

Silicon Carbide (SiC) Module – EliteSiC Power Module for OBC, 40 mohm, 1200 V, 27 A, Dual Half-Bridge, in APM32 Series

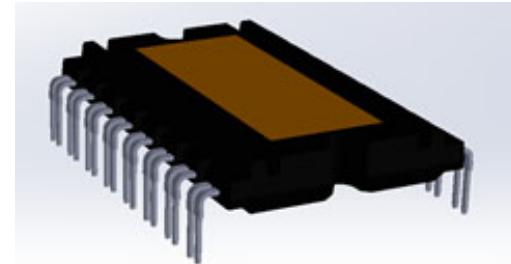
NVXK2TR40WXT

Features

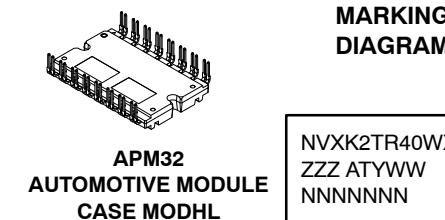
- DIP Silicon Carbide H-Bridge Power Module for On-board Charger (OBC) for xEV Applications
- Creepage and Clearance per IEC 60664-1, IEC 60950-1
- Compact Design for Low Total Module Resistance
- Module Serialization for Full Traceability
- Lead Free, ROHS and UL94V-0 Compliant
- Automotive Qualified per AEC-Q101 and AQG324

Typical Applications

- DC-DC and On-Board Charger in xEV Applications


MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter		Symbol	Value	Unit
Drain-to-Source Voltage		V _{DSS}	1200	V
Gate-to-Source Voltage		V _{GS}	+25/-15	V
Recommended Operation Values of Gate-to-Source Voltage, T _J ≤ 175°C		V _{GSop}	+20/-5	V
Continuous Drain Current (Notes 1, 2)	T _C = 25°C	I _D	27	A
Power Dissipation (Note 1)		P _D	319	W
Pulsed Drain Current (Note 3)	T _C = 25°C	I _{DM}	240	A
Single Pulse Surge Drain Current Capability	T _C = 25°C, t _p = 10 µs, R _G = 4.7 Ω	I _{DSC}	495	A
Operating Junction Temperature	T _J	-55 to 175		°C
Storage Temperature	T _{stg}	-40 to 125		°C
Source Current (Body Diode) (Note 2)	I _S	27		A
Single Pulse Drain-to-Source Avalanche Energy (Note 4)	E _{AS}	338		mJ

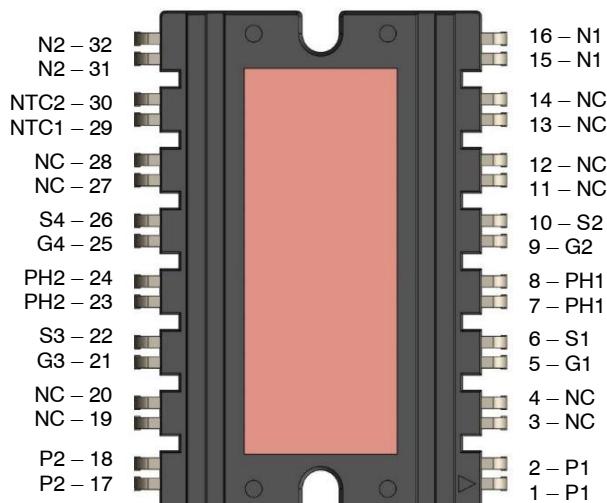

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Particular conditions specified determine thermal resistance values shown. Infinite heatsink with T_C = 100°C for R_{θJC}. For R_{θJS} assembled to 3 mm thick aluminum heatsink with infinite cooling bottom surface at 85°C, through 38 µm thick TIM with 6.5 W/mK thermal conductivity.
2. Qualified per ECPE Guideline AQG 324.
3. Repetitive rating limited by maximum junction temperature and transconductance.
4. E_{AS} based on initial T_J = 25°C, L = 1 mH, I_{AS} = 26 A, V_{DD} = 120 V, V_{GS} = 18 V.

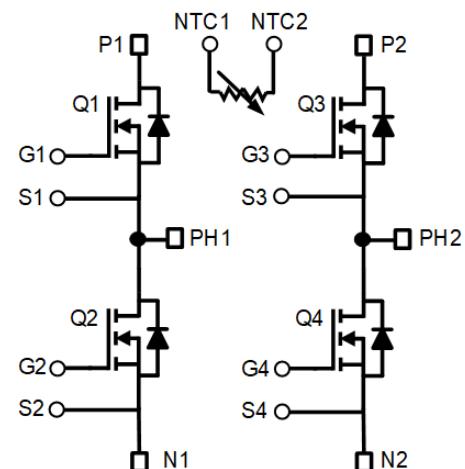
V _{(BR)DSS}	R _{DS(on)} Max	I _D Max
1200 V	59 mΩ @ 20 V	27 A

APM32

MARKING
DIAGRAM


NVXK2TR40WXT	= Specific Device Code
ZZZ	= Lot ID
AT	= Assembly Site & Test Location
Y	= Year
W	= Work Week
NNN	= Serial Number

ORDERING INFORMATION


Device	Package	Shipping
NVXK2TR40WXT	APM32 (Pb-Free)	10 ea / Tube

NVXK2TR40WXT

PIN CONFIGURATION

INTERNAL EQUIVALENT CIRCUIT

SiC MOSFET H-Bridge Module

PIN DESCRIPTION

Pin	Name	Pin Description
1, 2	P1	Intermediate DC Bus Plus1
5	G1	Q1 Gate
6	S1	Q1 Source
7, 8	PH1	Phase1 Output
9	G2	Q2 Gate
10	S2	Q2 Source
15, 16	N1	Intermediate DC Bus Minus1
17, 18	P2	Intermediate DC Bus Plus2
21	G3	Q3 Gate
22	S3	Q3 Source
23, 24	PH2	Phase2 Output
25	G4	Q4 Gate
26	S4	Q4 Source
29	NTC1	Negative Temperature Coefficient Thermistor Pin1
30	NTC2	Negative Temperature Coefficient Thermistor Pin2
31, 32	N2	Intermediate DC Bus Minus2
3, 4, 11, 12, 13, 14, 19, 20, 27, 28	NC	Not Connected

NVXK2TR40WXT

THERMAL CHARACTERISTICS (Note 1)

Parameter	Symbol	Typ	Max	Unit
Thermal Resistance Junction-to-Case (Note 1)	$R_{\theta JC}$	0.37	0.47	°C/W
Thermal Resistance Junction-to-Sink (Note 1)	$R_{\theta JS}$	0.84	0.95	°C/W

ELECTRICAL CHARACTERISTICS ($T_J = 25^\circ\text{C}$ unless otherwise stated)

Parameter	Symbol	Test Conditions		Min	Typ	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	$V_{(\text{BR})\text{DSS}}$	$V_{\text{GS}} = 0 \text{ V}$	$I_D = 1 \text{ mA}$	1200			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$V_{(\text{BR})\text{DSS}} / T_J$	$I_D = 1 \text{ mA}$, referenced to 25°C			450		$\text{mV}/^\circ\text{C}$
Zero Gate Voltage Drain Current	I_{DSS}	$V_{\text{GS}} = 0 \text{ V}$	$T_J = 25^\circ\text{C}$			100	μA
		$V_{\text{DS}} = 1200 \text{ V}$	$T_J = 175^\circ\text{C}$			1	mA
Gate-to-Source Leakage Current	I_{GSS}	$V_{\text{GS}} = +25/-15 \text{ V}$, $V_{\text{DS}} = 0 \text{ V}$				± 1	μA

ON CHARACTERISTICS (Note 5)

Gate Threshold Voltage	$V_{\text{GS}(\text{TH})}$	$V_{\text{GS}} = V_{\text{DS}}$, $I_D = 10 \text{ mA}$	1.8	3	4.3	V
Recommended Gate Voltage	V_{GOP}		-5		+20	V
Drain-to-Source On Resistance	$R_{\text{DS}(\text{on})}$	$V_{\text{GS}} = 20 \text{ V}$, $I_D = 35 \text{ A}$, $T_J = 25^\circ\text{C}$		40	59	$\text{m}\Omega$
Drain-to-Source On Resistance	$R_{\text{DS}(\text{on})}$	$V_{\text{GS}} = 20 \text{ V}$, $I_D = 35 \text{ A}$, $T_J = 175^\circ\text{C}$		71		$\text{m}\Omega$
Forward Transconductance	g_{FS}	$V_{\text{DS}} = 20 \text{ V}$, $I_D = 35 \text{ A}$		20		S

CHARGES, CAPACITANCES & GATE RESISTANCE

Input Capacitance	C_{ISS}	$V_{\text{GS}} = 0 \text{ V}$, $f = 1 \text{ MHz}$, $V_{\text{DS}} = 800 \text{ V}$		1789		pF
Output Capacitance	C_{OSS}			139		
Reverse Transfer Capacitance	C_{RSS}			12.5		
Total Gate Charge	$Q_{\text{G}(\text{TOT})}$	$V_{\text{GS}} = -5/20 \text{ V}$, $V_{\text{DS}} = 600 \text{ V}$, $I_D = 47 \text{ A}$		106		nC
Threshold Gate Charge	$Q_{\text{G}(\text{TH})}$			18		
Gate-to-Source Charge	Q_{GS}			34		
Gate-to-Drain Charge	Q_{GD}			26		
Gate-Resistance	R_G	$V_{\text{GS}} = 0 \text{ V}$, $f = 1 \text{ MHz}$		2		Ω

INDUCTIVE SWITCHING CHARACTERISTICS

Turn-On Delay Time	$t_{\text{d}(\text{ON})}$	$V_{\text{GS}} = -5 / 20 \text{ V}$, $V_{\text{DS}} = 800 \text{ V}$, $I_D = 47 \text{ A}$, $R_G = 4.7 \Omega$, Inductive load		17		ns
Rise Time	t_r			20		
Turn-Off Delay Time	$t_{\text{d}(\text{OFF})}$			30		
Fall Time	t_f			9		
Turn-On Switching Loss	E_{ON}			366		
Turn-Off Switching Loss	E_{OFF}			200		μJ
Total Switching Loss	E_{tot}			566		μJ

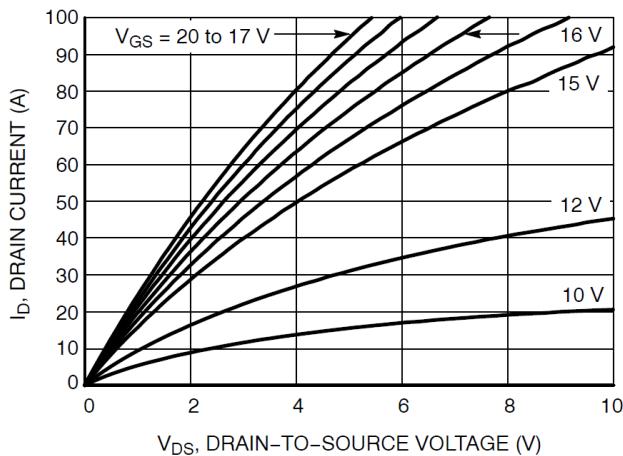
DRAIN-SOURCE DIODE CHARACTERISTICS

Continuous Drain-Source Diode Forward Current (Note 1)	I_{SD}	$V_{\text{GS}} = -5 \text{ V}$, $T_J = 25^\circ\text{C}$			27	A
Pulsed Drain-Source Diode Forward Current (Note 3)	I_{SDM}	$V_{\text{GS}} = -5 \text{ V}$, $T_J = 25^\circ\text{C}$			240	A
Forward Diode Voltage	V_{SD}	$V_{\text{GS}} = -5 \text{ V}$, $I_{\text{SD}} = 17.5 \text{ A}$, $T_J = 25^\circ\text{C}$		3.7		V

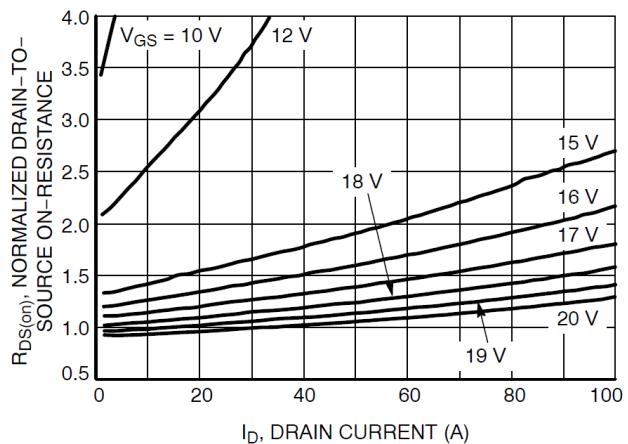
NVXK2TR40WXT

ELECTRICAL CHARACTERISTICS ($T_J = 25^\circ\text{C}$ unless otherwise stated) (continued)

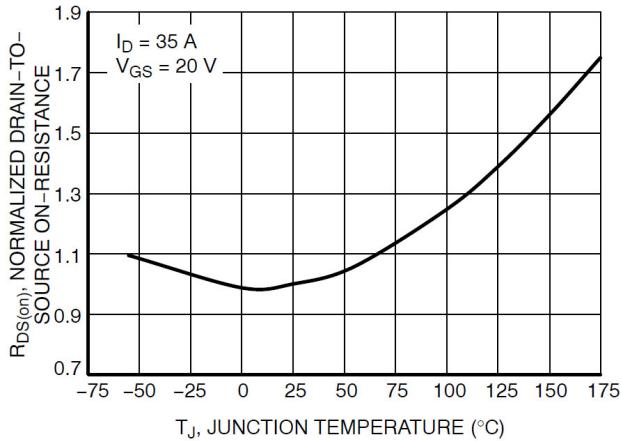
Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
DRAIN-SOURCE DIODE CHARACTERISTICS						
Reverse Recovery Time	t_{RR}	$V_{GS} = -5\text{ V}$, $dI_S/dt = 1000\text{ A}/\mu\text{s}$, $I_{SD} = 17.5\text{ A}$		24		ns
Peak Reverse Recovery Current	I_{RRM}			10.4		A
Charge Time	t_a			12.4		ns
Discharge Time	t_b			11.6		ns
Reverse Recovery Charge	Q_{RR}			125		nC

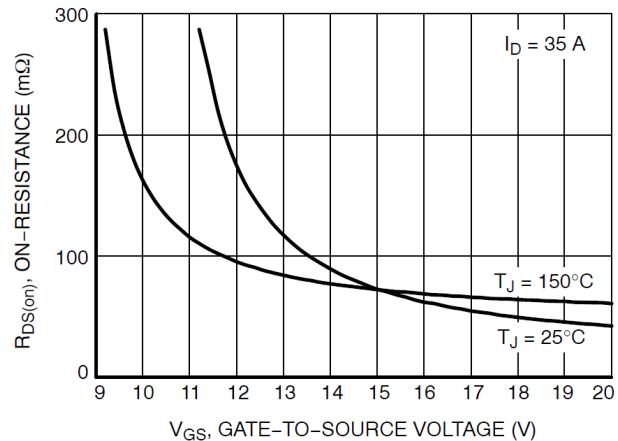

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

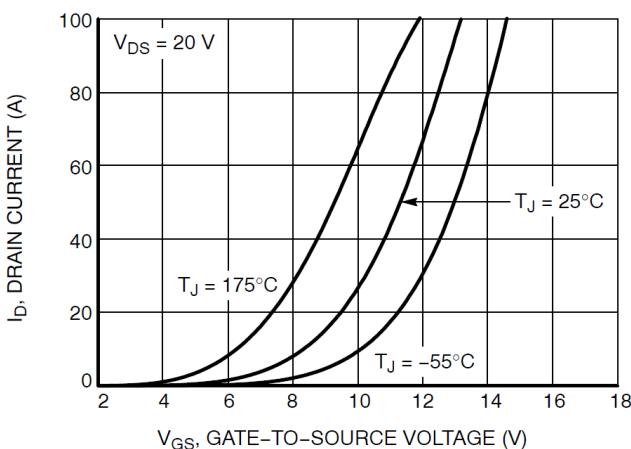
5. Pulse test: pulse width $\leq 300\text{ }\mu\text{s}$, duty ratio $\leq 2\%$.


NTC THERMISTOR

Description	Type	Quantity	Specification
10 k Ω , $\pm 3\%$ Case Size 0603	Discrete	1	B Constants $B_{25/50} : 3590$ $B_{25/85} = 3635$ $B_{25/100} = 3650 \pm 3\%$


TYPICAL CHARACTERISTICS


Figure 1. On-Region Characteristics


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

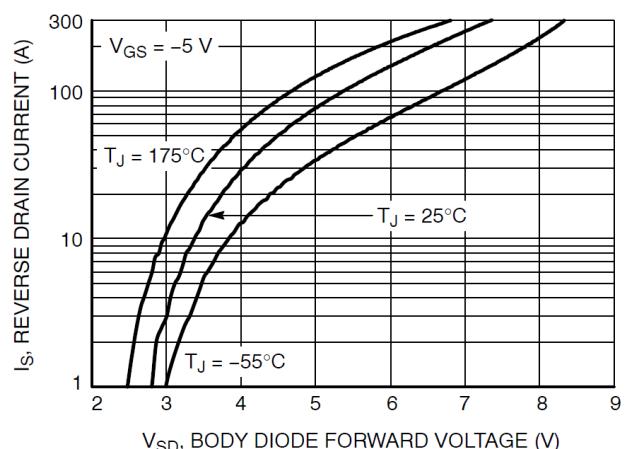

Figure 3. On-Resistance Variation with Temperature

Figure 4. On-Resistance vs. Gate-to-Source Voltage

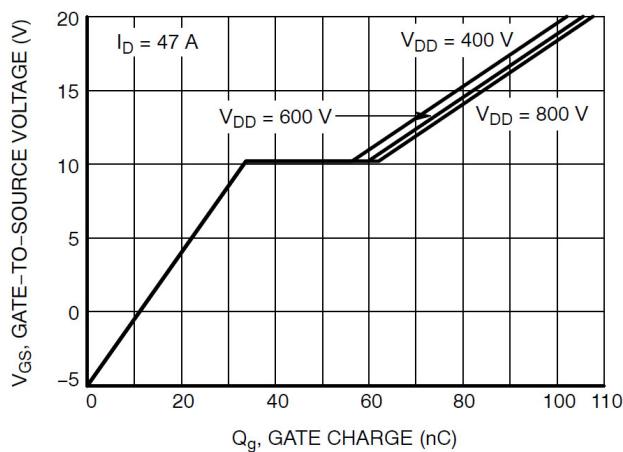


Figure 5. Transfer Characteristics

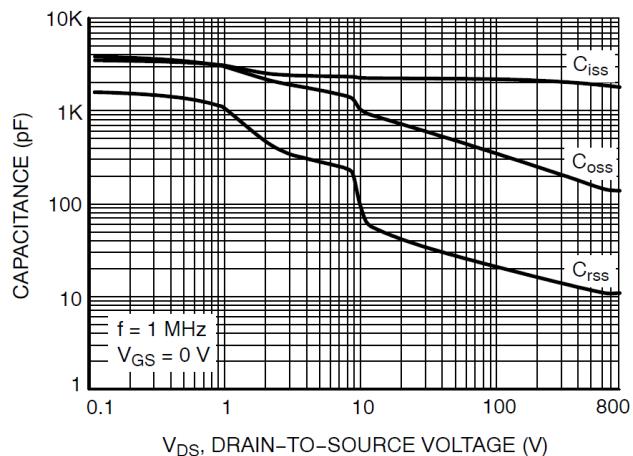
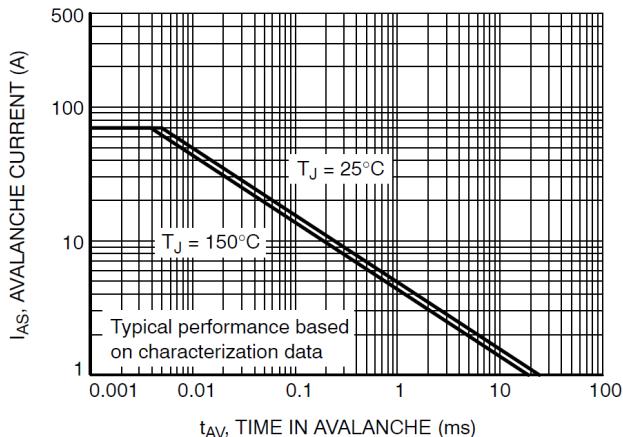
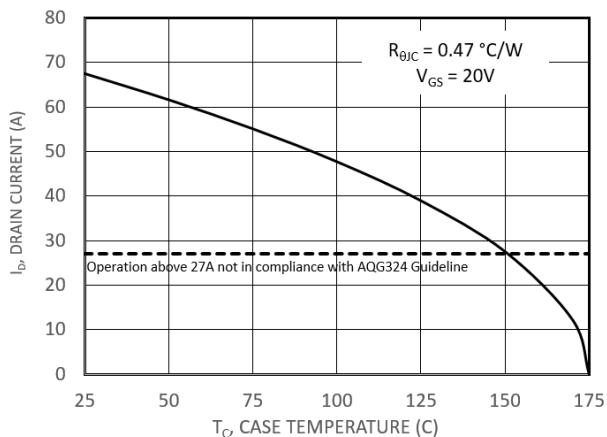
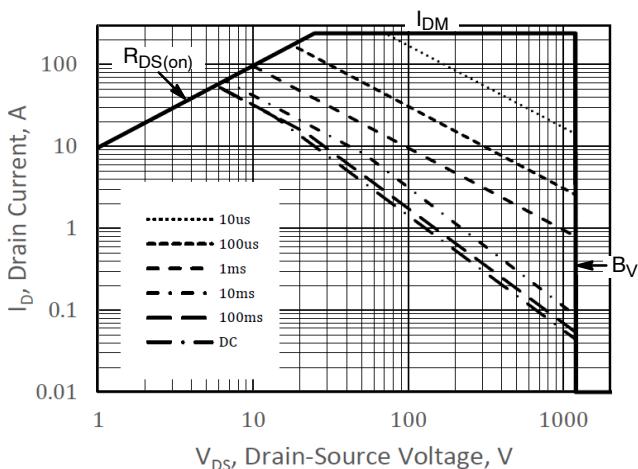


Figure 6. Diode Forward Voltage vs. Current


TYPICAL CHARACTERISTICS (CONTINUED)


Figure 7. Gate-to-Source Voltage vs. Total Charge


Figure 8. Capacitance vs. Drain-to-Source Voltage

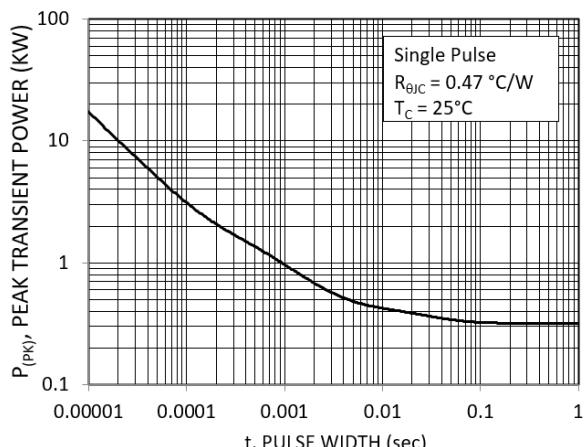

Figure 9. Unclamped Inductive Switching Capability

Figure 10. Maximum Continuous Drain Current vs. Case Temperature

Figure 11. Safe Operating Area

Figure 12. Single Pulse Maximum Power Dissipation

NVXK2TR40WXT

TYPICAL CHARACTERISTICS (CONTINUED)

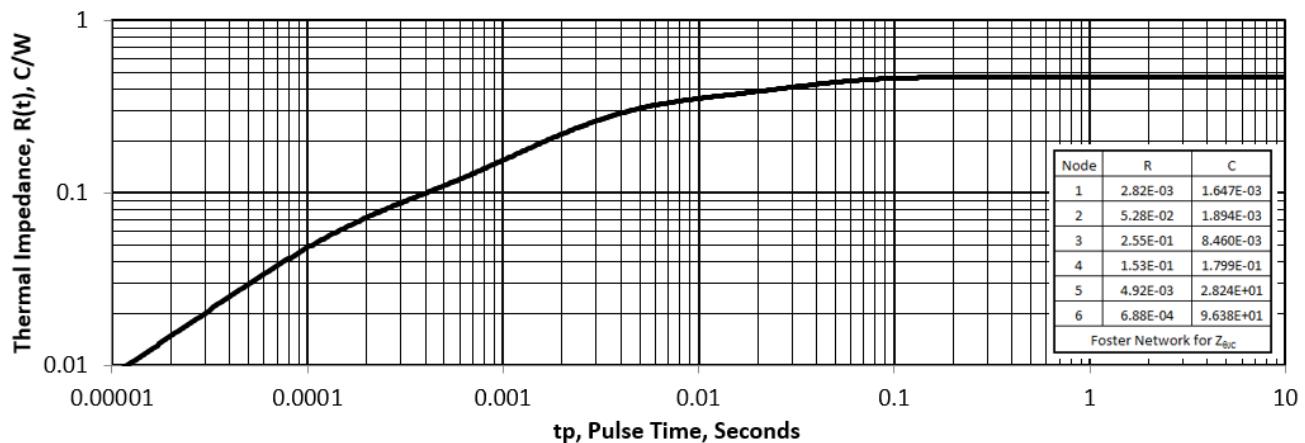
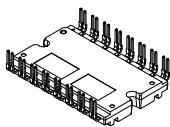
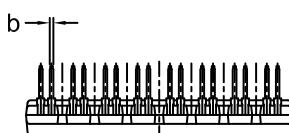
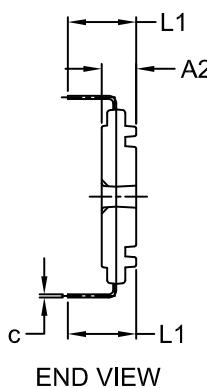
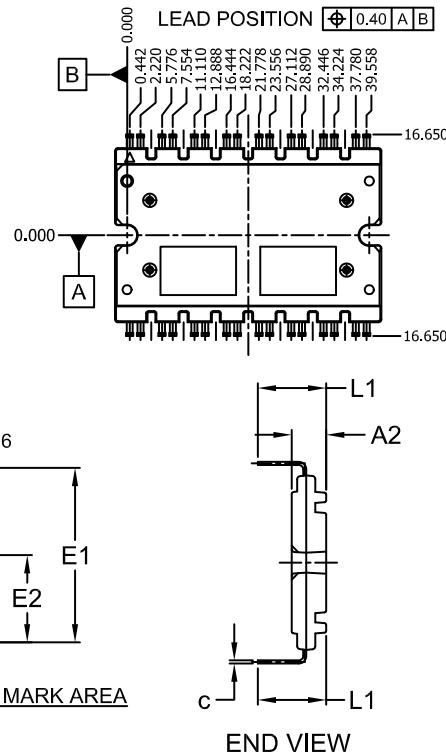
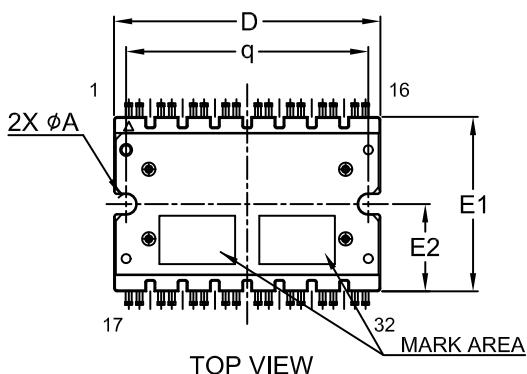
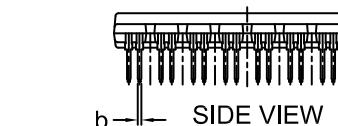








Figure 13. Thermal Response

APM32 AUTOMOTIVE MODULE
CASE MODHL
ISSUE B

DATE 05 APR 2022

BOTTOM VIEW

**GENERIC
MARKING DIAGRAM***

XXXXXXXXXXXXXXXXXXXX
ZZZ ATYWW
NNNNNNN

XXXX = Specific Device Code
ZZZ = Lot ID
AT = Assembly & Test Location
Y = Year
W = Work Week
NNN = Serial Number

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON29478H	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	APM32 AUTOMOTIVE MODULE	PAGE 1 OF 1

onsemi and **ONSEMI** are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, **ONSEMI**, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation
onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at
www.onsemi.com/support/sales

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[onsemi](#):

[NVXK2TR40WXT](#)