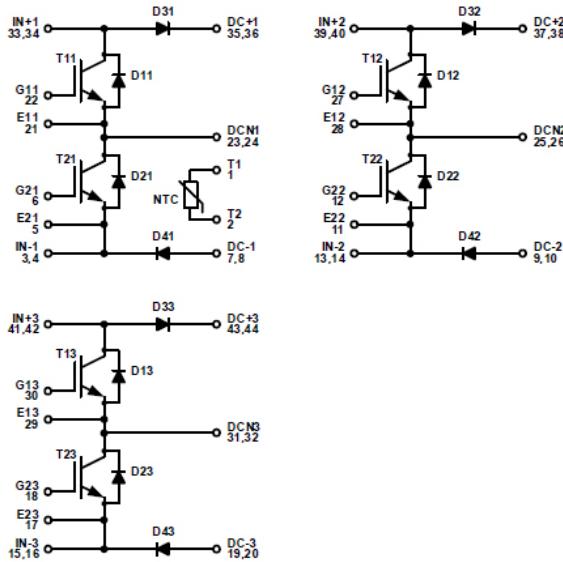


# **Si/SiC Hybrid Module -**

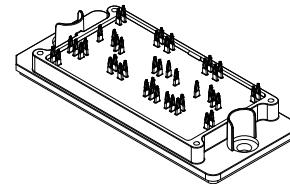
## **EliteSiC, 3 Channel**

### **Symmetric Boost 1000 V, 200 A IGBT, 1200 V, 60 A SiC Diode, Q2 Package**

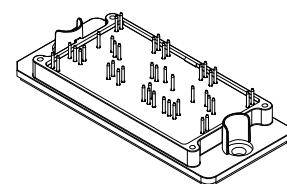
**NXH600B100H4Q2F2PG,  
NXH600B100H4Q2F2SG,  
NXH600B100H4Q2F2SG-R**


The NXH600B100H4Q2 is a Si/SiC Hybrid three channel symmetric boost module. Each channel contains two 1000 V, 200 A IGBTs, and two 1200 V, 60 A SiC diodes. The module contains an NTC thermistor.

## Features

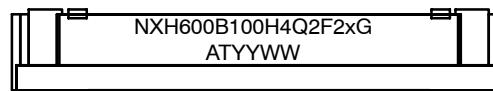

- Extremely Efficient Trench with Field Stop Technology
- Low Switching Loss Reduces System Power Dissipation
- Module Design Offers High Power Density
- Low Inductive Layout
- Low Package Height
- Pb-Free, Halogen Free/BFR Free and RoHS Compliant

## Typical Applications


- Solar Inverters
- Uninterruptable Power Supplies Systems

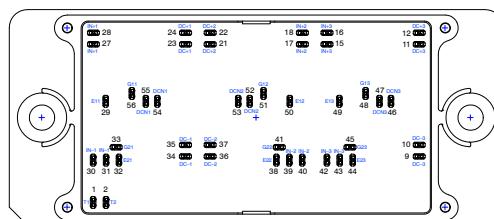


**Figure 1. NXH600B100H4Q2F2 Schematic Diagram**




**PIM44, 93x47 (PRESS FIT)  
CASE 180HF**




PIM44, 93x47 (SOLDER PIN)  
CASE 180HE

## MARKING DIAGRAM



NXH600B100H4Q2F2xG = Device Code  
 X = P or S  
 G = Pb-Free Package  
 AT = Assembly & Test Site  
 Code  
 YYWW = Year and Work Week  
 Code

## PIN CONNECTIONS



## ORDERING INFORMATION

See detailed ordering and shipping information on page 11 of this data sheet.

# NXH600B100H4Q2F2PG, NXH600B100H4Q2F2SG, NXH600B100H4Q2F2SG-R

## ABSOLUTE MAXIMUM RATINGS (Note 1) $T_J = 25^\circ\text{C}$ unless otherwise noted

| Parameter                                                                                                      | Symbol              | Value          | Unit             |
|----------------------------------------------------------------------------------------------------------------|---------------------|----------------|------------------|
| <b>IGBT (T11, T21, T12, T22, T13, T23)</b>                                                                     |                     |                |                  |
| Collector-Emitter Voltage                                                                                      | $V_{CES}$           | 1000           | V                |
| Gate-Emitter Voltage<br>Positive Transient Gate – Emitter Voltage ( $t_{pulse} = 5 \mu\text{s}$ , $D < 0.10$ ) | $V_{GE}$            | $\pm 20$<br>30 | V                |
| Continuous Collector Current @ $T_c = 80^\circ\text{C}$                                                        | $I_C$               | 192            | A                |
| Pulsed Peak Collector Current @ $T_c = 80^\circ\text{C}$ ( $T_J = 175^\circ\text{C}$ )                         | $I_C(\text{Pulse})$ | 576            | A                |
| Maximum Power Dissipation ( $T_J = 175^\circ\text{C}$ )                                                        | $P_{tot}$           | 511            | W                |
| Minimum Operating Junction Temperature                                                                         | $T_{JMIN}$          | -40            | $^\circ\text{C}$ |
| Maximum Operating Junction Temperature (Note 2)                                                                | $T_{JMAX}$          | 175            | $^\circ\text{C}$ |

## IGBT INVERSE DIODE (D11, D21, D12, D22, D13, D23)

|                                                               |            |      |                  |
|---------------------------------------------------------------|------------|------|------------------|
| Peak Repetitive Reverse Voltage                               | $V_{RRM}$  | 1200 | V                |
| Continuous Forward Current @ $T_c = 80^\circ\text{C}$         | $I_F$      | 66   | A                |
| Repetitive Peak Forward Current ( $T_J = 175^\circ\text{C}$ ) | $I_{FRM}$  | 198  | A                |
| Maximum Power Dissipation ( $T_J = 175^\circ\text{C}$ )       | $P_{tot}$  | 101  | W                |
| Minimum Operating Junction Temperature                        | $T_{JMIN}$ | -40  | $^\circ\text{C}$ |
| Maximum Operating Junction Temperature                        | $T_{JMAX}$ | 175  | $^\circ\text{C}$ |

## SILICON CARBIDE SCHOTTKY DIODE (D31, D41, D32, D42, D33, D43)

|                                                               |            |      |                  |
|---------------------------------------------------------------|------------|------|------------------|
| Peak Repetitive Reverse Voltage                               | $V_{RRM}$  | 1200 | V                |
| Continuous Forward Current @ $T_c = 80^\circ\text{C}$         | $I_F$      | 73   | A                |
| Repetitive Peak Forward Current ( $T_J = 175^\circ\text{C}$ ) | $I_{FRM}$  | 219  | A                |
| Maximum Power Dissipation ( $T_J = 175^\circ\text{C}$ )       | $P_{tot}$  | 217  | W                |
| Minimum Operating Junction Temperature                        | $T_{JMIN}$ | -40  | $^\circ\text{C}$ |
| Maximum Operating Junction Temperature                        | $T_{JMAX}$ | 175  | $^\circ\text{C}$ |

## THERMAL PROPERTIES

|                                                 |            |            |                  |
|-------------------------------------------------|------------|------------|------------------|
| Operating Temperature under Switching Condition | $T_{VJOP}$ | -40 to 150 | $^\circ\text{C}$ |
| Storage Temperature Range                       | $T_{stg}$  | -40 to 125 | $^\circ\text{C}$ |

## INSULATION PROPERTIES

|                                                   |          |      |           |
|---------------------------------------------------|----------|------|-----------|
| Isolation Test Voltage, $t = 1 \text{ s}$ , 50 Hz | $V_{is}$ | 4000 | $V_{RMS}$ |
| Creepage Distance                                 |          | 12.7 | mm        |
| Comparative Tracking Index                        | CTI      | >600 |           |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.
2. Qualification at  $175^\circ\text{C}$  per discrete TO247.

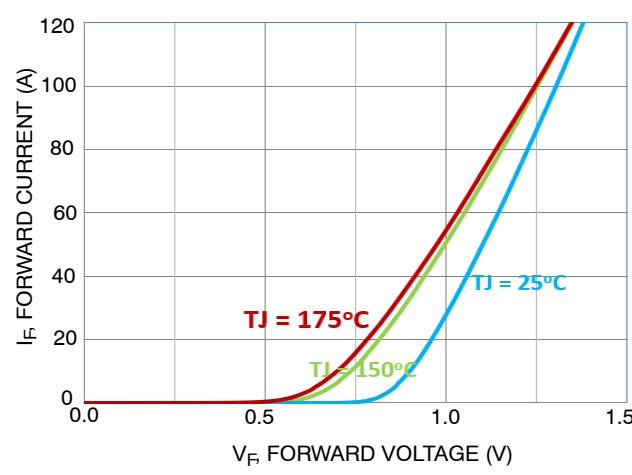
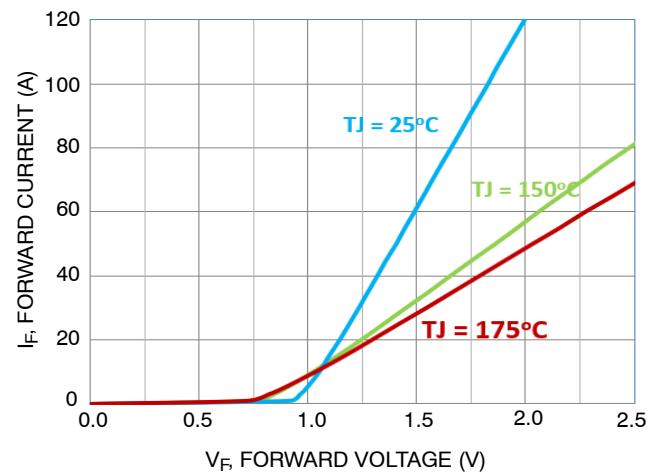
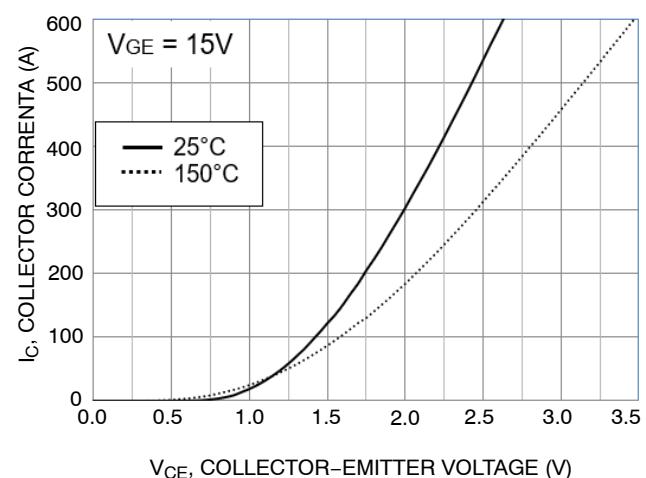
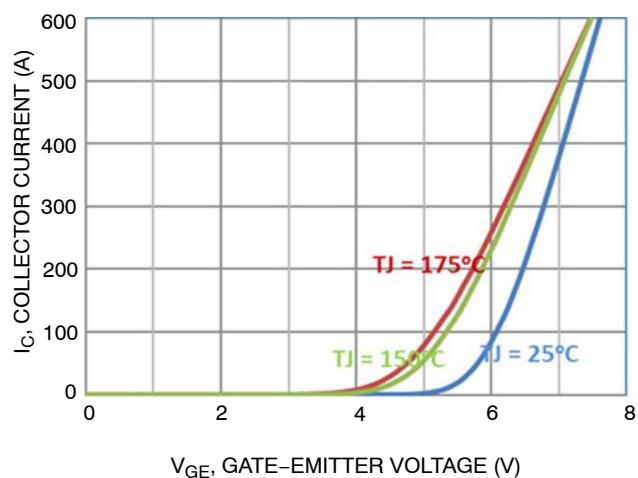
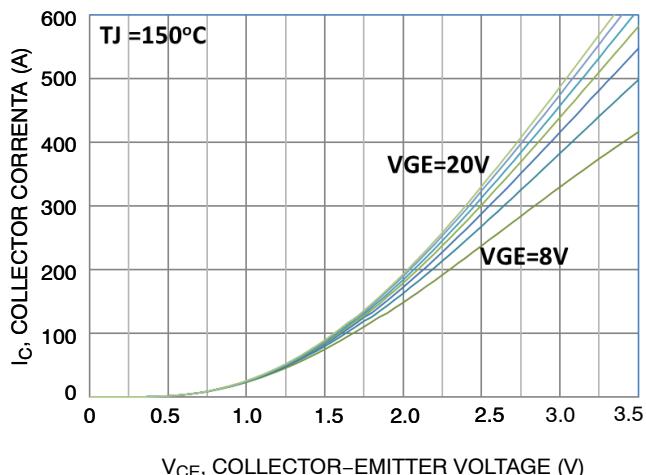
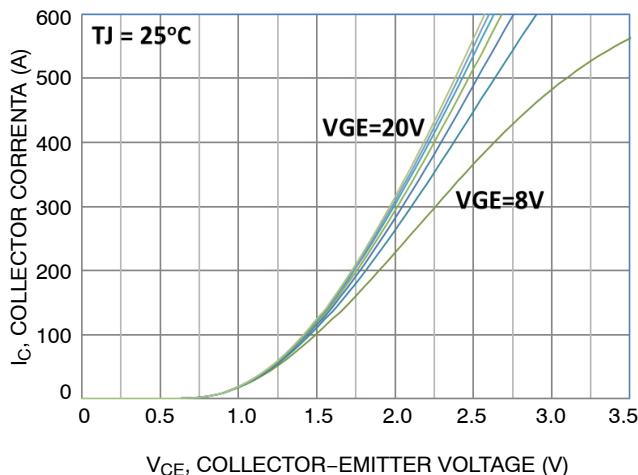
# NXH600B100H4Q2F2PG, NXH600B100H4Q2F2SG, NXH600B100H4Q2F2SG-R

## ELECTRICAL CHARACTERISTICS ( $T_J = 25^\circ\text{C}$ unless otherwise noted) (continued)

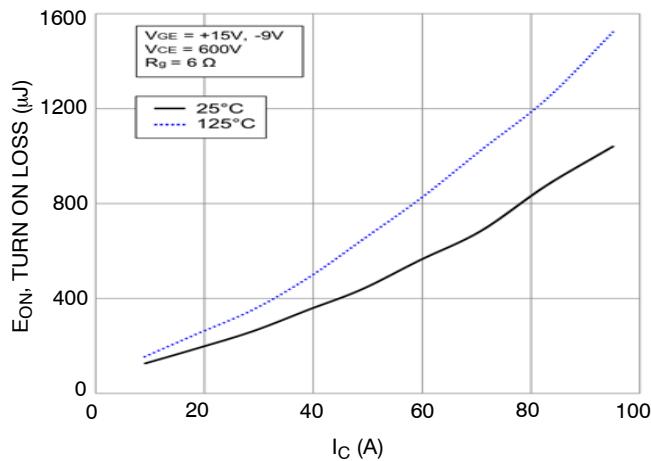
| Parameter                                                                | Test Conditions                                                                                                                                                            | Symbol               | Min  | Typ   | Max     | Unit                   |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------|-------|---------|------------------------|
| <b>IGBT (T11, T21, T12, T22, T13, T23) CHARACTERISTICS</b>               |                                                                                                                                                                            |                      |      |       |         |                        |
| Collector-Emitter Breakdown Voltage                                      | $V_{GE} = 0 \text{ V}$ , $I_C = 1 \text{ mA}$                                                                                                                              | $V_{(BR)CES}$        | 1000 | 1165  | —       | V                      |
| Collector-Emitter Cutoff Current                                         | $V_{GE} = 0 \text{ V}$ , $V_{CE} = 1000 \text{ V}$                                                                                                                         | $I_{CES}$            | —    | —     | 10      | $\mu\text{A}$          |
| Collector-Emitter Saturation Voltage                                     | $V_{GE} = 15 \text{ V}$ , $I_C = 200 \text{ A}$ , $T_J = 25^\circ\text{C}$                                                                                                 | $V_{CE(\text{sat})}$ | —    | 1.69  | 2.3     | V                      |
|                                                                          | $V_{GE} = 15 \text{ V}$ , $I_C = 200 \text{ A}$ , $T_J = 175^\circ\text{C}$                                                                                                |                      | —    | 2.15  | —       |                        |
| Gate-Emitter Threshold Voltage                                           | $V_{GE} = V_{CE}$ , $I_C = 200 \text{ mA}$                                                                                                                                 | $V_{GE(\text{TH})}$  | 3.8  | 4.75  | 6.6     | V                      |
| Gate Leakage Current                                                     | $V_{GE} = \pm 20 \text{ V}$ , $V_{CE} = 0 \text{ V}$                                                                                                                       | $I_{GES}$            | —    | —     | $\pm 1$ | $\mu\text{A}$          |
| Internal Gate Resistor                                                   |                                                                                                                                                                            | $r_g$                | —    | 2     | —       | $\Omega$               |
| Turn-on Delay Time                                                       | $T_J = 25^\circ\text{C}$<br>$V_{CE} = 600 \text{ V}$ , $I_C = 50 \text{ A}$<br>$V_{GE} = -9 \text{ V}$ , $15 \text{ V}$ , $R_{gon} = 6 \Omega$ ,<br>$R_{goff} = 6 \Omega$  | $t_{d(\text{on})}$   | —    | 111   | —       | ns                     |
| Rise Time                                                                |                                                                                                                                                                            | $t_r$                | —    | 15    | —       |                        |
| Turn-off Delay Time                                                      |                                                                                                                                                                            | $t_{d(\text{off})}$  | —    | 338   | —       |                        |
| Fall Time                                                                |                                                                                                                                                                            | $t_f$                | —    | 113   | —       |                        |
| Turn-on Switching Loss per Pulse                                         |                                                                                                                                                                            | $E_{\text{on}}$      | —    | 460   | —       | $\mu\text{J}$          |
| Turn off Switching Loss per Pulse                                        |                                                                                                                                                                            | $E_{\text{off}}$     | —    | 1930  | —       |                        |
| Turn-on Delay Time                                                       | $T_J = 125^\circ\text{C}$<br>$V_{CE} = 600 \text{ V}$ , $I_C = 50 \text{ A}$<br>$V_{GE} = -9 \text{ V}$ , $15 \text{ V}$ , $R_{gon} = 6 \Omega$ ,<br>$R_{goff} = 6 \Omega$ | $t_{d(\text{on})}$   | —    | 111   | —       | ns                     |
| Rise Time                                                                |                                                                                                                                                                            | $t_r$                | —    | 17    | —       |                        |
| Turn-off Delay Time                                                      |                                                                                                                                                                            | $t_{d(\text{off})}$  | —    | 406   | —       |                        |
| Fall Time                                                                |                                                                                                                                                                            | $t_f$                | —    | 142   | —       |                        |
| Turn-on Switching Loss per Pulse                                         |                                                                                                                                                                            | $E_{\text{on}}$      | —    | 660   | —       | $\mu\text{J}$          |
| Turn off Switching Loss per Pulse                                        |                                                                                                                                                                            | $E_{\text{off}}$     | —    | 2860  | —       |                        |
| Input Capacitance                                                        | $V_{CE} = 20 \text{ V}$ , $V_{GE} = 0 \text{ V}$ , $f = 1 \text{ MHz}$                                                                                                     | $C_{\text{ies}}$     | —    | 13256 | —       | pF                     |
| Output Capacitance                                                       |                                                                                                                                                                            | $C_{\text{oes}}$     | —    | 456   | —       |                        |
| Reverse Transfer Capacitance                                             |                                                                                                                                                                            | $C_{\text{res}}$     | —    | 78    | —       |                        |
| Total Gate Charge                                                        | $V_{CE} = 600 \text{ V}$ , $I_C = 40 \text{ A}$ , $V_{GE} = -15 \text{ V} \sim 15 \text{ V}$                                                                               | $Q_g$                | —    | 766   | —       | nC                     |
| Thermal Resistance – Chip-to-Heatsink                                    | Thermal grease, Thickness = 2.1 Mil $\pm 2\%$<br>$\lambda = 2.87 \text{ W/mK}$                                                                                             | $R_{\text{thJH}}$    | —    | 0.45  | —       | K/W                    |
| Thermal Resistance – Chip-to-Case                                        |                                                                                                                                                                            | $R_{\text{thJC}}$    | —    | 0.186 | —       | K/W                    |
| <b>IGBT INVERSE DIODE (D11, D21, D12, D22, D13, D23) CHARACTERISTICS</b> |                                                                                                                                                                            |                      |      |       |         |                        |
| Diode Forward Voltage                                                    | $I_F = 50 \text{ A}$ , $T_J = 25^\circ\text{C}$                                                                                                                            | $V_F$                | —    | 1.10  | 1.55    | V                      |
|                                                                          | $I_F = 50 \text{ A}$ , $T_J = 175^\circ\text{C}$                                                                                                                           |                      | —    | 0.975 | —       |                        |
| Thermal Resistance – Chip-to-Heatsink                                    | Thermal grease, Thickness = 2.1 Mil $\pm 2\%$<br>$\lambda = 2.87 \text{ W/mK}$                                                                                             | $R_{\text{thJH}}$    | —    | 0.98  | —       | K/W                    |
| Thermal Resistance – Chip-to-Case                                        |                                                                                                                                                                            |                      | —    | 0.65  | —       | K/W                    |
| <b>DIODES (D31, D41, D32, D42, D33, D43) CHARACTERISTICS</b>             |                                                                                                                                                                            |                      |      |       |         |                        |
| Diode Forward Voltage                                                    | $I_F = 60 \text{ A}$ , $T_J = 25^\circ\text{C}$                                                                                                                            | $V_F$                | —    | 1.54  | 1.85    | V                      |
|                                                                          | $I_F = 60 \text{ A}$ , $T_J = 175^\circ\text{C}$                                                                                                                           |                      | —    | 2.27  | —       |                        |
| Reverse Recovery Time                                                    | Thermal grease, Thickness = 2.1 Mil $\pm 2\%$<br>$\lambda = 2.87 \text{ W/mK}$                                                                                             | $t_{rr}$             | —    | 13    | —       | ns                     |
| Reverse Recovery Charge                                                  |                                                                                                                                                                            | $Q_{rr}$             | —    | 93    | —       | nC                     |
| Peak Reverse Recovery Current                                            |                                                                                                                                                                            | $I_{RRM}$            | —    | 11    | —       | A                      |
| Peak Rate of Fall of Recovery Current                                    |                                                                                                                                                                            | $di/dt$              | —    | 2767  | —       | $\text{A}/\mu\text{s}$ |
| Reverse Recovery Energy                                                  |                                                                                                                                                                            | $E_{rr}$             | —    | 45    | —       | $\mu\text{J}$          |

# NXH600B100H4Q2F2PG, NXH600B100H4Q2F2SG, NXH600B100H4Q2F2SG-R

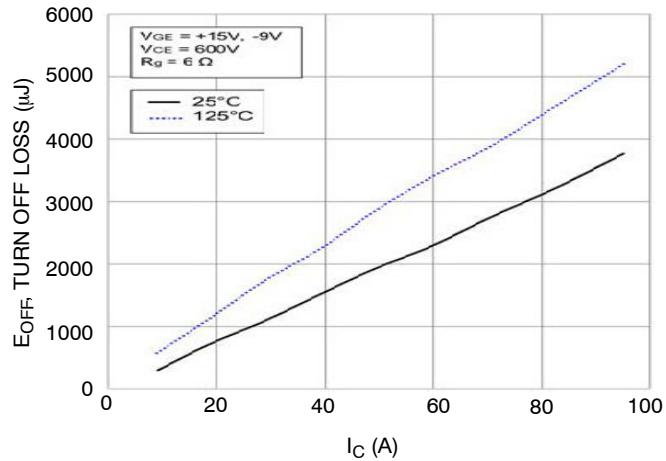
## ELECTRICAL CHARACTERISTICS ( $T_J = 25^\circ\text{C}$ unless otherwise noted) (continued)







| Parameter                             | Test Conditions                                                                                                                            | Symbol     | Min | Typ   | Max | Unit             |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|-------|-----|------------------|
| Reverse Recovery Time                 | $T_J = 125^\circ\text{C}$<br>$V_{CE} = 600\text{ V}$ , $I_C = 50\text{ A}$<br>$V_{GE} = -9\text{ V}$ , $15\text{ V}$ , $R_{gon} = 6\Omega$ | $t_{rr}$   | —   | 12    | —   | ns               |
| Reverse Recovery Charge               |                                                                                                                                            | $Q_{rr}$   | —   | 90    | —   | nC               |
| Peak Reverse Recovery Current         |                                                                                                                                            | $I_{RRM}$  | —   | 11    | —   | A                |
| Peak Rate of Fall of Recovery Current |                                                                                                                                            | $di/dt$    | —   | 2287  | —   | A/ $\mu\text{s}$ |
| Reverse Recovery Energy               |                                                                                                                                            | $E_{rr}$   | —   | 32    | —   | $\mu\text{J}$    |
| Thermal Resistance – Chip-to-Heatsink | Thermal grease, Thickness = 2.1 Mil $\pm 2\%$<br>$\lambda = 2.87\text{ W/mK}$                                                              | $R_{thJH}$ | —   | 0.68  | —   | K/W              |
| Thermal Resistance – Chip-to-Case     |                                                                                                                                            | $R_{thJC}$ | —   | 0.438 | —   | K/W              |

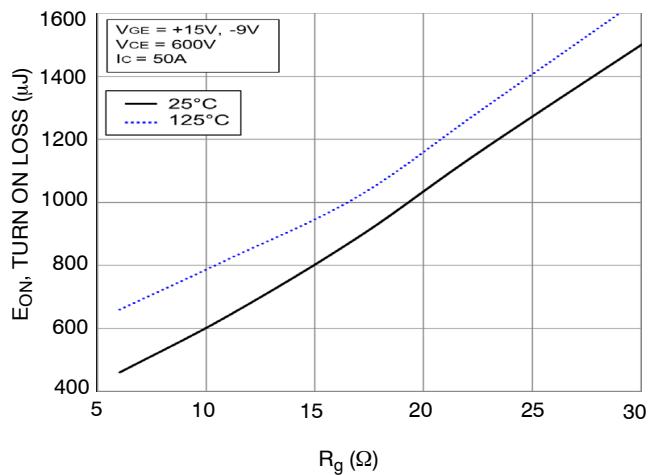
## THERMISTOR CHARACTERISTICS


|                            |                                 |              |    |       |   |                  |
|----------------------------|---------------------------------|--------------|----|-------|---|------------------|
| Nominal Resistance         | $T = 25^\circ\text{C}$          | $R_{25}$     | —  | 22    | — | $\text{k}\Omega$ |
| Nominal Resistance         | $T = 100^\circ\text{C}$         | $R_{100}$    | —  | 1504  | — | $\Omega$         |
| Deviation of R25           |                                 | $\Delta R/R$ | -1 | —     | 1 | %                |
| Power Dissipation          |                                 | $P_D$        | —  | 187.5 | — | mW               |
| Power Dissipation Constant |                                 |              | —  | 1.5   | — | mW/K             |
| B-value                    | B (25/100), tolerance $\pm 1\%$ |              | —  | 3980  | — | K                |

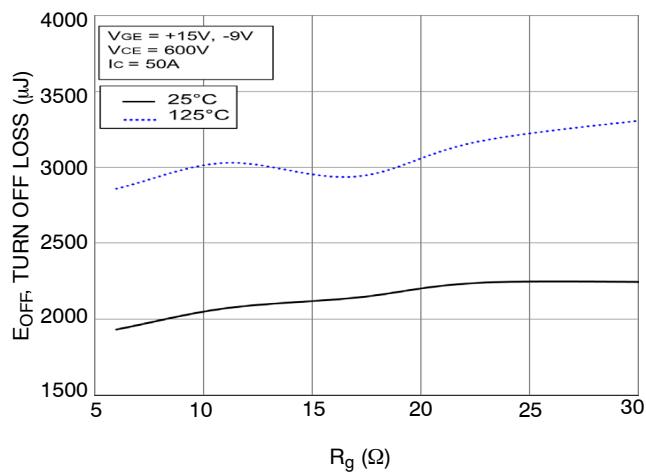
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


**TYPICAL CHARACTERISTICS – IGBT, INVERSE DIODE AND BOOST DIODE**

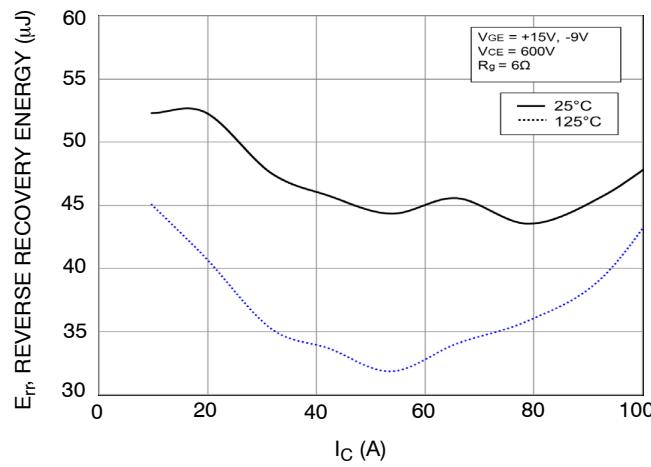



**TYPICAL CHARACTERISTICS – IGBT AND BOOST DIODE**

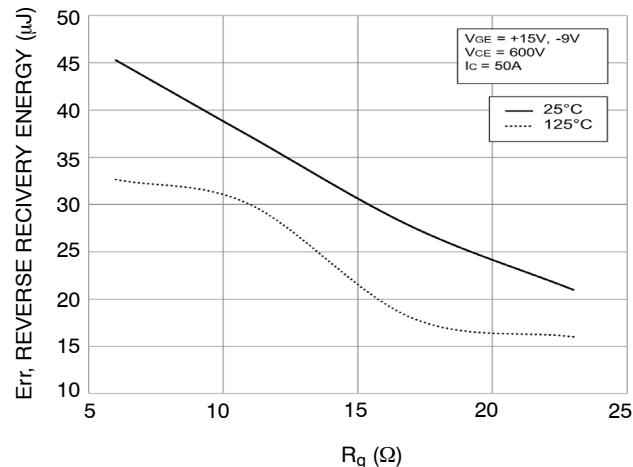



**Figure 8. Typical Turn On Loss vs. IC**



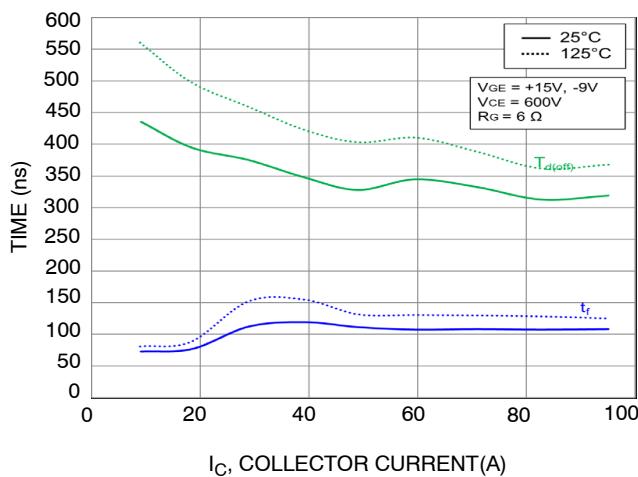

**Figure 9. Typical Turn Off Loss vs. IC**



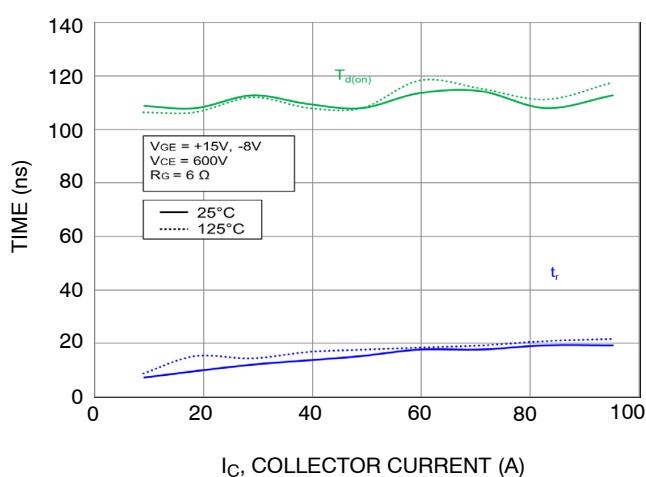

**Figure 10. Typical Turn On Loss vs. Rg**



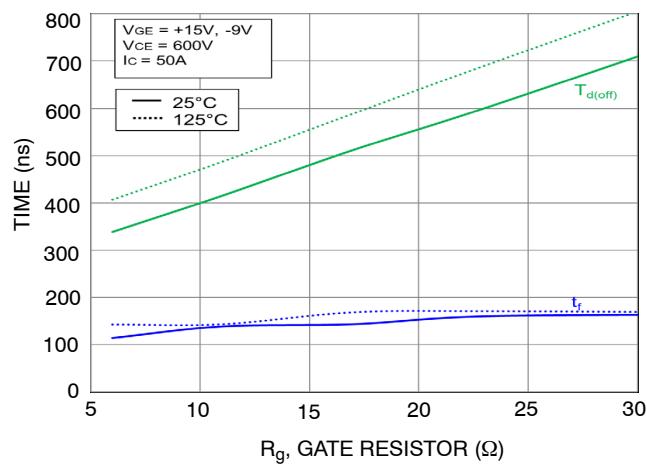
**Figure 11. Typical Turn Off Loss vs. Rg**



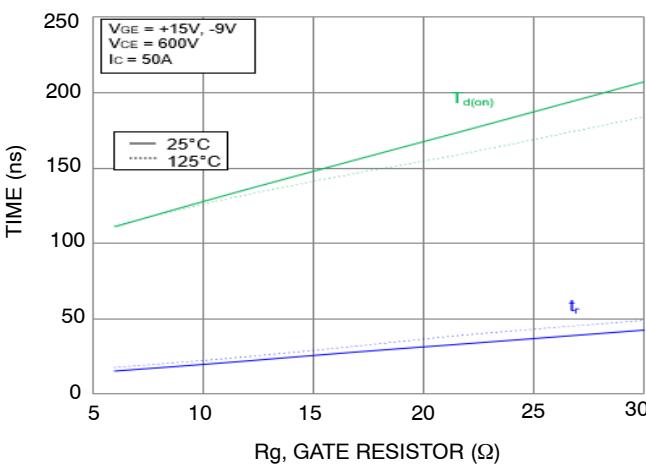

**Figure 12. Typical Reverse Recovery Energy Loss vs. IC**



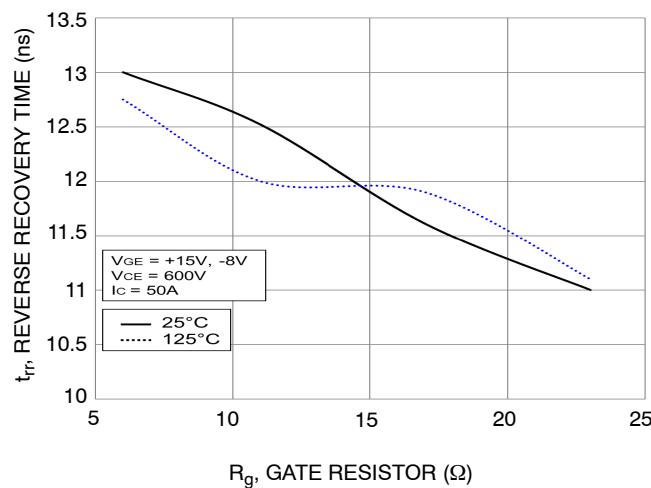

**Figure 13. Typical Reverse Recovery Energy Loss vs. Rg**


**TYPICAL CHARACTERISTICS – IGBT AND BOOST DIODE (CONTINUED)**

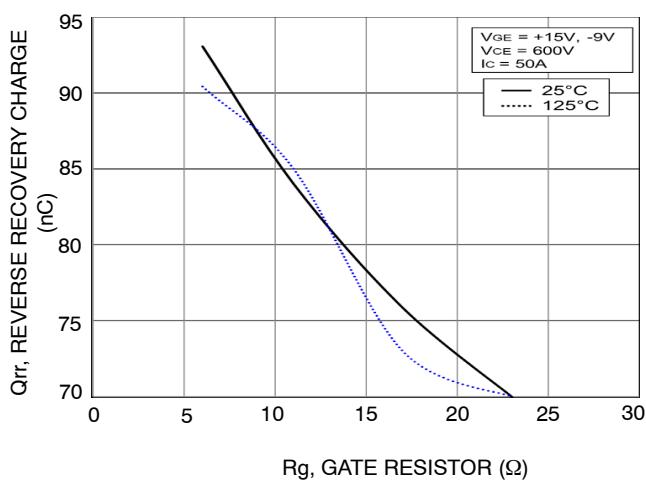



**Figure 14. Typical Turn-Off Switching Time vs.  $I_C$**



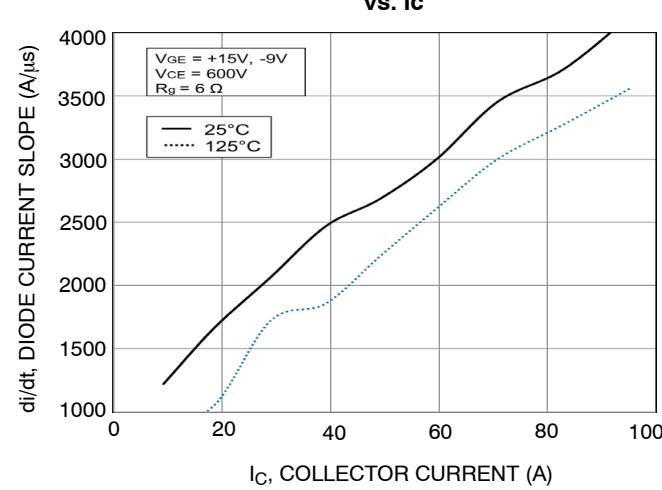
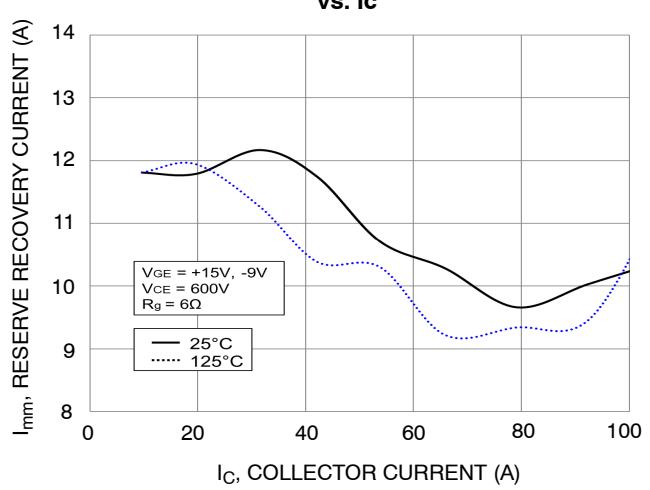
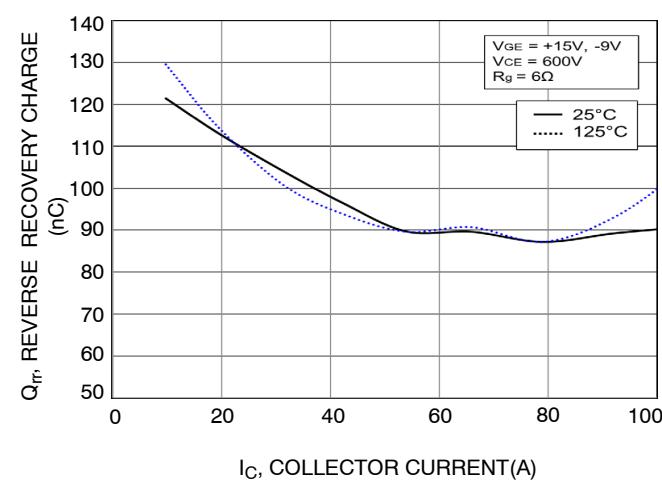
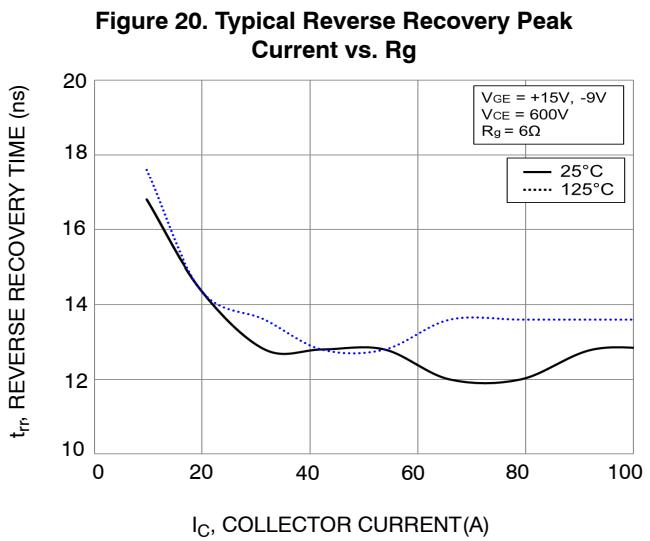
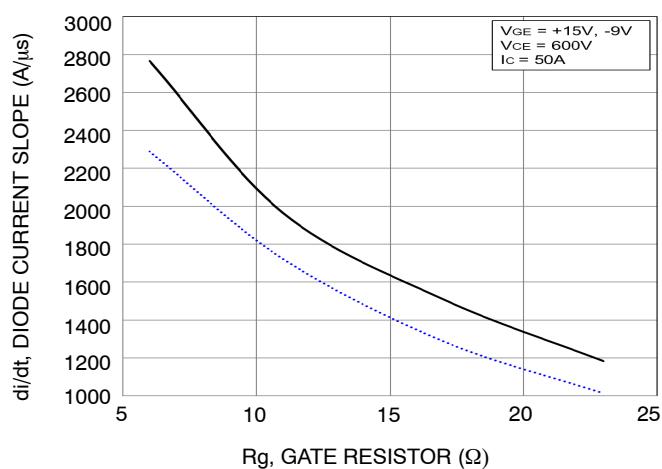
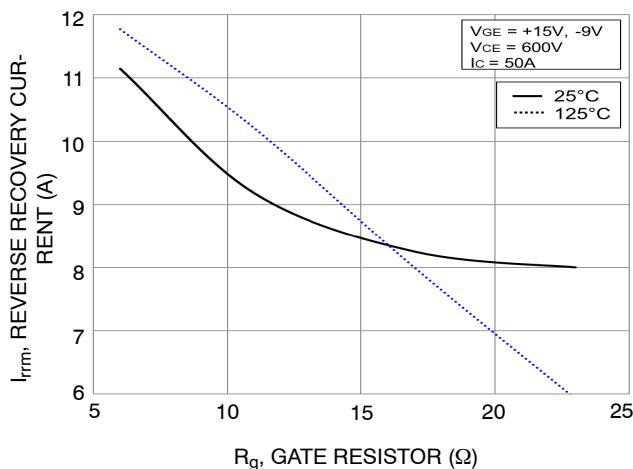

**Figure 15. Typical Turn-On Switching Time vs.  $I_C$**



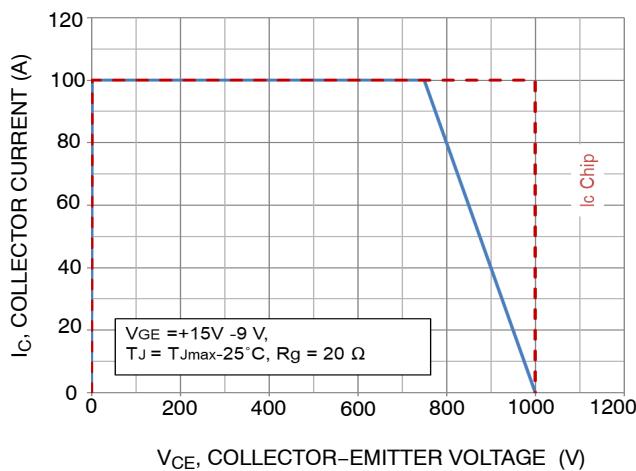

**Figure 16. Typical Turn-Off Switching Time vs.  $R_g$**



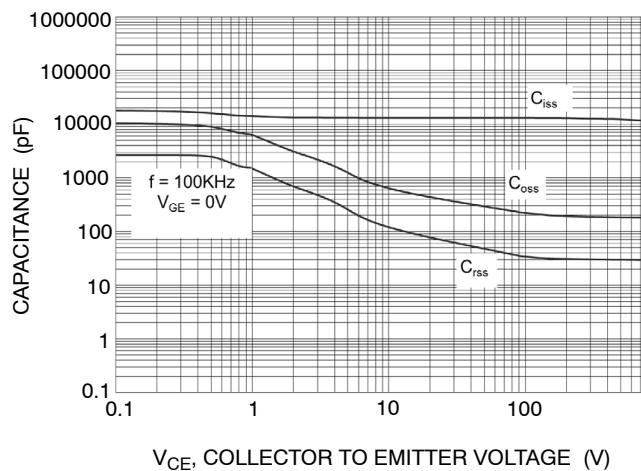
**Figure 17. Typical Turn-On Switching Time vs.  $R_g$**

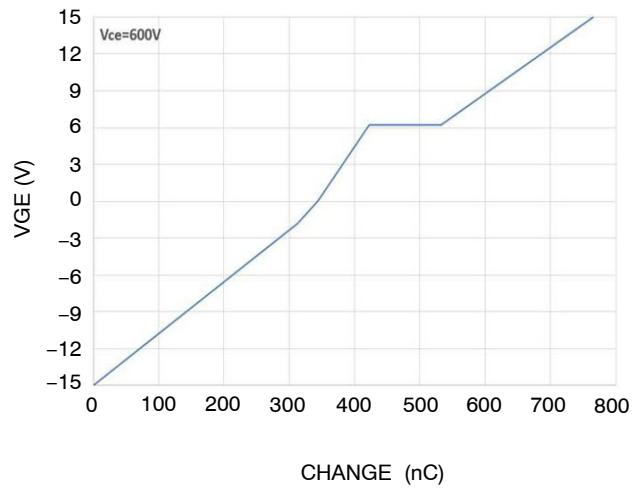

**Figure 18. Typical Reverse Recovery Time vs.  $R_g$**



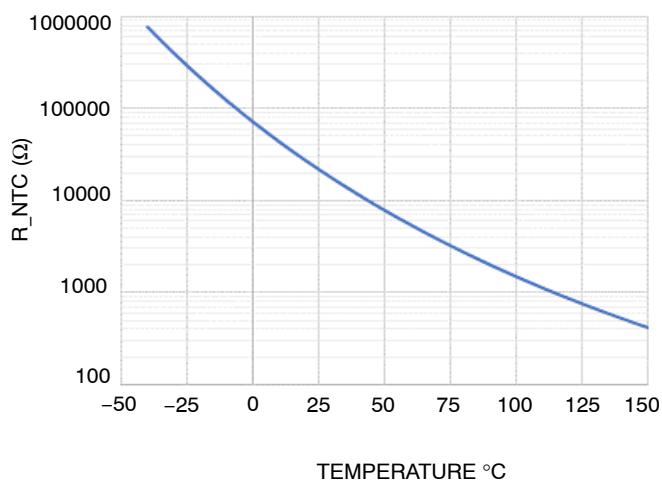

**Figure 19. Typical Reverse Recovery Charge vs.  $R_g$**


**TYPICAL CHARACTERISTICS – IGBT AND BOOST DIODE (CONTINUED)**



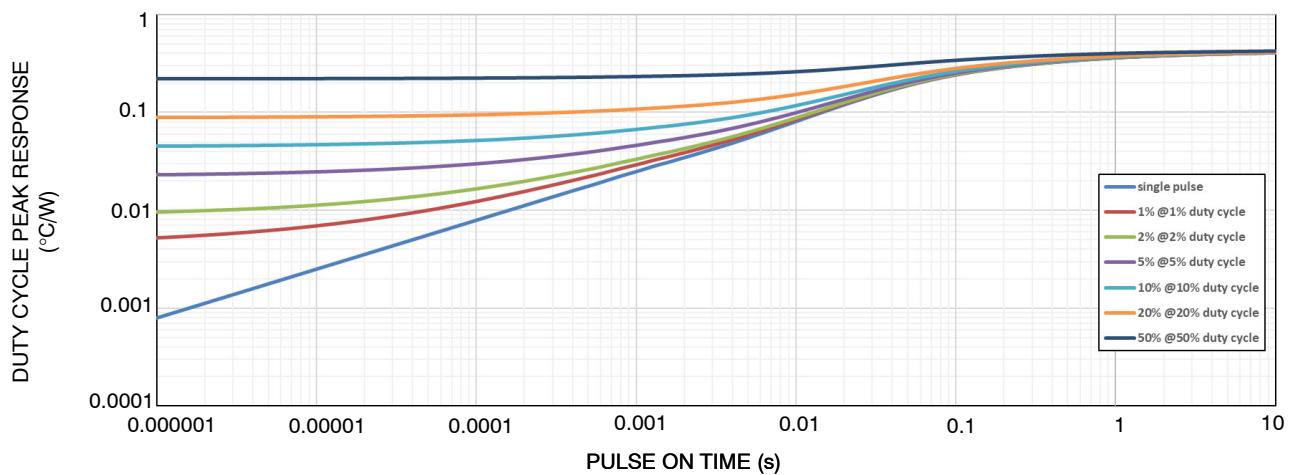

**TYPICAL CHARACTERISTICS – IGBT**




**Figure 26. RBSOA**



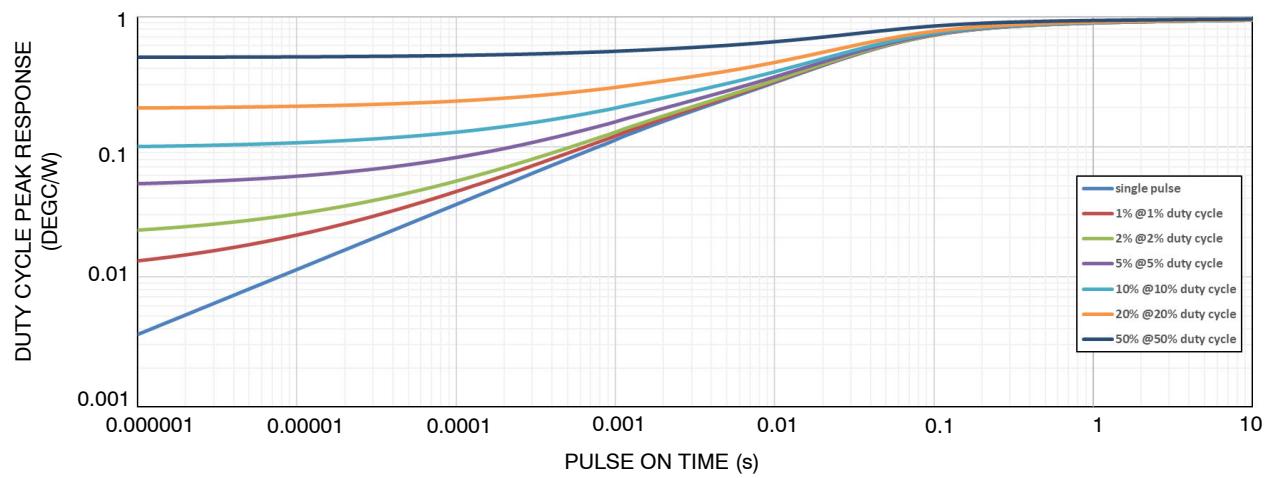
**Figure 27. Capacitance Charge**




**Figure 28. Gate Voltage vs. Gate Charge**



**Figure 29. Temperature vs NTC Value**


**TYPICAL CHARACTERISTICS – IGBT, INVERSE DIODE AND BOOST DIODE**



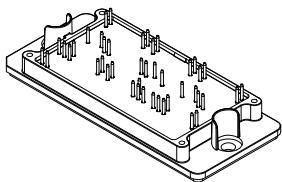
**Figure 30. Transient Thermal Impedance (IGBT )**



**Figure 31. Transient Thermal Impedance (BOOST DIODE)**

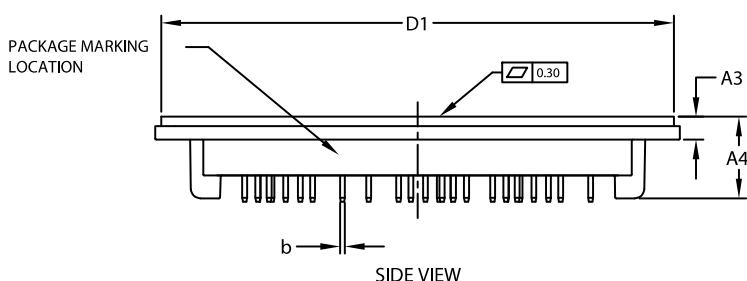
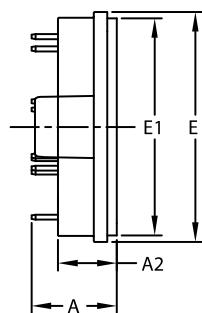
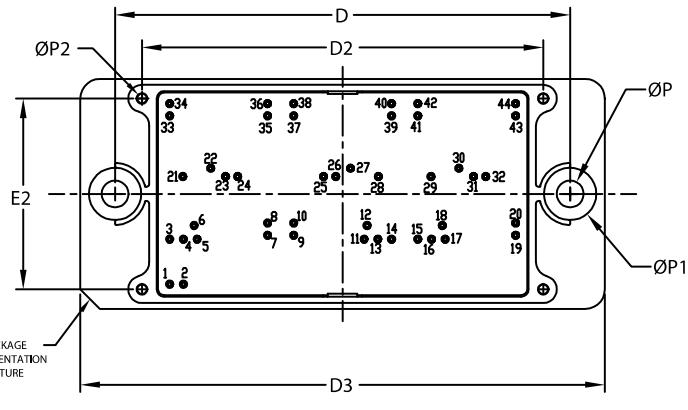


**Figure 32. Transient Thermal Impedance (INVERSE DIODE)**


# **NXH600B100H4Q2F2PG, NXH600B100H4Q2F2SG, NXH600B100H4Q2F2SG-R**

## **ORDERING INFORMATION**

| <b>Device Order Number</b>                  | <b>Marking</b>                              | <b>Package</b>                                                   | <b>Shipping</b>         |
|---------------------------------------------|---------------------------------------------|------------------------------------------------------------------|-------------------------|
| NXH600B100H4Q2F2SG,<br>NXH600B100H4Q2F2SG-R | NXH600B100H4Q2F2SG,<br>NXH600B100H4Q2F2SG-R | Q2BOOST – Case 180HE<br>(Pb-Free and Halide-Free Solder Pins)    | 12 Units / Blister Tray |
| NXH600B100H4Q2F2PG                          | NXH600B100H4Q2F2PG                          | Q2BOOST – Case 180HF<br>(Pb-Free and Halide-Free Press Fit Pins) | 12 Units / Blister Tray |




**MECHANICAL CASE OUTLINE**  
**PACKAGE DIMENSIONS**

**onsemi**<sup>TM</sup>



**PIM44, 93x47 (SOLDER PIN)**  
**CASE 180HE**  
**ISSUE O**

DATE 21 OCT 2021



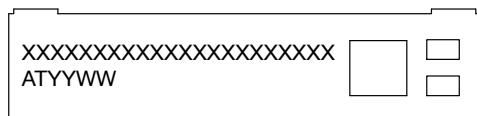
| DIM | MILLIMETERS |        |        |
|-----|-------------|--------|--------|
|     | MIN.        | NOM.   | MAX.   |
| A   | 17.00       | 17.40  | 17.80  |
| A2  | 11.70       | 12.00  | 12.30  |
| A3  | 4.40        | 4.70   | 5.00   |
| A4  | 16.40       | 16.70  | 17.00  |
| b   | 0.95        | 1.00   | 1.05   |
| D   | 92.90       | 93.00  | 93.10  |
| D1  | 104.45      | 104.75 | 105.05 |
| D2  | 81.80       | 82.00  | 82.20  |
| D3  | 106.90      | 107.20 | 107.50 |
| E   | 46.70       | 47.00  | 47.30  |
| E1  | 44.10       | 44.40  | 44.70  |
| E2  | 38.80       | 39.00  | 39.20  |
| P   | 5.40        | 5.50   | 5.60   |
| P1  | 10.60       | 10.70  | 10.80  |
| P2  | 1.80        | 2.00   | 2.20   |

NOTE 4

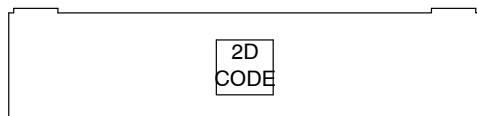
| PIN | PIN POSITION |       | PIN | PIN POSITION |       |
|-----|--------------|-------|-----|--------------|-------|
|     | X            | Y     |     | X            | Y     |
| 1   | 0.00         | 0.00  | 23  | 11.40        | 22.00 |
| 2   | 2.80         | 0.00  | 24  | 13.90        | 22.00 |
| 3   | 0.00         | 9.20  | 25  | 31.45        | 22.00 |
| 4   | 2.80         | 9.20  | 26  | 33.95        | 22.00 |
| 5   | 5.60         | 9.20  | 27  | 36.95        | 23.70 |
| 6   | 5.00         | 12.00 | 28  | 42.65        | 22.00 |
| 7   | 20.00        | 10.00 | 29  | 53.40        | 22.00 |
| 8   | 20.00        | 12.50 | 30  | 59.10        | 23.70 |
| 9   | 25.35        | 10.00 | 31  | 62.10        | 22.00 |
| 10  | 25.35        | 12.50 | 32  | 64.60        | 22.00 |
| 11  | 39.75        | 9.20  | 33  | 0.00         | 34.40 |
| 12  | 40.35        | 12.00 | 34  | 0.00         | 36.90 |
| 13  | 42.55        | 9.20  | 35  | 20.00        | 34.40 |
| 14  | 45.35        | 9.20  | 36  | 20.00        | 36.90 |
| 15  | 50.70        | 9.20  | 37  | 25.35        | 34.40 |
| 16  | 53.50        | 9.20  | 38  | 25.35        | 36.90 |
| 17  | 56.30        | 9.20  | 39  | 45.35        | 34.40 |
| 18  | 55.70        | 12.00 | 40  | 45.35        | 36.90 |
| 19  | 70.70        | 10.00 | 41  | 50.70        | 34.40 |
| 20  | 70.70        | 12.50 | 42  | 50.70        | 36.90 |
| 21  | 2.70         | 22.00 | 43  | 70.70        | 34.40 |
| 22  | 8.40         | 23.70 | 44  | 70.70        | 36.90 |

|                  |                           |                                                                                                                                                                                     |
|------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DOCUMENT NUMBER: | 98AON39002H               | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| DESCRIPTION:     | PIM44, 93x47 (SOLDER PIN) | PAGE 1 OF 2                                                                                                                                                                         |

onsemi and **Onsemi** are trademarks of Semiconductor Components Industries, LLC dba **onsemi** or its subsidiaries in the United States and/or other countries. **onsemi** reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

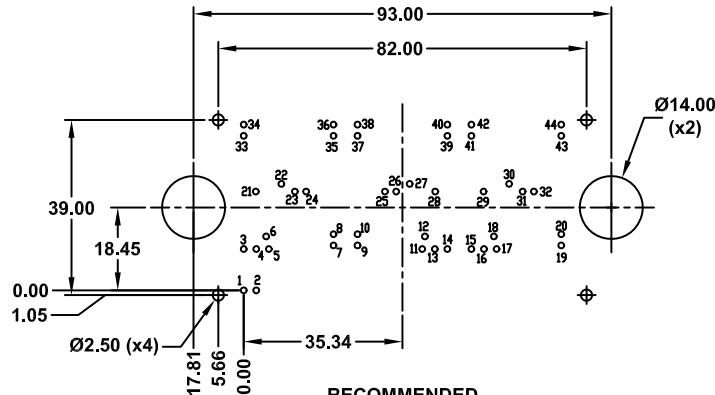

## **MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS**

**onsemi**<sup>TM</sup>


**PIM44, 93x47 (SOLDER PIN)**  
**CASE 180HE**  
**ISSUE 0**

DATE 21 OCT 2021

## GENERIC MARKING DIAGRAM\*




## FRONTSIDE MARKING



## BACKSIDE MARKING

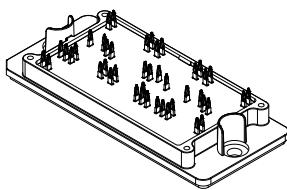
XXXXX = Specific Device Code  
AT = Assembly & Test Site Code  
YYWW = Year and Work Week Code



**RECOMMENDED  
MOUNTING PATTERN**

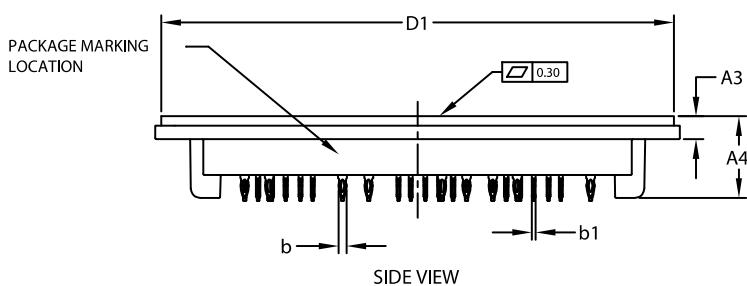
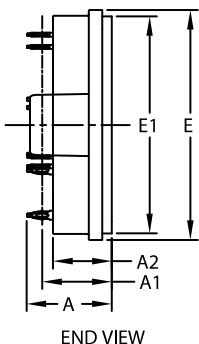
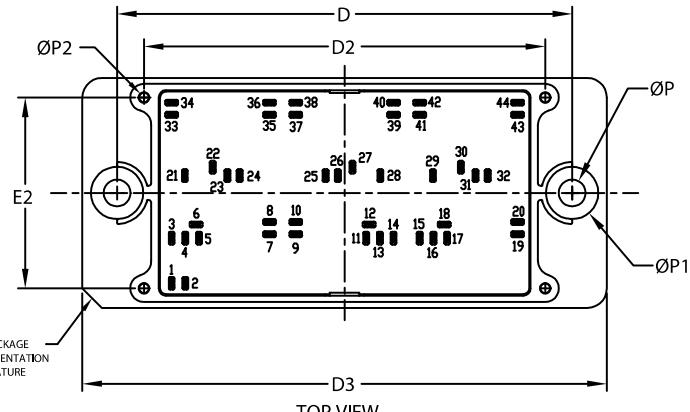
\* For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.


|                         |                                  |                                                                                                                                                                                     |
|-------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>DOCUMENT NUMBER:</b> | <b>98AON39002H</b>               | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| <b>DESCRIPTION:</b>     | <b>PIM44, 93x47 (SOLDER PIN)</b> | <b>PAGE 2 OF 2</b>                                                                                                                                                                  |

**onsemi** and **ONSEMI** are trademarks of Semiconductor Components Industries, LLC dba **onsemi** or its subsidiaries in the United States and/or other countries. **onsemi** reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

[www.onsemi.com](http://www.onsemi.com)




**MECHANICAL CASE OUTLINE**  
**PACKAGE DIMENSIONS**

**onsemi**<sup>TM</sup>



**PIM44, 93x47 (PRESS FIT)**  
**CASE 180HF**  
**ISSUE O**

DATE 26 OCT 2021



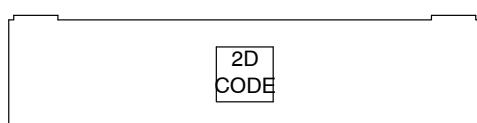
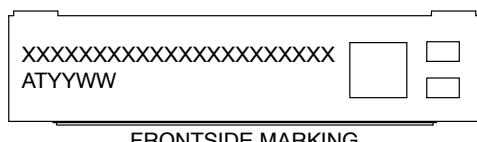
NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009
2. CONTROLLING DIMENSION : MILLIMETERS
3. DIMENSIONS b AND b1 APPLY TO THE PLATED TERMINALS AND ARE MEASURED AT DIMENSION A1
4. PIN POSITION TOLERANCE IS  $\pm 0.4$ mm
5. PACKAGE MARKING IS LOCATED AS SHOWN ON THE SIDE OPPOSITE THE PACKAGE ORIENTATION FEATURES

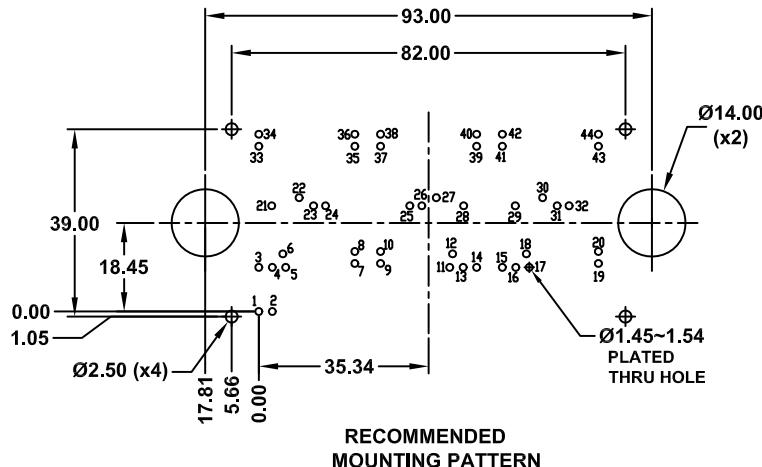
| DIM | MILLIMETERS |        |        |
|-----|-------------|--------|--------|
|     | MIN.        | NOM.   | MAX.   |
| A   | 16.90       | 17.30  | 17.70  |
| A1  | 14.18(REF)  |        |        |
| A2  | 11.70       | 12.00  | 12.30  |
| A3  | 4.40        | 4.70   | 5.00   |
| A4  | 16.40       | 16.70  | 17.00  |
| b   | 1.61        | 1.66   | 1.71   |
| b1  | 0.75        | 0.80   | 0.85   |
| D   | 92.90       | 93.00  | 93.10  |
| D1  | 104.45      | 104.75 | 105.05 |
| D2  | 81.80       | 82.00  | 82.20  |
| D3  | 106.90      | 107.20 | 107.50 |
| E   | 46.70       | 47.00  | 47.30  |
| E1  | 44.10       | 44.40  | 44.70  |
| E2  | 38.80       | 39.00  | 39.20  |
| P   | 5.40        | 5.50   | 5.60   |
| P1  | 10.60       | 10.70  | 10.80  |
| P2  | 1.80        | 2.00   | 2.20   |

NOTE 4

| PIN | PIN POSITION |       | PIN | PIN POSITION |       |
|-----|--------------|-------|-----|--------------|-------|
|     | X            | Y     |     | X            | Y     |
| 1   | 0.00         | 0.00  | 23  | 11.40        | 22.00 |
| 2   | 2.80         | 0.00  | 24  | 13.90        | 22.00 |
| 3   | 0.00         | 9.20  | 25  | 31.45        | 22.00 |
| 4   | 2.80         | 9.20  | 26  | 33.95        | 22.00 |
| 5   | 5.60         | 9.20  | 27  | 36.95        | 23.70 |
| 6   | 5.00         | 12.00 | 28  | 42.65        | 22.00 |
| 7   | 20.00        | 10.00 | 29  | 53.40        | 22.00 |
| 8   | 20.00        | 12.50 | 30  | 59.10        | 23.70 |
| 9   | 25.35        | 10.00 | 31  | 62.10        | 22.00 |
| 10  | 25.35        | 12.50 | 32  | 64.60        | 22.00 |
| 11  | 39.75        | 9.20  | 33  | 0.00         | 34.40 |
| 12  | 40.35        | 12.00 | 34  | 0.00         | 36.90 |
| 13  | 42.55        | 9.20  | 35  | 20.00        | 34.40 |
| 14  | 45.35        | 9.20  | 36  | 20.00        | 36.90 |
| 15  | 50.70        | 9.20  | 37  | 25.35        | 34.40 |
| 16  | 53.50        | 9.20  | 38  | 25.35        | 36.90 |
| 17  | 56.30        | 9.20  | 39  | 45.35        | 34.40 |
| 18  | 55.70        | 12.00 | 40  | 45.35        | 36.90 |
| 19  | 70.70        | 10.00 | 41  | 50.70        | 34.40 |
| 20  | 70.70        | 12.50 | 42  | 50.70        | 36.90 |
| 21  | 2.70         | 22.00 | 43  | 70.70        | 34.40 |
| 22  | 8.40         | 23.70 | 44  | 70.70        | 36.90 |



|                  |                          |                                                                                                                                                                                     |
|------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DOCUMENT NUMBER: | 98AON39004H              | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| DESCRIPTION:     | PIM44, 93x47 (PRESS FIT) | PAGE 1 OF 2                                                                                                                                                                         |

onsemi and **Onsemi** are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.


**PIM44, 93x47 (PRESS FIT)**  
CASE 180HF  
ISSUE O

DATE 26 OCT 2021

**GENERIC  
MARKING DIAGRAM\***



XXXXX = Specific Device Code  
AT = Assembly & Test Site Code  
YYWW = Year and Work Week Code



\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

|                  |                          |                                                                                                                                                                                     |
|------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DOCUMENT NUMBER: | 98AON39004H              | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| DESCRIPTION:     | PIM44, 93x47 (PRESS FIT) | PAGE 2 OF 2                                                                                                                                                                         |

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

[www.onsemi.com](http://www.onsemi.com)

**onsemi, ONSEMI, and other names, marks, and brands** are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at [www.onsemi.com/site/pdf/Patent-Marking.pdf](http://www.onsemi.com/site/pdf/Patent-Marking.pdf). **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

### LITERATURE FULFILLMENT:

Email Requests to: [orderlit@onsemi.com](mailto:orderlit@onsemi.com)

**onsemi** Website: [www.onsemi.com](http://www.onsemi.com)

### TECHNICAL SUPPORT

#### North American Technical Support:

Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

#### Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

# Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[onsemi](#):

[NXH600B100H4Q2F2SG](#)