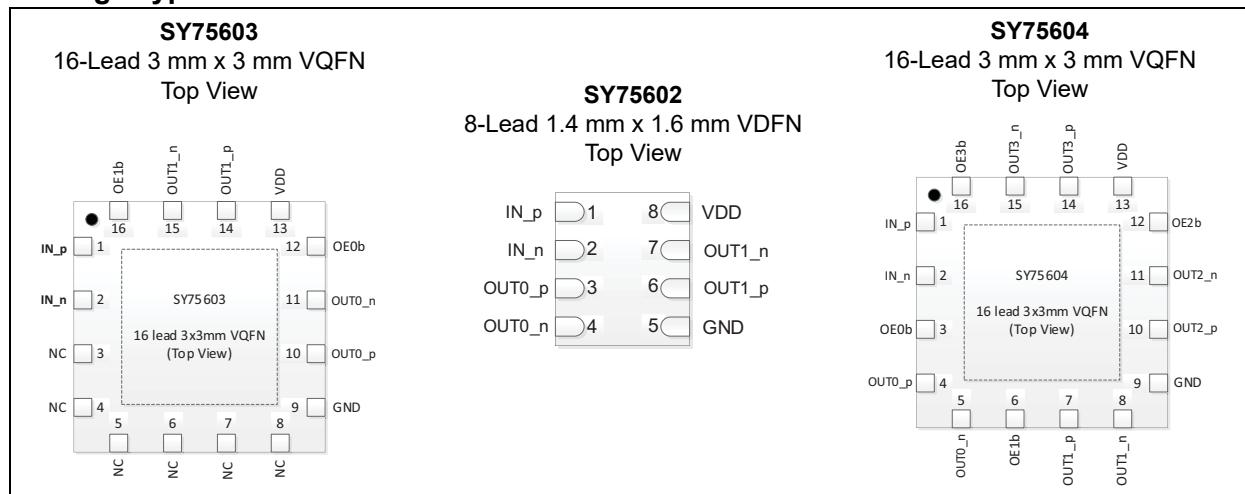
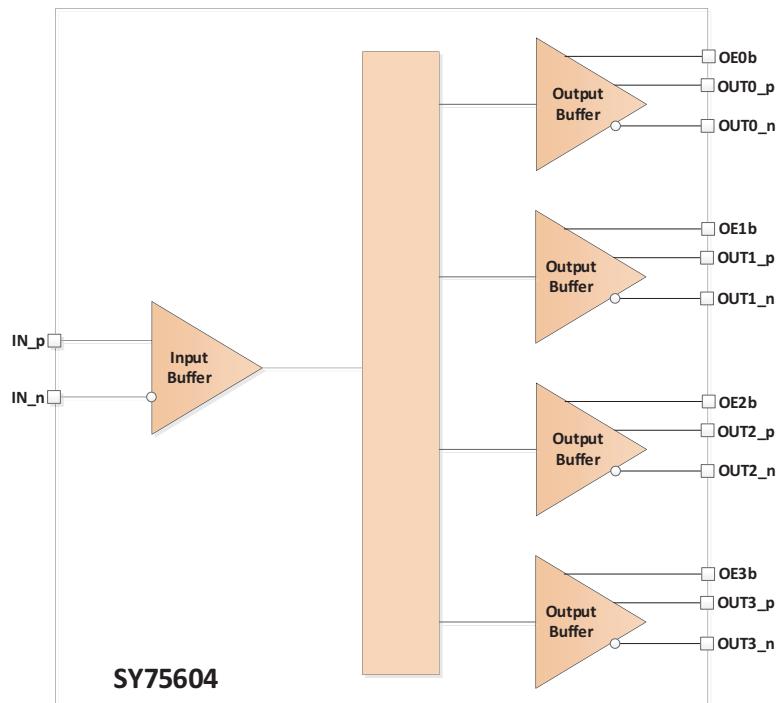
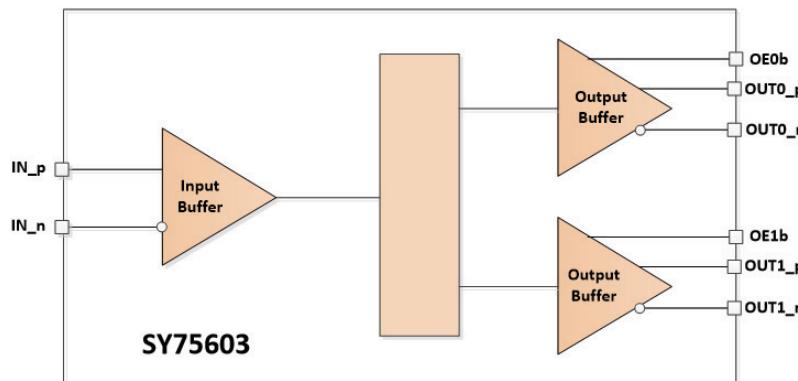
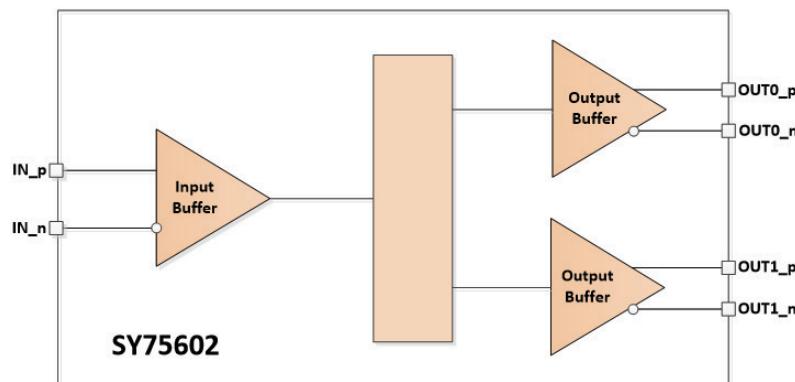


2/4 Outputs Ultra-Low Additive Jitter PCIe 1/2/3/4/5 Clock Buffer


Features

- Two (SY75602A/02B/603A/03B) and Four (SY75604A/04B) PCIe 1.0, 2.0, 3.0, 4.0, and 5.0 Compliant Outputs.
- Ultra-Low Additive Jitter 10 fs (PCIe Gen5)
- Supports Frequencies of up to 250 MHz
- Transparent for Spread Spectrum
- Supports 1.8V \pm 10%, 2.5V \pm 10%, and 3.3V \pm 10% Power Supplies
- Outputs Low Power HCSL with Embedded 85 Ω (SY75602A/03A/04A) and 100 Ω (SY75602B/03B/04B) Termination Resistors
- Individual Glitch Free Output Enable (OE_b) Control Pins on SY75603/604
- Accepts DC-Coupled HCSL Input Signal and AC-Coupled PECL, LVDS, and CML
- Extended Temperature Range: -40°C to $+105^{\circ}\text{C}$
- 1.4 mm x 1.6 mm VDFN (SY75602A/02B) and 3 mm x 3 mm VQFN (SY75603A/03B/604A/04B) Package

Applications




- PCIe Graphics Cards
- PCIe Based SSD drives
- Laptops and Desktop Computers
- Servers

Package Types

SY75602A/02B/603A/03B/604A/04B

Functional Block Diagrams

SY75602A/02B/603A/03B/604A/04B

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage (V_{DD}).....	-0.5V to +4.6V
Input Voltage (V_{IN}).....	-0.5V to V_{DD} +0.5V
Input ESD Protection (HBM).....	2 kV

Operating Ratings ‡

1.8V Operating Voltage (V_{DD}).....	+1.62V to +1.98V
2.5V Operating Voltage (V_{DD}).....	+2.25V to +2.75V
3.3V Operating Voltage (V_{DD}).....	+2.97V to +3.63V

† Notice: Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings conditions may affect device reliability.

‡ Notice: The data sheet limits are not ensured if the device is operated beyond the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

Electrical Characteristics: $V_{DD} = 3.3V \pm 10\%$, $2.5V \pm 10\%$; $1.8V \pm 10\%$; $T_A = -40^\circ\text{C}$ to $+105^\circ\text{C}$, unless noted.

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
Current Consumption						
Core Device Current	I_{DD}	—	9	13	mA	SY75602, Output current excluded (no load)
		—	9	13		SY75603/04, all outputs disabled
Current dissipation per each LP-HCSL output (100Ω)	$I_{OUT_HCSL_100\Omega}$	—	3.5	3.9	mA	Note 1
Current dissipation per each LP-HCSL output (85Ω)	$I_{OUT_HCSL_85\Omega}$	—	4.0	4.4	mA	Note 1
Power Supply Noise Rejection Ratio Characteristics						
Power Supply Noise Rejection Ratio	$PSNRR_{HSCL}$	—	70	—	dB	100 mV _{PP} , 100 kHz noise injected to V_{DD} . Clock Frequency 100 MHz, $V_{DD} = 3.3V$
Input Characteristics						
Input Slew Rate	SR_{IN}	0.6	—	—	V/ns	—
Differential Input High Voltage	V_{IH}	0.15	—	—	V	—
Differential Input Low Voltage	V_{IL}	—	—	-0.15	V	—
Input Voltage Swing	V_{SWING}	0.15	—	—	V_{DIFF}	—
Absolute Crossing Point Voltage	V_{CROSS}	0.25	—	0.55	V	—
Variation of V_{CROSS} Over All Edges	V_{CROSS_DELTA}	—	—	0.14	V	—
Voltage High for Output Enable	V_{IH_OE}	$0.7^* V_{DD}$	—	—	V	SY75603/4 only
Voltage Low for Output Enable	V_{IL_OE}	—	—	$0.3^* V_{DD}$	V	SY75603/4 only
Input Leakage Current	I_{IL_IN}	-5	—	5	µA	$V_{IN} = V_{IN(MAX)}$, $V_{IN} = GND$
Input Capacitance	C_{IN}	—	—	5	pF	—

SY75602A/02B/603A/03B/604A/04B

ELECTRICAL CHARACTERISTICS

Electrical Characteristics: $V_{DD} = 3.3V \pm 10\%$, $2.5V \pm 10\%$; $1.8V \pm 10\%$; $T_A = -40^\circ C$ to $+105^\circ C$, unless noted.

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
Input Leakage Current for OExb Inputs (Includes Current due to Pull-Down Resistors)	I_{IL_OE}	-5	—	50	μA	$V_{IN} = V_{DD}$, $V_{IN} = GND$ SY75603/4 only
Single Ended Input Common Mode Voltage (IN_p) (HCSL Common Mode)	V_{SIC}	0.25	—	0.55	V	—
Single Ended Input Voltage Swing for IN_p	V_{SID}	0.3	—	1.45	V	—
Maximum Input Voltage	$V_{IN(MAX)}$	—	—	1.15	V	—
Minimum Input Voltage	$V_{IN(MIN)}$	-0.3	—	—	V	—
Input Frequency (Differential)	f_{IN}	0	—	250	MHz	—
Input Frequency (Single Ended)	f_{IN_SE}	0	—	250	MHz	—
Input Duty Cycle	DC	35	—	65	%	—

Note 1: Tested with 100 MHz clock with outputs driving 5" long trace terminated with 2 pF capacitors to ground.

2: Output Enable control pins are synchronous with the input clock and it takes four rising edges before outputs get enabled and five rising edges before outputs get disabled. Hence the minimum input frequency is greater than 0 Hz. Once the outputs are enabled the input clock frequency can be reduced to 0 Hz.

OUTPUT ELECTRICAL CHARACTERISTICS

Electrical Characteristics: $V_{DD} = 3.3V \pm 10\%$, $2.5V \pm 10\%$; $1.8V \pm 10\%$; $T_A = -40^\circ C$ to $+105^\circ C$, $C_{LOAD} = 2$ pF unless noted.

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
Rising Edge Rate	—	1	2.5	4	V/ns	Note 2, Note 3
Falling Edge Rate	—	1	2.5	4	V/ns	Note 2, Note 3
Differential Output High Voltage	V_{OH}	0.6	—	0.9	V	Note 2
Differential Output Low Voltage	V_{OL}	-0.9	—	-0.6	V	Note 2
Absolute Crossing Voltage	V_{CROSS}	0.25	—	0.55	V	Note 1, Note 4, Note 5
Variation of V_{CROSS} Over All Rising Clock Edges	V_{CROSS_DELTA}	—	—	0.14	V	Note 1, Note 4, Note 8
Ring Back Voltage Margin	V_{RB}	-0.1	—	0.1	V	Note 2, Note 10
Time Before V_{RB} is Allowed	t_{STABLE}	500	—	—	ps	Note 2, Note 10
Cycle-to-Cycle Additive Jitter	$t_{CCJITTER}$	—	6.5	8.1	ps	Note 2
Absolute Maximum Output Voltage	V_{MAX}	—	—	1.15	V	Note 1, Note 6
Absolute Minimum Output Voltage	V_{MIN}	-0.3	—	—	V	Note 1, Note 7
Output Duty Cycle	V_{DC}	48	50	52	%	When input has 50% duty cycle and $V_{IN} \geq 200$ mV, Note 2
Rising to Falling Edge Matching	Rise-Fall Matching	—	—	20	%	Note 1, Note 11
Clock Source DC Impedance (OUTx_p) for part with 85Ω embedded differential series resistance (parts with suffix "A")	$Z_{C-DC_OUT_p}$	34	—	51	Ω	Note 1, Note 9

OUTPUT ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: $V_{DD} = 3.3V \pm 10\%$, $2.5V \pm 10\%$; $1.8V \pm 10\%$; $T_A = -40^\circ C$ to $+105^\circ C$, $C_{LOAD} = 2 \text{ pF}$ unless noted.

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
Clock Source DC Impedance ($OUTx_n$) for part with 85Ω embedded differential series resistance (parts with suffix "A")	$Z_{C-DC_OUT_n}$	34	—	51	Ω	Note 1 , Note 9
Clock Source DC Impedance ($OUTx_p$) for part with 100Ω embedded differential series resistance (parts with suffix "B")	$Z_{C-DC_OUT_p}$	40	—	60	Ω	Note 1 , Note 9
Clock Source DC Impedance ($OUTx_n$) for part with 100Ω embedded differential series resistance (parts with suffix "B")	$Z_{C-DC_OUT_n}$	40	—	60	Ω	Note 1 , Note 9
Output Frequency	f_{MAX}	0	—	250	MHz	—
Output to Output Skew	t_{OOSK}	—	—	30	ps	—
Device to Device Output Skew	t_{POOSK}	—	—	50	ps	—
Input to Output Delay	t_{IOD}	0.9	1.2	1.5	ns	—
Output Enable Time	t_{EN}	—	—	3.5	cycles	Note 12
Output Disable Time	t_{DIS}	—	—	4.5	cycles	Note 12

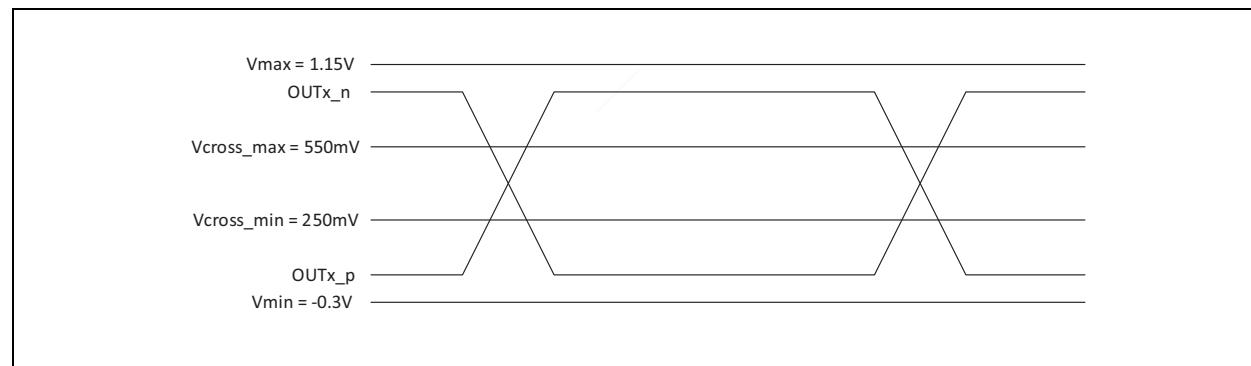
Note 1: Measurement taken from single ended waveform.

- 2:** Measurement taken from differential waveform.
- 3:** Measured from -150 mV to $+150 \text{ mV}$ on the differential waveform (derived from $OUTx_p$ to $OUTx_n$). The signal must be monotonic through the measurement region for rise and fall time. The 300 mV measurement window is centered on the differential zero crossing. See [Figure 1-5](#).
- 4:** Measured at crossing point where the instantaneous voltage value of the rising edge of $OUTx_p$ equals the falling edge of $OUTx_n$. See [Figure 1-1](#).
- 5:** Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement. See [Figure 1-1](#).
- 6:** Defined as the maximum instantaneous voltage including overshoot. See [Figure 1-1](#).
- 7:** Defined as the minimum instantaneous voltage including undershoot. See [Figure 1-1](#).
- 8:** Defined as the total variation of all crossing voltages of Rising $OUTx_p$ and Falling $OUTx_n$. This is the maximum allowed variance in V_{CROSS} for any particular system. See [Figure 1-2](#).
- 9:** System board compliance measurements must use the test load card described in [Figure 1-7](#). $OUTx_p$ and $OUTx_n$ are to be measured at the load capacitors C_{LOAD} . Single-ended probes must be used for measurements requiring single-ended measurements. Either single-ended probes with math or differential probe can be used for differential measurements.
- 10:** t_{STABLE} is the time the differential clock must maintain a minimum $\pm 150 \text{ mV}$ differential voltage after rising/falling edges before it is allowed to droop back into the $V_{RB} \pm 100 \text{ mV}$ differential range. See [Figure 1-6](#).
- 11:** Matching applies to rising edge rate for $OUTx_p$ and falling edge rate for $OUTx_n$. It is measured using a $\pm 75 \text{ mV}$ window centered on the median cross point where $OUTx_p$ rising meets $OUTx_n$ falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of $OUTx_p$ should be compared to the Fall Edge Rate of $OUTx_n$; the maximum allowed difference should not exceed 20% of the slowest edge rate. See [Figure 1-3](#).
- 12:** Output Enable control pins are synchronous with the input clock and it takes four rising edges before outputs get enabled and five rising edges before outputs get disabled. Hence the minimum input frequency is greater than 0 Hz. Once the outputs are enabled the input clock frequency can be reduced to 0 Hz.

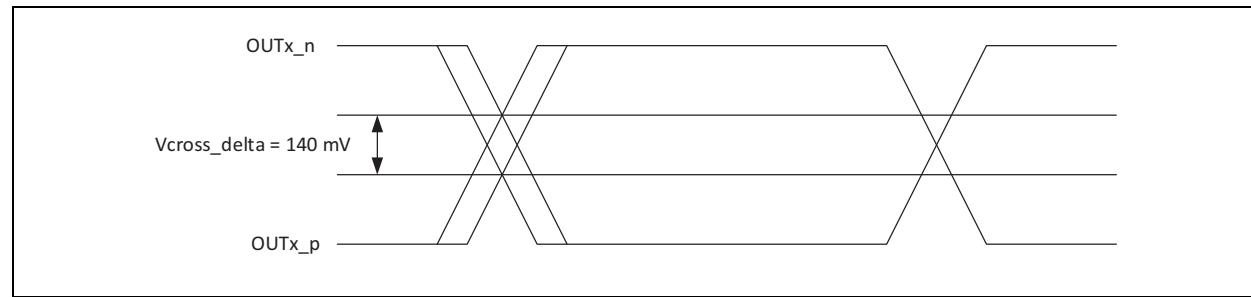
SY75602A/02B/603A/03B/604A/04B

JITTER AND PHASE NOISE

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
Peak-to-Peak Additive Jitter	$p\text{-}p A_{JRMS}$	—	—	4.5	ps	Note 1 , Note 2
Additive Jitter as per PCIe 1.0 (1.5 MHz to 22 MHz)	$t_{jPCle_1.0}$	—	0.7	0.8	fs_{RMS}	Note 1 , Note 2
Additive Jitter as per PCIe 2.0 high band (1.5 MHz to 50 MHz)	$t_{jPCle_2.0_high}$	—	70	90	fs_{RMS}	Note 1 , Note 2
Additive Jitter as per PCIe 2.0 low band (10 kHz to 1.5 MHz)	$t_{jPCle_2.0_low}$	—	14	20	fs_{RMS}	Note 1 , Note 2
Additive Jitter as per PCIe 2.0 mid band (5 MHz to 16 MHz)	$t_{jPCle_2.0_mid}$	—	55	74	fs_{RMS}	Note 1 , Note 2
Additive Jitter as per PCIe 3.0 (PLL_BW = 2 to 5 MHz, CDR = 10 MHz)	$t_{jPCle_3.0}$	—	18	22	fs_{RMS}	Note 1 , Note 2
Additive Jitter as per PCIe 4.0 (PLL_BW = 2 to 5 MHz, CDR = 10 MHz)	$t_{jPCle_4.0}$	—	18	22	fs_{RMS}	Note 1 , Note 2
Additive Jitter as per PCIe 5.0 (PLL_BW = 0.5 to 1.8 MHz, CDR for 32 GT/s CC)	$t_{jPCle_5.0}$	—	7	10	fs_{RMS}	Note 2 , Note 3
Additive jitter as per Intel QPI 9.6 Gbps	t_{jQPI}	—	35	45	fs_{RMS}	Note 1 , Note 2
Additive RMS jitter in 1 MHz to 20 MHz band	$t_{j_1M_20M}$	—	51	66	fs_{RMS}	Note 1 , Note 2 (100 MHz clock)
		—	40	54	fs_{RMS}	Note 1 , Note 2 (133 MHz clock)
Additive RMS jitter in 12 kHz to 20 MHz band	$t_{j_12k_20M}$	—	52	68	fs_{RMS}	Note 1 , Note 2 (100 MHz clock)
		—	44	58	fs_{RMS}	Note 1 , Note 2 (133 MHz clock)
Noise Floor	NF	—	-165	-163	dBc/Hz	Note 1 , Note 2 (100 MHz clock)
		—	-165	-163	dBc/Hz	Note 1 , Note 2 (133 MHz clock)


Note 1: Measured into AC test load as per [Figure 1-7](#).

2: Measured from differential crossing point to differential crossing point.


3: Measured with 50Ω termination in instrument without a test load.

TEMPERATURE SPECIFICATIONS

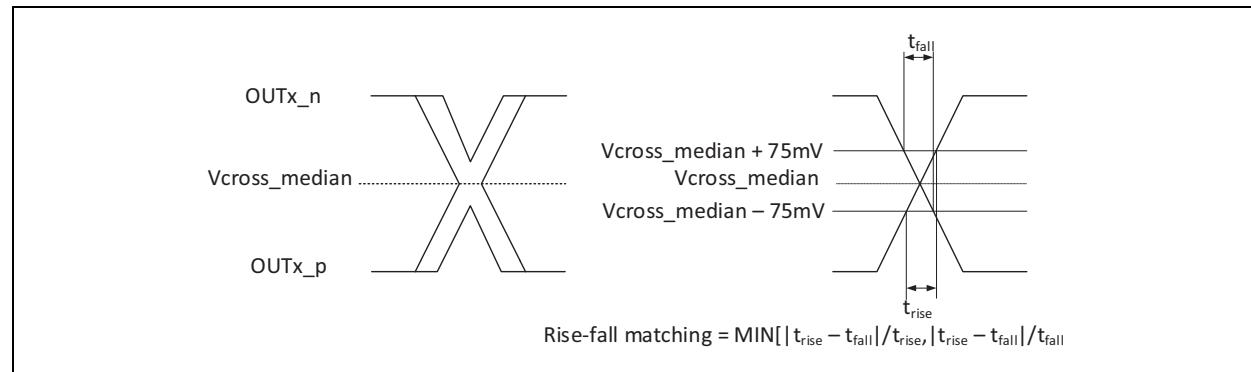

Parameters	Symbol	8-Lead VDFN CL 1.4 mm x 1.6 mm	16-Lead VQFN 3 mm x 3 mm	Unit	Condition
Thermal Resistances					
Junction-to-Ambient Thermal Resistance	θ_{JA}	138	35.7	°C/W	Still air
		132	30.8		1m/s airflow
		127	28.6		2.5m/s airflow
Junction-to-Board Thermal Resistance	θ_{JB}	104	5	°C/W	—
Junction-to-Case Thermal Resistance	θ_{JC}	105	49.5	°C/W	—
Thermal Characterization, Junction-to-Top of Package	Ψ_{JT}	11.5	3	°C/W	Still air

FIGURE 1-1: Single-Ended Measurement Points for Absolute Cross Point and Swing.

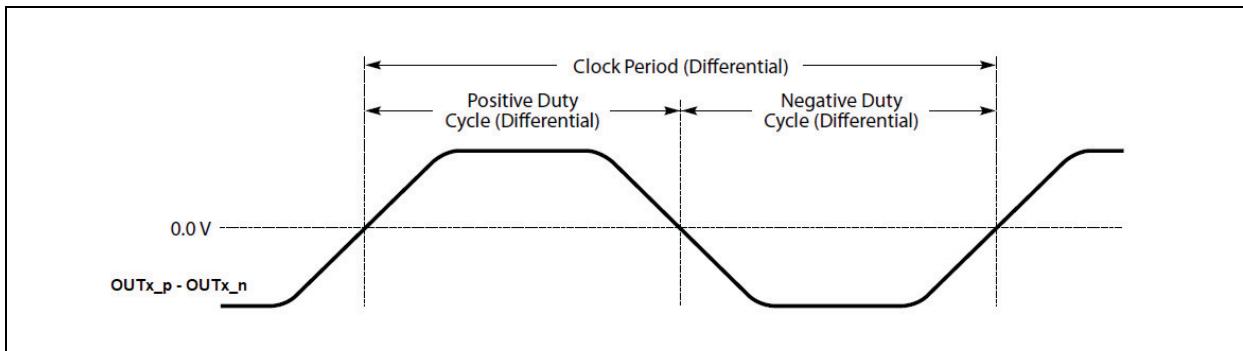


FIGURE 1-2: Single-Ended Measurement Points for Delta Cross Point.

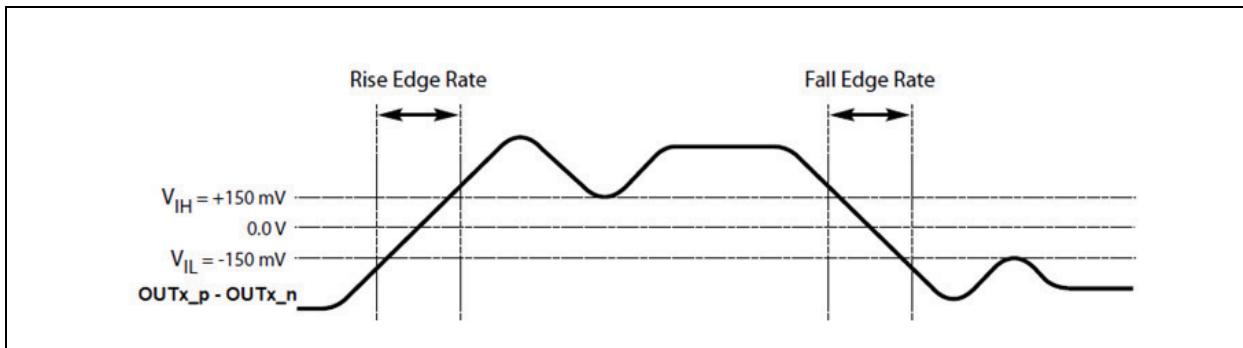
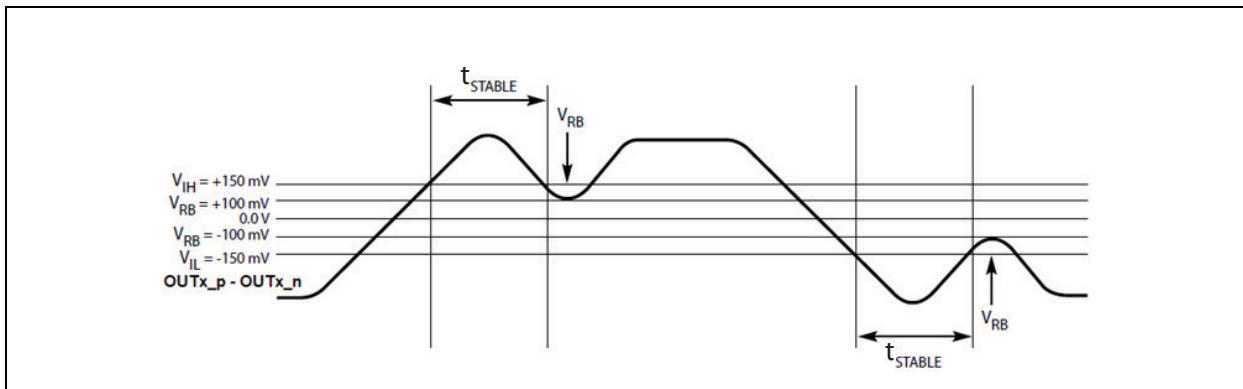


FIGURE 1-3: Single-Ended Measurement Points for Rise and Fall Time Matching.


SY75602A/02B/603A/03B/604A/04B

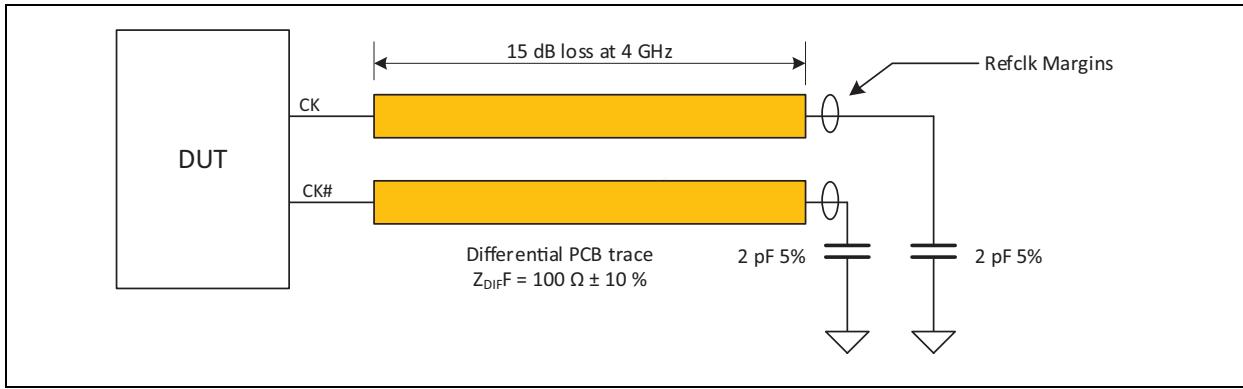

FIGURE 1-4: Differential Measurement Points for Duty Cycle and Period.

FIGURE 1-5: Differential Measurement Points for Rise and Fall Time.

FIGURE 1-6: Differential Measurement Points for Ringback.

FIGURE 1-7: PCIe Test Load.

2.0 TYPICAL OPERATING CHARACTERISTICS

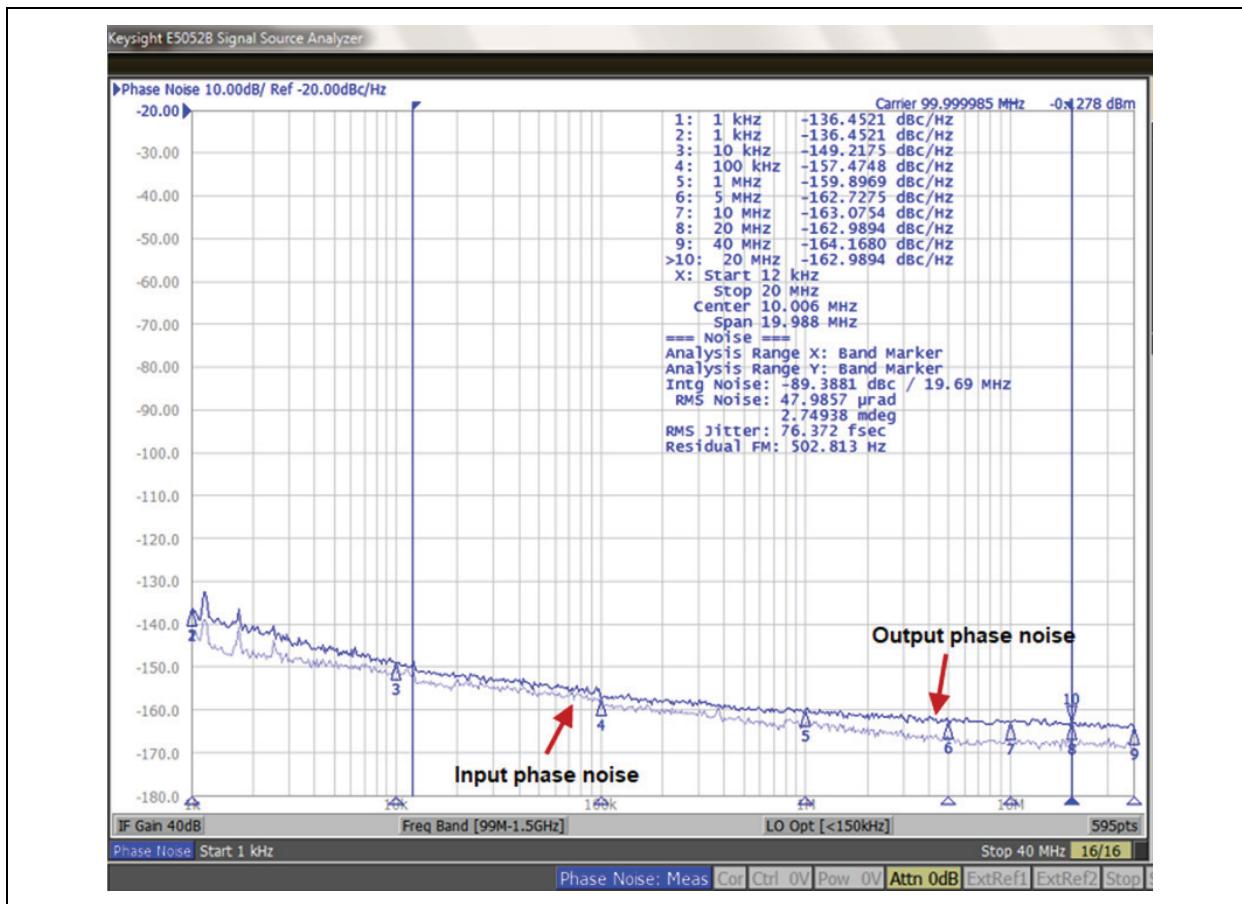


FIGURE 2-1: Typical Expected Phase Noise.

SY75602A/02B/603A/03B/604A/04B

3.0 PIN DESCRIPTIONS

All device inputs and outputs are LP-HCSL unless described otherwise. The Type column uses the following symbols:

- I: Input
- IPD: Input with 100 kΩ internal pull-down resistor
- O: Output
- P: Power supply

The descriptions of the pins are listed in [Table 3-1](#) and [Table 3-2](#).

TABLE 3-1: SY75602A/02B PIN FUNCTION TABLE

Pin Number	Pin Name	Type	Description
Input Reference			
1	IN_p	I	Differential/Single Ended Input Reference Input frequency range >0 Hz to 250 MHz. Note 1: >0 Hz means frequency higher than DC. On the power up, the device needs four clock cycles before the outputs get enabled. This feature filters any initial glitch or runt pulse from the clock source. Note 2: The differential input has hysteresis of 30 mV that prevents outputs from randomly toggling when both p and n inputs are at the same voltage level. For example, when p and n inputs are held low as in the case when the buffer is driven from an HCSL driver that is disabled.
2	IN_n	I	
Output Clocks			
3	OUT0_p	O	Ultra-Low Additive Jitter Differential Outputs 0 and 1
4	OUT0_n		
6	OUT1_p		Output frequency range >0 Hz to 250 MHz.
7	OUT1_n		
Power and Ground			
8	VDD	P	Positive Supply Voltage: Connect to either 3.3V, 2.5V, or 1.8V supply.
5	GND	P	Ground: Connect to ground.

SY75602A/02B/603A/03B/604A/04B

TABLE 3-2: SY75604A/04B AND SY75603A/03B PIN FUNCTION TABLE

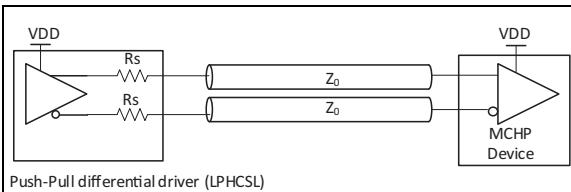
Pin Number	Pin Name SY75604A/04B	Pin Name SY75603A/03B	Type	Description
Input Reference				
1	IN_p	IN_p		Differential/Single Ended Input Reference Input frequency range >0 Hz to 250 MHz Note 1: >0 Hz means frequency higher than DC. Output Enable control pins (OExb) need four clock cycles before the corresponding output get enabled/disable. This feature ensures glitch free transition of the outputs.
2	IN_n	IN_n	I	Note 2: The differential input has hysteresis of 30 mV that prevents outputs from randomly toggling when both p and n inputs are at the same voltage level. For example, when p and n inputs are held low as in the case when the buffer is driven from an HCSL driver that is disabled.
Output Clocks				
4	OUT0_p	NC	O	Ultra-Low Additive Jitter Differential Outputs 0 to 1 (SY75603A/03B) and 0 to 3 (SY75604A/04B) Output frequency range >0 Hz to 250 MHz NC are no connect pins. They are not bonded to the die but they should be soldered to the board for mechanical reasons.
5	OUT0_n	NC		
7	OUT1_p	NC		
8	OUT1_n	NC		
10	OUT2_p	OUT0_p		
11	OUT2_n	OUT0_n		
14	OUT3_p	OUT1_p		
15	OUT3_n	OUT1_n		
Control Inputs				
3	OE0b	NC	IPD	Output Enable Control When OExb is low the output x where x = {0,1} for SY75603A/03B and x = {0,1,2,3} for SY75604A/04B is active.
6	OE1b	NC		OE _{xb} is synchronous and it takes 3.5 clock cycles of the input clock to enable and 4.5 clock to disable the output. OE _{xb} pins are pulled-down with 100 kΩ resistor
12	OE2b	OE0b		NC are no connect pins. They are not bonded to the die but they should be soldered to the board for mechanical reasons.
16	OE3b	OE1b		
Power and Ground				
13	VDD	VDD	P	Positive Supply Voltage: Connect to either 3.3V, 2.5V, or 1.8V supply.
9 ePad	GND	GND	P	Ground: Connect to ground.

SY75602A/02B/603A/03B/604A/04B

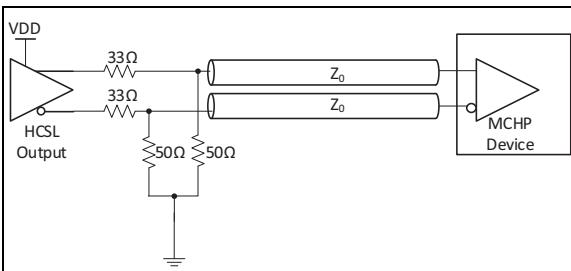
4.0 FUNCTIONAL DESCRIPTION

The SY75602A/02B/603A/03B/604A/04B are PCIe clock buffers with ultra-low additive jitter. They can be used in all PCIe 1/2/3/4/5 common clock and SRIS applications.

SY75602A/02B are the industry's smallest (1.4 mm x 1.6 mm VDFN) two output PCIe clock buffers.


SY75603A/03B and SY75604A/04B are two and four output PCIe clock buffers with glitch free per-output enable/disable control hardware pins. Both devices are packaged in 3 mm x 3 mm VQFN.

The devices have embedded low-dropout regulators (LDO) for superior power noise supply rejection. They support 1.8V, 2.5V, and 3.3V supplies with tolerance of $\pm 10\%$ which exceeds $\pm 9\%$ required by PCIe Card Electro Mechanical Specification.


4.1 Clock Input

Please refer to the [Functional Block Diagrams](#) on how to terminate different signals fed to the input of the device.

[Figure 4-1](#) and [Figure 4-2](#) show how to terminate input of the device in most common cases: Low Power HCSL (LPHCSL), HCSL, and single-ended LVCMS.

FIGURE 4-1: Input Driven by LPHCSL Driver.

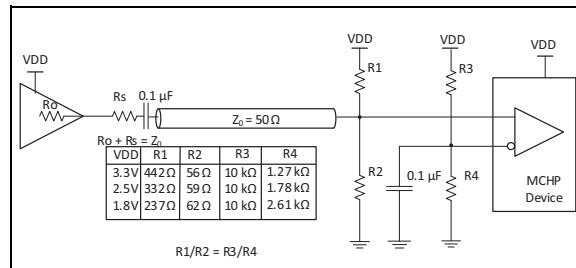


FIGURE 4-2: Input Driven by HCSL Driver.

[Figure 4-3](#) shows how to terminate a single-ended output, such as LVCMS. This example assumes 50Ω transmission line which is the most common for single ended CMOS signaling. Ideally, resistors R1 and R2 should be 100Ω each and $R_0 + R_s$ should be 50Ω so that the transmission line is terminated at both ends with characteristic impedance. If the driving strength of the output driver is not sufficient to drive low

impedance, the value of series resistor R_s should be increased. This will reduce the voltage swing at the input but this should be fine as long as the input voltage swing requirement is not violated ($0.3V$). The source resistors of $R_s = 270\Omega$ could be used for standard LVCMS driver. This will provide 516 mV of voltage swing for 3.3V LVCMS driver with load current of $(3.3\text{V}/2) * (1/(270\Omega + 50\Omega)) = 5.16\text{ mA}$.

For optimum performance both differential input pins ($_p$ and $_n$) need to be DC biased to the same voltage. Hence, the ratio $R1/R2$ should be equal to the ratio $R3/R4$.

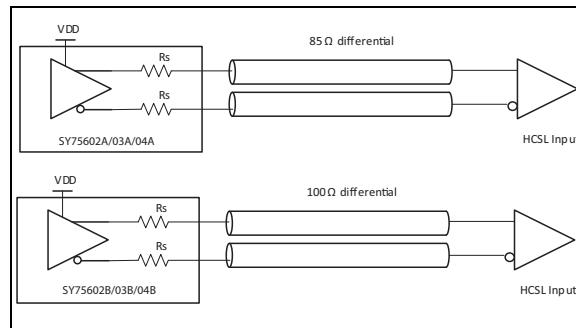


FIGURE 4-3: Input Driven from a Single-Ended CMOS Output.

The differential input has hysteresis of 30 mV that prevents outputs from randomly toggling when both p and n inputs are at the same voltage level. For example, when p and n inputs are held low as in the case when the buffer is driven from an HCSL driver that is disabled.

4.2 Clock Outputs

Differential outputs have embedded termination resistors as shown in [Figure 4-4](#). This provides significant saving relative to traditional current based HCSL outputs which require four resistors per differential output.

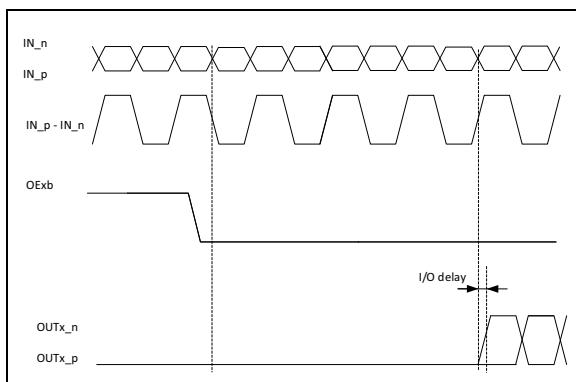
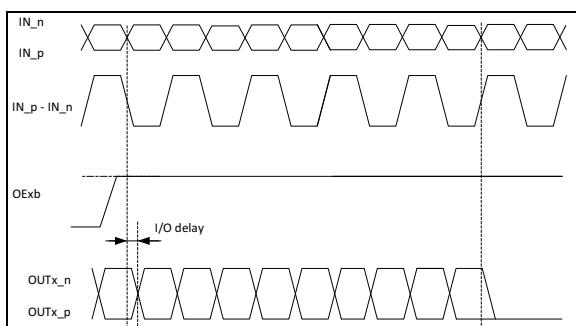


FIGURE 4-4: Terminating Differential Outputs.


Embedded termination resistors in SY75602A/603A/604A are matched for 85Ω and embedded termination resistors in SY75602B/603B/604B are matched for 100Ω differential transmission line.

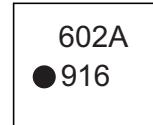
4.3 Output Enable

Each output of SY75603A/03B/04A/04B has an active low Output Enable (OExb) control pin. Output Enable and Disable function is synchronous with the input clock which results in glitchless transitions as shown in [Figure 4-5](#) and [Figure 4-6](#). The OExb is sampled on the falling edge of the differential input (or falling edge of IN_p signal). It takes 3.5 clock cycles of the input clock to enable an output and 4.5 clock cycles to disable the output, after the change of OExb is sampled.

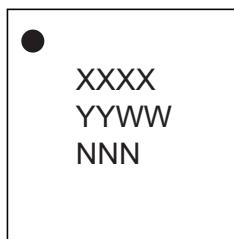
FIGURE 4-5: OExb Assertion (Output Enable) Timing Diagram.

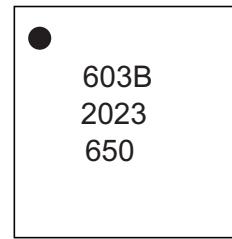
FIGURE 4-6: OExb Deassertion (Output Disable) Timing Diagram.

SY75602A/02B/603A/03B/604A/04B


5.0 PACKAGING INFORMATION

5.1 Package Marking Information


8-Lead VDFN*


Example

16-Lead VQFN*

Example

Legend: XX...X Product code or customer-specific information

Y Year code (last digit of calendar year)

YY Year code (last 2 digits of calendar year)

WW Week code (week of January 1 is week '01')

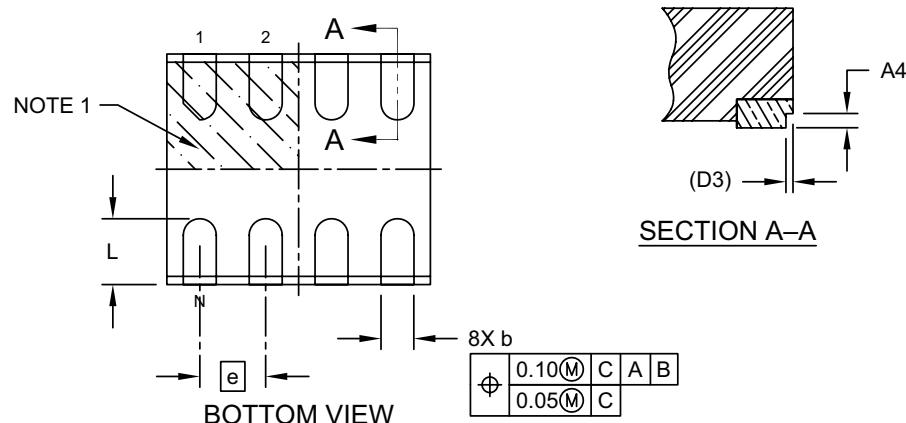
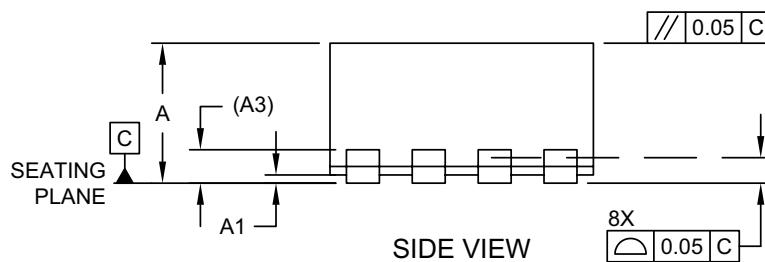
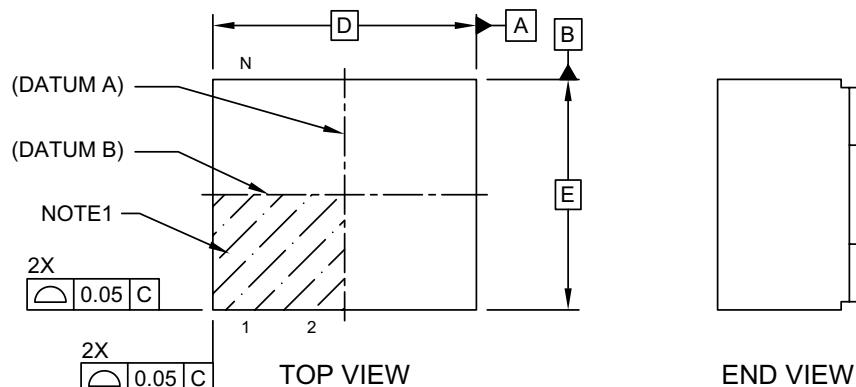
NNN Alphanumeric traceability code

(e3) Pb-free JEDEC® designator for Matte Tin (Sn)

* This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

•, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark).

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

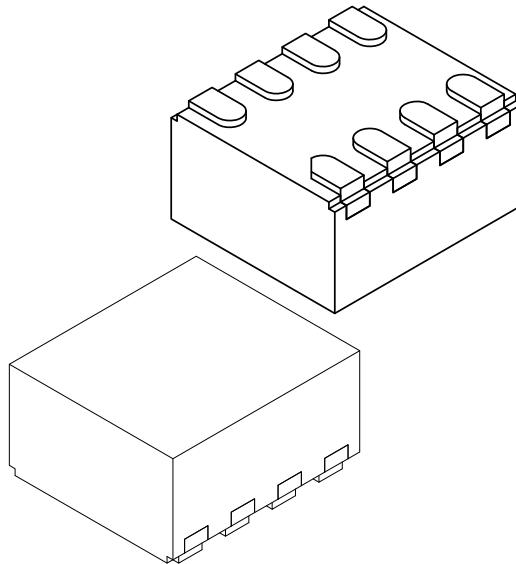



Underbar (_) and/or Overbar (‐) symbol may not be to scale.

SY75602A/02B/603A/03B/604A/04B

8-Lead VDFN 1.6 mm x 1.4 mm Package Outline and Recommended Land Pattern

8-Lead Very Thin Dual Flat, No Lead Package (NNC) - 1.6x1.4x0.9 mm Body [VDFN] With Stepped Wettable Flanks

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>



Microchip Technology Drawing C04-25509 Rev A Sheet 1 of 2

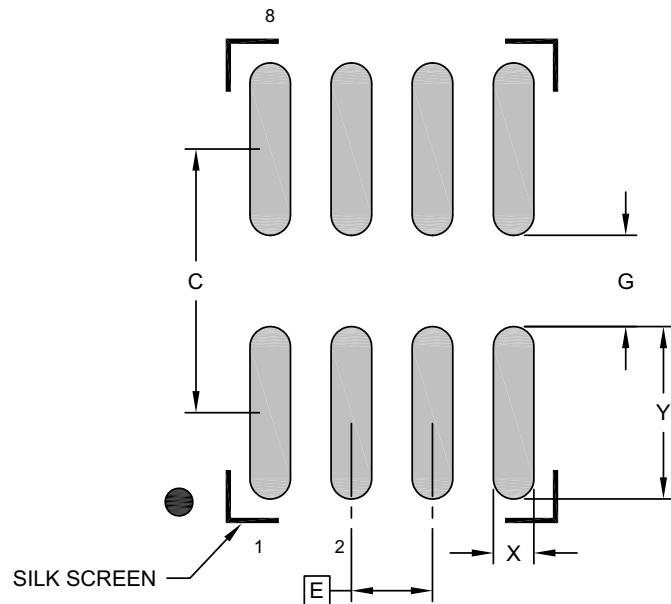
SY75602A/02B/603A/03B/604A/04B

8-Lead Very Thin Dual Flat, No Lead Package (NNC) - 1.6x1.4x0.9 mm Body [VDFN] With Stepped Wettable Flanks

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Dimension Limits		MILLIMETERS		
		MIN	NOM	MAX
Number of Terminals	N		8	
Pitch	e		0.40 BSC	
Overall Height	A	0.80	0.85	0.90
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3		0.203 REF	
Overall Length	D		1.60 BSC	
Overall Width	E		1.40 BSC	
Terminal Width	b	0.15	0.20	0.25
Terminal Length	L	0.30	0.40	0.50
Wettable Flank Step Length	D3		0.05 REF	
Wettable Flank Step Height	A4	0.10	–	–

Notes:


1. Pin 1 visual index feature may vary, but must be located within the hatched area.
 2. Package is saw singulated
 3. Dimensioning and tolerancing per ASME Y14.5M
- BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-25509 Rev A Sheet 2 of 2

SY75602A/02B/603A/03B/604A/04B

8-Lead Very Thin Dual Flat, No Lead Package (NNC) - 1.6x1.4x0.9 mm Body [VDFN] With Stepped Wettable Flanks

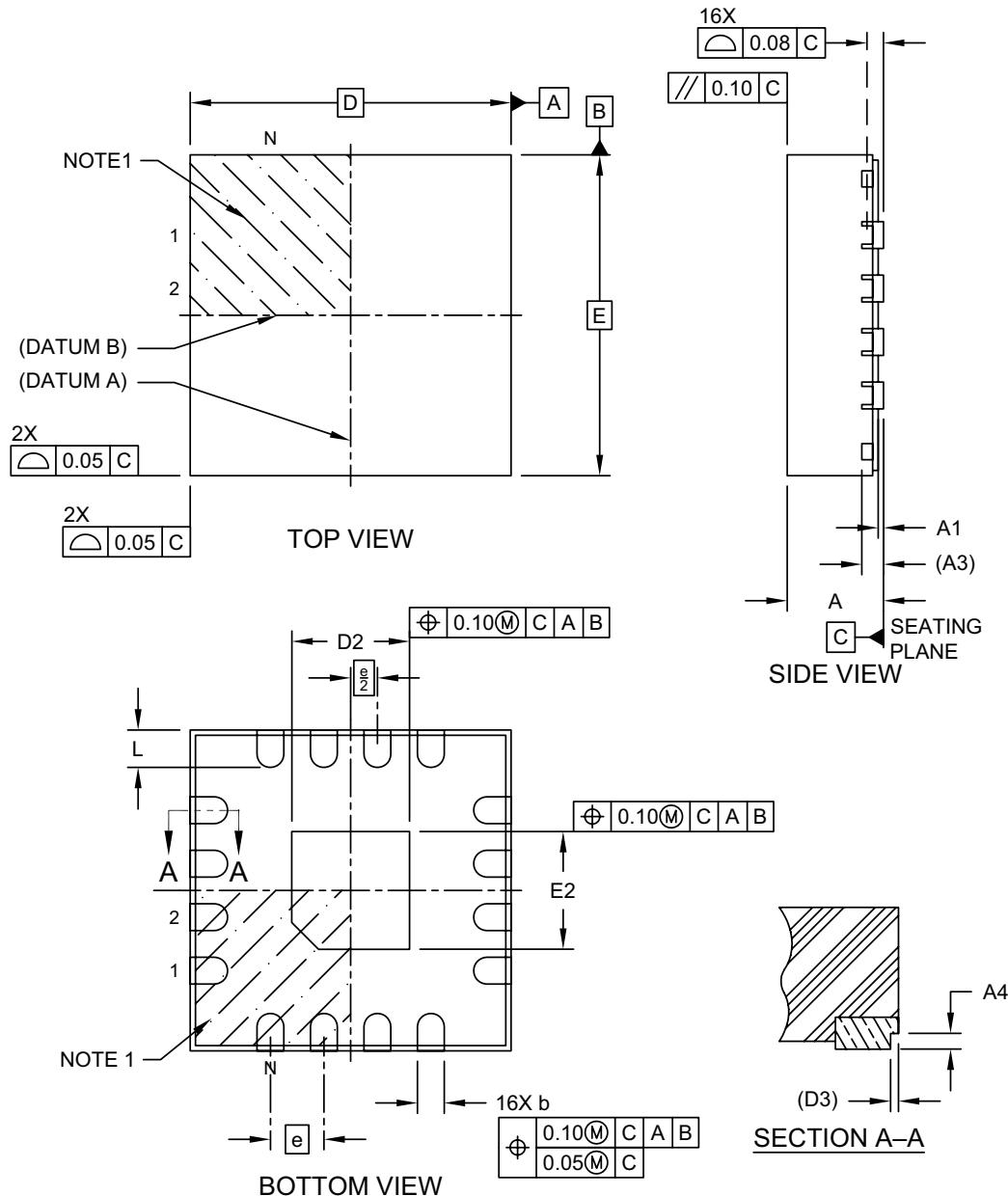
Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch		0.40 BSC		
Contact Pad Spacing	C		1.30	
Contact Pad Width (Xnn)	X			0.20
Contact Pad Length (Xnn)	Y			0.85
Contact Pad to Contact Pad (Xnn)	G	0.45		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

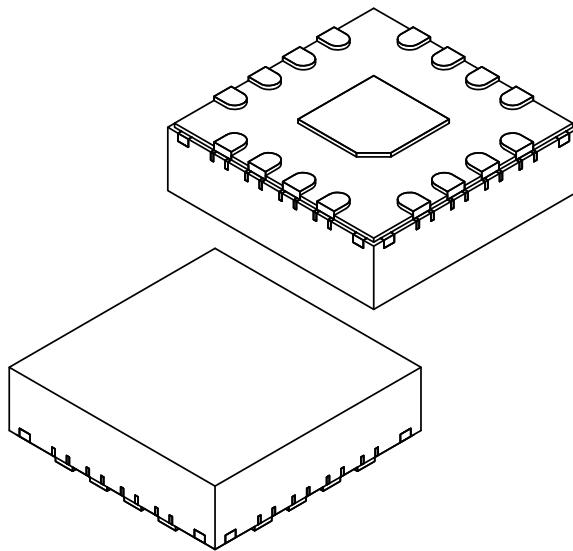

Microchip Technology Drawing C04-27509 Rev A

SY75602A/02B/603A/03B/604A/04B

16-Lead VQFN 3.0 mm x 3.0 mm Package Outline and Recommended Land Pattern

16-Lead Very Thin Quad Flat, No Lead Package (4MX) - 3x3x0.9 mm Body [VQFN] With 1.10 mm Exposed Pad and Stepped Wettable Flanks

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>



Microchip Technology Drawing C04-508 Rev A Sheet 1 of 2

SY75602A/02B/603A/03B/604A/04B

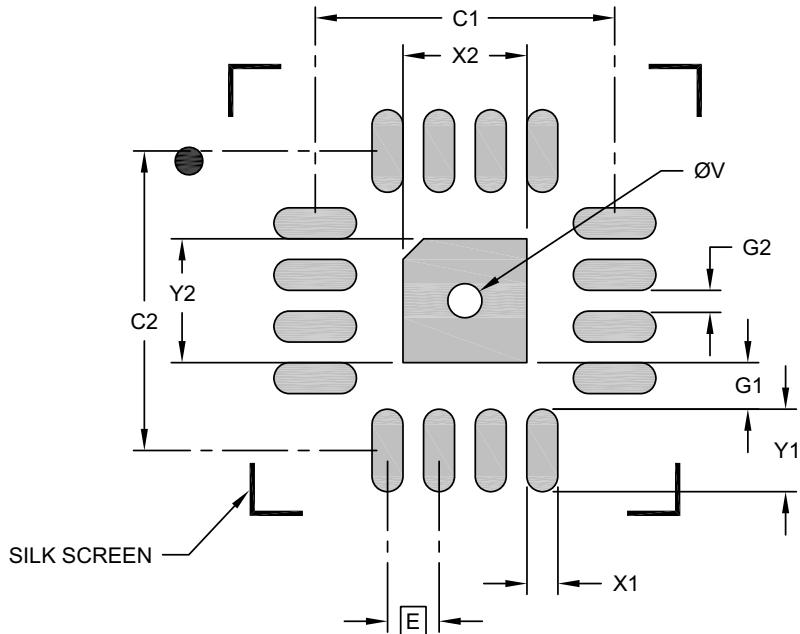
16-Lead Very Thin Quad Flat, No Lead Package (4MX) - 3x3x0.9 mm Body [VQFN] With 1.10 mm Exposed Pad and Stepped Wettable Flanks

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Units		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Terminals	N		16	
Pitch	e		0.50 BSC	
Overall Height	A	0.80	0.85	0.90
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3		0.203 REF	
Overall Length	D		3.00 BSC	
Exposed Pad Length	D2	1.00	1.10	1.20
Overall Width	E		3.00 BSC	
Exposed Pad Width	E2	1.00	1.10	1.20
Terminal Width	b	0.20	0.25	0.30
Terminal Length	L	0.25	0.35	0.45
Wettable Flank Step Length	D3		0.05 REF	
Wettable Flank Step Height	A4	0.10	-	0.19

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

SY75602A/02B/603A/03B/604A/04B

16-Lead Very Thin Quad Flat, No Lead Package (4MX) - 3x3x0.9 mm Body [VQFN] With 1.10 mm Exposed Pad and Stepped Wettable Flanks

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch		0.50 BSC		
Optional Center Pad Width	X2			1.20
Optional Center Pad Length	Y2			1.20
Contact Pad Spacing	C1		2.90	
Contact Pad Spacing	C2		2.90	
Contact Pad Width (X16)	X1			0.30
Contact Pad Length (X16)	Y1			0.80
Contact Pad to Center Pad (X16)	G1	0.45		
Contact Pad to Contact Pad (X12)	G2	0.20		
Thermal Via Diameter	V		0.33	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2508 Rev A

APPENDIX A: REVISION HISTORY

Revision A (September 2021)

- Initial release of SY75602A/02B/603A/03B/604A/04B as Microchip data sheet DS20006508A.

Revision B (October 2021)

- Updated various values in the [Electrical Characteristics](#), [Output Electrical Characteristics](#), and [Jitter and Phase Noise](#) tables.
- Updated [Note 12](#) in the [Output Electrical Characteristics](#) table.
- Updated Input Reference description in [Table 3-1](#) and [Table 3-2](#).
- Updated Control Inputs description in [Table 3-2](#).
- Added paragraph immediately after [Figure 4-3](#).

Revision C (July 2022)

- Added information specific to the 85Ω devices to the Current Consumption section of the [Electrical Characteristics](#) table.

SY75602A/02B/603A/03B/604A/04B

NOTES:

SY75602A/02B/603A/03B/604A/04B

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

<u>PART NO.</u>	<u>XXX</u>	<u>[-XX]</u>	<u>Examples:</u>
Device	Package	Media Type	
Device: SY75602A: SY75602B: SY75603A: SY75603B: SY75604A: SY75604B:	2 Output Ultra-Low Additive Jitter PCIe 1/2/3/4/5 85Ω Clock Buffer 2 Output Ultra-Low Additive Jitter PCIe 1/2/3/4/5 100Ω Clock Buffer 2 Output Ultra-Low Additive Jitter PCIe 1/2/3/4/5 85Ω Clock Buffer 2 Output Ultra-Low Additive Jitter PCIe 1/2/3/4/5 100Ω Clock Buffer 4 Output Ultra-Low Additive Jitter PCIe 1/2/3/4/5 85Ω Clock Buffer 4 Output Ultra-Low Additive Jitter PCIe 1/2/3/4/5 100Ω Clock Buffer		a) SY75603ATWL: 2 Output Ultra-Low Additive Jitter PCIe 1/2/3/4/5 85Ω Clock Buffer, 16-Lead 3 mm x 3 mm VQFN, 120/Tube
Package: TWL = 8-Lead 1.4 mm x 1.6 mm VDFN (Wettable Flank) TWL = 16-Lead 3 mm x 3 mm VQFN (Wettable Flank)			b) SY75602BTWL-TR: 2 Output Ultra-Low Additive Jitter PCIe 1/2/3/4/5 100Ω Clock Buffer, 8-Lead 1.4 mm x 1.6 mm VDFN, 2,000/Reel
Media Type: <blank> = 120/Tube TR = 2,000/Reel (8-Lead Package Option) TR = 3,300/Reel (16-Lead Package Option)			c) SY75604ATWL-TR: 4 Output Ultra-Low Additive Jitter PCIe 1/2/3/4/5 85Ω Clock Buffer, 16-Lead 3 mm x 3 mm VQFN, 3,300/Reel

Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.

SY75602A/02B/603A/03B/604A/04B

NOTES:

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
 - Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
 - Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
 - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.
-

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at <https://www.microchip.com/en-us/support/design-help/client-support-services>.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BestTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2021 - 2022, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-0870-7

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

MICROCHIP

Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
<http://www.microchip.com/support>
Web Address:
www.microchip.com

Atlanta

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX

Tel: 512-257-3370

Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago

Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Novi, MI
Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983

Indianapolis

Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles

Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC

Tel: 919-844-7510

New York, NY

Tel: 631-435-6000

San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto

Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra'anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

[SY75602ATWL-TR](#) [SY75602BTWL-TR](#) [SY75603ATWL](#) [SY75603ATWL-TR](#) [SY75603BTWL](#) [SY75603BTWL-TR](#)
[SY75604ATWL](#) [SY75604ATWL-TR](#) [SY75604BTWL](#) [SY75604BTWL-TR](#)