulation interrupt status of the EFUSE controller error or with User NVM_ECC_DET and User NVM_CRC_ERR interrupts. (A user can invoke an EFUSE refresh, an ECC check, and/or a CRC check using the NVM_CTL register.) A result of any errors can trigger an interrupt alarm in the STATUS0 and STATUS2 registers.	0x0	R
6	INACT		Inactivity. 1 indicates that the inactivity detection function has detected inactivity.	0x0	R
5	ACT		Activity. 1 indicates that the activity detection function has detected an over threshold condition.	0x0	R
4	OVER_RANGE_STICKY		Overrange Sticky Status Bit. Indicates that the acceleration input has exceeded the overrange threshold. The bit is sticky. (The INT01_EVENT register bit can be used,	0x0	R

REGISTER MAP

Table 50. Bit Descriptions for STATUS1 (Continued)

Bits	Bit Name	Settings	Description	Reset	Access
			and the default is a live status trigger.) A single register read clears the overrange sticky bit.		
3	OVER_RANGE		Overrange. Indicates that the current acceleration input exceeds the overrange threshold. Overrange detection can be disable by enabling the DIS_OR_DETECTION register bit.	0x0	R
2	TRIPLE_TAP		Triple TAP Status. The TRIPLE_TAP bit is set when TRIPLE_TAP_EN is set and three acceleration events that are greater than the value in the TAP_THRESH register occur for less time than is specified in the TAP_DUR register. The third tap starts after the time specified by the TAP_LATENT register plus the 2.5 ms settling time but within the time specified in the TAP_WINDOW register after the double tap is valid.	0x0	R
1	DOUBLE_TAP		Double TAP Status. The DOUBLE_TAP is set when TAP_WINDOW and TAP_LATENT is greater than 0 and two acceleration events that are greater than the value in the TAP_THRESH register occur for less time than is specified in the TAP_DUR register. The second tap starts after the time specified by the TAP_LATENT register plus TAP settling time of 2.5 ms but within the time specified in the TAP_WINDOW register	0x0	R
0	SINGLE_TAP		Single TAP Status. The SINGLE_TAP bit is set when a single acceleration event that is greater than the value in the TAP_THRESH register occurs for less time than is specified in the TAP_DUR register.	0x0	R

STATUS 2 REGISTER (CLEAR ON READ)

Address: 0x13, Reset: 0x04, Name: STATUS2

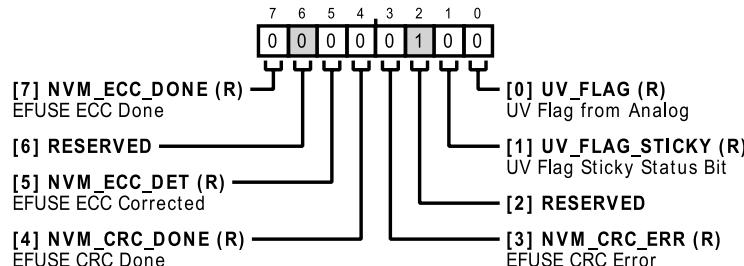


Table 51. Bit Descriptions for STATUS2

Bits	Bit Name	Settings	Description	Reset	Access
7	NVM_ECC_DONE		EFUSE ECC Done. When the NVM ECC done status bit is set high, it indicates that the NVM controller has completed the ECC check request. Disabling the NVM_CTL_ECC_CHECK bit in Register NVM_CTL, clears the NVM_ECC_DONE bit.	0x0	R
6	RESERVED		Reserved.	0x0	R
5	NVM_ECC_DET		EFUSE ECC Corrected. When the NVM ECC detect status bit is set high, it indicates that the NVM controller has detected two single event upset (SEU) events, which is uncorrectable. In the event that the ECC error is detected with two SEU events, refresh the shadow registers by using the SOFT_RESET bit (Register REG_RESET). After a SOFT_RESET event, the NVM_ECC_DET is clear.	0x0	R
4	NVM_CRC_DONE		EFUSE CRC Done. When the NVM CRC done status bit is set high, it indicates that the NVM controller has completed the CRC check request. A clear of the NVM_CTL_CRC_CHECK bit (Register NVM_CTL), clears the NVM_CRC_DONE bit.	0x0	R
3	NVM_CRC_ERR		EFUSE CRC Error. When the NVM CRC error status bit is set high, it indicates that the NVM controller completed the CRC check with a CRC error event (an error syndrome was found).	0x0	R
2	RESERVED		Reserved.	0x1	R

REGISTER MAP

Table 51. Bit Descriptions for STATUS2 (Continued)

Bits	Bit Name	Settings	Description	Reset	Access
1	UV_FLAG_STICKY		UV Flag Sticky Status Bit. The flag high indicating that a prebrownout event (the V_{1P8} pin voltage falls to less than 1.5 V but still above the POR trigger point) has happened. (The INT01_EVENT register bit can be used, and the default is a live status trigger.) A single register read clears the undervoltage sticky bit. The UV flag detect can be disable by enabling the DIS_UV_DET bit (Register OR_CFG). The V_{1P8} pin (voltage) is the power supply voltage that is supplied to the core analog and digital circuitry (non-IO portion of the chip), nominally 1.8 V and always observable at the V_{1P8} pin. In regulator mode, it is regulated down from the voltage supply. In overdrive mode, the 1.8 V core supply voltage is directly supplied by the V_{1P8} pin.	0x0	R
0	UV_FLAG		UV Flag from Analog. This bit is the UV flag status bit. When the undervoltage detector is enabled, a live status flag is alarmed during a prebrownout event (the V_{1P8} pin voltage falls to less than 1.5 V; however, it is still more than the POR trigger point). The UV detector feature can be disabled through the DIS_UV_DET bit.	0x0	R

STATUS 3 REGISTER (CLEAR ON READ)

Address: 0x14, Reset: 0x00, Name: STATUS3

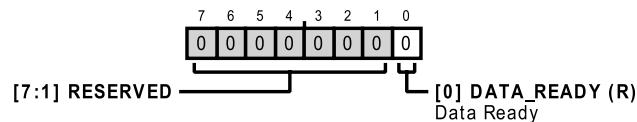


Table 52. Bit Descriptions for STATUS3

Bits	Bit Name	Settings	Description	Reset	Access
[7:1]	RESERVED		Reserved.	0x0	R
0	DATA_READY		Data Ready. 1 indicates that a new valid sample is available to be read. This bit clears when a data read is performed. DATA_READY is set again when new valid data is available; if DATA_READY = 0 prior to a register read and new data becomes available after a complete sample is read. During the old sample register read, DATA_READY is set to 1 to indicate a new sample has arrived until the first byte of the new sample is read. If DATA_READY = 1 prior to a register read, but a newer sample has arrived, the newest sample is provided, and it is cleared at the start of the newest register read. The prior new data is discarded silently. When the read is complete, DATA_READY is cleared to 0. DATA_READY is also available at an external pin (S_{OUT}) if the DRDY_SEL bit (Register SAR_I2C) is set to 1. DATA_READY is also available to contribute to an external output (INT0 or INT1) if the DATA_RDY_INT0 bit (Register INT0_MAP0) or the DATA_RDY_INT1 bit (Register INT1_MAP0) are set high.	0x0	R

X AXIS DATA OUTPUT READ (HIGH BYTE, BITS[15:8]) REGISTER

Address: 0x15, Reset: 0x00, Name: XDATA_H

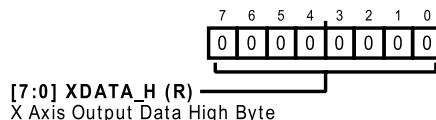


Table 53. Bit Descriptions for XDATA_H

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	XDATA_H		X Axis Output Data High Byte. Resolution determined by dynamic range setting (see the Sensitivity specification in Table 1). When using the VLP, ULP, or HS modes, the four LSBs in this register are always zero because these modes use a 12-bit SAR.	0x0	R

REGISTER MAP

X AXIS DATA OUTPUT READ (LOW BYTE, BITS[7:0]) REGISTER

Address: 0x16, Reset: 0x00, Name: XDATA_L

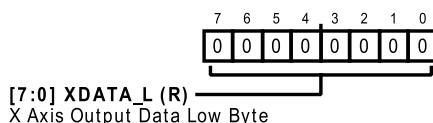


Table 54. Bit Descriptions for XDATA_L

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	XDATA_L		X Axis Output Data Low Byte. Resolution determined by dynamic range setting (see the Sensitivity specification in Table 1). When using the VLP, ULP, or HS modes, the four LSBs in this register are always zero because these modes use a 12-bit SAR.	0x0	R

Y AXIS DATA OUTPUT READ (HIGH BYTE, BITS[15:8]) REGISTER

Address: 0x17, Reset: 0x00, Name: YDATA_H

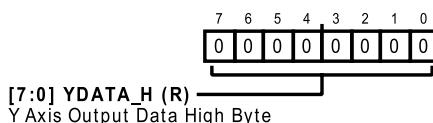


Table 55. Bit Descriptions for YDATA_H

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	YDATA_H		Y Axis Output Data High Byte. Resolution determined by dynamic range setting (see the Sensitivity specification in Table 1). When using the VLP, ULP, or HS modes, the four LSBs in this register are always zero because these modes use a 12-bit SAR.	0x0	R

Y AXIS DATA OUTPUT READ (LOW BYTE, BITS[7:0]) REGISTER

Address: 0x18, Reset: 0x00, Name: YDATA_L

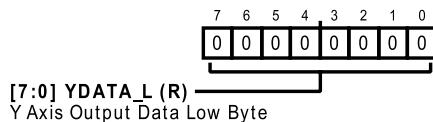
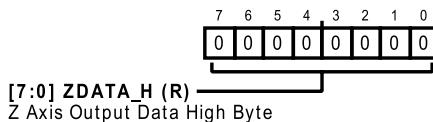



Table 56. Bit Descriptions for YDATA_L

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	YDATA_L		Y Axis Output Data Low Byte. Resolution determined by dynamic range setting (see the Sensitivity specification in Table 1). When using the VLP, ULP, or HS modes, the four LSBs in this register are always zero because these modes use a 12-bit SAR.	0x0	R

Z AXIS DATA OUTPUT READ (HIGH BYTE, BITS[15:8]) REGISTER

Address: 0x19, Reset: 0x00, Name: ZDATA_H

REGISTER MAP

Table 57. Bit Descriptions for ZDATA_H

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	ZDATA_H		Z Axis Output Data High Byte. Resolution determined by dynamic range setting (see the Sensitivity specification in Table 1). When using the VLP, ULP, or HS modes, the four LSBs in this register are always zero because these modes use a 12-bit SAR.	0x0	R

Z AXIS DATA OUTPUT READ (LOW BYTE, BITS[7:0]) REGISTER

Address: 0x1A, Reset: 0x00, Name: ZDATA_L

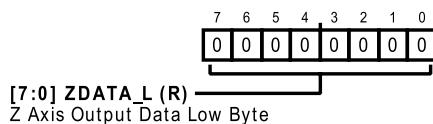


Table 58. Bit Descriptions for ZDATA_L

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	ZDATA_L		Z Axis Output Data Low Byte. Resolution determined by dynamic range setting (see the Sensitivity specification in Table 1). When using the VLP, ULP, or HS modes, the four LSBs in this register are always zero because these modes use a 12-bit SAR.	0x0	R

TEMPERATURE DATA OUTPUT READ (HIGH BYTE) REGISTER

Address: 0x1B, Reset: 0x00, Name: TDATA_H

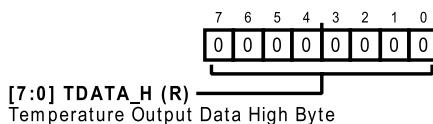


Table 59. Bit Descriptions for TDATA_H

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	TDATA_H		Temperature Output Data High Byte. Temperature sensor sensitivity for HIGH_GAIN_TEMP (Register USER_TEMP_SENS_1) = 0 is 10.2 LSB/°C and for HIGH_GAIN_TEMP = 1 is 16.5 LSB/°C.	0x0	R

TEMPERATURE DATA OUTPUT READ (LOW BYTE) AND SENSOR DSM REGISTER

Address: 0x1C, Reset: 0x00, Name: TDATA_L

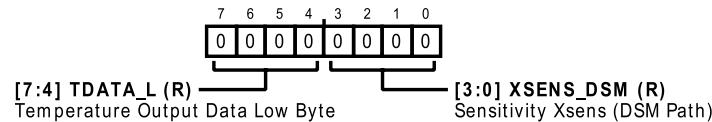


Table 60. Bit Descriptions for TDATA_L

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	TDATA_L		Temperature Output Data Low Byte. Temperature sensor sensitivity for HIGH_GAIN_TEMP (Register USER_TEMP_SENS_1) = 0 is 10.2 LSB/°C and for HIGH_GAIN_TEMP = 1 is 16.5 LSB/°C.	0x0	R
[3:0]	XSENS_DSM		Sensitivity Xsens (DSM Path). Read-only X-axis digital sensitivity (fine) trim for low noise signal path (HP, LP, or RBW mode). Data is in unsigned format. This sensitivity trim value is digitally multiplied with the signal path output, and the result is truncated by removing seven LSBs (/128) and then adding them back to the signal path. In PDM mode, this digital fine trim is not applied; therefore, the user must read back this value and apply the same digital multiplication and truncation to the PDM output.	0x0	R

REGISTER MAP

FIFO READ DATA (FROM FIFO BLOCK) REGISTER

Address: 0x1D, Reset: 0x00, Name: FIFO_DATA

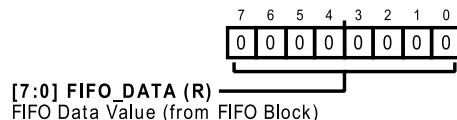


Table 61. Bit Descriptions for FIFO_DATA

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	FIFO_DATA		FIFO Data Value (from FIFO Block). When enabled, data can be stored in the FIFO. When reading the FIFO_DATA register, the data of each axes is provided in 16-bit signed numbers.	0x0	R

FIFO STATUS REGISTERS

Address: 0x1E, Reset: 0x00, Name: FIFO_STATUS0

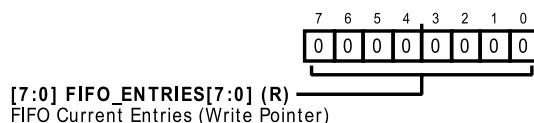


Table 62. Bit Descriptions for FIFO_STATUS0

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	FIFO_ENTRIES[7:0]		FIFO Current Entries (Write Pointer). FIFO_ENTRIES track the number of entries that the FIFO controller wrote into the FIFO memory. Users read FIFO_ENTRIES to know how many FIFO entries they must read to not overrun the FIFO write pointer.	0x0	R

Address: 0x1F, Reset: 0x00, Name: FIFO_STATUS1

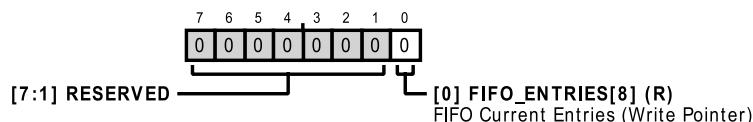
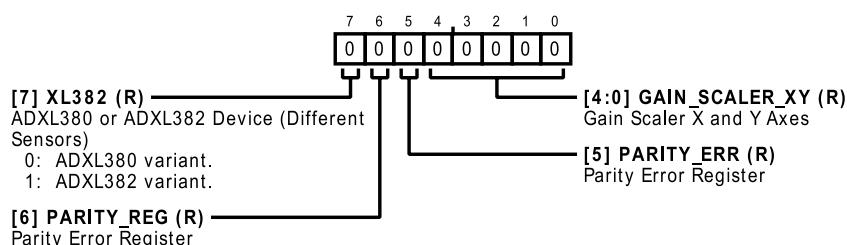



Table 63. Bit Descriptions for FIFO_STATUS1

Bits	Bit Name	Settings	Description	Reset	Access
[7:1]	RESERVED		Reserved.	0x0	R
0	FIFO_ENTRIES[8]		FIFO Current Entries (Write Pointer). FIFO_ENTRIES track the number of entries that the FIFO controller wrote into the FIFO memory. Users read FIFO_ENTRIES to know how many FIFO entries they must read to not overrun the FIFO write pointer.	0x0	R

MISCELLANEOUS 0 (READ ONLY) REGISTER

Address: 0x20, Reset: 0x00, Name: MISC0

REGISTER MAP

Table 64. Bit Descriptions for MISC0

Bits	Bit Name	Settings	Description	Reset	Access
7	XL382	0 1	ADXL380 or ADXL382 Device (Different Sensors). When set, the device indicates the ADXL382 revision. ADXL380 variant. ADXL382 variant.	0x0	R
6	PARITY_REG		Parity Error Register. When the calculated parity value is not matched against the stored calculated parity value, a register of the parity error is set and remains set until the device is reset or until a register write occurs. The chip generates a start signal periodically if the parity check is enabled by the user.	0x0	R
5	PARITY_ERR		Parity Error Register. When the calculated parity value is not matched against the stored calculated parity value, this register of the parity error is set and remains set until the device is reset or until a register write occurs.	0x0	R
[4:0]	GAIN_SCALER_XY		Gain Scaler X and Y Axes. These bits are the Trim Gain Scaler X and Trim Gain Scaler Y axes values. The gain value is calculated by the register value/4. For example, setting these bits to a value of four represents a gain of 1.	0x0	R

MISCELLANEOUS 1 (READ ONLY) REGISTER

Address: 0x21, Reset: 0x00, Name: MISC1

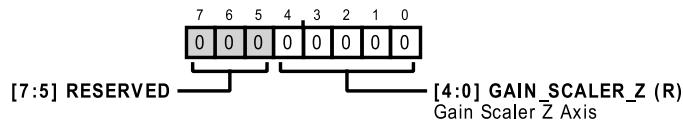


Table 65. Bit Descriptions for MISC1

Bits	Bit Name	Settings	Description	Reset	Access
[7:5]	RESERVED		Reserved.	0x0	R
[4:0]	GAIN_SCALER_Z		Gain Scaler Z Axis. These bits are the Trim Gain Scaler Z axis value. The gain value is calculated by the register value/4. For example, setting these bits to a value of four represents a gain of 1.	0x0	R

SENSOR DSM REGISTER

Address: 0x24, Reset: 0x00, Name: SENS_DSM

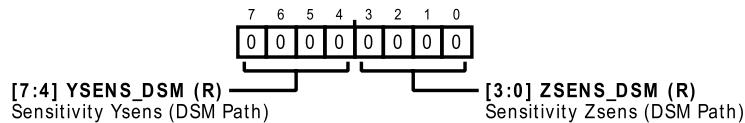


Table 66. Bit Descriptions for SENS_DSM

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	YSENS_DSM		Sensitivity Ysens (DSM Path). Read-only Y-axis digital sensitivity (fine) trim for low noise signal path (HP, LP, or RBW mode). Data is in unsigned format. This sensitivity trim value is digitally multiplied with the signal path output, and the result is truncated by removing seven LSBs (/128) and then adding them back to the signal path. In PDM mode, this digital fine trim is not applied; therefore, the user must read back this value and apply the same digital multiplication and truncation to the PDM output.	0x0	R
[3:0]	ZSENS_DSM		Sensitivity Zsens (DSM Path). Read-only Z-axis digital sensitivity (fine) trim for low noise signal path (HP, LP, or RBW mode). Data is in unsigned format. This sensitivity trim value is digitally multiplied with the signal path output, and the result is truncated by removing seven LSBs (/128) and then adding them back to the signal path. In PDM mode, this digital fine trim is not applied; therefore, the user must read back this value and apply the same digital multiplication and truncation to the PDM output.	0x0	R

REGISTER MAP

CLOCK CONTROL REGISTER

Address: 0x25, Reset: 0x00, Name: CLK_CTRL

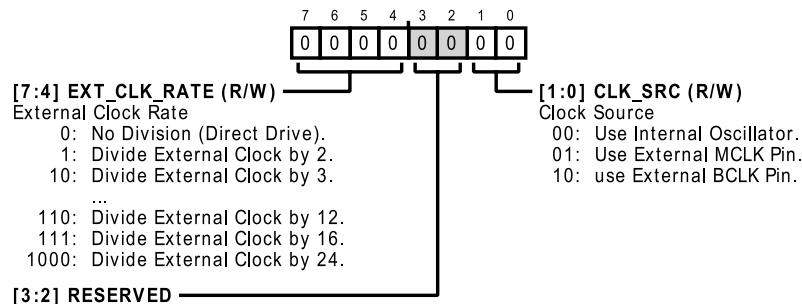


Table 67. Bit Descriptions for CLK_CTRL

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	EXT_CLK_RATE	0000 0001 0010 0011 0100 0101 0110 0111 1000	External Clock Rate. No Division (Direct Drive). Divide External Clock by 2. Divide External Clock by 3. Divide External Clock by 4. Divide External Clock by 6. Divide External Clock by 8. Divide External Clock by 12. Divide External Clock by 16. Divide External Clock by 24.	0x0	R/W
[3:2]	RESERVED		Reserved.	0x0	R
[1:0]	CLK_SRC	00 01 10	Clock Source. Use Internal Oscillator. Use External MCLK Pin. Use External BCLK Pin.	0x0	R/W

OP_MODE REGISTER

Address: 0x26, Reset: 0x00, Name: OP_MODE

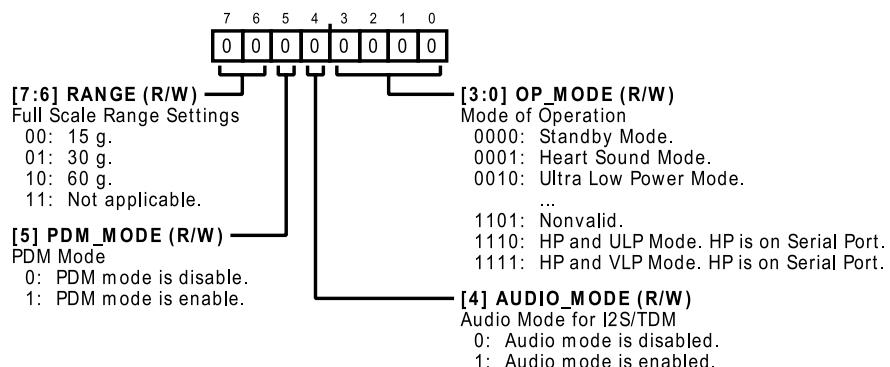


Table 68. Bit Descriptions for OP_MODE

Bits	Bit Name	Settings	Description	Reset	Access
[7:6]	RANGE	00	Full Scale Range Settings. Available modes of operation are 15 g, 30 g, or 60 g. 15 g.	0x0	R/W

REGISTER MAP

Table 68. Bit Descriptions for OP_MODE (Continued)

Bits	Bit Name	Settings	Description	Reset	Access
		01 10 11	30 g. 60 g. Not applicable.		
5	PDM_MODE	0 1	PDM Mode. PDM mode on/off (active high). PDM mode is disabled. PDM mode is enabled.	0x0	R/W
4	AUDIO_MODE	0 1	Audio Mode for I ² S/TDM. Audio mode on/off (I ² S/TDM) active high. Audio mode is disabled. Audio mode is enabled.	0x0	R/W
[3:0]	OP_MODE	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111	Mode of Operation. Standby Mode. Heart Sound Mode. Ultra Low Power Mode. Very Low Power Mode. Low Power Mode. Nonvalid. LP and ULP Mode. LP is on serial port. LP and VLP Mode. LP is on serial port. RBW Mode. Nonvalid. RBW and ULP Mode. RBW is on serial port. RBW and VLP Mode. RBW is on serial port. High Performance Mode. Nonvalid. HP and ULP Mode. HP is on serial port. HP and VLP Mode. HP is on serial port.	0x0	R/W

DIGITAL ENABLE REGISTER

Address: 0x27, Reset: 0x00, Name: DIG_EN

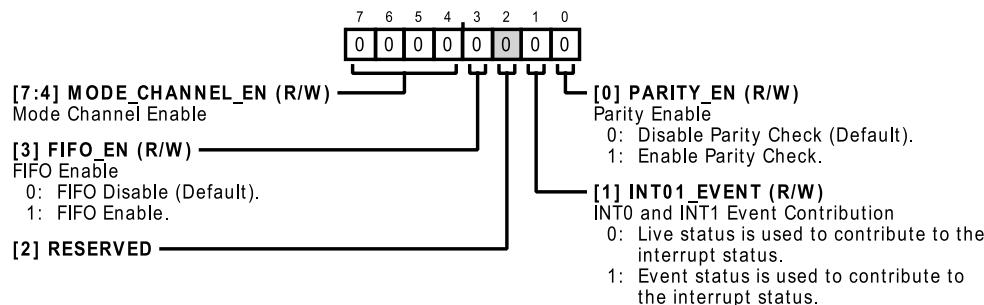


Table 69. Bit Descriptions for DIG_EN

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	MODE_CHANNEL_EN		Mode Channel Enable. Bit 4 or mode channel enable, Bit 0: X-axis enable. Bit 5 or mode channel enable, Bit 1: Y-axis enable. Bit 6 or mode channel enable, Bit 2: Z-axis enable. Bit 7 or mode channel enable, Bit 3: Temperature channel enable. These register bits apply to all blocks (including the FIFO block) if settings are valid.	0x0	R/W

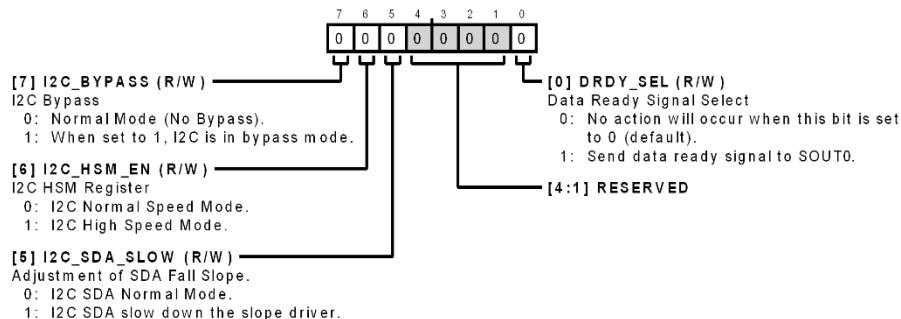

REGISTER MAP

Table 69. Bit Descriptions for DIG_EN (Continued)

Bits	Bit Name	Settings	Description	Reset	Access
3	FIFO_EN	0 1	FIFO Enable. FIFO Disable (Default). When this bit is disabled, the FIFO is not in an operable mode, and all FIFO and memory clocks are off. FIFO Enable. When this bit is set, the FIFO can operate in normal mode. The FIFO clock is active and incurs power consumption.	0x0	R/W
2	RESERVED		Reserved.	0x0	R/W
1	INT01_EVENT		INT0 and INT1 Event Contribution. When the INT01_EVENT bit is set, all interrupt sticky bits are set when its associated live bit triggers an event status from 0 → 1. Otherwise, the interrupt stick bit is always set whenever the live bit is high. (This bit affects UV_FLAG_STICKY bit, OVER_RANGE_STICKY, and PARITY_ERR_STICKY bit in STATUS0, STATUS1, and STATUS2 registers.) 0 1 Live status is used to contribute to the interrupt status. Event status is used to contribute to the interrupt status.	0x0	R/W
0	PARITY_EN		Parity Enable. When the parity enable register bit is set high, the SEU detection feature is enabled on all controllable and writable register bits (by iterating through all register addresses to calculate the 1-bit sum of all of the register bit positions). If there is a mismatch between the old (stored and valid) parity bit and the current (calculated and valid) parity bit, an SEU parity error generates. (Either the sticky event bit or live event bit is selected via the INT01_EVENT bit. Default is live event.) An interrupt trigger sets a read only (STATUS0) register bit and/or external pins (INT0 or INT1, if an interrupt contribution is enabled). A read only live (PARITY_ERR bit) register bit and a read only parity value (PARITY register bit) are available for observation. A internal 100 Hz clock is used to generate a periodic SEU detection event. Each of these events triggers a parity calculation if PARITY_EN is set high (that is, it stores both the current and old parity bit and their valid bit for comparison. If there is any mismatch between the valid current parity and the valid old parity, a parity error generates.) When a new register write command occurs, any ongoing parity calculation is aborted, and both the old (stored for comparison) parity and the current parity are invalidated. Their parity bits are set to 0x0. Once the 100 Hz SEU detection event occurs, the current parity value and valid bit are stored in the old parity. Then, the current parity value is set to 0x0 before the iterative calculation through all of the register addresses to generate the new current parity value occurs and sets the current valid at its completion. The SEU detection is conclusive only if both the current parity valid and the old parity valid bits are set high. 0 1 Disable Parity Check (Default). Enable Parity Check.	0x0	R/W

DATA READY AND I²C COMMUNICATION PORT CONFIGURATION REGISTER

Address: 0x28, Reset: 0x00, Name: SAR_I2C

REGISTER MAP

Table 70. Bit Descriptions for SAR_I2C

Bits	Bit Name	Settings	Description	Reset	Access
7	I2C_BYPASS	0 1	I ² C Bypass. I ² C glitch filter bypass. Set this bit to 1 to disable the I ² C glitch filter. The glitch filter is automatically disabled in the SPI variant.	0x0	R/W
			Normal Mode (No Bypass).		
			When set to 1, I ² C is in bypass mode.		
6	I2C_HSM_EN	0 1	I ² C HSM Register. I ² C high speed mode enable. Setting this bit to 1 changes the glitch filter configuration (standard/FM/FM+ = 50 ns, HSM = 10 ns) and supports up to 3.4 MHz I ² C operation.	0x0	R/W
			I ² C Normal Speed Mode.		
			I ² C High Speed Mode.		
5	I2C_SDA_SLOW	0 1	Adjustment of SDA Fall Slope. Slow down the slope driver, and it is recommended to enable this bit in low V _{DDIO} operation. Adjustment of SDA fall slope by slowing down the output driver. Suggest to enable this bit in high V _{DDIO} operation (>3.3V)	0x0	R/W
			I ² C SDA Normal Mode.		
			I ² C SDA slow down the slope driver.		
[4:1]	RESERVED		Reserved.	0x0	R
0	DRDY_SEL	0 1	Data Ready Signal Select. Send DRDY signal to S _{OUT0} . No action will occur when this bit is set to 0 (default). Send data ready signal to S _{OUT0} .	0x0	R/W

NVM (EFUSE) USER CONTROL REGISTER

Address: 0x29, Reset: 0x00, Name: NVM_CTL

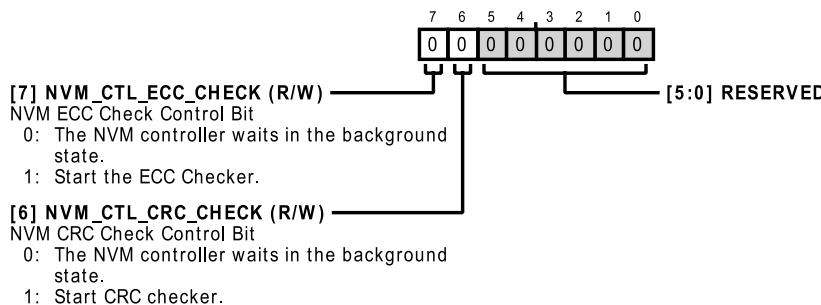


Table 71. Bit Descriptions for NVM_CTL

Bits	Bit Name	Settings	Description	Reset	Access
7	NVM_CTL_ECC_CHECK	0 1	NVM ECC Check Control Bit. When this bit is set, an NVM/EFUSE ECC checker starts and reports if there is any errors a few clock cycles after at STATUS2 register.	0x0	R/W
			The NVM controller waits in the background state. Starts the ECC checker.		
6	NVM_CTL_CRC_CHECK	0 1	NVM CRC Check Control Bit. When this bit set, an NVM/EFUSE CRC checker will start and report if there is any errors a few clock cycles after at STATUS2 register	0x0	R/W
			The NVM controller waits in the background state. Start CRC checker.		
[5:0]	RESERVED		Reserved.	0x0	R/W

REGISTER MAP

REGISTER RESET

Address: 0x2A, Reset: 0x00, Name: REG_RESET

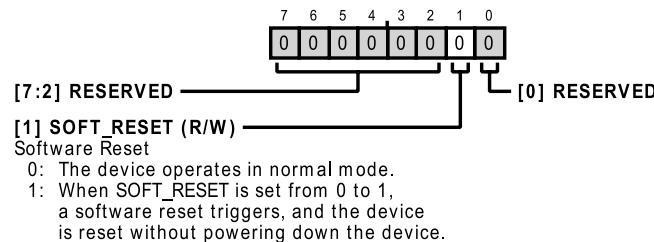


Table 72. Bit Descriptions for REG_RESET

Bits	Bit Name	Settings	Description	Reset	Access
[7:2]	RESERVED		Reserved.	0x0	R
1	SOFT_RESET		Software Reset. Write Code 0x52 (representing the letter R in ASCII or unicode) to this bit to immediately reset the ADXL382. All register settings are cleared, EFUSE is initialized, and the sensors are placed in standby mode. Interrupt pins are configured to a high output impedance mode. A latency of approximately 0.5 ms is required after soft reset for the initialization. During this time, only the write only bit is available and read data returns 0x0.	0x0	R/W
		0	The device operates in normal mode.		
		1	When SOFT_RESET is set from 0 to 1, a software reset triggers, and the device is reset without powering down the device.		
0	RESERVED		Reserved.	0x0	R

INTERRUPT PIN 0 ENABLES MAP0 REGISTER

Address: 0x2B, Reset: 0x80, Name: INT0_MAP0

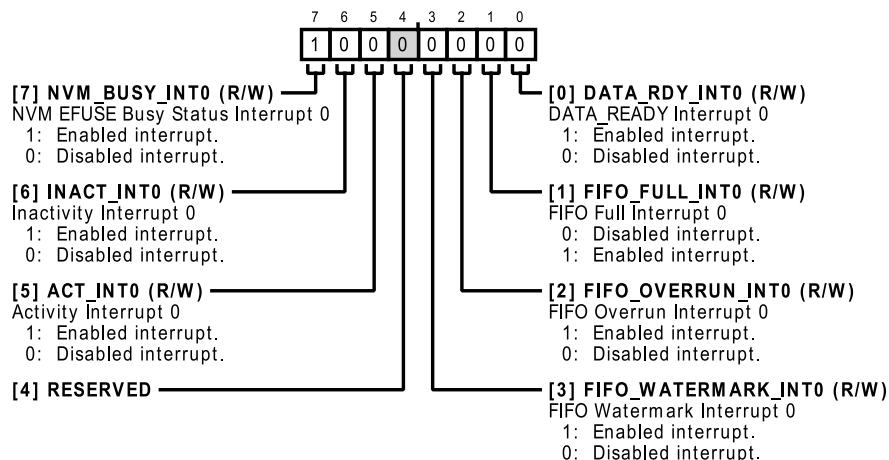


Table 73. Bit Descriptions for INT0_MAP0

Bits	Bit Name	Settings	Description	Reset	Access
7	NVM_BUSY_INT0		NVM EFUSE Busy Status Interrupt 0. Maps the NVM_BUSY status to the INT0 pin.	0x1	R/W
		1	Enabled interrupt.		
		0	Disabled interrupt.		
6	INACT_INT0		Inactivity Interrupt 0. Maps the inactivity status to the INT0 pin.	0x0	R/W
		1	Enabled interrupt.		
		0	Disabled interrupt.		

REGISTER MAP

Table 73. Bit Descriptions for INT0_MAP0 (Continued)

Bits	Bit Name	Settings	Description	Reset	Access
5	ACT_INT0	1 0	Activity Interrupt 0. Enables the activity detected interrupt to the INT0 pin. Enabled interrupt. Disabled interrupt.	0x0	R/W
4	RESERVED		Reserved.	0x0	R/W
3	FIFO_WATERMARK_INT0	1 0	FIFO Watermark Interrupt 0. 1 = maps the FIFO watermark status to the INT0 pin. Enabled interrupt. Disabled interrupt.	0x0	R/W
2	FIFO_OVERRUN_INT0	1 0	FIFO Overrun Interrupt 0. 1 = maps the FIFO overrun status to the INT0 pin. Enabled interrupt. Disabled interrupt.	0x0	R/W
1	FIFO_FULL_INT0	0 1	FIFO Full Interrupt 0. Enabled interrupt. Disabled interrupt.	0x0	R/W
0	DATA_RDY_INT0	1 0	DATA_READY Interrupt 0. Set to 1 to map DATA_READY to the INT0 pin. Enabled interrupt. Disabled interrupt.	0x0	R/W

INTERRUPT PIN 0 ENABLES MAP1 REGISTER

Address: 0x2C, Reset: 0x00, Name: INT0_MAP1

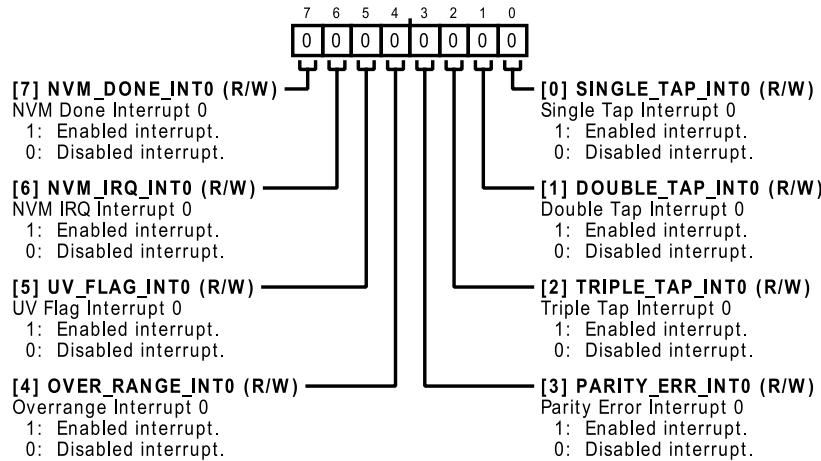


Table 74. Bit Descriptions for INT0_MAP1

Bits	Bit Name	Settings	Description	Reset	Access
7	NVM_DONE_INT0	1 0	NVM Done Interrupt 0. Maps the EFUSE done (NVM_DONE) status to the INT0 pin. Enabled interrupt. Disabled interrupt.	0x0	R/W
6	NVM_IRQ_INT0	1 0	NVM IRQ Interrupt 0. Maps the NVM/EFUSE IRQ status to the INT0 pin. Enabled interrupt. Disabled interrupt.	0x0	R/W
5	UV_FLAG_INT0	1 0	UV Flag Interrupt 0. UV flag interrupt map to INT0. 1 = maps the UV_FLAG_STICKY status to the INT0 pin. Enabled interrupt. Disabled interrupt.	0x0	R/W
4	OVER_RANGE_INT0		Overrange Interrupt 0. 1 = maps the OVER_RANGE_STICKY status to the INT0 pin.	0x0	R/W

REGISTER MAP

Table 74. Bit Descriptions for INT0_MAP1 (Continued)

Bits	Bit Name	Settings	Description	Reset	Access
		1 0	Enabled interrupt. Disabled interrupt.		
3	PARITY_ERR_INT0	1 0	Parity Error Interrupt 0. Parity Error Interrupt map to INT0. 1 = maps the PARITY_ERR status to INT0 pin. Enabled interrupt. Disabled interrupt.	0x0	R/W
2	TRIPLE_TAP_INT0	1 0	Triple Tap Interrupt 0. Map the triple tap interrupt to the INT0 pin. Enabled interrupt. Disabled interrupt.	0x0	R/W
1	DOUBLE_TAP_INT0	1 0	Double Tap Interrupt 0. Map the double tap interrupt to the INT0 pin. Enabled interrupt. Disabled interrupt.	0x0	R/W
0	SINGLE_TAP_INT0	1 0	Single Tap Interrupt 0. Map the single tap interrupt to the INT0 pin. Enabled interrupt. Disabled interrupt.	0x0	R/W

INTERRUPT PIN 1 ENABLES MAP0 REGISTER

Address: 0x2D, Reset: 0x00, Name: INT1_MAP0

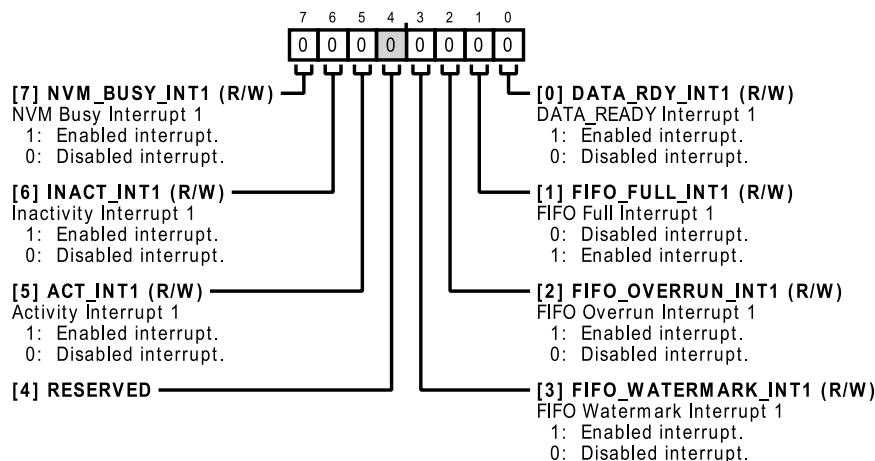


Table 75. Bit Descriptions for INT1_MAP0

Bits	Bit Name	Settings	Description	Reset	Access
7	NVM_BUSY_INT1	1 0	NVM Busy Interrupt 1. Maps the EFUSE busy status to the INT1 pin. Enabled interrupt. Disabled interrupt.	0x0	R/W
6	INACT_INT1	1 0	Inactivity Interrupt 1. Maps the inactivity status to the INT1 pin. Enabled interrupt. Disabled interrupt.	0x0	R/W
5	ACT_INT1	1 0	Activity Interrupt 1. Enables the activity detected interrupt to the INT1 pin. Enabled interrupt. Disabled interrupt.	0x0	R/W
4	RESERVED		Reserved.	0x0	R/W
3	FIFO_WATERMARK_INT1	1	FIFO Watermark Interrupt 1. Set to 1 to map the FIFO_WATERMARK to the INT1 pin. Enabled interrupt.	0x0	R/W

REGISTER MAP

Table 75. Bit Descriptions for INT1_MAP0 (Continued)

Bits	Bit Name	Settings	Description	Reset	Access
2	FIFO_OVERRUN_INT1	0	Disabled interrupt.	0x0	R/W
		1	FIFO Overrun Interrupt 1. 1 = maps the FIFO overrun status to the INT1 pin.		
		0	Enabled interrupt.		
1	FIFO_FULL_INT1	0	Disabled interrupt.	0x0	R/W
		1	FIFO Full Interrupt 1.		
		0	Enabled interrupt.		
0	DATA_RDY_INT1	1	DATA_READY Interrupt 1. Set to 1 to map DATA_READY to the INT1 pin.	0x0	R/W
		0	Enabled interrupt.		
		0	Disabled interrupt.		

INTERRUPT PIN 1 ENABLES MAP1 REGISTER

Address: 0x2E, Reset: 0x80, Name: INT1_MAP1

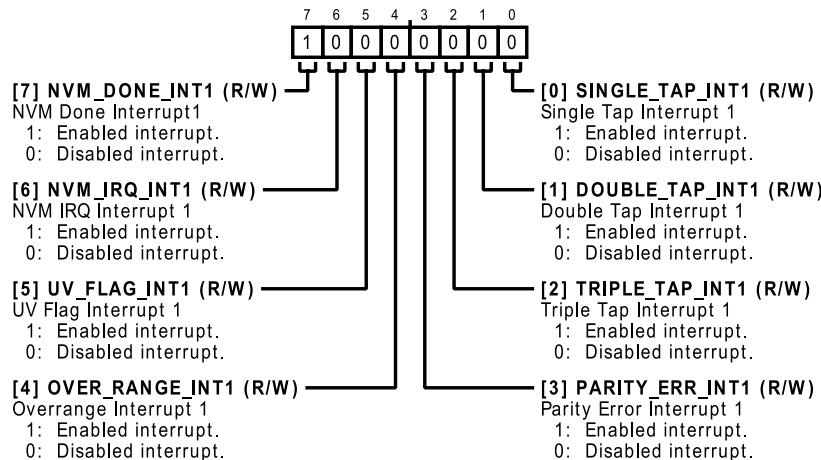


Table 76. Bit Descriptions for INT1_MAP1

Bits	Bit Name	Settings	Description	Reset	Access
7	NVM_DONE_INT1	1	NVM Done Interrupt 1. Maps the EFUSE done (NVM_DONE) status to the INT1 pin.	0x1	R/W
		0	Enabled interrupt.		
		0	Disabled interrupt.		
6	NVM_IRQ_INT1	1	NVM IRQ Interrupt 1. Maps the NVM/EFUSE IRQ status to the INT1 pin.	0x0	R/W
		0	Enabled interrupt.		
		0	Disabled interrupt.		
5	UV_FLAG_INT1	1	UV Flag Interrupt 1. UV flag interrupt map to INT1. 1 = maps the UV_FLAG_STICKY status to the INT1 pin.	0x0	R/W
		0	Enabled interrupt.		
		0	Disabled interrupt.		
4	OVER_RANGE_INT1	1	Overrange Interrupt 1. 1 = maps the OVER_RANGE_STICKY status to the INT1 pin.	0x0	R/W
		0	Enabled interrupt.		
		0	Disabled interrupt.		
3	PARITY_ERR_INT1	1	Parity Error Interrupt 1. 1 = maps the PARITY_ERR status to the INT1 pin.	0x0	R/W
		0	Enabled interrupt.		
		0	Disabled interrupt.		
2	TRIPLE_TAP_INT1	1	Triple Tap Interrupt 1. Maps the triple tap interrupt to the INT1 pin.	0x0	R/W
		0	Enabled interrupt.		

REGISTER MAP

Table 76. Bit Descriptions for INT1_MAP1 (Continued)

Bits	Bit Name	Settings	Description	Reset	Access
1	DOUBLE_TAP_INT1	0	Disabled interrupt.	0x0	R/W
		1	Double Tap Interrupt 1. Maps the double tap interrupt to the INT1 pin.		
		0	Enabled interrupt.		
0	SINGLE_TAP_INT1	0	Disabled interrupt.	0x0	R/W
		1	Single Tap Interrupt 1. Maps the single tap interrupt to the INT1 pin.		
		0	Enabled interrupt.		

FIFO CONFIGURATION 0 REGISTER

Address: 0x30, Reset: 0x00, Name: FIFO_CFG0

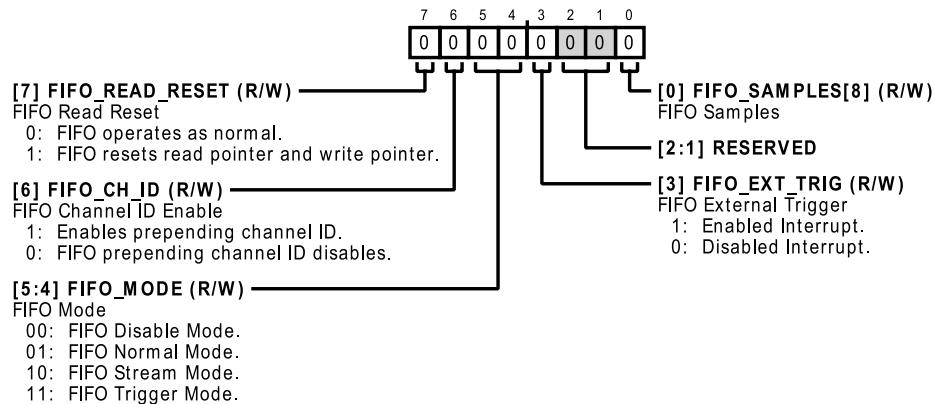


Table 77. Bit Descriptions for FIFO_CFG0

Bits	Bit Name	Settings	Description	Reset	Access
7	FIFO_READ_RESET	0	FIFO Read Reset. This is a debug register bit. When set, read point, write point, and read state machine are reset to default value 0x0.	0x0	R/W
		1	FIFO operates as normal.		
6	FIFO_CH_ID	1	FIFO Channel ID Enable. Enables prepending channel ID. When this bit is enabled, FIFO data is prepending 2-bit channel ID on the first prior its 16-bit data.		
		0	FIFO prepending channel ID disables. FIFO_DATA only provides 16-bit signed data for each channel without prepending its channel ID.		
		00 01 10 11	FIFO Mode. Configures digital output during overrange event (not valid in PDM mode). FIFO Disable Mode. FIFO Normal Mode. FIFO Stream Mode. FIFO Trigger Mode.		
3	FIFO_EXT_TRIG	1	FIFO External Trigger. The FIFO external trigger is used to monitor the external activity trigger. When enabled, the FIFO trigger uses the FSYNC input as its activity trigger. When disabled (default), the FIFO trigger monitors the internal activity trigger. This bit is only valid in FIFO trigger mode (FIFO_MODE = 3).	0x0	R/W
		0	Enabled Interrupt. The FIFO monitor external trigger (FSYNC input pin) for an activity trigger in FIFO stream mode.		
[2:1]	RESERVED		Disabled Interrupt. The FIFO internal trigger from the activity interrupt.	0x0	R
0	FIFO_SAMPLES[8]		FIFO Samples. The FIFO samples are the number of FIFO entries that the FIFO_WATERMARK sets when the FIFO depth is larger or equal to the FIFO_SAMPLES.	0x0	R/W

REGISTER MAP

Table 77. Bit Descriptions for FIFO_CFG0 (Continued)

Bits	Bit Name	Settings	Description	Reset	Access
			Note that FIFO_WATERMARK is a clear on read. Once it is set, because the FIFO depth is at or larger than FIFO_SAMPLE, it must be read to clear.		

FIFO CONFIGURATION 1 REGISTER

Address: 0x31, Reset: 0x00, Name: FIFO_CFG1

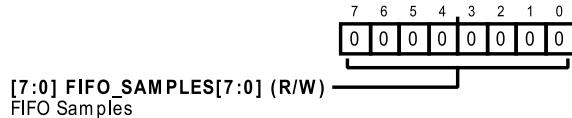


Table 78. Bit Descriptions for FIFO_CFG1

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	FIFO_SAMPLES[7:0]		FIFO Samples. The FIFO samples are the number of FIFO entries that FIFO_WATERMARK sets when the FIFO depth is larger or equal to the FIFO_SAMPLES. Note that FIFO_WATERMARK is a clear on read. Once it is set, because the FIFO depth is at or larger than FIFO_SAMPLE, it must be read to clear.	0x0	R/W

SERIAL PORT CONFIGURATION 0 REGISTER

Address: 0x32, Reset: 0x00, Name: SPT_CFG0

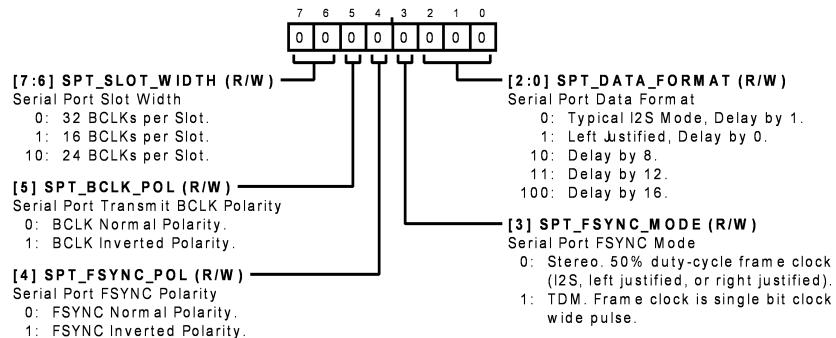


Table 79. Bit Descriptions for SPT_CFG0

Bits	Bit Name	Settings	Description	Reset	Access
[7:6]	SPT_SLOT_WIDTH	00 01 10	Serial Port Slot Width. 32 BCLKs per Slot. 16 BCLKs per Slot. 24 BCLKs per Slot.	0x0	R/W
5	SPT_BCLK_POL	0 1	Serial Port Transmit BCLK Polarity. BCLK Normal Polarity. BCLK Inverted Polarity.	0x0	R/W
4	SPT_FSYNC_POL	0 1	Serial Port FSYNC Polarity. FSYNC Normal Polarity. FSYNC Inverted Polarity.	0x0	R/W
3	SPT_FSYNC_MODE	0 1	Serial Port FSYNC Mode Stereo. 50% duty-cycle frame clock (I2S, left justified, or right justified). TDM. Frame clock is single bit clock wide pulse.	0x0	R/W
[2:0]	SPT_DATA_FORMAT	000	Serial Port Data Format. Typical I2S Mode, Delay by 1.	0x0	R/W

REGISTER MAP

Table 79. Bit Descriptions for SPT_CFG0 (Continued)

Bits	Bit Name	Settings	Description	Reset	Access
		001	Left Justified, Delay by 0.		
		010	Delay by 8.		
		011	Delay by 12.		
		100	Delay by 16.		

SERIAL PORT CONFIGURATION 1 REGISTER

Address: 0x33, Reset: 0x08, Name: SPT_CFG1

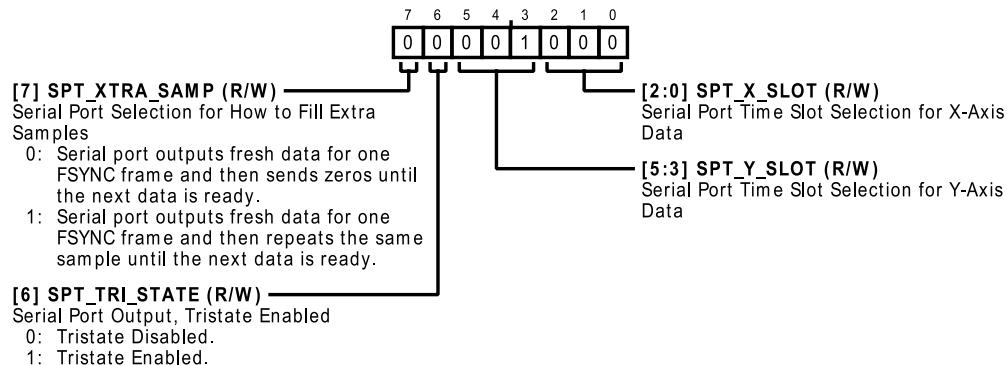
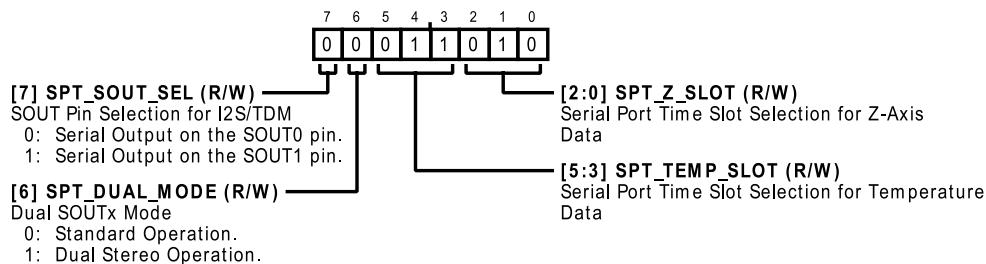



Table 80. Bit Descriptions for SPT_CFG1

Bits	Bit Name	Settings	Description	Reset	Access
7	SPT_XTRA_SAMP	0	Serial Port Selection for How to Fill Extra Samples. Serial port outputs fresh data for one FSYNC frame and then sends zeros until the next data is ready.	0x0	R/W
		1	Serial port outputs fresh data for one FSYNC frame and then repeats the same sample until the next data is ready.		
6	SPT_TRI_STATE	0	Serial Port Output, Tristate Enabled. Tristate Disabled.	0x0	R/W
		1	Tristate Enabled.		
[5:3]	SPT_Y_SLOT		Serial Port Time Slot Selection for Y-Axis Data. In I ² S mode, set to 0/1 for the L/R channel on S _{OUT0} or 2/3 for the L/R channel on S _{OUT1} , respectively. In TDM mode, set to 0 to 7 to select the corresponding TDM slot.	0x1	R/W
[2:0]	SPT_X_SLOT		Serial Port Time Slot Selection for X-Axis Data. In I ² S mode, set to 0/1 for L/R channel on S _{OUT0} , or 2/3 for L/R channel on S _{OUT1} , respectively. In TDM mode, set to 0 to 7 to select the corresponding TDM slot.	0x0	R/W

SERIAL PORT CONFIGURATION 2 REGISTER

Address: 0x34, Reset: 0x1A, Name: SPT_CFG2

REGISTER MAP

Table 81. Bit Descriptions for SPT_CFG2

Bits	Bit Name	Settings	Description	Reset	Access
7	SPT_SOUT_SEL	0 1	S _{OUT} Pin Selection for I ² S/TDM. The S _{OUT0} or S _{OUT1} pin selection for I ² S/TDM output stream. Set to 0 for S _{OUT0} or 1 for S _{OUT1} . Serial Output on the S _{OUT0} Pin. Serial Output on the S _{OUT1} Pin.	0x0	R/W
6	SPT_DUAL_MODE	0 1	Dual S _{OUTx} Mode. Dual S _{OUTx} mode for I ² S/TDM output stream. When enabled, Slot 0 and Slot 1 output on S _{OUT0} , and Slot 2 and Slot 3 output on S _{OUT1} . Standard Operation. Serial audio channels are output on the S _{OUT0} pin. Dual Stereo Operation. In stereo mode, Channel 0 to Channel 1 are output on the S _{OUT0} pin and Channel 2 to Channel 3 are output on the MCLK pin.	0x0	R/W
[5:3]	SPT_TEMP_SLOT		Serial Port Time Slot Selection for Temperature Data. In I ² S mode, set to 0/1 for the L/R channel on S _{OUT0} or 2/3 for the L/R channel on S _{OUT1} , respectively. In TDM mode, set to 0 to 7 to select the corresponding TDM slot.	0x3	R/W
[2:0]	SPT_Z_SLOT		Serial Port Time Slot Selection for Z-Axis Data. In I ² S mode, set to 0/1 for the L/R channel on S _{OUT0} or 2/3 for the L/R channel on S _{OUT1} , respectively. In TDM mode, set to 0 to 7 to select the corresponding TDM slot.	0x2	R/W

SYNC AND SERIAL PORT CONFIGURATION REGISTER

Address: 0x35, Reset: 0x00, Name: SYNC_CFG

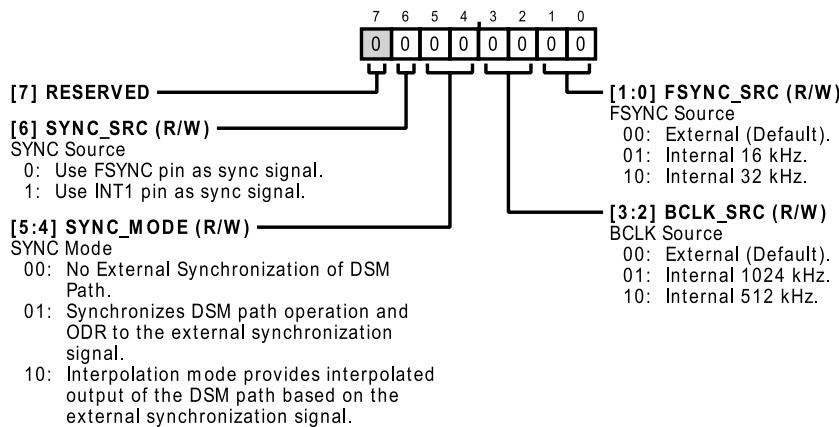


Table 82. Bit Descriptions for SYNC_CFG

Bits	Bit Name	Settings	Description	Reset	Access
7	RESERVED		Reserved.	0x0	R
6	SYNC_SRC	0 1	SYNC Source. Sync source signal. Use FSYNC pin as sync signal. Use INT1 pin as sync signal.	0x0	R/W
[5:4]	SYNC_MODE	00 01 10	SYNC Mode. No External Synchronization of DSM Path. Synchronizes DSM path operation and ODR to the external synchronization signal. Interpolation mode provides interpolated output of the DSM path based on the external synchronization signal.	0x0	R/W
[3:2]	BCLK_SRC	00 01 10	BCLK Source. External (Default). Internal 1024 kHz. Internal 512 kHz.	0x0	R/W
[1:0]	FSYNC_SRC	00	FSYNC Source. External (Default).	0x0	R/W

REGISTER MAP

Table 82. Bit Descriptions for SYNC_CFG (Continued)

Bits	Bit Name	Settings	Description	Reset	Access
		01	Internal 16 kHz.		
		10	Internal 32 kHz.		

PDM CONFIGURATION REGISTER

Address: 0x36, Reset: 0x00, Name: PDM_CFG

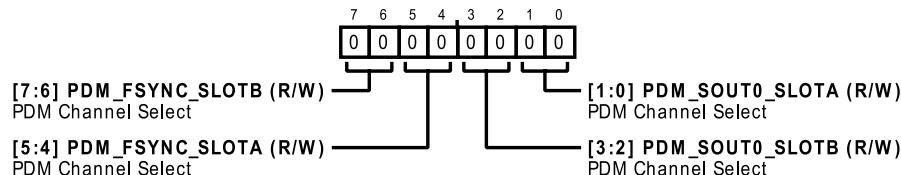


Table 83. Bit Descriptions for PDM_CFG

Bits	Bit Name	Settings	Description	Reset	Access
[7:6]	PDM_FSYNC_SLOTB		PDM Channel Select. 2'b00: empty (zero). 2'b01: Channel X. 2'b10: Channel Y. 2'b11: Channel Z.	0x0	R/W
[5:4]	PDM_FSYNC_SLOTA		PDM Channel Select. 2'b00: empty (zero). 2'b01: Channel X. 2'b10: Channel Y. 2'b11: Channel Z	0x0	R/W
[3:2]	PDM_SOUT0_SLOTB		PDM Channel Select. 2'b00: empty (zero). 2'b01: Channel X. 2'b10: Channel Y. 2'b11: Channel Z.	0x0	R/W
[1:0]	PDM_SOUT0_SLOTA		PDM Channel Select. 2'b00: empty (zero). 2'b01: Channel X. 2'b10: Channel Y. 2'b11: Channel Z.	0x0	R/W

ACTIVITY, INACTIVITY, AND PDM CONTROL REGISTER

Address: 0x37, Reset: 0x00, Name: ACT_INACT_CTL

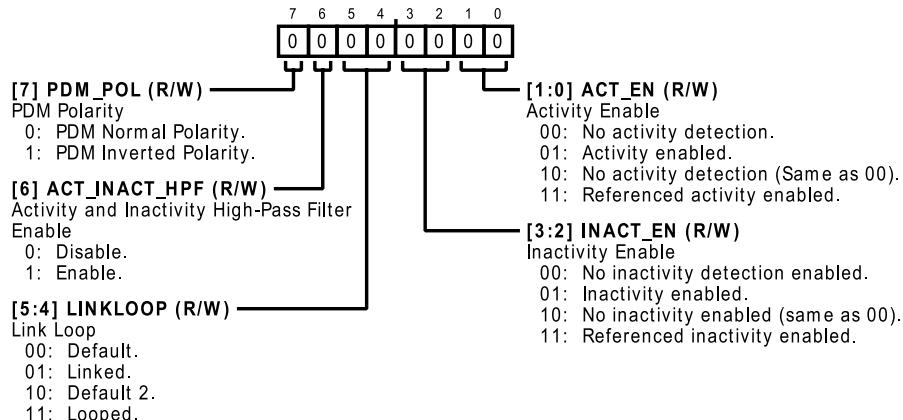


Table 84. Bit Descriptions for ACT_INACT_CTL

Bits	Bit Name	Settings	Description	Reset	Access
7	PDM_POL	0 1	PDM Polarity. When set to 0, 0 corresponds to positive full scale and 1 corresponds to negative full scale. Set to 1 to invert. PDM Normal Polarity. PDM Inverted Polarity.	0x0	R/W
6	ACT_INACT_HPF	0 1	Activity and Inactivity High-Pass Filter Enable. Disable. Unfiltered SAR data enters the activity and inactivity detectors. Enable. SAR data passes through the high-pass filter per the FILTER register prior to entering the activity and inactivity detectors.	0x0	R/W

REGISTER MAP

Table 84. Bit Descriptions for ACT_INACT_CTL (Continued)

Bits	Bit Name	Settings	Description	Reset	Access
[5:4]	LINKLOOP	00 01 10 11	Link Loop. Enable and configuration settings for linking or looping detection modes as well as host microcontroller interrupt handling. Default. Activity and inactivity detectors operate independently. Each detector requires its interrupt to be cleared before a new detection may occur. Linked. Activity and inactivity detectors are linked sequentially. Each detector requires the other detector's interrupt to be cleared before a new detection may occur. Both detectors must be enabled via ACT_EN and INACT_EN to use this mode. Default 2. Activity and inactivity detectors operate independently. Each requires its interrupt to be cleared before a new detection may occur. Looped. Activity and inactivity detectors are linked sequentially. Interrupts are generated but do not need to be cleared before a new detection may occur. Both detectors must be enabled via ACT_EN and INACT_EN to use this mode.	0x0	R/W
[3:2]	INACT_EN	00 01 10 11	Inactivity Enable. Referenced or absolute (default) inactivity mode enable. No inactivity detection enabled. Inactivity enabled. No inactivity detection enabled (same as 00). Referenced inactivity enabled.	0x0	R/W
[1:0]	ACT_EN	00 01 10 11	Activity Enable. This register bit enables the activity block feature. When disable, the activity block is disable, and there is no clock provided to the block. No activity detection. Activity enabled. No activity detection (same as 00). Referenced activity enabled.	0x0	R/W

ACTIVITY AND INACTIVITY AND SELF-TEST CONTROL REGISTER

Address: 0x38, Reset: 0x00, Name: SNSR_AXIS_EN

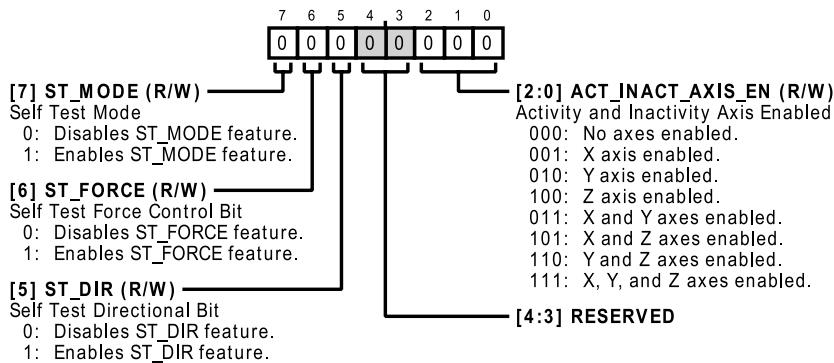


Table 85. Bit Descriptions for SNSR_AXIS_EN

Bits	Bit Name	Settings	Description	Reset	Access
7	ST_MODE	0 1	Self Test Mode. This bit configures the part in self test mode. Disables ST_MODE feature. Enables ST_MODE feature.	0x0	R/W
6	ST_FORCE	0 1	Self Test Force Control Bit. Enables an electrostatic force applied to the mechanical sensor; therefore, it induces a change in the output. Disables ST_FORCE feature. Enables ST_FORCE feature.	0x0	R/W
5	ST_DIR		Self Test Directional Bit. Flip the direction of the self test force being applied to the mechanical sensor.	0x0	R/W

REGISTER MAP

Table 85. Bit Descriptions for SNSR_AXIS_EN (Continued)

Bits	Bit Name	Settings	Description	Reset	Access
		0 1	Disables ST_DIR feature. Enables ST_DIR feature.		
[4:3]	RESERVED		Reserved.	0x0	R
[2:0]	ACT_INACT_AXIS_EN	000	Activity and Inactivity Axis Enabled. No axes enabled.	0x0	R/W
		001	X axis enabled.		
		010	Y axis enabled.		
		100	Z axis enabled.		
		011	X and Y axes enabled.		
		101	X and Z axes enabled.		
		110	Y and Z axes enabled.		
		111	X, Y, and Z axes enabled.		

ACTIVITY THRESHOLD (HIGH BYTE) REGISTER

Address: 0x39, Reset: 0x00, Name: THRESH_ACT_H

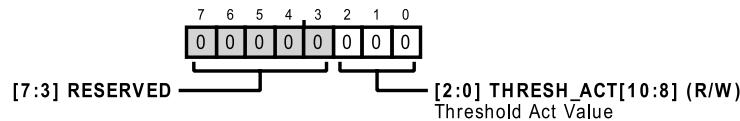


Table 86. Bit Descriptions for THRESH_ACT_H

Bits	Bit Name	Settings	Description	Reset	Access
[7:3]	RESERVED		Reserved.	0x0	R
[2:0]	THRESH_ACT[10:8]		Threshold Act Value. Activity threshold value. To detect activity, the ADXL382 compares the absolute value of the 12-bit (signed) SAR acceleration data with the 11-bit (unsigned) THRESH_ACT value. THRESH_ACT is set in SAR codes; the value in g depends on the measurement range setting that is selected. The 12-bit (signed) SAR is multiplied by 16 to compare (shift left toward MSB).	0x0	R/W

ACTIVITY THRESHOLD (LOW BYTE) REGISTER

Address: 0x3A, Reset: 0x00, Name: THRESH_ACT_L

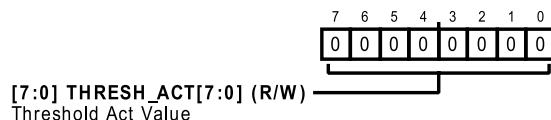


Table 87. Bit Descriptions for THRESH_ACT_L

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	THRESH_ACT[7:0]		Threshold Act Value. Activity threshold value. To detect activity, the ADXL382 compares the absolute value of the 12-bit (signed) SAR acceleration data with the 11-bit (unsigned) THRESH_ACT value. THRESH_ACT is set in SAR codes; the value in g depends on the measurement range setting that is selected. The 12-bit (signed) SAR is multiplied by 16 to compare (shift left toward MSB).	0x0	R/W

REGISTER MAP

TIMED ACTIVITY (HIGH BYTE, BITS[23:16]) REGISTER

Address: 0x3B, Reset: 0x00, Name: TIME_ACT_H

Table 88. Bit Descriptions for TIME_ACT_H

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	TIME_ACT[23:16]		TIME_ACT Bit. Required activity time. The 24-bit activity timer implements a robust activity detection that minimizes false positive motion triggers. When the timer is used (TIME_ACT > 0), only sustained motion can trigger activity detection. The value in this register sets the amount of time that at least one axis must be greater than the activity threshold (set by THRESH_ACT) for an activity event to be detected. 1 LSB = 500 μ s.	0x0	R/W

TIMED ACTIVITY (MID BYTE, BITS[15:8]) REGISTER

Address: 0x3C, Reset: 0x00, Name: TIME_ACT_M

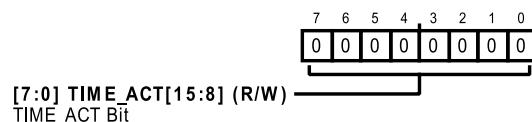


Table 89. Bit Descriptions for TIME_ACT_M

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	TIME_ACT[15:8]		TIME_ACT Bit. Required activity time. The 24-bit activity timer implements a robust activity detection that minimizes false positive motion triggers. When the timer is used (TIME_ACT > 0), only sustained motion can trigger activity detection. The value in this register sets the amount of time that at least one axis must be greater than the activity threshold (set by THRESH_ACT) for an activity event to be detected. 1 LSB = 500 μ s.	0x0	R/W

TIMED ACTIVITY (LOW BYTE, BITS[7:0]) REGISTER

Address: 0x3D, Reset: 0x00, Name: TIME_ACT_L

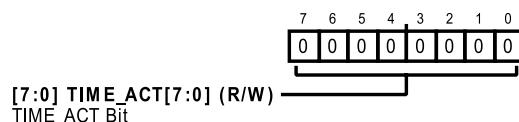


Table 90. Bit Descriptions for TIME_ACT_L

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	TIME_ACT[7:0]		TIME_ACT Bit. Required activity time. The 24-bit activity timer implements a robust activity detection that minimizes false positive motion triggers. When the timer is used (TIME_ACT > 0), only sustained motion can trigger activity detection. The value in this register sets the amount of time that at least one axis must be greater than the activity threshold (set by THRESH_ACT) for an activity event to be detected. 1 LSB = 500 μ s.	0x0	R/W

REGISTER MAP

INACTIVITY THRESHOLD (HIGH BYTE) REGISTER

Address: 0x3E, Reset: 0x00, Name: THRESH_INACT_H

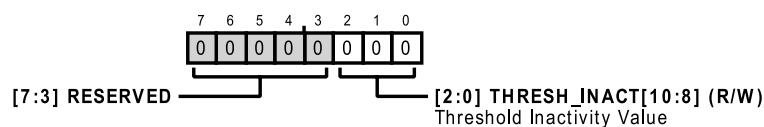


Table 91. Bit Descriptions for THRESH_INACT_H

Bits	Bit Name	Settings	Description	Reset	Access
[7:3]	RESERVED		Reserved.	0x0	R
[2:0]	THRESH_INACT[10:8]		Threshold Inactivity Value. Inactivity threshold value. To detect inactivity, the ADXL382 compares the absolute value of the 12-bit (signed) SAR acceleration data with the 11-bit (unsigned) THRESH_INACT value. THRESH_INACT is set in SAR codes; the value in g depends on the measurement range setting that is selected. The 12-bit (signed) SAR is multiplied by 16 to compare (shift left toward MSB).	0x0	R/W

INACTIVITY THRESHOLD (LOW BYTE) REGISTER

Address: 0x3F, Reset: 0x00, Name: THRESH_INACT_L

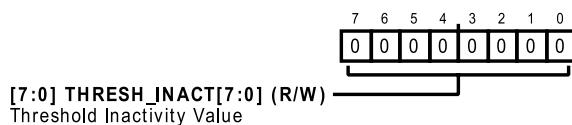


Table 92. Bit Descriptions for THRESH_INACT_L

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	THRESH_INACT[7:0]		Threshold Inactivity Value. Inactivity threshold value. To detect inactivity, the ADXL382 compares the absolute value of the 12-bit (signed) SAR acceleration data with the 11-bit (unsigned) THRESH_INACT value. THRESH_INACT is set in SAR codes; the value in g depends on the measurement range setting that is selected. The 12-bit (signed) SAR is multiplied by 16 to compare (shift left toward MSB).	0x0	R/W

TIMED INACTIVITY (HIGH BYTE, BITS[23:16]) REGISTER

Address: 0x40, Reset: 0x00, Name: TIME_INACT_H

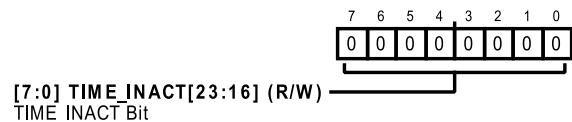


Table 93. Bit Descriptions for TIME_INACT_H

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	TIME_INACT[23:16]		TIME_INACT Bit. Required inactivity time. The 24-bit activity timer implements a robust activity detection that minimizes false positive motion triggers. When the timer is used (TIME_INACT > 0), only sustained motion can trigger inactivity detection. The value in this register sets the amount of time that all axes must be lower than the inactivity threshold (set by THRESH_INACT) for an inactivity event to be detected. 1 LSB = 500 μ s.	0x0	R/W

REGISTER MAP

TIMED INACTIVITY (MID BYTE, BITS[15:8]) REGISTER

Address: 0x41, Reset: 0x00, Name: TIME_INACT_M

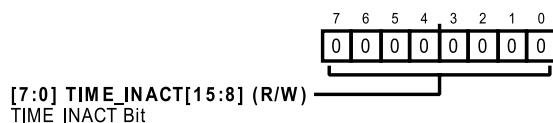


Table 94. Bit Descriptions for TIME_INACT_M

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	TIME_INACT[15:8]		TIME_INACT Bit. Required inactivity time. The 24-bit activity timer implements a robust activity detection that minimizes false positive motion triggers. When the timer is used (TIME_INACT > 0), only sustained motion can trigger inactivity detection. The value in this register sets the amount of time that all axes must be lower than the inactivity threshold (set by THRESH_INACT) for an inactivity event to be detected. 1 LSB = 500 μ s.	0x0	R/W

TIMED INACTIVITY (LOW BYTE, BITS[7:0]) REGISTER

Address: 0x42, Reset: 0x00, Name: TIME_INACT_L

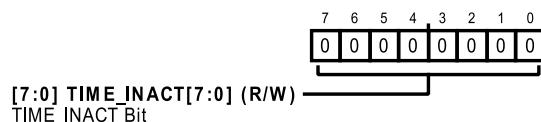


Table 95. Bit Descriptions for TIME_INACT_L

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	TIME_INACT[7:0]		TIME_INACT Bit. Required inactivity time. The 24-bit activity timer implements a robust activity detection that minimizes false positive motion triggers. When the timer is used (TIME_INACT > 0), only sustained motion can trigger inactivity detection. The value in this register sets the amount of time that all axes must be lower than the inactivity threshold (set by THRESH_INACT) for an inactivity event to be detected. 1 LSB = 500 μ s.	0x0	R/W

TAP THRESHOLD REGISTER

Address: 0x43, Reset: 0x00, Name: TAP_THRESH

Table 96. Bit Descriptions for TAP_THRESH

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	TAP_THRESH_PRESCALE		TAP Threshold Prescale Register. This register is eight bits and holds the threshold value for tap interrupts. The data format is unsigned; therefore, the magnitude of the tap event is compared with the value in TAP_THRESH for normal tap detection. The scale factor is 500 mg/LSB with a maximum value of 2 times the range value in gravity. A value of 0 disables both tap and double tap detection.	0x0	R/W

REGISTER MAP

TAP DURATION REGISTER

Address: 0x44, Reset: 0x00, Name: TAP_DUR

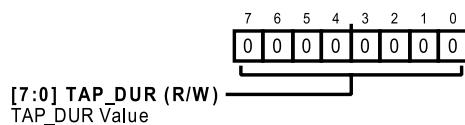


Table 97. Bit Descriptions for TAP_DUR

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	TAP_DUR		TAP_DUR Value. The TAP_DUR register is eight bits and contains an unsigned time value representing the maximum time that an event must be above the TAP_THRESH threshold to qualify as a tap event. The scale factor is 625 μ s/LSB.	0x0	R/W

TAP LATENCY WAIT TIME REGISTER

Address: 0x45, Reset: 0x00, Name: TAP_LATENT

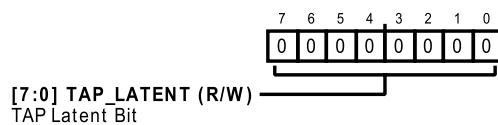


Table 98. Bit Descriptions for TAP_LATENT

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	TAP_LATENT		TAP Latent Bit. The TAP_LATENT register is eight bits and contains an unsigned time value representing the wait time from the detection of a tap event to the start of the time window (defined by the window register) during which a possible second tap event can be detected. The scale factor is 1.25 ms/LSB. A value of 0 disables the double tap function.	0x0	R/W

TAP WINDOW REGISTER

Address: 0x46, Reset: 0x00, Name: TAP_WINDOW

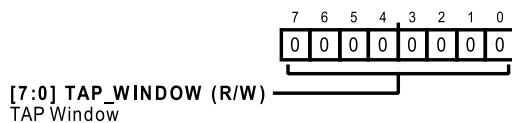


Table 99. Bit Descriptions for TAP_WINDOW

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	TAP_WINDOW		TAP Window. The TAP_WINDOW register is eight bits and contains an unsigned time value representing the amount of time after the expiration of the latency time (determined by the latent register) during which a second valid second tap (double tap) must be occur to be considered a valid double tap. The scale factor is 1.25 ms/LSB.	0x0	R/W

REGISTER MAP

TAP CONFIGURATION REGISTER

Address: 0x47, Reset: 0x00, Name: TAP_CFG

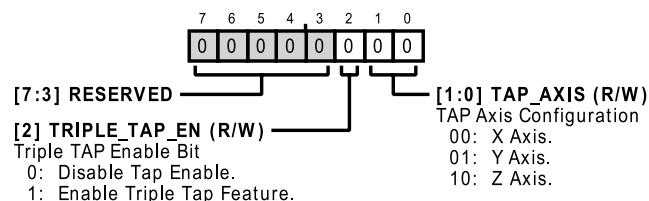


Table 100. Bit Descriptions for TAP_CFG

Bits	Bit Name	Settings	Description	Reset	Access
[7:3]	RESERVED		Reserved.	0x0	R
2	TRIPLE_TAP_EN	0 1	Triple TAP Enable Bit. 0: Disable Tap Enable. 1: Enable Triple Tap Feature.	0x0	R/W
[1:0]	TAP_AXIS	00 01 10	TAP Axis Configuration. Selects which axis to look at for tap detection. X Axis. Y Axis. Z Axis.	0x0	R/W

REGISTER MAP

UNDERVOLTAGE AND OVERRANGE CONFIGURATION REGISTER

Address: 0x48, Reset: 0x00, Name: OR_CFG

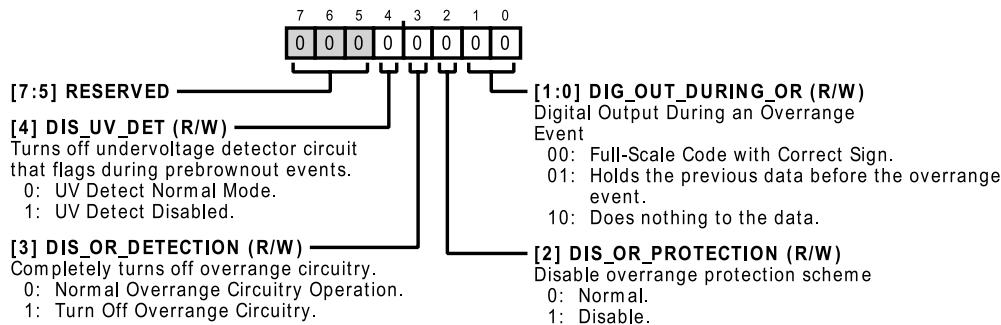


Table 101. Bit Descriptions for OR_CFG

Bits	Bit Name	Settings	Description	Reset	Access
[7:5]	RESERVED		Reserved.	0x0	R
4	DIS_UV_DET	0 1	Turns off undervoltage detector circuit that flags during prebrownout events. The default value is 0 (UV detector enabled). UV Detect Normal Mode. UV Detect Disabled.	0x0	R/W
3	DIS_OR_DETECTION	0 1	Completely turns off overrange circuitry. Overrange condition cannot be detected. Normal Overrange Circuitry Operation. Turn Off Overrange Circuitry.	0x0	R/W
2	DIS_OR_PROTECTION	0 1	Disable overrange protection scheme. Overrange condition can still be detected, but excitations are not turned off during an OR event. Normal. Disable.	0x0	R/W
[1:0]	DIG_OUT_DURING_OR	00 01 10	Digital Output During an Overrange Event. Configures digital output during overrange event (not valid in PDM mode). Full-Scale Code with Correct Sign. Holds the previous data before overrange event. Does nothing to the data.	0x0	R/W

REGISTER MAP

SAR TRIGGER AND DIGITAL FILTER CONFIGURATION REGISTER

Address: 0x49, Reset: 0x00, Name: TRIG_CFG

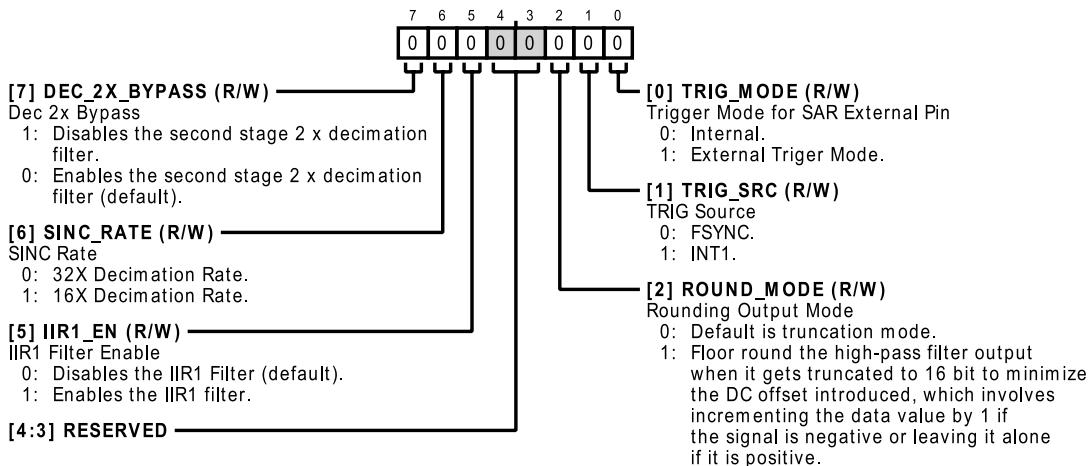


Table 102. Bit Descriptions for TRIG_CFG

Bits	Bit Name	Settings	Description	Reset	Access
7	DEC_2X_BYPASS		Dec 2x Bypass. The DEC_2X_BYPASS bit controls the second stage 2x decimation filter (increases ODR by a factor of 2). 1: Disables the second stage 2x decimation filter. 0: Enables the second stage 2x decimation filter (default).	0x0	R/W
6	SINC_RATE		SINC Rate. SINC Rate controls the decimation rate of the first stage decimation filter, and the disabling of the second stage 2x decimation filter (increases ODR by a factor of 4). 0: 32x Decimation Rate. 32x decimation rate for the first stage decimation filter, and second stage 2x decimation filter is controlled by DEC_2X_BYPASS (default). 1: 16x Decimation Rate. 16x decimation rate for the first stage decimation filter, disable the second stage decimation filter	0x0	R/W
5	IIR1_EN		IIR1 Filter Enable. Enable the optional IIR1 filter. Used when low group delay mode is enabled. Repurpose the EQ filter module as an IIR1 filter. Assuming EQ_BYPASS is set under HP mode, or in RBW or LP mode, and LPF_MODE is not set. 0: Disables the IIR1 filter (default). 1: Enables the IIR1 filter.	0x0	R/W
4:3	RESERVED		Reserved.	0x0	R
2	ROUND_MODE		Rounding Output Mode. Rounding mode selection for high-pass filter output. 0: Default is truncation mode. 1: Floor round the high-pass filter output when it gets truncated to 16 bit to minimize the DC offset introduced, which involves incrementing the data value by 1 if the signal is negative or leaving it alone if it is positive.	0x0	R/W
1	TRIG_SRC		TRIG Source. 0: FSYNC. Use FSYNC pin as SAR trigger. 1: INT1. Use INT1 pin as SAR trigger.	0x0	R/W
0	TRIG_MODE		Trigger Mode for SAR External Pin. 0: Internal. No external trigger. SAR convert start signal generated internally (default). 1: External Trigger Mode. SAR convert start signal comes from pin specified by the TRIG_SRC register.	0x0	R/W

REGISTER MAP

X-AXIS SAR USER OFFSET REGISTER

Address: 0x4A, Reset: 0x00, Name: X_SAR_OFFSET

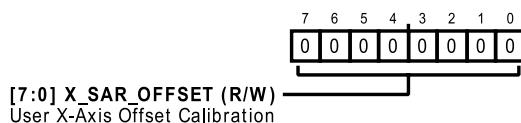


Table 103. Bit Descriptions for X_SAR_OFFSET

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	X_SAR_OFFSET		User X-Axis Offset Calibration. User X-axis offset calibration for low power signal path (ULP, VLP, or HS mode). Data is in two's complement format. Resolution (in mg/LSB) is equal to the resolution in the Data Register 0x15 to Data Register 0x1A divided by 8.	0x0	R/W

Y-AXIS SAR USER OFFSET REGISTER

Address: 0x4B, Reset: 0x00, Name: Y_SAR_OFFSET

Table 104. Bit Descriptions for Y_SAR_OFFSET

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	Y_SAR_OFFSET		User Y-Axis Offset Calibration. User Y-axis offset calibration for low power signal path (ULP, VLP, or HS mode). Data is in two's complement format. Resolution (in mg/LSB) is equal to the resolution in the Data Register 0x15 to Data Register 0x1A divided by 8.	0x0	R/W

Z-AXIS SAR USER OFFSET REGISTER

Address: 0x4C, Reset: 0x00, Name: Z_SAR_OFFSET

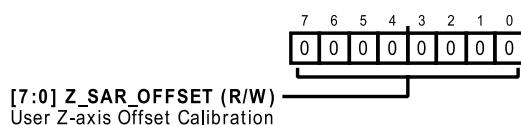
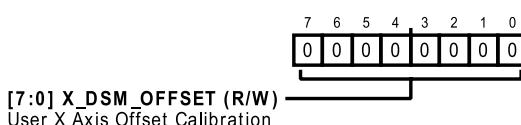



Table 105. Bit Descriptions for Z_SAR_OFFSET

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	Z_SAR_OFFSET		User Z-Axis Offset Calibration. User Z-axis offset calibration for low power signal path (ULP, VLP, or HS mode). Data is in two's complement format. Resolution (in mg/LSB) is equal to the resolution in the Data Register 0x15 to Data Register 0x1A divided by 8.	0x0	R/W

X-AXIS DSM USER OFFSET REGISTER

Address: 0x4D, Reset: 0x00, Name: X_DSM_OFFSET

REGISTER MAP

Table 106. Bit Descriptions for X_DSM_OFFSET

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	X_DSM_OFFSET		User X-Axis Offset Calibration. User X-axis offset calibration for low noise signal path (HP, LP, or RBW mode). Data is in two's complement format. Resolution (in mg/LSB) is equal to the resolution in the Data Register 0x15 to Data Register 0x1A divided by 8.	0x0	R/W

Y-AXIS DSM USER OFFSET REGISTER

Address: 0x4E, Reset: 0x00, Name: Y_DSM_OFFSET

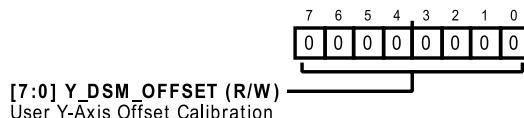


Table 107. Bit Descriptions for Y_DSM_OFFSET

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	Y_DSM_OFFSET		User Y-Axis Offset Calibration. User Y-axis offset calibration for low noise signal path (HP, LP, or RBW mode). Data is in two's complement format. Resolution (in mg/LSB) is equal to the resolution in the Data Register 0x15 to Data Register 0x1A divided by 8.	0x0	R/W

Z-AXIS DSM USER OFFSET REGISTER

Address: 0x4F, Reset: 0x00, Name: Z_DSM_OFFSET

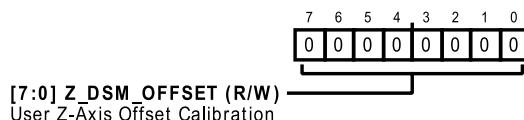
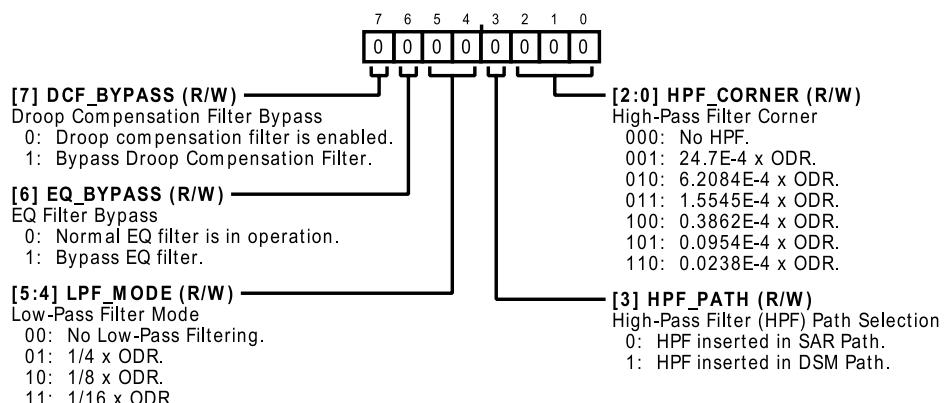



Table 108. Bit Descriptions for Z_DSM_OFFSET

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	Z_DSM_OFFSET		User Z-Axis Offset Calibration. User Z-axis offset calibration for low noise signal path (HP, LP, or RBW mode). Data is in two's complement format. Resolution (in mg/LSB) is equal to the resolution in the Data Register 0x15 to Data Register 0x1A divided by 8.	0x0	R/W

DIGITAL FILTER CONFIGURATION REGISTER

Address: 0x50, Reset: 0x00, Name: FILTER

REGISTER MAP

Table 109. Bit Descriptions for FILTER

Bits	Bit Name	Settings	Description	Reset	Access
7	DCF_BYPASS		Droop Compensation Filter Bypass. This filter corrects the drooping effect of the first stage 32x decimation filter. 0 Droop compensation filter is enabled. 1 Bypass Droop Compensation Filter.	0x0	R/W
6	EQ_BYPASS		EQ Filter Bypass. Applicable to HP modes for OP_MODE. EQ filter is disabled in RBW or LP mode. 0 Normal EQ filter is in operation. 1 Bypass EQ Filter.	0x0	R/W
[5:4]	LPF_MODE		Low-Pass Filter Mode. Second-order, low-pass filter mode. Repurpose the EQ filter module as a low-pass filter. DSM path only. EQ bypass must be set to 1 to use the LPF. 00 No Low-Pass Filtering. 01 1/4 × ODR. 10 1/8 × ODR. 11 1/16 × ODR.	0x0	R/W
3	HPF_PATH		High-Pass Filter (HPF) Path Selection. First-order, HPF. Set to 0 to use HPF on SAR path, or 1 to use HPF on DSM path. 0 HPF inserted in SAR Path. 1 HPF inserted in DSM Path.	0x0	R/W
[2:0]	HPF_CORNER		High-Pass Filter Corner. First-order, HPF corner. 000 No HPF. 001 24.7E-4 × ODR 010 6.2084E-4 × ODR 011 1.5545E-4 × ODR 100 0.3862E-4 × ODR 101 0.0954E-4 × ODR 110 0.0238E-4 × ODR	0x0	R/W

REGISTER MAP

USER TEMPERATURE SENSOR CONTROL REGISTERS

Address: 0x55, Reset: 0x00, Name: USER_TEMP_SENS_0

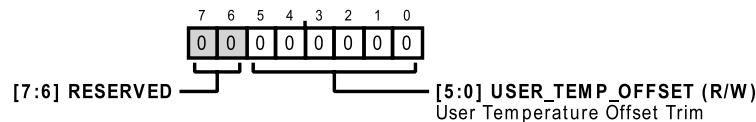


Table 110. Bit Descriptions for USER_TEMP_SENS_0

Bits	Bit Name	Settings	Description	Reset	Access
[7:6]	RESERVED		Reserved.	0x0	R
[5:0]	USER_TEMP_OFFSET		User Temperature Offset Trim. When USER_TEMP_TRIM_EN is set high, the USER_TEMP_OFFSET overrides the default NVM trim settings. Data is in two's complement format. The significance of USER_TEMP_OFFSET, Bit 0, matches the significance of TDATA_x, Bit 2, so the offset trim step size is 4 LSB/step.	0x0	R/W

Address: 0x56, Reset: 0x00, Name: USER_TEMP_SENS_1

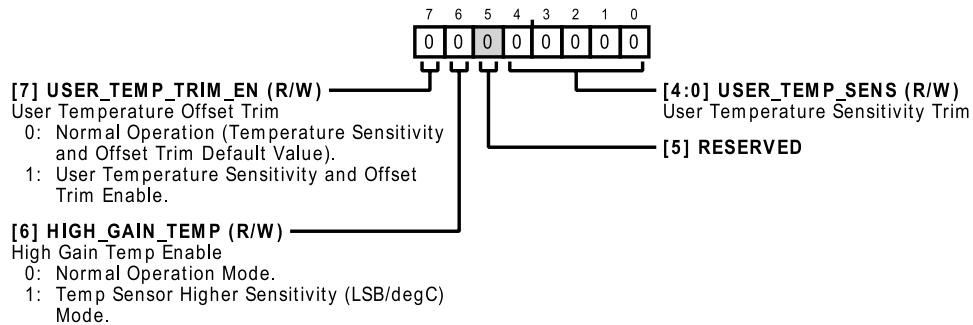


Table 111. Bit Descriptions for USER_TEMP_SENS_1

Bits	Bit Name	Settings	Description	Reset	Access
7	USER_TEMP_TRIM_EN		User Temperature Offset Trim. When USER_TEMP_TRIM_EN is set high, the USER_TEMP_OFFSET and USER_TEMP_SENS override the default NVM trim settings.	0x0	R/W
		0	Normal Operation (Temperature Sensitivity and Offset Trim Default Value).		
6	HIGH_GAIN_TEMP		User Temperature Sensitivity and Offset Trim Enable.	0x0	R/W
		0	High Gain Temp Enable. Set to 1 to configure the temperature sensor to higher sensitivity (LSB/°C) mode.		
		1	Normal Operation Mode. Temperature sensor sensitivity is 10.2 LSB/°C. Temp Sensor Higher Sensitivity (LSB/°C) Mode. Temperature sensor sensitivity is 16.5 LSB/°C.		
5	RESERVED		Reserved.	0x0	R
[4:0]	USER_TEMP_SENS		User Temperature Sensitivity Trim. When USER_TEMP_TRIM_EN is set high, the USER_TEMP_SENS overrides the default NVM trim settings. Data is in two's complement format. The temperature sensitivity trim step size is 1/128 = 0.78125% per step.	0x0	R/W

REGISTER MAP

MISO AND GAIN SCALER CONFIGURATION REGISTER

Address: 0x58, Reset: 0x00, Name: MISO

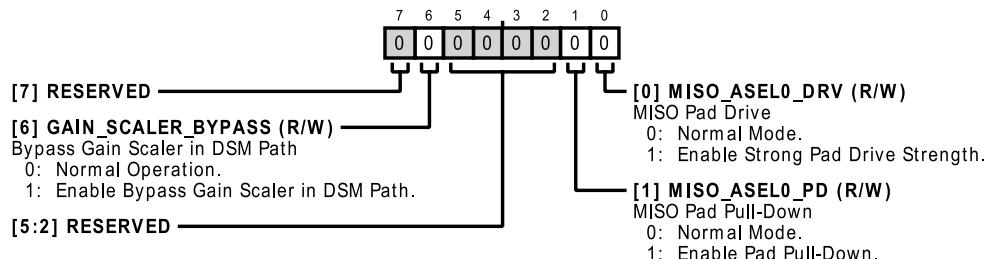


Table 112. Bit Descriptions for MISO

Bits	Bit Name	Settings	Description	Reset	Access
7	RESERVED		Reserved.	0x0	R
6	GAIN_SCALER_BYPASS	0 1	Bypass Gain Scaler in DSM Path. Normal Operation. Enable Bypass Gain Scaler in DSM Path.	0x0	R/W
[5:2]	RESERVED		Reserved.	0x0	R
1	MISO_ASEL0_PD	0 1	MISO Pad Pull-Down. Enables a weak pull-down path ($M\Omega$) on MISO to avoid pin floating. Normal Mode. Enable Pad Pull-Down.	0x0	R/W
0	MISO_ASEL0_DRV	0 1	MISO Pad Drive. Enables stronger output driver on MISO line. Recommended for high speed SPI operation. Normal Mode. Enable Strong Pad Drive Strength.	0x0	R/W

REGISTER MAP

SOUT0 PAD CONTROL REGISTER

Address: 0x59, Reset: 0x00, Name: SOUT0

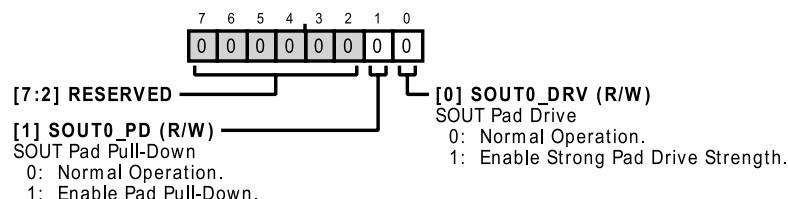


Table 113. Bit Descriptions for SOUT0

Bits	Bit Name	Settings	Description	Reset	Access
[7:2]	RESERVED		Reserved.	0x0	R
1	SOUT0_PD	0 1	SOUT Pad Pull-Down. Enables a weak pull-down path ($M\Omega$) on S_{OUT0} to avoid pin floating. 0: Normal Operation. 1: Enable Pad Pull-Down.	0x0	R/W
0	SOUT0_DRV	0 1	SOUT Pad Drive. Enables stronger output driver on S_{OUT0} line. Recommended for high speed I ² S/TDM/PDM operation. 0: Normal Operation. 1: Enable Strong Pad Drive Strength.	0x0	R/W

MCLK PAD REGISTER

Address: 0x5A, Reset: 0x00, Name: MCLK

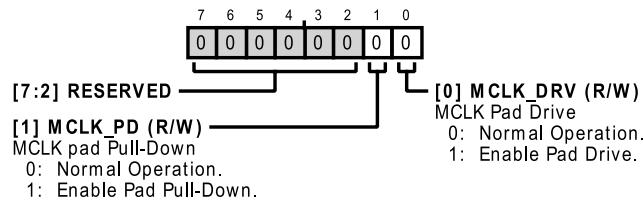


Table 114. Bit Descriptions for MCLK

Bits	Bit Name	Settings	Description	Reset	Access
[7:2]	RESERVED		Reserved.	0x0	R
1	MCLK_PD	0 1	MCLK Pad Pull-Down. Enables a weak pull-down path ($M\Omega$) on MCLK to avoid pin floating. 0: Normal Operation. 1: Enable Pad Pull-Down.	0x0	R/W
0	MCLK_DRV	0 1	MCLK Pad Drive. Enables stronger output driver on MCLK line. Recommended for high speed I ² S/TDM/PDM operation. 0: Normal Operation. 1: Enable Pad Drive.	0x0	R/W

REGISTER MAP

BCLK PAD REGISTER

Address: 0x5B, Reset: 0x00, Name: BCLK

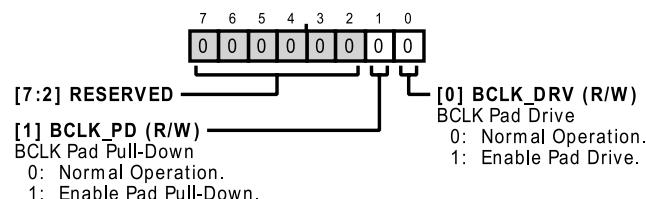


Table 115. Bit Descriptions for BCLK

Bits	Bit Name	Settings	Description	Reset	Access
[7:2]	RESERVED		Reserved.	0x0	R
1	BCLK_PD	0 1	BCLK Pad Pull-Down. Enables a weak pull-down path ($M\Omega$) on BCLK to avoid pin floating. 0: Normal Operation. 1: Enable Pad Pull-Down.	0x0	R/W
0	BCLK_DRV	0 1	BCLK Pad Drive. Enables stronger output driver on BCLK line. Recommended for high speed I ² S/TDM/PDM operation. 0: Normal Operation. 1: Enable Pad Drive.	0x0	R/W

FSYNC PAD AND RESYNC CONFIGURATION REGISTER

Address: 0x5C, Reset: 0x00, Name: FSYNC

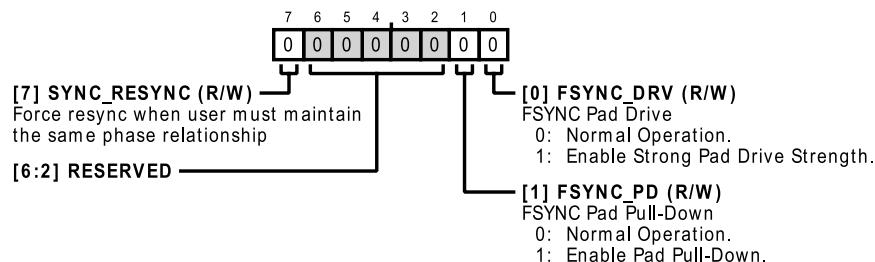


Table 116. Bit Descriptions for FSYNC

Bits	Bit Name	Settings	Description	Reset	Access
7	SYNC_RESYNC		Force resync when user must maintain the same phase relationship. Force a resynchronization of the internal datapath logic to ensure consistent phase behavior of data output. Valid when using EXT_SYNC or AUDIO_MODE only. Toggle this bit to 1 then back to 0 to force resynchronization.	0x0	R/W
[6:2]	RESERVED		Reserved.	0x0	R
1	FSYNC_PD	0 1	FSYNC Pad Pull-Down. Enables a weak pull-down path ($M\Omega$) on FSYNC to avoid pin floating. 0: Normal Operation. 1: Enable Pad Pull-Down.	0x0	R/W
0	FSYNC_DRV	0 1	FSYNC Pad Drive. Enables stronger output driver on FSYNC line. Recommended for high speed I ² S/TDM/PDM operation. 0: Normal Operation. 1: Enable Strong Pad Drive Strength.	0x0	R/W

REGISTER MAP

INT0 PAD CONTROL REGISTER

Address: 0x5D, Reset: 0x00, Name: INT0

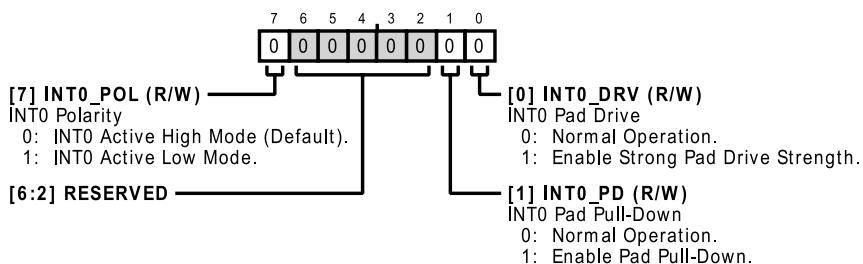


Table 117. Bit Descriptions for INT0

Bits	Bit Name	Settings	Description	Reset	Access
7	INT0_POL	0 1	INT0 Polarity. Configures whether the INT0 pin operates in active high (B7 low) or active low (B7 high) mode. INT0 Active High Mode (Default) INT0 Active Low Mode.	0x0	R/W
[6:2]	RESERVED		Reserved.	0x0	R
1	INT0_PD	0 1	INT0 Pad Pull-Down. Enables a weak pull-down path ($M\Omega$) on INT0 to avoid pin floating. Normal Operation. Enable Pad Pull-Down.	0x0	R/W
0	INT0_DRV	0 1	INT0 Pad Drive. Enables stronger output driver on INT0 line. Recommended if the interrupt pin has heavy loading. Normal Operation. Enable Strong Pad Drive Strength.	0x0	R/W

REGISTER MAP

INT1 PAD CONTROL REGISTER

Address: 0x5E, Reset: 0x00, Name: INT1

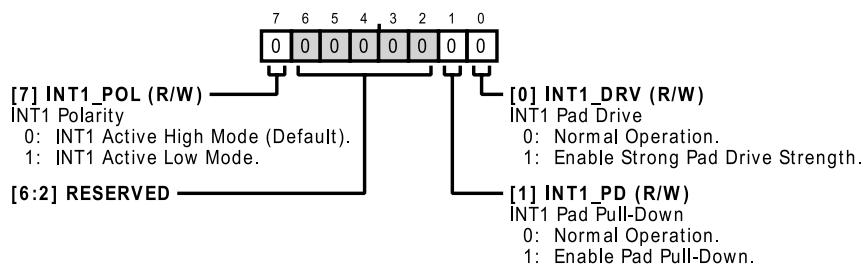


Table 118. Bit Descriptions for INT1

Bits	Bit Name	Settings	Description	Reset	Access
7	INT1_POL	0 1	INT1 Polarity. Configures whether the INT1 pin operates in active high (B7 low) or active low (B7 high) mode. 0: INT1 Active High Mode. 1: INT1 Active Low Mode.	0x0	R/W
[6:2]	RESERVED		Reserved.	0x0	R
1	INT1_PD	0 1	INT1 Pad Pull-Down. Enables a weak pull-down path ($M\Omega$) on INT1 to avoid pin floating. 0: Normal Operation. 1: Enable Pad Pull-Down.	0x0	R/W
0	INT1_DRV	0 1	INT1 Pad Drive. Enables stronger output driver on INT1 line. Recommended if the interrupt pin has heavy loading. 0: Normal Operation. 1: Enable Strong Pad Drive Strength.	0x0	R/W

APPLICATIONS INFORMATION

APPLICATION EXAMPLES

This section includes several application examples and initialization sequences for the ADXL382. Use these sequences as a starting point and modify these sequences to suit individual application requirements.

DEVICE CONFIGURATION

All configuration register writes must be completed with the ADXL382 in standby mode. The only exception to this is the activity and inactivity threshold registers (Register 0x39, Register 0x3A, Register 0x3E, and Register 0x3F). These registers must be set after entering the desired operation mode (see the OP_MODE register, Register 0x26). See the following sections for example initialization sequences.

Settings for each of the registers vary based on application requirements. For more information, see the [Analog Devices Device ID Register](#) section through the [INT1 Pad Control Register](#) section.

Start-Up Routine

The following start-up routine details the most basic initialization sequence to start receiving data from the ADXL382 via the SPI or I²C. Before sending this sequence, verify that the SPI or I²C communication is working correctly by reading Register 0x00 to confirm that the correct response (0xAD) is received.

1. Write 0xF0 to Register 0x27 (DIG_EN).
 - ▶ Enables x, y, z, and temperature channels.
2. Write 0x0C to Register 0x26 (OP_MODE).
 - ▶ Enables HP mode.

Example: FIFO Mode

The built-in FIFO can be enabled with the following example sequence:

1. Write 0x78 to Register 0x27 (DIG_EN).
 - ▶ Enables x, y, and z channels and enables FIFO mode. Data does not start accumulating in the FIFO until standby mode is exited.
2. Write 0x60 to Register 0x30 (FIFO_CFG0).
 - ▶ Enables FIFO channel ID and FIFO stream mode.
3. Write 0x0C to Register 0x31 (FIFO_CFG1).
 - ▶ Sets FIFO_SAMPLES (Register 0x30, Bit 0 and Register 0x31, Bits[7:0]) to 12. The FIFO_WATERMARK bit (Register 0x11, Bit 3) asserts when four full samples (X, Y, and Z) are stored in the FIFO.
 - ▶ This value can be changed to fit application needs.
4. Write 0x08 to Register 0x2B (INT0_MAP0).
 - ▶ Maps the FIFO_WATERMAK bit (Register 0x11, Bit 3) to the INT0 pin.
5. Write 0x0C to Register 0x26 (OP_MODE).

- ▶ Enables HP mode. Data now starts accumulating in the FIFO.

After entering HP mode, use the watermark interrupt to trigger reading data from the FIFO. Use a multibyte read of Register 0x1D (FIFO_DATA) to read the entire contents of the FIFO. Do not read more samples than are currently stored in the FIFO. Read FIFO_ENTRIES (Register 0x1E Bits[7:0] and Register 0x1F, Bit 0) to determine the number of samples that are currently in the FIFO before each FIFO read.

To ensure that no samples are lost, it is important to finish reading from the FIFO and de-assert the chip select line before a new sample becomes available. Reading from the FIFO while a new sample becomes available results in that sample being lost. To avoid the sample being lost, ensure that the digital communication is fast enough (use a fast SPI clock or high speed I²C) to complete the multibyte read before a new sample becomes available.

Example: I²S Mode

I²S protocol for audio data is suitable for obtaining high speed, synchronous accelerometer data. Because latency is often important in audio applications, it is most common to set the system clock to 768 kHz as described in the [Low Latency Mode](#) section. This setting of the system clock requires setting up the clock divider (EXT_CLK_RATE, Register 0x25, Bits[7:4]) such that the BCLK divides down to 768 kHz.

See the example sequence that follows for a 3.072 MHz BCLK and 48 kHz FSYNC:

1. Write 0x00 to Register 0x32 (SPT_CFG0).
 - ▶ Sets the word width to 32 bits.
 - ▶ Configures the device to expect stereo FSYNC (50% duty cycle).
2. Write 0x88 to Register 0x33 (SPT_CFG1).
 - ▶ Sets time slots for x-axis and y-axis data-words.
 - ▶ Sets the output to repeat samples if ODR < FSYNC rate.
3. Write 0x5A to Register 0x34 (SPT_CFG2).
 - ▶ Sets time slots for z-axis data-word.
4. Write 0x80 to Register 0x35 (SYNC_CFG).
 - ▶ Sets BCLK and FSYNC source (external).
5. Optional: write 0x01 to Register 0x59 (S_{OUT0}) and 0x01 to Register 0x5A (MCLK).
 - ▶ Increases drive strength of the data output pins.
6. Write 0xC0 to Register 0x49 (TRIG_CFG).
 - ▶ Sets the internal decimation and filter bypasses to select an ODR of 48 kHz.
7. Write 0x32 to Register 0x25 (CLK_CTRL).
 - ▶ Sets the external clock and sets the clock divider (EXT_CLK_RATE is divide by 4), which divides the 3.072 MHz BCLK down to the expected system clock (768 kHz).
8. Write 0x40 to Register 0x50 (FILTER).

APPLICATIONS INFORMATION

- ▶ Sets LPF and HPF settings and disables the EQ filter.
9. Write 0x70 to Register 0x27 (DIG_EN).
 - ▶ Enables x, y, and z channels.
10. Write 0x1C to Register 0x26 (OP_MODE).
 - ▶ Enables HP mode and audio mode.

Example: TDM Mode

Similar to the I²S protocol, the ADXL382 supports TDM protocol communication. Because latency is often important in audio applications, it is most common to set the ADXL382 system clock to 768 kHz as described in the [Low Latency Mode](#) section, which requires setting up the clock divider (EXT_CLK_RATE, Register 0x25, Bits[7:4]) such that the BCLK divides down to 768 kHz.

See the example sequence that follows for a 6.144 MHz BCLK and 48 kHz FSYNC:

1. Write 0x08 to Register 0x32 (SPT_CFG0).
 - ▶ Sets the word width to 32 bits.
 - ▶ Configures the device to expect a sync pulse that is a single bit clock wide.
2. Write 0x88 to Register 0x33 (SPT_CFG1).
 - ▶ Sets time slots for x-axis and y-axis data-words.
 - ▶ Sets the output to repeat samples if ODR < FSYNC rate.
3. Write 0x1A to Register 0x34 (SPT_CFG2).
 - ▶ Sets time slots for z-axis data-word.
4. Write 0x80 to Register 0x35 (SYNC_CFG).
 - ▶ Sets BCLK and FSYNC source (external).
5. Optional: write 0x01 to Register 0x59 (S_{OUT0}) and 0x01 to Register 0x5A (MCLK).
 - ▶ Increases drive strength of the data output pins.
6. Write 0xC0 to Register 0x49 (TRIG_MODE).
 - ▶ Sets the internal decimation and filter bypasses to select an ODR of 48 kHz.
7. Write 0x52 to Register 0x25 (CLK_CTRL).
 - ▶ Sets the external clock and sets the clock divider (EXT_CLK_RATE is divide by 8), which divides the 6.144 MHz BCLK down to the expected system clock (768 kHz).
8. Write 0x40 to Register 0x50 (FILTER).
 - ▶ Sets LPF and HPF settings and disables the EQ filter.
9. Write 0x70 to Register 0x27 (DIG_EN).
 - ▶ Enables x, y, and z channels.
10. Write 0x1C to Register 0x26 (OP_MODE)
 - ▶ Enables HP mode and audio mode.

Example: PDM Mode

The PDM bypasses the digital filters and offers the best performance in terms of latency. Additional filtering and decimation may be required at the system level. See the example initialization sequence as follows:

1. Write 0x39 to Register 0x36 (PDM_CFG).
 - ▶ Configures x-data in Slot A and y-data in Slot B (S_{OUT0} pin).
 - ▶ Configures z-data in Slot A (FSYNC pin).
2. Optional: write 0x01 to Register 0x59 (S_{OUT0}) and 0x01 to Register 0x5C (FSYNC).
 - ▶ Increases drive strength of the data output pins.
3. Write 0x02 to Register 0x25 (CLK_CTRL).
 - ▶ Sets the BCLK pin as the external clock source.
 - ▶ Provides an external clock of 768 kHz on the BCLK pin. If a higher clock rate is required, choose an external clock divider such that the system clock remains at 768 kHz. For example, with a 6.144 MHz external clock, set EXT_CLK_RATE (Register 0x25, Bits[7:4]) to divide by 8.
4. Write 0x70 to Register 0x27 (DIG_EN).
 - ▶ Enables x, y, and z channels.
5. Write 0x2C to Register 0x26 (OP_MODE).
 - ▶ Enables HP mode and PDM mode.

Example: External Sync Mode

External synchronization allows the user to synchronize acceleration sampling to an external synchronization signal. This feature is only supported for the high performance signal chain (HP, RBW, and LP operational modes). In order to enable the external sync with internal clock mode follow these steps:

1. Optional : write 0x00 to Register 0x25 (CLK_CTRL).
 - ▶ This setting configures the ADXL382 to use the internal clock. If an external clock is desired, write 0b10 to the CLK_SRC bits (Register 0x25, Bits[1:0]). See the [External Synchronization](#) section for more detail.
2. Write 0x10 to Register 0x35 (SYNC_CFG).
 - ▶ SYNC_MODE = 1. This setting synchronizes the output data rate of the ADXL382 with the external sync signal.
3. Write 0x70 to Register 0x27 (DIG_EN).
 - ▶ Enables x, y, and z channels.
4. Write 0x0C to Register 0x26 (OP_MODE).
 - ▶ Enables HP mode.

Example: Heart Sounds Mode

The ADXL382 has a heart sounds mode that optimizes performance and power consumption. The heart sounds mode is a single-channel mode (z-axis only) that has low noise density while maintaining low power consumption (see [Table 1](#)). The heart sounds mode can be activated with the following example sequence:

1. Write 0x10 to Register 0x27 (DIG_EN).
 - ▶ Enables z channel only.
2. Perform any configuration writes to the HPF settings if desired.
3. Write 0x01 to Register 0x26 (OP_MODE).
 - ▶ Enables HS mode.

APPLICATIONS INFORMATION

Example: Activity and Inactivity Detection Mode

The ADXL382 features built-in logic that detects activity (presence of acceleration more than a threshold) and inactivity (lack of acceleration more than a threshold). Activity and inactivity events can be used as triggers to manage the accelerometer mode of operation, trigger an interrupt to a host processor, and/or autonomously drive a motion switch.

See the example sequence that follows to configure activity and inactivity detection:

1. Write 0xA0 to Register 0x2B (INT0_MAP0) and 0x00 to Register 0x2C (INT0_MAP1) to map the activity interrupt to the INT0 pin.
2. Write 0x40 to Register 0x2D (INT1_MAP0) and 0x00 to Register 0x2E (INT1_MAP1), to map the inactivity interrupt to the INT1 pin.
3. Write 0x05 to Register 0x37 (ACT_INACT_CTL) to enable activity and inactivity detection.
4. Write 0x03 to Register 0x38 (SNSR_AXIS_EN) to enable x-axis and y-axis for activity and inactivity detection.
5. Write 0x00 to Register 0x3B (TIME_ACT_H), 0x00 to Register 0x3C (TIME_ACT_M), and 0xC8 to Register 0x3D (TIME_ACT_L) to set the activity time to 100 ms.
6. Write 0x00 to Register 0x40 (TIME_INACT_H), 0x00 to Register 0x41 (TIME_INACT_M), and 0xC8 to Register 0x42 (TIME_INACT_L) to set the activity time to 100 ms.
7. Write 0x02 to Register 0x26 (OP_MODE) to enable ULP mode.
8. Write 0x01 to Register 0x39 (THRESH_ACT_H) and 0x00 to Register 0x3A (THRESH_ACT_L) to set the activity threshold to 500 mg.
9. Write 0x00 to Register 0x3E (THRESH_INACT_H) and 0x22 to Register 0x3F (THRESH_INACT_L) to set the inactivity threshold to 250 mg.

Example: Tap Detection Mode

The ADXL382 have a built-in single, double, and triple tap detection. The tap threshold, duration, window, and latency can all be configured to fit the application needs (see [Figure 73](#)).

See the example sequence that follows to configure tap detection:

1. Write 0x01 to Register 0x2C (INT0_MAP1).
 - Maps the single tap detect interrupt to the INT0 pin.
2. Write 0x03 to Register 0x2E (INT1_MAP1).
 - Maps the double and triple tap detect interrupts to the INT1 pin. When multiple interrupt functions are mapped to the same interrupt pin, the logical OR of the two functions determines when the interrupt is asserted. A read of Register 0x12 (STATUS1) can determine which tap event (double or triple) has occurred.

3. Write 0x44 to Register 0x43 (TAP_THRESH) to set the tap detect threshold to 4 g.
4. Write 0x40 to Register 0x44 (TAP_DUR) to set the tap duration to 40 ms.
5. Write 0x20 to Register 0x45 (TAP_LATENT) to set the latency time to 40 ms.
 - A value of 0x00 in this register disables double and triple tap detection.
6. Write 0x7D to Register 0x46 (TAP_WINDOW) to set the tap window duration to 320 ms, which sets the duration time where additional taps can be detected (second or third).
7. Write 0x06 to Register 0x48 (TAP_CFG).
 - This setting enables triple tap detection and sets the z-axis as the active tap detection axis.
8. Write 0x70 to Register 0x27 (DIG_EN).
 - Enables x, y, and z channels.
9. Write 0x03 to Register 0x26 (OP_MODE).
 - Enables VLP mode.

Example: Implementing Free Fall Detection

The ADXL382 has built-in, free fall detection using an inactivity interrupt.

When an object is in true free fall, acceleration on all axes is 0 g. Therefore, free fall detection is achieved by looking for acceleration on all axes to fall to less than a certain threshold (close to 0 g) for a certain amount of time. The inactivity detection functionality, when used in absolute mode, does exactly this.

To use inactivity to implement free fall detection, set the value in the THRESH_INACT_x register (Register 0x3E and Register 0x3F) to the desired free fall threshold. Values between 300 mg and 600 mg are recommended; the register setting for these values varies based on the g range setting of the ADXL382, as follows:

$$\text{THRESH_INACT}_x =$$

$$\text{Threshold Value (g)} \times \text{Scale Factor (LSB per g)}$$

Set the value in the TIME_INACT_x register (Register 0x40 through Register 0x42) to implement the minimum amount of time that the acceleration on all axes must be less than the free fall threshold to generate a free fall condition. Values between 100 ms and 350 ms are recommended; the register setting for this varies based on the output data rate.

$$\text{TIME_INACT}_x = \text{Time (sec)} \times \text{Data Rate (Hz)}$$

When a free fall condition is detected, the inactivity status is set to 1, and, if the function is mapped to an interrupt pin (INT0 or INT1), an inactivity interrupt triggers on that pin.

APPLICATIONS INFORMATION

POWER SUPPLY REQUIREMENTS

The ADXL382 operates using supply voltage rails ranging from 2.25 V to 3.6 V. The operating voltage range (V_S) specified in [Table 1](#) ranges from 2.25 V to 3.6 V to account for inaccuracies and transients of up to $\pm 10\%$ on the supply voltage. When power cycling the ADXL382, it is highly recommended to fully discharge the device to ground level ($V_S = 0$ V) on each power cycle. If this is not possible, care must be taken regarding the following specifications:

- ▶ Supply reset threshold (V_{RESET})
- ▶ Hold time
- ▶ Rise time

Supply Reset Threshold

During start-up or power cycling of the ADXL382, V_S must always be started up from less than V_{RESET} . When the ADXL382 is operating, any time power is removed from the ADXL382 or falls to less than 2.25 V, V_S must be discharged lower than V_{RESET} .

Hold Time

To ensure a successful power-on reset (POR), V_S must be held to less than V_{RESET} for at least 1 ms before reapplying the supply to the ADXL382 (see [Figure 79](#)).

Rise Time

The supply voltage rise time is defined as the time from 0 V to 90% of V_S , which is true regardless of what supply voltage is used (see [Figure 79](#)).

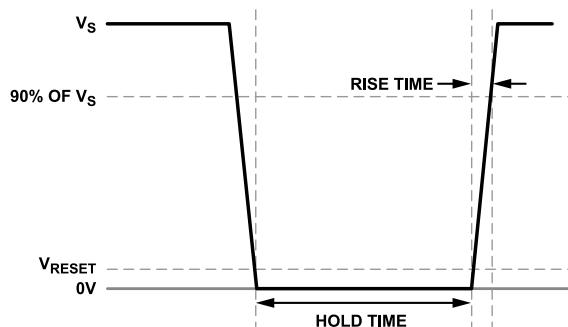


Figure 79. POR and Start-Up Requirements

To enable supply discharge, it is recommended to power the ADXL382 from a microcontroller general-purpose input and output (GPIO), connect a shutdown discharge switch to the supply, or use a voltage regulator with a shutdown discharge feature.

Following POR, the output requires 2 ms to settle after entering measurement mode.

APPLICATIONS INFORMATION

INTERRUPTS

Several of the built-in functions of the ADXL382 can trigger interrupts to alert the host processor of certain status conditions. See the [Interrupt Pins](#) section for further details.

Interrupt Pins

Interrupts can be mapped to either (or both) of two designated output pins, INT0 and INT1. All functions can be used simultaneously. If multiple interrupts are mapped to one pin, the OR combination of the interrupts determines the status of the pin.

If no functions are mapped to an interrupt pin, that pin is automatically configured to a high impedance (high-Z) state. The pins are also placed in the high-Z state upon a reset.

When a certain status condition is detected, the pin that condition is mapped to is activated. The configuration of the pin is active

high by default so that when it is activated, the pin goes high. However, this configuration can be switched to active low by setting the INTx_POL bit in Register 0x5D, Bit 7 and Register 0x5E, Bit 7.

The INT pins can be connected to the interrupt input of a host processor where interrupts are responded to with an interrupt routine.

Both interrupt pins are push-pull low impedance pins with an output impedance of 50 Ω (typical) when being driven and digital output specifications, as shown in [Table 119](#). Both pins have bus keepers when the pins are not internally driven.

To prevent interrupts from being falsely triggered during configuration, disable interrupts while their settings, such as thresholds, timings, or other values, are configured.

Table 119. Interrupt Pin Digital Output

Parameter	Test Conditions	Limit ¹		Unit
		Min	Max	
Digital Output				
Low Level Output Voltage (V_{OL})	$I_{OL} = 500 \mu A$		$0.1 \times V_{DDIO}$	V
High Level Output Voltage (V_{OH})	$I_{OH} = -300 \mu A$	$0.9 \times V_{DDIO}$		V
Low Level Output Current (I_{OL})	$V_{OL} = V_{OL, \max}$	500		μA
High Level Output Current (I_{OH})	$V_{OH} = V_{OH, \min}$		-300	μA

¹ Limits based on design, not production tested.

APPLICATIONS INFORMATION

USING AN EXTERNAL CLOCK

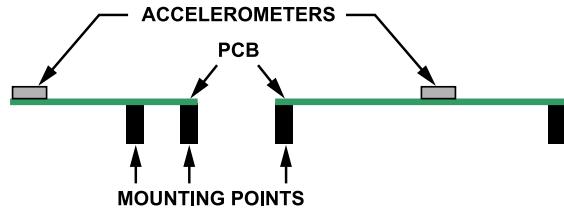
An external clock can be used to improve clock frequency accuracy or to enable additional features (for example, interpolation sync). The CLK_CTRL register (Register 0x25) is used to set the external clock features.

The external clock can be provided on either MCLK or BCLK. The CLK_SRC bits (Bits[1:0]) must be set to match the chosen clock source (internal, MCLK, or BCLK).

The order of operation for external clock usage is as follows:

1. Power on the ADXL382.
2. Set the CLK_CTRL register (Register 0x25) to the desired value.
3. Enable acceleration and temperature channels by writing to the MODE_CHANNEL_EN bits in the DIG_EN register (Register 0x27, Bits[7:4]).
4. Set the ADXL382 to the desired operational mode (HP, RBW, LP, and so on) by writing to the OP_MODE bits in the OP_MODE register (Register 0x26, Bits[3:0]).

The clock must be an integer multiple of the 1024 kHz nominal clock frequency such that it can be divided down to fit the intended nominal clock frequency by setting the internal divider (EXT_CLK_RATE bits in the CLK_CTRL register (Register 0x25, Bits[7:4])). The EXT_CLK_RATE bits must be set to the appropriate divider according to [Table 120](#). The external clock must be divided down to the expected system clock (1024 kHz if using HP, RBW, or LP modes or 256 kHz if using VLP, ULP, HS modes). See [Table 16](#) for more information.


Table 120. External Clock Value Input and Corresponding Divider Settings for HP, RBW, or LP Modes (Register 0x25)

External Clock Value (MHz)	Divider Value	EXT_CLK_RATE
1.024	No Divider	4'b0000
2.048	Divide by 2	4'b0001
3.072	Divide by 3	4'b0010
4.096	Divide by 4	4'b0011
6.144	Divide by 6	4'b0100
8.192	Divide by 8	4'b0101
12.288	Divide by 12	4'b0110
16.384	Divide by 16	4'b0111
24.576	Divide by 24	4'b1000

MECHANICAL CONSIDERATIONS FOR MOUNTING

Mount the ADXL382 on the PCB in a location that is close to a hard mounting point on the PCB to the case. Mounting the ADXL382 at an unsupported PCB location, as shown in [Figure 80](#), can result in large, apparent measurement errors due to undamped PCB vibration. Locating the accelerometer near a hard mounting point ensures that any PCB vibration at the accelerometer is more than

the mechanical sensor resonant frequency of the accelerometer and, therefore, effectively invisible to the accelerometer. Multiple mounting points, close to the sensor, and/or a thicker PCB can also help to reduce the effect of system resonance on the performance of the sensor.

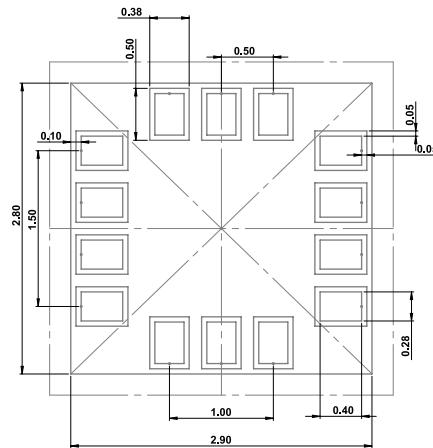
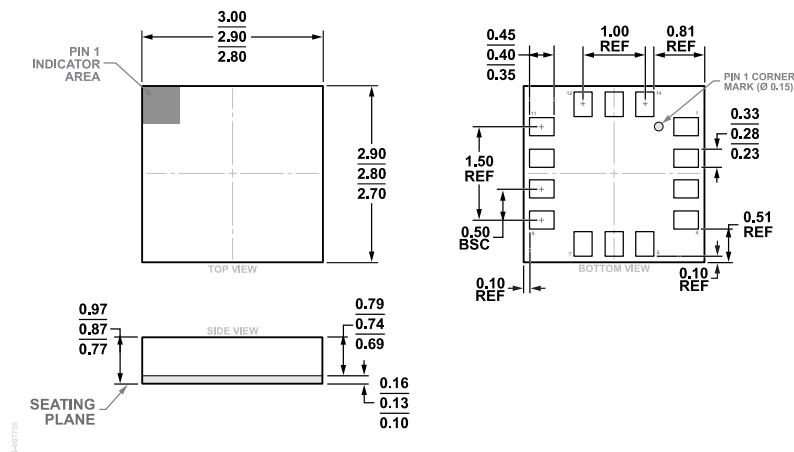

080

Figure 80. Incorrectly Placed Accelerometers

PCB FOOTPRINT


[Figure 81](#) shows the recommended PCB footprint. The inner pads represent the ADXL382 pads (0.40 mm × 0.28 mm). The outer pads (0.50 mm × 0.38 mm) represent the footprint on the PCB (PCB pads). To minimize package level stress on the ADXL382, the following guidelines are outlined:

- All PCB pad dimensions must match the dimensions shown in [Figure 81](#).
- PCB traces must be symmetric around the ADXL382, which means that the trace width must match the horizontally opposite traces and vertically opposite traces to minimize package stress when exposed to changing temperatures.
- Do not place a ground pad under the ADXL382.

Figure 81. Recommended PCB Footprint, Inner Pads Represent Pads on the ADXL382 Package, Outer Pads Represent the Footprint on the PCB, and All Dimensions in Millimeters

OUTLINE DIMENSIONS

P/N:ADXL382-A

Figure 82. 14-Terminal Land Grid Array [LGA]

(CC-14-3)

Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADXL382-1BCCZ-RL	-40°C to +125°C	14-Terminal LGA	CC-14-3
ADXL382-1BCCZ-RL7	-40°C to +125°C	14-Terminal LGA	CC-14-3
ADXL382-2BCCZ-RL	-40°C to +125°C	14-Terminal LGA	CC-14-3
ADXL382-2BCCZ-RL7	-40°C to +125°C	14-Terminal LGA	CC-14-3

¹ Z = RoHS Compliant Part.

MODELS, MEASUREMENT RANGES, AND COMMUNICATIONS INTERFACE

Table 121. Models, Measurement Ranges, and Communications Interface

Model ¹	Measurement Range (g)	Communications Interface
ADXL382-1BCCZ-RL7	±15, ±30, ±60	SPI
ADXL382-1BCCZ-RL	±15, ±30, ±60	SPI
ADXL382-2BCCZ-RL7	±15, ±30, ±60	I ² C
ADXL382-2BCCZ-RL	±15, ±30, ±60	I ² C

¹ Z = RoHS Compliant Part.

EVALUATION BOARDS

Table 122. Evaluation Boards

Model ¹	Description
EVAL-ADXL382-EB-1Z	Evaluation Board for the SPI Variant
EVAL-ADXL382-EB-2Z	Evaluation Board for the I ² C Variant
EVAL-ADXL382-BB-1Z	Breakout Board for the SPI Variant
EVAL-ADXL382-BB-2Z	Breakout Board for the I ² C Variant

¹ Z = RoHS-Compliant Part.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Analog Devices Inc.:](#)

[ADXL382-1BCCZ-RL](#) [ADXL382-1BCCZ-RL7](#) [ADXL382-2BCCZ-RL](#) [ADXL382-2BCCZ-RL7](#) [EVAL-ADXL382-2Z](#)
[EVAL-ADXL382-1Z](#)