

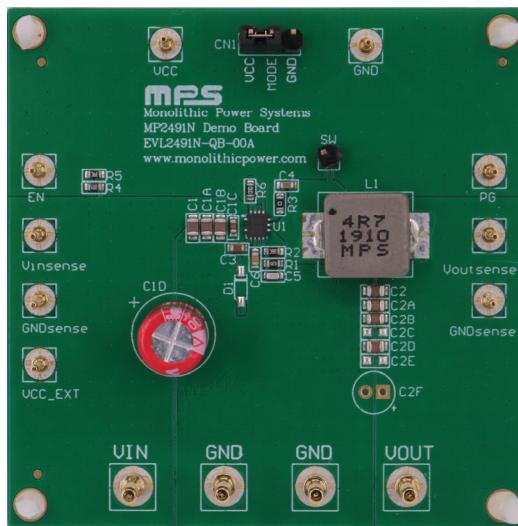
DESCRIPTION

The EVL2491N-QB-00A evaluation board is designed to demonstrate the capabilities of the MP2491N, a fully integrated, high-voltage step-down converter. The MP2491N can achieve 6A of continuous output current (I_{OUT}), with excellent load and line regulation across a wide input supply range.

Constant-on-time (COT) control provides fast transient response, easy loop design, and tight output regulation.

Full protection features include over-current protection (OCP), current limiting with hiccup mode, output over-voltage protection (OVP), and thermal shutdown.

The MP2491N requires a minimal number of readily available, standard external components, and is available in a QFN-13 (2.5mmx3mm) package.


PERFORMANCE SUMMARY ⁽¹⁾

Specifications are at $T_A = 25^\circ\text{C}$, unless otherwise noted.

Parameters	Conditions	Value
Input voltage (V_{IN}) range		16V to 32V
Output voltage (V_{OUT})	$V_{IN} = 16\text{V to } 32\text{V}$, $I_{OUT} = 0\text{A to } 6\text{A}$	$V_{OUT} = 5\text{V}$
Maximum output current (I_{OUT})	$V_{IN} = 16\text{V to } 32\text{V}$	6A
Typical efficiency	$V_{IN} = 24\text{V}$, $V_{OUT} = 5\text{V}$, $I_{OUT} = 6\text{A}$	91.9%
Peak efficiency	$V_{IN} = 24\text{V}$, $V_{OUT} = 5\text{V}$, $I_{OUT} = 2\text{A}$	94.7%
Switching frequency (f_{SW})		540kHz

 MPL Optimized Performance with MPS Inductor MPL-AY1050 Series

EVL2491N-QB-00A EVALUATION BOARD

LxWxH (6.35cmx6.35cmx1.3cm)

Board Number	MPS IC Number
EVL2491N-QB-00A	MP2491NGQB

QUICK START GUIDE

The EVL2491N-QB-00A evaluation board is easy to set up and use to evaluate the performance of the MP2491N. For proper measurement equipment set-up, refer to Figure 1 and follow the steps below:

1. Preset the power supply to 24V, then turn off the power supply.
2. Connect the power supply terminals to:
 - a. Positive (+): VIN
 - b. Negative (-): GND
3. Connect the load terminals to:
 - a. Positive (+): VOUT
 - b. Negative (-): GND
4. After making the connections, turn on the power supply. The board should automatically start up.
5. Check for the proper output voltage (V_{OUT}) between the VOUTSENSE and GNDSEN terminals.
6. The converter's default mode is set to automatic pulse-frequency modulation (PFM) and pulse-width modulation (PWM) mode. Select a different mode by adjusting the MODE pin (see Table 1).

Table 1: Mode Selection

Pin Voltage	Mode
0V	Forced PWM
V_{CC}	Auto-PFM/PWM

7. Once the proper V_{OUT} is established, adjust the load within the operating range and measure the efficiency, output ripple voltage, and other parameters.

Note:

- 1) Ensure that V_{IN} does not exceed 32V.

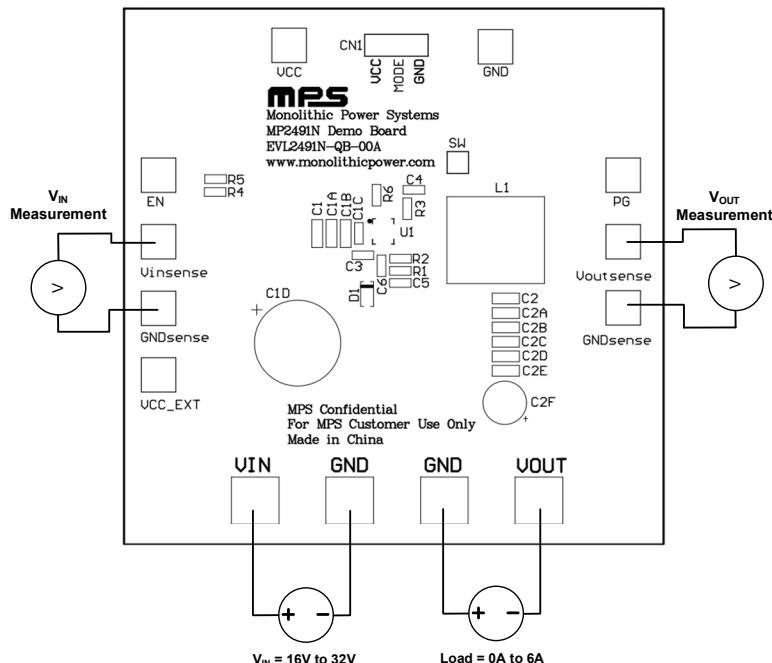


Figure 1: Proper Measurement Equipment Set-Up

EVALUATION BOARD SCHEMATIC

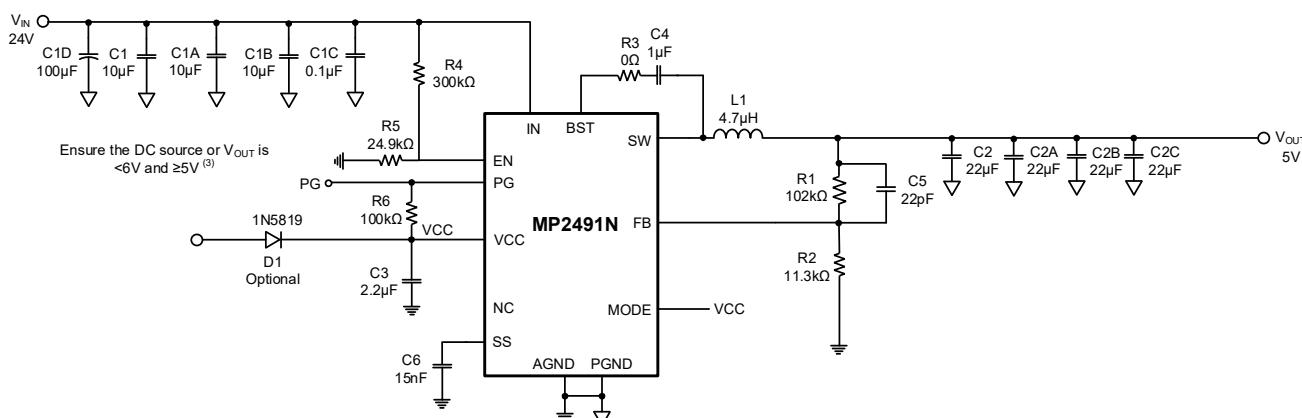


Figure 2: Evaluation Board Schematic

Notes:

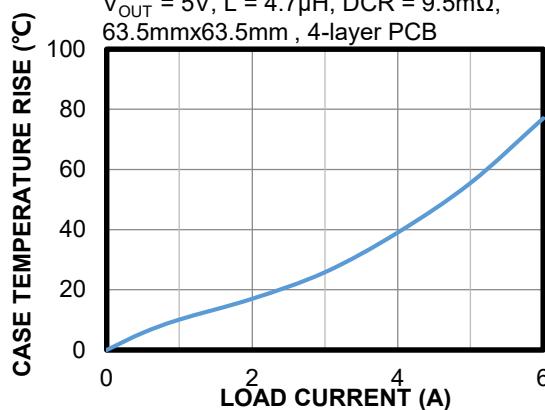
- 2) The EN resistor divider sets the V_{IN} rising threshold to 16V. For low V_{IN} applications, change R5.
- 3) D1 is an optional diode that can be used to achieve high efficiency under light loads.

EVL2491N-QB-00A BILL OF MATERIALS

Qty	Ref	Value	Description	Package	Manufacturer	Manufacturer PN
3	C1, C1A, C1B	10 μ F	Ceramic capacitor, 35V, X5R	0805	Murata	GRM21BR61E106KA43L
1	C1C	100nF	Ceramic capacitor, 50V, X7R	0603	Samsung	CL05B104KB5NNNC
1	C1D	100 μ F	Electrolytic capacitor, 50V	DIP	Wurth	860010674014
4	C2, C2A, C2B, C2C	22 μ F	Ceramic capacitor, 25V, X5R	0805	Murata	GRM31CR61E226KE15L
1	C3	2.2 μ F	Ceramic capacitor, 16V, X7S	0603	Murata	GRM188C71C225KE11D
1	C4	1 μ F	Ceramic capacitor, 50V, X7R	0603	Murata	GRM188R71A105KA61D
1	C5	22pF	Ceramic capacitor, 50V, C0G	0603	Murata	GRM1885C1H220JA01D
1	C6	15nF	Ceramic capacitor, 50V, X7R	0603	Murata	GRM188R71H153KA01D
1	R1	102k Ω	Film resistor, 1%	0603	Yageo	RC0603FR-07102KL
1	R6	100k Ω	Film resistor, 1%	0603	Yageo	RC0603FR-07100KL
1	R2	11.3k Ω	Film resistor, 1%	0603	Yageo	RC0603FR-0711K3L
1	R3	0 Ω	Film resistor, 1%	0603	Yageo	RC0603FR-070RL
1	R4	300k Ω	Film resistor, 1%	0603	Yageo	RC0603FR-07300KL
1	R5	24.9k Ω	Film resistor, 1%	0603	Yageo	RC0603FR-0724K9L
1	D1	NS				
1	L1	MPL-AY1050-4R7	Inductor, 4.7 μ H, D _{CR} = 9.5m Ω , I _{SAT} = 15A	11mmx 10mmx 4.8mm	MPS	MPL-AY1050-4R7
1	U1	MP2491 N	32V, 6A, synchronous step-down converter	QFN-13 (2.5mmx 3mm)	MPS	MP2491NGQB

EVB TEST RESULTS

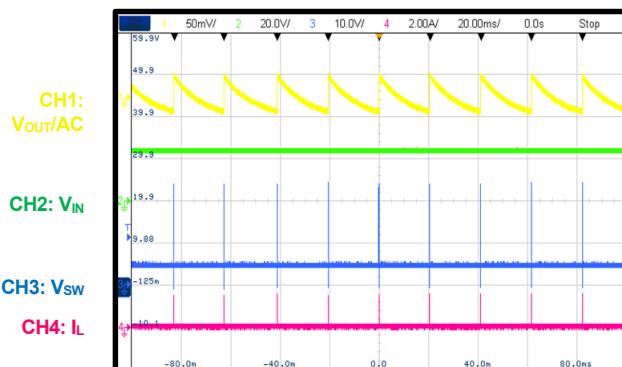
Performance curves and waveforms are tested on the evaluation board. $V_{IN} = 24V$, $V_{OUT} = 5V$, $T_A = 25^\circ C$, unless otherwise noted.


Efficiency vs. Load Current

$V_{OUT} = 5V$, $L = 4.7\mu H$, $DCR = 9.5m\Omega$

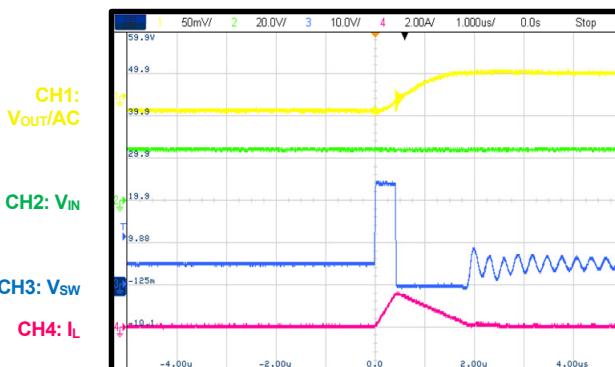
Case Temperature Rise vs. Load Current

$V_{OUT} = 5V$, $L = 4.7\mu H$, $DCR = 9.5m\Omega$,
63.5mmx63.5mm, 4-layer PCB

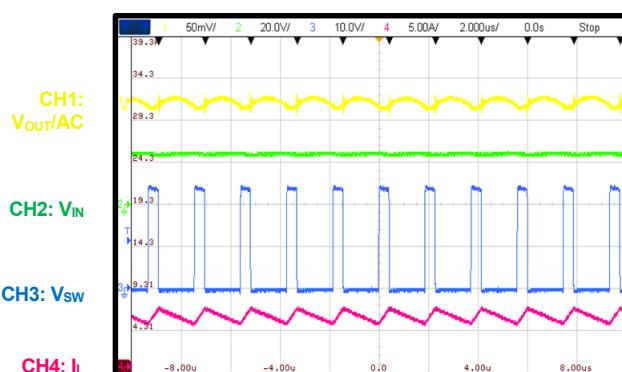


EVB TEST RESULTS (continued)

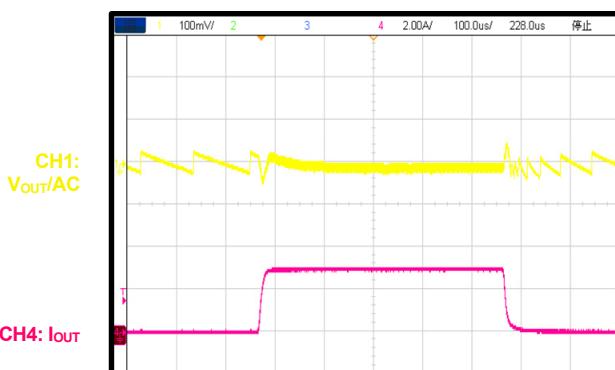
Performance curves and waveforms are tested on the evaluation board. $V_{IN} = 24V$, $V_{OUT} = 5V$, $T_A = 25^\circ C$, unless otherwise noted.


Output Voltage Ripple

$V_{IN} = 24V$, $V_{OUT} = 5V$, $I_{OUT} = 0A$


Output Voltage Ripple

$V_{IN} = 24V$, $V_{OUT} = 5V$, $I_{OUT} = 0A$


Output Voltage Ripple

$V_{IN} = 24V$, $V_{OUT} = 5V$, $I_{OUT} = 6A$

Load Transient Response

$V_{IN} = 24V$, $V_{OUT} = 5V$, $I_{OUT} = 0A$ to $3A$, $2.5A/\mu s$ with e-load

Load Transient Response

$V_{IN} = 24V$, $V_{OUT} = 5V$, $I_{OUT} = 0A$ to $6A$, $2.5A/\mu s$ with e-load

PCB LAYOUT

Figure 3: Top Silk

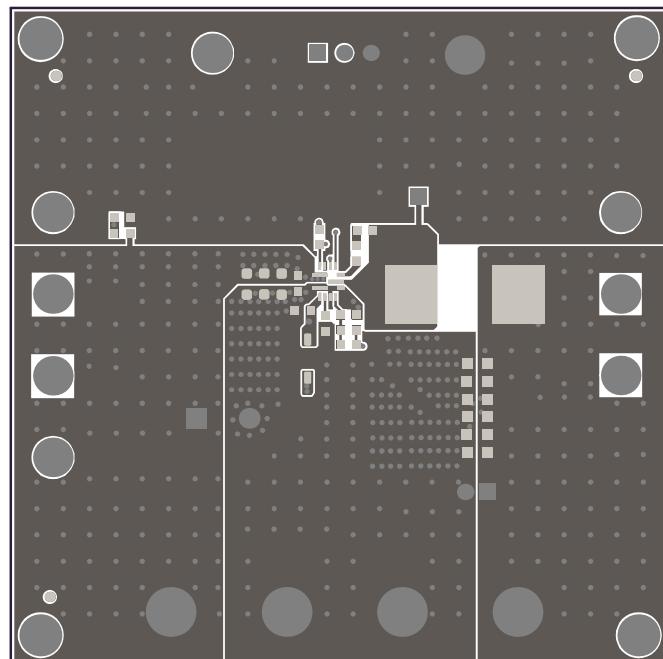


Figure 4: Top Layer

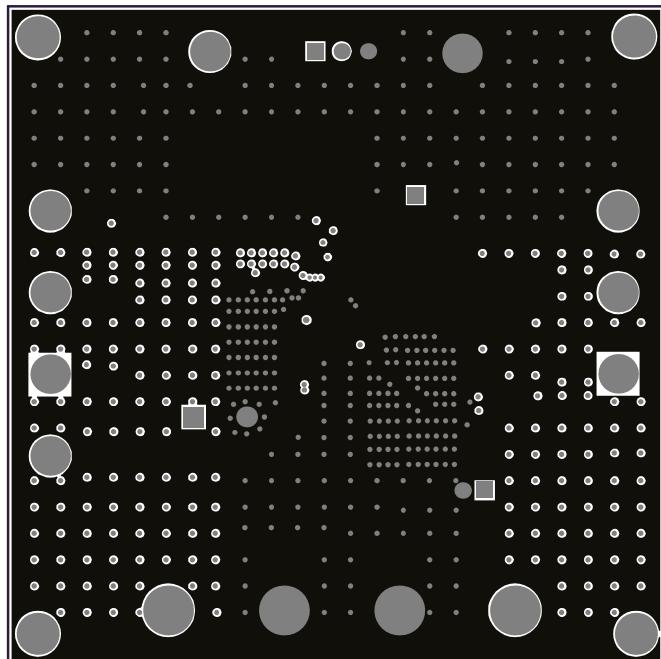


Figure 5: Mid-Layer 1

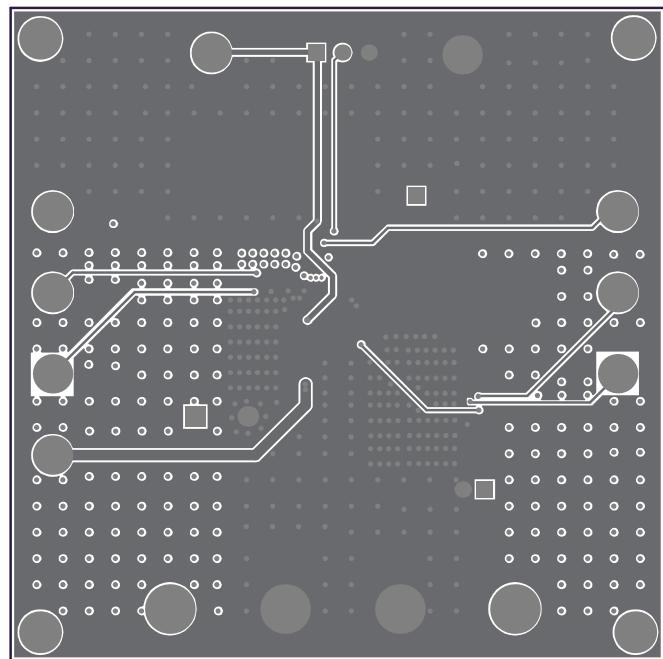
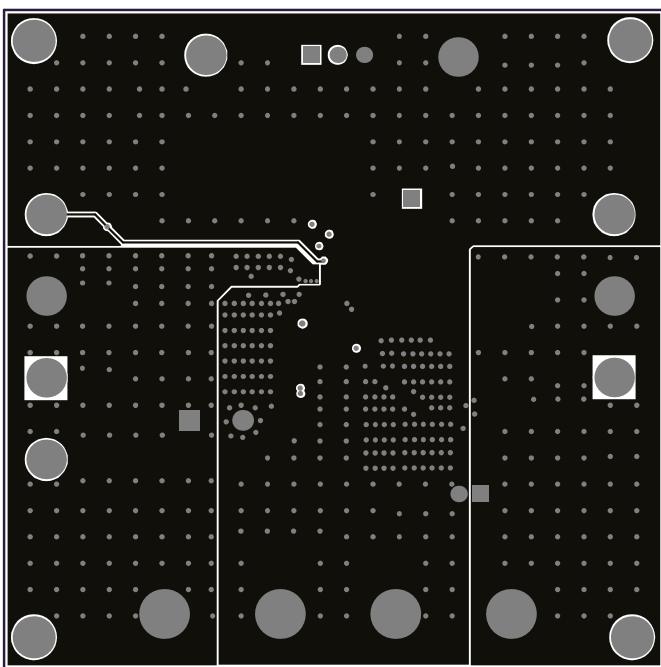



Figure 6: Mid-Layer 2

PCB LAYOUT (continued)**Figure 7: Bottom Layer**

REVISION HISTORY

Revision #	Revision Date	Description	Pages Updated
1.0	9/8/2022	Initial Release	-

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Monolithic Power Systems \(MPS\):](#)

[EVL2491N-QB-00A](#)