

IGBT – Power, Co-PAK

N-Channel, Field Stop VII (FS7), Non SCR, Power TO247-3L, 1200 V, 1.7 V, 75 A

FGY75T120SWD

Description

Using the novel field stop 7th generation IGBT technology and the Gen7 Diode in TO247 3-lead package, FGY75T120SWD offers the optimum performance with low switching and conduction losses for high-efficiency operations in various applications like Solar, UPS and ESS.

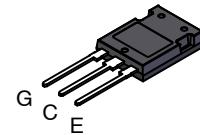
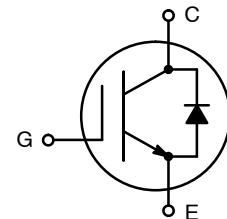
Features

- Maximum Junction Temperature – $T_J = 175^\circ\text{C}$
- Positive Temperature Coefficient for Easy Parallel Operation
- High Current Capability
- Smooth and Optimized Switching
- Low Switching Loss
- RoHS Compliant

Applications

- Boost and Inverter in Solar System
- UPS
- Energy Storage System

MAXIMUM RATINGS ($T_J = 25^\circ\text{C}$ unless otherwise noted)



Parameter		Symbol	Value	Unit
Collector-to-Emitter Voltage		V_{CES}	1200	V
Gate-to-Emitter Voltage		V_{GES}	± 20	
			± 30	
Collector Current	$T_C = 25^\circ\text{C}$	I_C	150	A
	$T_C = 100^\circ\text{C}$		75	
Power Dissipation	$T_C = 25^\circ\text{C}$	P_D	714	W
	$T_C = 100^\circ\text{C}$		357	
Pulsed Collector Current	$T_C = 25^\circ\text{C}$, $t_p = 10 \mu\text{s}$ (Note 1)	I_{CM}	300	A
Diode Forward Current	$T_C = 25^\circ\text{C}$	I_F	150	
	$T_C = 100^\circ\text{C}$		75	
Pulsed Diode Maximum Forward Current	$T_C = 25^\circ\text{C}$, $t_p = 10 \mu\text{s}$ (Note 1)	I_{FM}	300	
Operating Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 175	°C
Lead Temperature for Soldering Purposes		T_L	260	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Repetitive rating: pulse width limited by max. Junction temperature.

BV_{CES}	$V_{CE(\text{SAT})}$	I_C
1200 V	1.7 V	75.0 A

PIN CONNECTIONS

TO247-3LD
CASE 340CD

MARKING DIAGRAM

\$Y = onsemi Logo
 &Z = Assembly Plant Code
 &3 = 3-Digit Date Code
 &K = 2-Digit Lot Traceability Code
 FGY75T120SWD = Specific Device code

ORDERING INFORMATION

Device	Package	Shipping
FGY75T120SWD	TO247-3LD (Pb-Free)	30 Units / Tube

THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case for IGBT	$R_{\theta,JC}$	0.21	°C/W
Thermal Resistance, Junction-to-Case for Diode		0.35	
Thermal Resistance, Junction-to-Ambient	$R_{\theta,JA}$	40	

ELECTRICAL CHARACTERISTICS OF THE IGBT ($T_J = 25^\circ\text{C}$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
-----------	--------	-----------------	-----	-----	-----	------

OFF CHARACTERISTICS

Collector-to-Emitter Breakdown Voltage	BV_{CES}	$V_{GE} = 0 \text{ V}, I_C = 5 \text{ mA}$	1200	—	—	V
Breakdown Voltage Temperature Coefficient	$\Delta \text{BV}_{CES} / \Delta T_J$	$V_{GE} = 0 \text{ V}, I_C = 5 \text{ mA}$	—	1223	—	mV/°C
Collector-to-Emitter Cut-Off Current	I_{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}$	—	—	40	μA
Gate-to-Emitter Leakage Current	I_{GES}	$V_{GE} = 20 \text{ V}, V_{CE} = 0 \text{ V}$	—	—	±400	nA

ON CHARACTERISTICS

Gate-to-Emitter Threshold Voltage	$V_{GE(\text{TH})}$	$V_{GE} = V_{CE}, I_C = 75 \text{ mA}$	5.6	6.55	7.4	V
Collector-to-Emitter Saturation Voltage	$V_{CE(\text{SAT})}$	$V_{GE} = 15 \text{ V}, I_C = 75 \text{ A}, T_J = 25^\circ\text{C}$	1.35	1.68	2.0	V
		$V_{GE} = 15 \text{ V}, I_C = 75 \text{ A}, T_J = 175^\circ\text{C}$	—	2.24	—	

DYNAMIC CHARACTERISTICS

Input Capacitance	C_{IES}	$V_{CE} = 30 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	—	6331	—	pF
Output Capacitance	C_{OES}	—	234	—		
Reverse Transfer Capacitance	C_{RES}	—	29.6	—		
Total Gate Charge	Q_G	$V_{CE} = 600 \text{ V}, V_{GE} = 15 \text{ V}, I_C = 75 \text{ A}$	—	214	—	nC
Gate-to-Emitter Charge	Q_{GE}		—	53.9	—	
Gate-to-Collector Charge	Q_{GC}		—	77.7	—	

SWITCHING CHARACTERISTIC, INDUCTIVE LOAD

Turn-On Delay Time	$t_{d(\text{on})}$	$V_{CE} = 600 \text{ V}, V_{GE} = 15 \text{ V}, I_C = 37.5 \text{ A}, R_G = 4.7 \Omega, T_J = 25^\circ\text{C}$	—	42	—	ns
Turn-Off Delay Time	$t_{d(\text{off})}$		—	221	—	
Rise Time	t_r		—	27	—	
Fall Time	t_f		—	77	—	
Turn-On Switching Loss	E_{on}	$V_{CE} = 600 \text{ V}, V_{GE} = 15 \text{ V}, I_C = 75 \text{ A}, R_G = 4.7 \Omega, T_J = 25^\circ\text{C}$	—	2.12	—	mJ
Turn-Off Switching Loss	E_{off}		—	1.43	—	
Total Switching Loss	E_{ts}		—	3.55	—	
Turn-On Delay Time	$t_{d(\text{on})}$		—	42	—	
Turn-Off Delay Time	$t_{d(\text{off})}$	$V_{CE} = 600 \text{ V}, V_{GE} = 15 \text{ V}, I_C = 75 \text{ A}, R_G = 4.7 \Omega, T_J = 25^\circ\text{C}$	—	171	—	ns
Rise Time	t_r		—	56	—	
Fall Time	t_f		—	66	—	
Turn-On Switching Loss	E_{on}		—	5.00	—	mJ
Turn-Off Switching Loss	E_{off}	$V_{CE} = 600 \text{ V}, V_{GE} = 15 \text{ V}, I_C = 75 \text{ A}, R_G = 4.7 \Omega, T_J = 25^\circ\text{C}$	—	2.32	—	
Total Switching Loss	E_{ts}		—	7.32	—	

FGY75T120SWD

ELECTRICAL CHARACTERISTICS OF THE IGBT ($T_J = 25^\circ\text{C}$ unless otherwise noted) (continued)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
SWITCHING CHARACTERISTIC, INDUCTIVE LOAD						
Turn-On Delay Time	$t_{d(on)}$	$V_{CE} = 600 \text{ V}, V_{GE} = 15 \text{ V}, I_C = 37.5 \text{ A}, R_G = 4.7 \Omega, T_J = 25^\circ\text{C}$	–	38	–	ns
Turn-Off Delay Time	$t_{d(off)}$		–	276	–	
Rise Time	t_r		–	26	–	
Fall Time	t_f		–	132	–	
Turn-On Switching Loss	E_{on}		–	3.50	–	mJ
Turn-Off Switching Loss	E_{off}		–	2.31	–	
Total Switching Loss	E_{ts}		–	5.81	–	
Turn-On Delay Time	$t_{d(on)}$	$V_{CE} = 600 \text{ V}, V_{GE} = 15 \text{ V}, I_C = 75 \text{ A}, R_G = 4.7 \Omega, T_J = 25^\circ\text{C}$	–	38	–	ns
Turn-Off Delay Time	$t_{d(off)}$		–	210	–	
Rise Time	t_r		–	53	–	
Fall Time	t_f		–	115	–	
Turn-On Switching Loss	E_{on}		–	7.29	–	mJ
Turn-Off Switching Loss	E_{off}		–	3.50	–	
Total Switching Loss	E_{ts}		–	10.79	–	
DIODE CHARACTERISTIC						
Diode Forward Voltage	V_F	$I_F = 75 \text{ A}, T_J = 25^\circ\text{C}$	1.62	1.84	2.22	V
		$I_F = 75 \text{ A}, T_J = 175^\circ\text{C}$	–	1.91	–	
DIODE SWITCHING CHARACTERISTIC, INDUCTIVE LOAD						
Reverse Recovery Time	t_{rr}	$V_R = 600 \text{ V}, I_F = 37.5 \text{ A}, dI_F/dt = 1000 \text{ A}/\mu\text{s}, T_J = 25^\circ\text{C}$	–	136	–	ns
Reverse Recovery Charge	Q_{rr}		–	2340	–	nC
Reverse Recovery Energy	E_{rec}		–	0.7	–	mJ
Peak Reverse Recovery Current	I_{RRM}		–	34.5	–	A
Reverse Recovery Time	t_{rr}	$V_R = 600 \text{ V}, I_F = 75 \text{ A}, dI_F/dt = 1000 \text{ A}/\mu\text{s}, T_J = 25^\circ\text{C}$	–	204	–	ns
Reverse Recovery Charge	Q_{rr}		–	3974	–	nC
Reverse Recovery Energy	E_{rec}		–	1.3	–	mJ
Peak Reverse Recovery Current	I_{RRM}		–	38.8	–	A
Reverse Recovery Time	t_{rr}	$V_R = 600 \text{ V}, I_F = 37.5 \text{ A}, dI_F/dt = 1000 \text{ A}/\mu\text{s}, T_J = 175^\circ\text{C}$	–	236	–	ns
Reverse Recovery Charge	Q_{rr}		–	5980	–	nC
Reverse Recovery Energy	E_{rec}		–	2.1	–	mJ
Peak Reverse Recovery Current	I_{RRM}		–	50.7	–	A
Reverse Recovery Time	t_{rr}	$V_R = 600 \text{ V}, I_F = 75 \text{ A}, dI_F/dt = 1000 \text{ A}/\mu\text{s}, T_J = 175^\circ\text{C}$	–	334	–	ns
Reverse Recovery Charge	Q_{rr}		–	9544	–	nC
Reverse Recovery Energy	E_{rec}		–	3.5	–	mJ
Peak Reverse Recovery Current	I_{RRM}		–	57.1	–	A

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

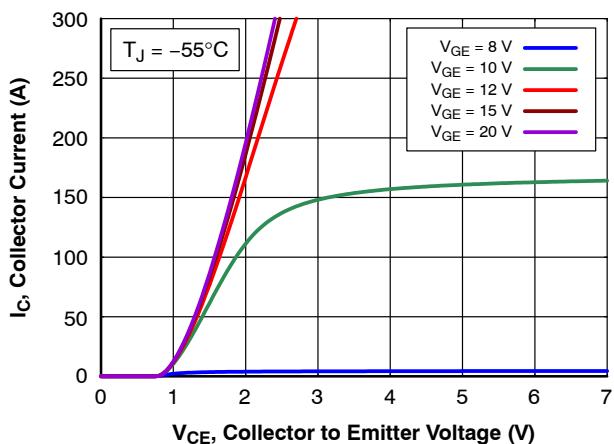


Figure 1. Output Characteristics

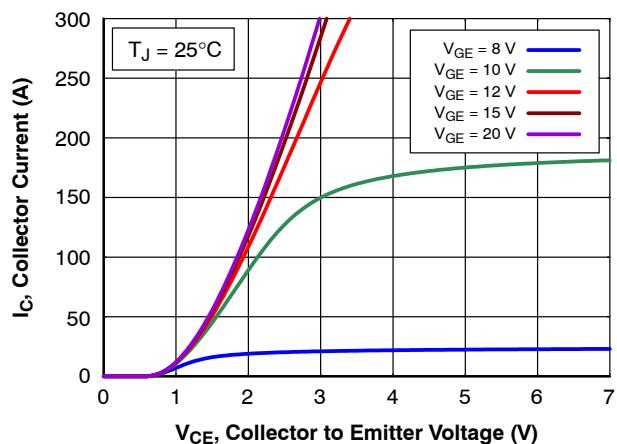


Figure 2. Output Characteristics

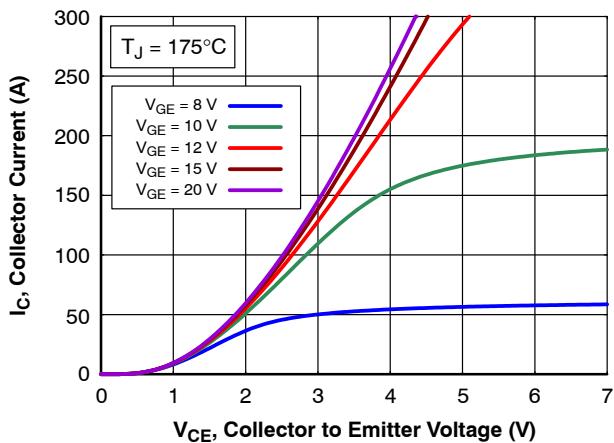


Figure 3. Output Characteristics

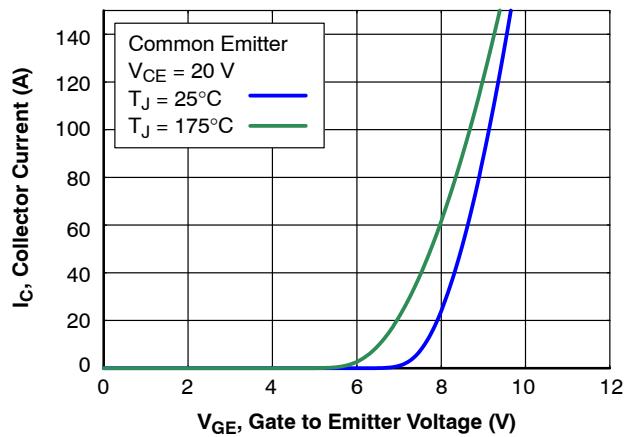


Figure 4. Transfer Characteristics

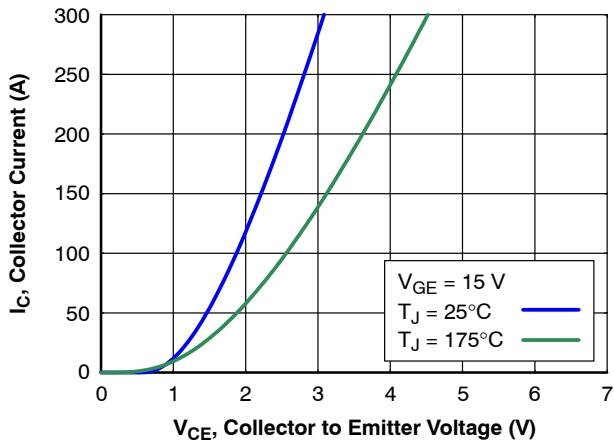


Figure 5. Saturation Voltage Characteristics

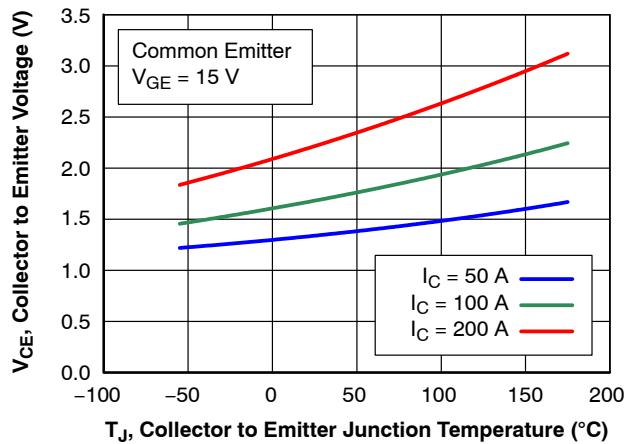
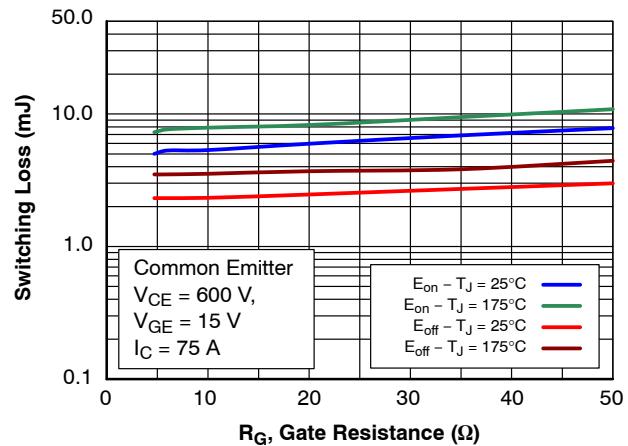
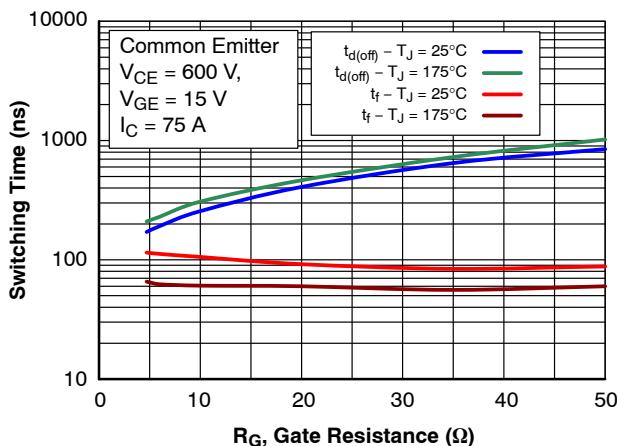
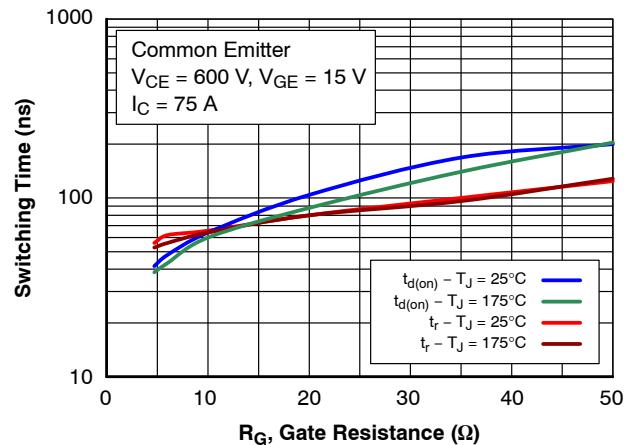
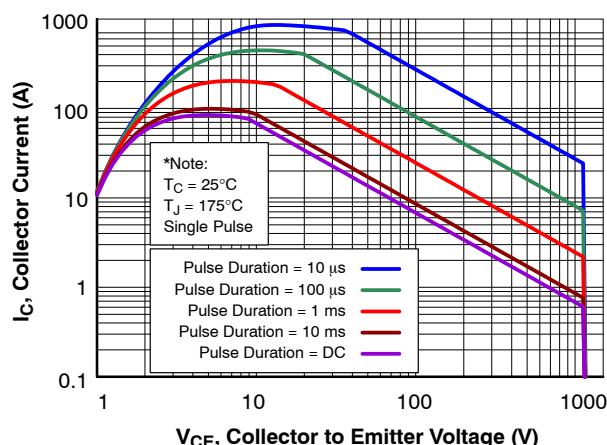
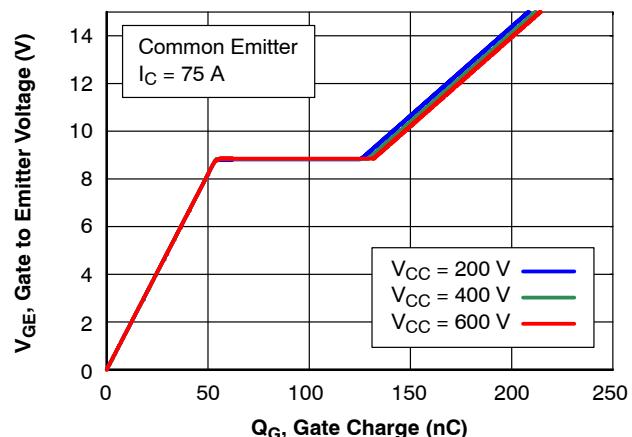
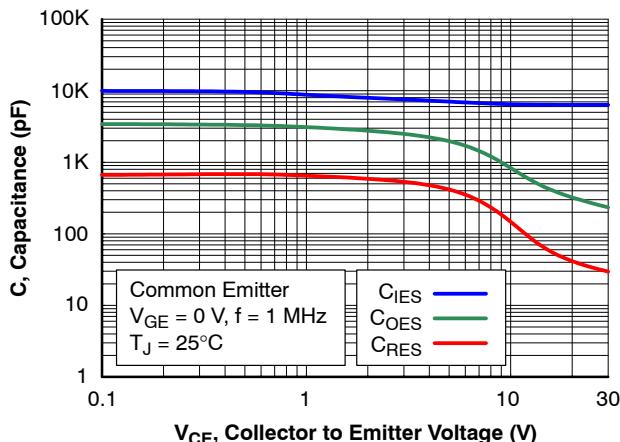








Figure 6. Saturation Voltage vs Junction Temperature

TYPICAL CHARACTERISTICS (CONTINUED)

TYPICAL CHARACTERISTICS (CONTINUED)

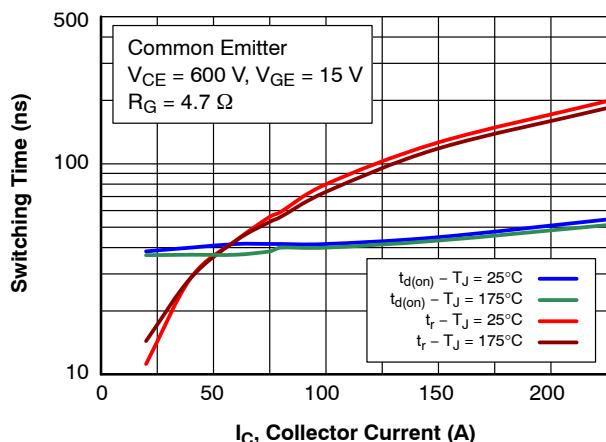


Figure 13. Turn-On Time vs Collector Current

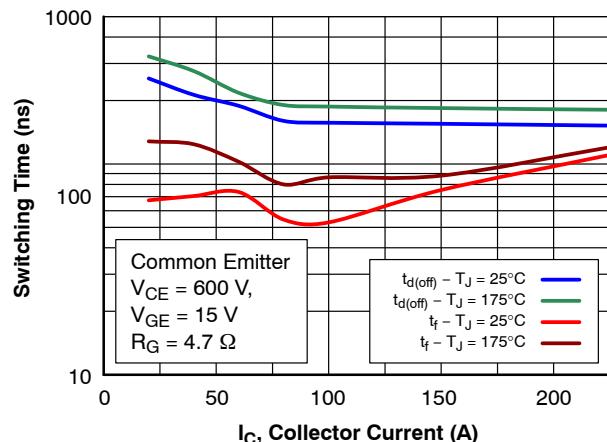


Figure 14. Turn-Off Time vs Collector Current

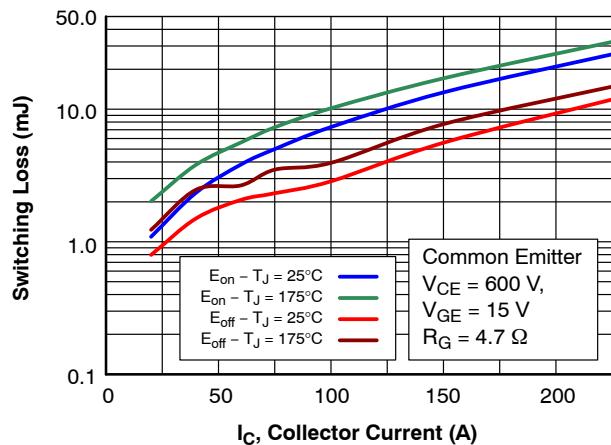


Figure 15. Switching Loss vs Collector Current

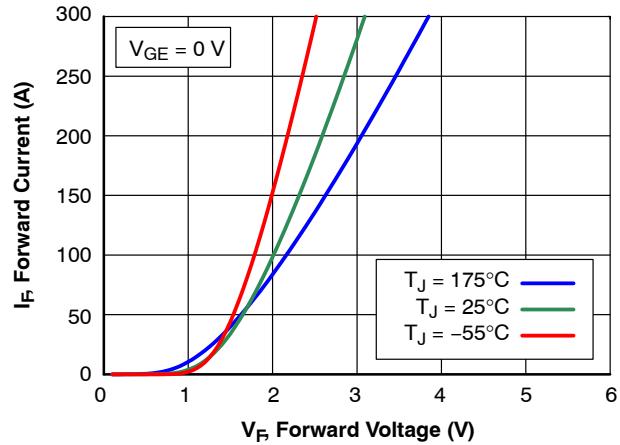


Figure 16. Diode Forward Characteristics

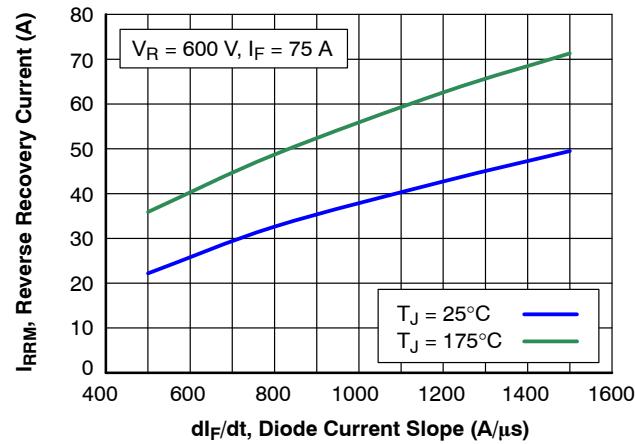


Figure 17. Diode Reverse Recovery Current

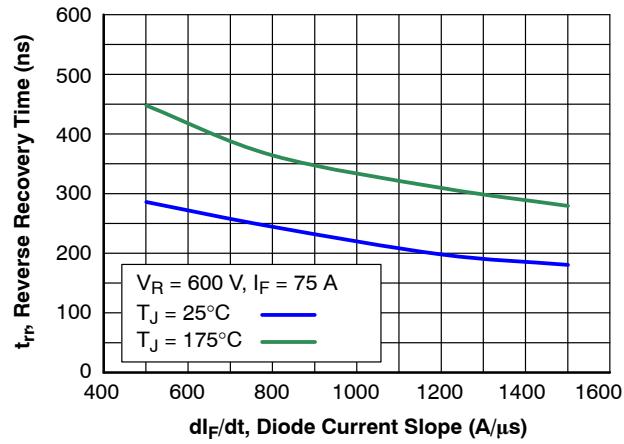


Figure 18. Diode Reverse Recovery Time

TYPICAL CHARACTERISTICS (CONTINUED)

Figure 19. Diode Stored Charge Characteristics

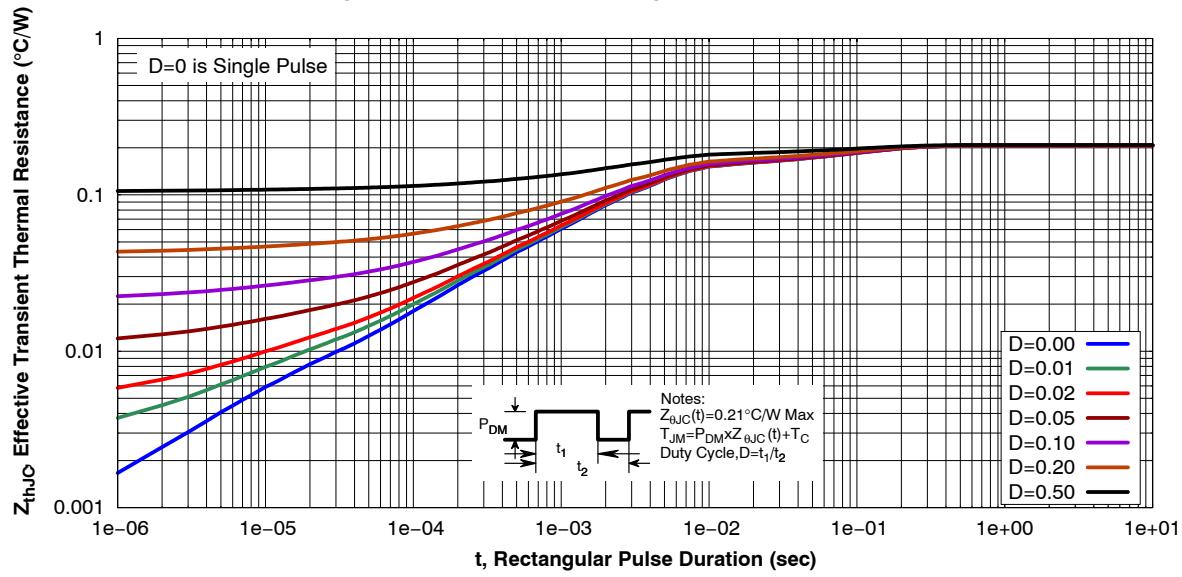


Figure 20. Transient Thermal Impedance of IGBT

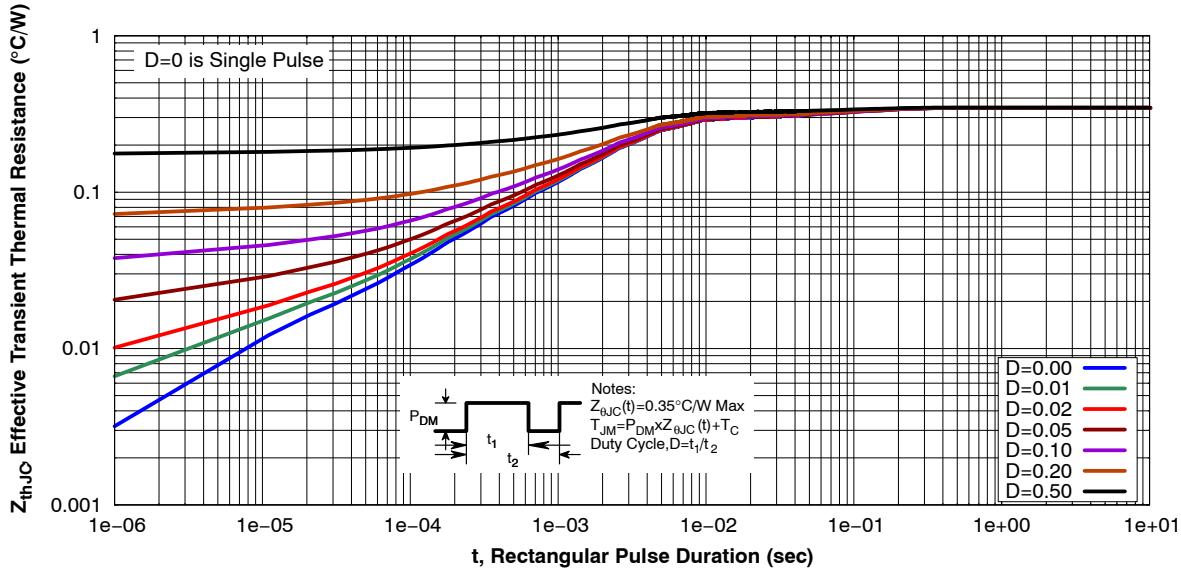
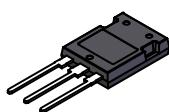
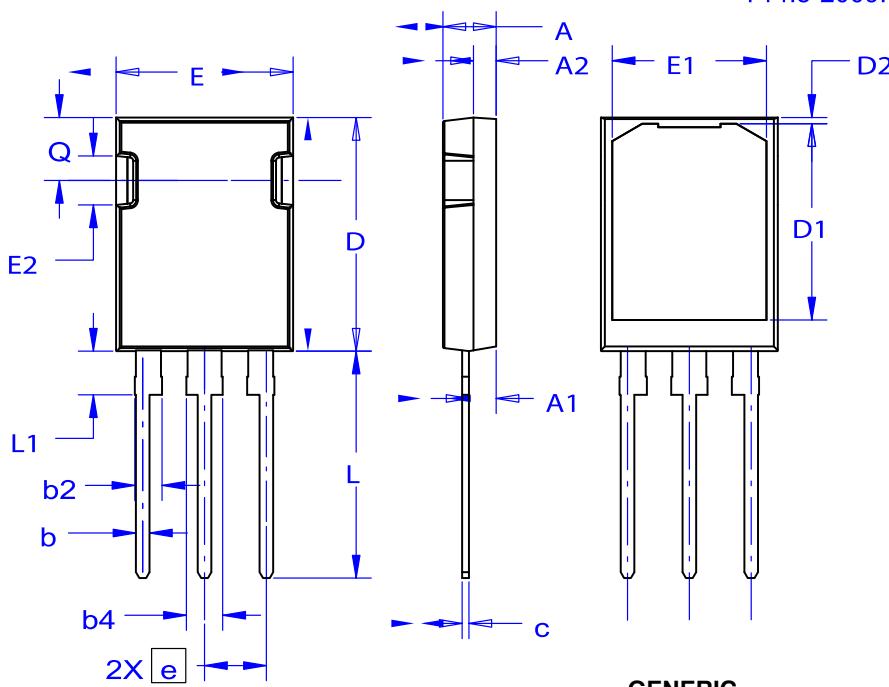



Figure 21. Transient Thermal Impedance of Diode



TO-247-3LD
CASE 340CD
ISSUE A

DATE 18 SEP 2018

NOTES:

- A. THIS PACKAGE DOES NOT CONFORM TO ANY STANDARDS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.
- D. DIMENSION AND TOLERANCE AS PER ASME Y14.5-2009.

GENERIC
MARKING DIAGRAM*

XXXX = Specific Device Code
A = Assembly Location
Y = Year
WW = Work Week
G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13857G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	TO-247-3LD	PAGE 1 OF 1

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, **ONSEMI**, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation
onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at
www.onsemi.com/support/sales

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[onsemi](#):

[FGY75T120SWD](#)