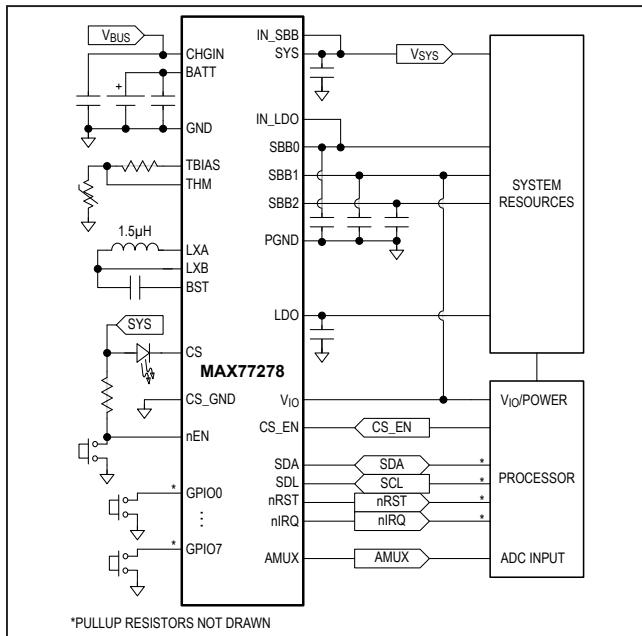


## MAX77278


# Ultra-Low Power PMIC with 3-Output SIMO, Power Path Charger Optimized for Small Li+, 425mA Current Sink, and 8 GPIOs

## General Description

The MAX77278 provides a highly-integrated battery charging and power supply solution for low-power applications where size and efficiency are critical. The device features a single-inductor multiple-output (SIMO) buck-boost regulator that provides three independently programmable power rails from a single inductor to minimize total solution size. A 50mA LDO provides ripple rejection for audio and other noise-sensitive applications. A highly-configurable linear charger supports a wide range of Li+ battery capacities and includes battery temperature monitoring for additional safety (JEITA).

The device includes other features such as a programmable current sink that can be used to drive an IR-LED, 8 general-purpose input/output (GPIO) control pins, and an analog multiplex (AMUX) output that provides access to useful battery charging signals. A bidirectional I<sup>2</sup>C interface allows for configuring and checking the status of the device. An internal on/off controller provides a controlled startup sequence for the regulators and provides supervisory functionality when the device is on. Numerous factory programmable options allow the device to be tailored for many applications, enabling faster time to market.

## Simplified Application Circuit



## Benefits and Features

- Highly Integrated
  - Smart Power Selector™ Li+/Li-Poly Charger
  - Three Output, SIMO Buck-Boost Regulator
  - 50mA LDO with SIMO Fixed Headroom Control
  - Programmable 250mA to 425mA Current Sink Driver
  - Analog MUX Output for Power Monitoring
  - Eight GPIOs (Configured for One-Button Wake-Up and Two-Button Shutdown)
- Low Power
  - 0.3µA Standby Current
  - 16µA Operating Current
- Charger Optimized for Small Battery Size
  - Programmable Fast-Charge Current from 7.5mA to 300mA
  - Programmable Battery Regulation Voltage from 3.6V to 4.6V
  - Programmable Termination Current from 0.375mA to 45mA
  - JEITA Battery Temperature Monitors Adjust Charge Current and Battery Regulation Voltage for Safe Charging
- Flexible and Configurable
  - I<sup>2</sup>C-Compatible Interface
  - Eight GPIOs
  - Factory OTP Options Available
- Small Size
  - 3.15mm x 2.15mm x 0.7mm
  - 35-Bump, 0.4mm-Pitch, 7x5 Ball Array, WLP
  - Small Total Solution Size (24mm<sup>2</sup>)

## Applications

- Remote Controls, Game Pads, Media Center Controllers
- Wearables, Fitness and Health Monitors
- Smart Home Automation Pads, Thermostats, Battery-Powered User Interfaces
- Internet of Things (IoT) Gadgets

*Ordering Information* appears at end of data sheet.

Smart Power Selector is a trademark of Maxim Integrated Products, Inc.

**TABLE OF CONTENTS**

|                                                                                 |    |
|---------------------------------------------------------------------------------|----|
| General Description . . . . .                                                   | 1  |
| Benefits and Features . . . . .                                                 | 1  |
| Applications . . . . .                                                          | 1  |
| Simplified Application Circuit . . . . .                                        | 1  |
| Absolute Maximum Ratings . . . . .                                              | 6  |
| Package Information . . . . .                                                   | 6  |
| 35 WLP 0.4mm Pitch . . . . .                                                    | 6  |
| Electrical Characteristics—Global Resources . . . . .                           | 7  |
| Electrical Characteristics—Smart Power Selector Charger . . . . .               | 10 |
| Electrical Characteristics—Adjustable Thermistor Temperature Monitors . . . . . | 13 |
| Electrical Characteristics—Analog Multiplexer and Power Monitor AFEs . . . . .  | 13 |
| Electrical Characteristics—SIMO Buck-Boost . . . . .                            | 15 |
| Electrical Characteristics—LDO . . . . .                                        | 17 |
| Electrical Characteristics—Current Sink . . . . .                               | 19 |
| Electrical Characteristics— $I^2C$ . . . . .                                    | 20 |
| Typical Operating Characteristics . . . . .                                     | 22 |
| Bump Configuration . . . . .                                                    | 28 |
| Bump Description . . . . .                                                      | 28 |
| Detailed Description . . . . .                                                  | 30 |
| Support Materials . . . . .                                                     | 30 |
| Top-Level Interconnect Simplified Diagram . . . . .                             | 30 |
| Detailed Description—Global Resources . . . . .                                 | 32 |
| Features and Benefits . . . . .                                                 | 32 |
| Voltage Monitors . . . . .                                                      | 32 |
| SYS POR Comparator . . . . .                                                    | 32 |
| SYS Undervoltage Lockout Comparator . . . . .                                   | 32 |
| SYS Overvoltage Lockout Comparator . . . . .                                    | 32 |
| nEN Enable Input . . . . .                                                      | 32 |
| nEN Manual Reset . . . . .                                                      | 33 |
| nEN Dual-Functionality: Push-Button<br>vs. Slide-Switch . . . . .               | 33 |
| Interrupts (nIRQ) . . . . .                                                     | 33 |
| Reset Output (nRST) . . . . .                                                   | 34 |
| General-Purpose Input/Output (GPIO) . . . . .                                   | 34 |
| GPIO Wake-Up . . . . .                                                          | 35 |
| GPIO Shutdown . . . . .                                                         | 35 |
| On/Off Controller . . . . .                                                     | 35 |
| Flexible Power Sequencer (FPS) . . . . .                                        | 39 |
| Debounced Inputs (nEN, GPI, CHGIN) . . . . .                                    | 43 |

**TABLE OF CONTENTS (CONTINUED)**

|                                                                           |    |
|---------------------------------------------------------------------------|----|
| Thermal Alarms and Protection . . . . .                                   | 43 |
| Detailed Description—Smart Power Selector Charger . . . . .               | 44 |
| Features . . . . .                                                        | 44 |
| Charger Symbol Reference Guide . . . . .                                  | 44 |
| Smart Power Selector . . . . .                                            | 46 |
| Input Current Limiter . . . . .                                           | 46 |
| Minimum Input Voltage Regulation . . . . .                                | 47 |
| Minimum System Voltage Regulation . . . . .                               | 47 |
| Die Temperature Regulation . . . . .                                      | 47 |
| USB Suspend Mode . . . . .                                                | 47 |
| Charger State Machine . . . . .                                           | 47 |
| Charger Off State . . . . .                                               | 47 |
| Prequalification State . . . . .                                          | 49 |
| Fast-Charge States . . . . .                                              | 49 |
| Top-Off State . . . . .                                                   | 49 |
| Done State . . . . .                                                      | 49 |
| Prequalification Timer Fault State . . . . .                              | 49 |
| Fast-Charge Timer Fault State . . . . .                                   | 49 |
| Battery Temperature Fault State . . . . .                                 | 49 |
| JEITA-Modified States . . . . .                                           | 50 |
| Typical Charge Profile . . . . .                                          | 50 |
| Applications Information . . . . .                                        | 50 |
| Configuring a Valid System Voltage . . . . .                              | 50 |
| CHGIN/SYS/BATT Capacitor Selection . . . . .                              | 51 |
| Detailed Description—Adjustable Thermistor Temperature Monitors . . . . . | 51 |
| Thermistor Bias . . . . .                                                 | 54 |
| Configurable Temperature Thresholds . . . . .                             | 54 |
| Applications Information . . . . .                                        | 54 |
| Using Different Thermistor $\beta$ . . . . .                              | 54 |
| NTC Thermistor Selection . . . . .                                        | 54 |
| Detailed Description—Analog Multiplexer and Power Monitor AFEs . . . . .  | 56 |
| Measuring Battery Current . . . . .                                       | 57 |
| Method for Measuring Discharging Current . . . . .                        | 57 |
| Method for Measuring Charging Current . . . . .                           | 57 |
| Detailed Description—SIMO Buck-Boost . . . . .                            | 57 |
| SIMO Features and Benefits . . . . .                                      | 58 |
| SIMO Control Scheme . . . . .                                             | 58 |
| SIMO Soft-Start . . . . .                                                 | 59 |

**TABLE OF CONTENTS (CONTINUED)**

|                                                            |    |
|------------------------------------------------------------|----|
| SIMO Configuration . . . . .                               | 59 |
| SIMO Active Discharge Resistance . . . . .                 | 59 |
| Applications Information . . . . .                         | 60 |
| SIMO Available Output Current . . . . .                    | 60 |
| Inductor Selection . . . . .                               | 60 |
| Boost Capacitor Selection . . . . .                        | 61 |
| Output Capacitor Selection . . . . .                       | 61 |
| Unused Outputs . . . . .                                   | 62 |
| Detailed Description—LDO . . . . .                         | 62 |
| Features and Benefits . . . . .                            | 62 |
| LDO Simplified Block Diagram . . . . .                     | 63 |
| LDO Active Discharge Resistor<br>and Typical Use . . . . . | 63 |
| LDO Soft-Start . . . . .                                   | 63 |
| Fixed Headroom Controller (FHC) . . . . .                  | 64 |
| Applications Information . . . . .                         | 64 |
| Input Capacitor Selection . . . . .                        | 64 |
| Output Capacitor Selection . . . . .                       | 64 |
| Detailed Description—Current Sink . . . . .                | 65 |
| Features and Benefits . . . . .                            | 65 |
| Current Sink Control . . . . .                             | 65 |
| Current Sink Watchdog Timer . . . . .                      | 65 |
| Unused Current Sink . . . . .                              | 65 |
| Detailed Description—I <sup>2</sup> C . . . . .            | 66 |
| Typical Application Circuit . . . . .                      | 68 |
| Ordering Information . . . . .                             | 68 |
| Revision History . . . . .                                 | 69 |

---

**LIST OF FIGURES**

---

|                                                                                  |    |
|----------------------------------------------------------------------------------|----|
| Figure 1. Top-Level Interconnect Simplified Diagram .....                        | 31 |
| Figure 2. nEN Usage Timing Diagram.....                                          | 33 |
| Figure 3. GPIO Controller Block Diagram .....                                    | 35 |
| Figure 4. Top-Level On/Off Controller .....                                      | 36 |
| Figure 5. Power-Up/Power-Down Sequence.....                                      | 38 |
| Figure 6. FPS Basic Timing Diagram.....                                          | 39 |
| Figure 7. Startup Timing Diagram Due to nEN .....                                | 40 |
| Figure 8. Startup Timing Diagram Due to GPIO .....                               | 41 |
| Figure 9. Startup Timing Diagram Due to Charge Source Insertion.....             | 42 |
| Figure 10. Debounced Inputs.....                                                 | 43 |
| Figure 11. Linear Charger Simplified Block Diagram.....                          | 45 |
| Figure 12. Charger Simplified Control Loops.....                                 | 46 |
| Figure 13. Charger State Diagram.....                                            | 48 |
| Figure 14. Example Battery Charge Profile .....                                  | 50 |
| Figure 15. Thermistor Logic Functional Diagram.....                              | 52 |
| Figure 16. Safe-Charging Profile Example .....                                   | 53 |
| Figure 17. Thermistor Bias State Diagram.....                                    | 55 |
| Figure 18. Thermistor Circuit with Adjusting Series and Parallel Resistors ..... | 55 |
| Figure 19. SIMO Detailed Block Diagram .....                                     | 58 |
| Figure 20. LDO Simplified Block Diagram.....                                     | 63 |
| Figure 21. Current Sink Timing Diagram .....                                     | 65 |
| Figure 22. Current Sink Simplified Block Diagram .....                           | 66 |

---

**LIST OF TABLES**

---

|                                                                                     |    |
|-------------------------------------------------------------------------------------|----|
| Table 1. Regulator Summary .....                                                    | 30 |
| Table 2. On/Off Controller Transition/State .....                                   | 37 |
| Table 3. Charger Quick Symbol Reference Guide.....                                  | 45 |
| Table 4. Trip Temperatures vs. Trip Voltages for Different NTC $\beta$ .....        | 54 |
| Table 5. Example $R_S$ and $R_P$ Correcting Values for NTC $\beta$ Above 3380K..... | 55 |
| Table 6. NTC Thermistors .....                                                      | 55 |
| Table 7. AMUX Signal Transfer Functions .....                                       | 56 |
| Table 8. Battery Current Direction Decode .....                                     | 57 |
| Table 9. SIMO Available Output Current for Common Applications .....                | 60 |
| Table 10. Example Inductors .....                                                   | 61 |
| Table 11. I <sup>2</sup> C Slave Address Options.....                               | 67 |

**Absolute Maximum Ratings**

|                                        |                               |
|----------------------------------------|-------------------------------|
| CHGIN to AGND.....                     | -0.3V to +30.0V               |
| SCL, SDA to AGND.....                  | -0.3V to $V_{IO} + 0.3V$      |
| SYS, BATT to AGND.....                 | -0.3V to +6.0V                |
| IN_SBB, GPIO0-7 to AGND.....           | -0.3V to $V_{SYS} + 0.3V$     |
| CS_EN, nEN, nRST, nIRQ, to AGND.....   | -0.3V to $V_{SYS} + 0.3V$     |
| THM, TBIAS, $V_L$ to AGND.....         | -0.3V to +6.0V                |
| LDO to AGND (Note 1).....              | -0.3V to $V_{IN\_LDO} + 0.3V$ |
| CS to CS_GND.....                      | -0.3V to +6.0V                |
| IN_SBB to PGND.....                    | -0.3V to +6.0V                |
| BST to LXB.....                        | -0.3V to +6.0V                |
| CS_GND, PGND to AGND.....              | -0.3V to +0.3V                |
| $V_{IO}$ to AGND.....                  | -0.3V to $V_{SYS} + 0.3V$     |
| BST to IN_SBB.....                     | -0.3V to +6.0V                |
| SBB0, SBB1, SBB2 to PGND (Note 1)..... | -0.3V to +6.0V                |
| IN_LDO to AGND.....                    | -0.3V to +6.0V                |

|                                                                                                               |                     |
|---------------------------------------------------------------------------------------------------------------|---------------------|
| nEN, nIRQ, nRST, SDA, SCL,<br>GPIO0-7 Continuous Current.....                                                 | $\pm 20mA$          |
| CHGIN Continuous Current.....                                                                                 | 1.2A <sub>RMS</sub> |
| SYS Continuous Current.....                                                                                   | 1.2A <sub>RMS</sub> |
| BATT Continuous Current (Note 2).....                                                                         | 1.2A <sub>RMS</sub> |
| LXA Continuous Current (Note 3).....                                                                          | 1.2A <sub>RMS</sub> |
| LXB Continuous Current (Note 4).....                                                                          | 1.2A <sub>RMS</sub> |
| SBB0, SBB1, SBB2 Short-Circuit Duration.....                                                                  | Continuous          |
| Operating Temperature Range.....                                                                              | -40°C to +85°C      |
| Junction Temperature.....                                                                                     | +150°C              |
| Storage Temperature Range.....                                                                                | -65°C to +150°C     |
| Soldering Temperature (reflow).....                                                                           | +260°C              |
| Continuous Power Dissipation (Multilayer Board)<br>( $T_A = +70^\circ C$ , derate 20.4mW/°C above +70°C)..... | 1632mW              |

**Note 1:** When the active discharge resistor is engaged, limit its power dissipation to an average of 10mW.

**Note 2:** Do not repeatedly hot-plug a source to the BATT terminal at a rate greater than 10Hz. Hot plugging low-impedance sources results in an ~8A momentary (~2μs) current spike.

**Note 3:** LXA has internal clamping diodes to PGND and IN\_SBB. It is normal for these diodes to briefly conduct during switching events. Avoid steady-state conduction of these diodes.

**Note 4:** Do not externally bias LXB. LXB has an internal low-side clamping diode to PGND, and an internal high-side clamping diode that dynamically shifts to the selected SIMO output. It is normal for these internal clamping diodes to briefly conduct during switching events. When the SIMO regulator is disabled, the LXB to PGND absolute maximum voltage is -0.3V to  $V_{SBB0} + 0.3V$ .

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

**Package Information****35 WLP 0.4mm Pitch**

| PACKAGE CODE                                 | W352C3+1                                       |
|----------------------------------------------|------------------------------------------------|
| Outline Number                               | <a href="#">21-100152</a>                      |
| Land Pattern Number                          | Refer to <a href="#">Application Note 1891</a> |
| <b>Thermal Resistance, Four-Layer Board:</b> |                                                |
| Junction to Ambient ( $\theta_{JA}$ )        | 35°C/W                                         |

For the latest package outline information and land patterns (footprints), go to [www.maximintegrated.com/packages](#). Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to [www.maximintegrated.com/thermal-tutorial](#).

**Electrical Characteristics—Global Resources**

( $V_{SYS} = 3.8V$ , limits are 100% production tested at  $T_A = +25^\circ C$ , limits over the operating temperature range ( $T_A = -40^\circ C$  to  $+85^\circ C$ ) are guaranteed by design and characterization, unless otherwise noted.)

| PARAMETER                                           | SYMBOL             | CONDITIONS                                                                                                             | MIN                                                           | TYP  | MAX  | UNITS   |
|-----------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------|------|---------|
| <b>GENERAL CHARACTERISTICS</b>                      |                    |                                                                                                                        |                                                               |      |      |         |
| Operating Voltage Range                             | $V_{SYS}$          |                                                                                                                        | 2.7                                                           | 5.5  | V    |         |
| Shutdown Supply Current                             | $I_{SHDN}$         | Current measured into BATT, IN_SBB, and IN_LDO, all resources are off (LDO, SBB0, SBB1, SBB2, CS), $T_A = +25^\circ C$ | Main bias is off (SBIA_EN = 0). This is the standby state     | 0.3  |      | $\mu A$ |
|                                                     |                    |                                                                                                                        | Main bias is on in low-power mode (SBIA_EN = 1, SBIA_LPM = 1) | 1    |      |         |
|                                                     |                    | Current measured into BATT, IN_SBB, and IN_LDO, all resources are off (LDO, SBB0, SBB1, SBB2, CS), $T_A = +25^\circ C$ | Main bias is on in normal mode (SBIA_EN = 1, SBIA_LPM = 0)    | 28   |      |         |
| Quiescent Supply Current                            | $I_Q$              | Current measured into BATT, IN_SBB, and IN_LDO. LDO, SBB0, SBB1, and SBB2 are enabled with no load. CS is disabled.    | Main bias is in low-power mode (SBIA_LPM = 1)                 | 13   |      | $\mu A$ |
|                                                     |                    |                                                                                                                        | Main bias is in normal mode (SBIA_LPM = 0)                    | 48   |      |         |
| Main Bias Enable Time                               | $t_{SBIA\_EN}$     |                                                                                                                        |                                                               | 0.5  |      | ms      |
| <b>VOLTAGE MONITORS/POWER-ON RESET (POR)</b>        |                    |                                                                                                                        |                                                               |      |      |         |
| POR Threshold                                       | $V_{POR}$          | $V_{SYS}$ falling                                                                                                      | 1.65                                                          | 1.9  | 2.15 | V       |
| POR Threshold Hysteresis                            |                    |                                                                                                                        |                                                               | 100  |      | mV      |
| <b>VOLTAGE MONITORS/UNDERVOLTAGE LOCKOUT (UVLO)</b> |                    |                                                                                                                        |                                                               |      |      |         |
| UVLO Threshold                                      | $V_{SYSUVLO}$      | $V_{SYS}$ falling, $UVLO\_F[3:0] = 0xA$                                                                                | 2.4                                                           | 2.6  | 2.8  | V       |
| UVLO Threshold Hysteresis                           | $V_{SYSUVLO\_HYS}$ | $UVLO\_H[3:0] = 0x5$                                                                                                   |                                                               | 300  |      | mV      |
| <b>VOLTAGE MONITORS/OVERVOLTAGE LOCKOUT (OVLO)</b>  |                    |                                                                                                                        |                                                               |      |      |         |
| OVLO Threshold                                      | $V_{SYSOVLO}$      | $V_{SYS}$ rising                                                                                                       | 5.65                                                          | 5.85 | 6.05 | V       |
| <b>THERMAL MONITORS</b>                             |                    |                                                                                                                        |                                                               |      |      |         |
| Overtemperature Lockout Threshold                   | $T_{OTLO}$         | $T_J$ rising                                                                                                           |                                                               | 165  |      | °C      |
| Thermal Alarm Temperature 1                         | $T_{JAL1}$         | $T_J$ rising                                                                                                           |                                                               | 80   |      | °C      |
| Thermal Alarm Temperature 2                         | $T_{JAL2}$         | $T_J$ rising                                                                                                           |                                                               | 100  |      | °C      |
| Thermal Alarm Temperature Hysteresis                |                    |                                                                                                                        |                                                               | 15   |      | °C      |

**Electrical Characteristics—Global Resources (continued)**

( $V_{SYS} = 3.8V$ , limits are 100% production tested at  $T_A = +25^\circ C$ , limits over the operating temperature range ( $T_A = -40^\circ C$  to  $+85^\circ C$ ) are guaranteed by design and characterization, unless otherwise noted.)

| PARAMETER                                 | SYMBOL           | CONDITIONS                                                                                              |                     | MIN             | TYP             | MAX | UNITS   |
|-------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------|---------------------|-----------------|-----------------|-----|---------|
| <b>ENABLE INPUT (nEN)</b>                 |                  |                                                                                                         |                     |                 |                 |     |         |
| nEN Input Leakage Current                 | $I_{nEN\_LKG}$   | $V_{SYS} = 5.5V$ , $V_{nEN} = 0V$ , and $5.5V$                                                          | $T_A = +25^\circ C$ | -1              | $\pm 0.001$     | +1  | $\mu A$ |
|                                           |                  |                                                                                                         | $T_A = +85^\circ C$ |                 | $\pm 0.01$      |     |         |
| nEN Input Falling Threshold               | $V_{TH\_nEN\_F}$ | nEN Falling                                                                                             |                     | $V_{SYS} - 1.4$ | $V_{SYS} - 1.0$ |     | V       |
| nEN Input Rising Threshold                | $V_{TH\_nEN\_R}$ | nEN Rising                                                                                              |                     | $V_{SYS} - 0.9$ | $V_{SYS} - 0.6$ |     | V       |
| Debounce Time                             | $t_{DBNC\_nEN}$  | DBEN_nEN = 0                                                                                            |                     | 100             |                 |     | $\mu s$ |
|                                           |                  | DBEN_nEN = 1                                                                                            |                     | 30              |                 |     | ms      |
| Manual Reset Time                         | $t_{MRST}$       |                                                                                                         |                     | 14              | 16              | 20  | s       |
| <b>OPEN-DRAIN INTERRUPT OUTPUT (nIRQ)</b> |                  |                                                                                                         |                     |                 |                 |     |         |
| Output Voltage Low                        | $V_{OL}$         | $I_{SINK} = 2mA$                                                                                        |                     |                 | 0.4             |     | V       |
| Output Falling Edge Time                  | $t_f\_nIRQ$      | $C_{nIRQ} = 25pF$                                                                                       |                     | 2               |                 |     | ns      |
| Leakage Current                           | $I_{nIRQ\_LKG}$  | $V_{SYS} = 5.5V$ , nIRQ set to be high impedance (i.e., no interrupts), $V_{nIRQ} = 0V$ and $5.5V$      | $T_A = +25^\circ C$ | -1              | $\pm 0.001$     | +1  | $\mu A$ |
|                                           |                  | $V_{SYS} = 5.5V$ , nIRQ set to be high impedance (i.e., no interrupts), $V_{nIRQ} = 0V$ and $5.5V$      | $T_A = +85^\circ C$ |                 | $\pm 0.01$      |     |         |
| <b>OPEN-DRAIN RESET OUTPUT (nRST)</b>     |                  |                                                                                                         |                     |                 |                 |     |         |
| Output Voltage Low                        | $V_{OL}$         | $I_{SINK} = 2mA$                                                                                        |                     |                 | 0.4             |     | V       |
| Output Falling Edge Time                  | $t_f\_nRST$      | $C_{RST} = 25pF$                                                                                        |                     | 2               |                 |     | ns      |
| nRST Deassert Delay Time                  | $t_{RSTODD}$     | See <a href="#">Figure 5</a> and <a href="#">Figure 7</a> for more information                          |                     |                 | 5.12            |     | ms      |
| nRST Assert Delay Time                    | $t_{RSTOAD}$     | See <a href="#">Figure 5</a> for more information                                                       |                     | 10.24           |                 |     | ms      |
| Leakage Current                           | $I_{nRST\_LKG}$  | $V_{SYS} = V_{IO} = 5.5V$ , nRST set to be high impedance (i.e., not reset), $V_{nRST} = 0V$ and $5.5V$ | $T_A = +25^\circ C$ | -1              | $\pm 0.001$     | +1  | $\mu A$ |
|                                           |                  |                                                                                                         | $T_A = +85^\circ C$ |                 | $\pm 0.01$      |     |         |

**Electrical Characteristics—Global Resources (continued)**

( $V_{SYS} = 3.8V$ , limits are 100% production tested at  $T_A = +25^\circ C$ , limits over the operating temperature range ( $T_A = -40^\circ C$  to  $+85^\circ C$ ) are guaranteed by design and characterization, unless otherwise noted.)

| PARAMETER                                  | SYMBOL           | CONDITIONS                                                  | MIN                 | TYP                  | MAX                  | UNITS   |
|--------------------------------------------|------------------|-------------------------------------------------------------|---------------------|----------------------|----------------------|---------|
| <b>GENERAL-PURPOSE INPUT/OUTPUT (GPIO)</b> |                  |                                                             |                     |                      |                      |         |
| Input Voltage Low                          | $V_{IL}$         | $V_{SYS} = 3.8V$                                            |                     |                      | $0.3 \times V_{SYS}$ | V       |
| Input Voltage High                         | $V_{IH}$         | $V_{SYS} = 3.8V$                                            |                     | $0.7 \times V_{SYS}$ |                      | V       |
| Input Leakage Current                      | $I_{GPI\_LKG}$   | $DIRx = 1$ , $V_{SYS} = 5.5V$ , $V_{GPIOx} = 0V$ and $5.5V$ | $T_A = +25^\circ C$ | -1                   | $\pm 0.001$          | +1      |
|                                            |                  |                                                             | $T_A = +85^\circ C$ |                      | $\pm 0.01$           | $\mu A$ |
| Output Voltage Low                         | $V_{OL}$         | $I_{SINK} = 8mA$                                            |                     |                      | 0.4                  | V       |
| Output Voltage High                        | $V_{OH}$         | $I_{SOURCE} = 8mA$                                          |                     | $0.8 \times V_{SYS}$ |                      | V       |
| Input Debounce Time                        | $t_{DBNC\_GPI}$  | DB_CNFG[1:0] = 0b00                                         |                     |                      | 1.25                 | ms      |
|                                            |                  | DB_CNFG[1:0] = 0b01                                         |                     |                      | 2.5                  |         |
|                                            |                  | DB_CNFG[1:0] = 0b10                                         |                     |                      | 5                    |         |
|                                            |                  | DB_CNFG[1:0] = 0b11                                         |                     |                      | 10                   |         |
| GPIO Manual Reset Time                     | $t_{MRST\_GPIO}$ | GPIO_MRT[1:0] = 0b00                                        |                     |                      | 10                   | s       |
|                                            |                  | GPIO_MRT[1:0] = 0b01                                        |                     |                      | 5                    |         |
|                                            |                  | GPIO_MRT[1:0] = 0b10                                        |                     |                      | 2.5                  |         |
|                                            |                  | GPIO_MRT[1:0] = 0b11                                        |                     |                      | 1.25                 |         |
| Output Falling Edge Time                   | $t_f_{\_GPIO}$   | $C_{GPIO} = 25pF$                                           |                     |                      | 3                    | ns      |
| Output Rising Edge Time                    | $t_r_{\_GPIO}$   | $C_{GPIO} = 25pF$                                           |                     |                      | 3                    | ns      |
| <b>FLEXIBLE POWER SEQUENCER</b>            |                  |                                                             |                     |                      |                      |         |
| Power-Up Event Periods                     | $t_{EN}$         | See <a href="#">Figure 6</a>                                |                     |                      | 1.28                 | ms      |
| Power-Down Event Periods                   | $t_{DIS}$        | See <a href="#">Figure 6</a>                                |                     |                      | 2.56                 | ms      |

## Electrical Characteristics—Smart Power Selector Charger

( $V_{CHGIN} = 5.0V$ ,  $V_{SYS} = 4.5V$ ,  $V_{BATT} = 4.2V$ , limits are 100% production tested at  $T_A = +25^\circ C$ , limits over the operating temperature range ( $T_A = -40^\circ C$  to  $+85^\circ C$ ) are guaranteed by design and characterization, unless otherwise noted.)

| PARAMETER                                           | SYMBOL            | CONDITIONS                                                                                                                                     | MIN  | TYP  | MAX  | UNITS   |
|-----------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|---------|
| <b>CHARGER/DC INPUT</b>                             |                   |                                                                                                                                                |      |      |      |         |
| CHGIN Valid Voltage Range                           | $V_{CHGIN}$       | Initial CHGIN voltage before enabling charging                                                                                                 | 4.10 |      | 7.25 | V       |
| CHGIN Standoff Voltage Range                        | $V_{STANDOFF}$    | DC Rising                                                                                                                                      |      | 28   |      | V       |
| CHGIN Overvoltage Threshold                         | $V_{CHGIN\_OVP}$  | DC rising                                                                                                                                      | 7.25 | 7.50 | 7.75 | V       |
| CHGIN Overvoltage Hysteresis                        |                   |                                                                                                                                                |      | 100  |      | mV      |
| CHGIN Undervoltage Lockout                          | $V_{CHGIN\_UVLO}$ | DC rising                                                                                                                                      | 3.9  | 4.0  | 4.1  | V       |
| CHGIN Undervoltage Lockout Hysteresis               |                   |                                                                                                                                                |      | 500  |      | mV      |
| Input Current-Limit Range                           | $I_{CHGIN-LIM}$   | $V_{SYS} = V_{SYS-REG} - 100mV$ , programmable in 95mA steps                                                                                   | 95   |      | 475  | mA      |
| Input Current-Limit Accuracy                        |                   | $I_{CHGIN-LIM} = 95mA$ , $V_{SYS} = V_{SYS-REG} - 100mV$                                                                                       | 90   | 95   | 100  | mA      |
| Minimum Input Voltage Regulation Range              | $V_{CHGIN-MIN}$   | $V_{CHGIN}$ falling due to loading conditions and/or high-impedance charge source, programmable in 100mV increments with $V_{CHGIN\_MIN[2:0]}$ | 4.0  |      | 4.7  | V       |
| Minimum Input Voltage Regulation Accuracy           |                   | $V_{CHGIN-MIN} = 4.5V$ ( $V_{CHGIN\_MIN[2:0]} = 0b101$ ), $I_{CHGIN}$ reduced by 10%                                                           | 4.32 | 4.50 | 4.68 | V       |
| Charger Input Debounce Timer                        | $t_{CHGIN-DB}$    | $V_{CHGIN} = 5V$ , time before CHGIN is allowed to deliver current to SYS or BATT                                                              | 100  | 120  | 140  | ms      |
| <b>CHARGER/SUPPLY AND QUIESCENT CURRENTS</b>        |                   |                                                                                                                                                |      |      |      |         |
| BATT Bias Current                                   | $I_{BATT-BIAS}$   | $V_{CHGIN} = 5V$ , charger is not in USB suspend ( $USBS = 0$ ), charging is finished ( $CHG\_DTLS$ indicate done), $I_{SYS} = 0mA$            |      | 5    |      | $\mu A$ |
| CHGIN Supply Current                                | $I_{CHGIN}$       | $V_{CHGIN} = 5V$ , charger is not in USB suspend ( $USBS = 0$ ), charging is finished ( $CHG\_DTLS$ indicate done), $I_{SYS} = 0mA$            |      | 1.0  | 1.8  | mA      |
|                                                     |                   | $V_{CHGIN} = 0V$ to $1V$ , $V_{BATT} = 3.3V$ , $I_{SYS} = 0A$                                                                                  |      |      | 50   | $\mu A$ |
| CHGIN Suspend Supply Current                        | $I_{CHGIN-SUS}$   | $V_{CHGIN} = 5V$ , charger in USB suspend ( $USBS = 1$ )                                                                                       |      |      | 50   | $\mu A$ |
| <b>CHARGER/PREQUALIFICATION</b>                     |                   |                                                                                                                                                |      |      |      |         |
| Charge and Input Current-Limit Soft-Start Slew Time |                   | Zero to full scale                                                                                                                             |      | 1    |      | ms      |

## Electrical Characteristics—Smart Power Selector Charger (continued)

( $V_{CHGIN} = 5.0V$ ,  $V_{SYS} = 4.5V$ ,  $V_{BATT} = 4.2V$ , limits are 100% production tested at  $T_A = +25^\circ C$ , limits over the operating temperature range ( $T_A = -40^\circ C$  to  $+85^\circ C$ ) are guaranteed by design and characterization, unless otherwise noted.)

| PARAMETER                                     | SYMBOL         | CONDITIONS                                                                                                                                              | MIN                    | TYP  | MAX  | UNITS        |
|-----------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------|------|--------------|
| Prequalification Voltage Threshold Range      | $V_{PQ}$       | Charger is in prequalification mode when $V_{BATT} < V_{PQ}$ , this threshold has 100mV of hysteresis, programmable in 100mV steps with $CHG\_PQ[2:0]$  | 2.3                    |      | 3.0  | V            |
| Prequalification Voltage Threshold Accuracy   |                | $V_{PQ} = 3.0V$                                                                                                                                         | -3                     |      | +3   | %            |
| Prequalification Mode Charge Current          | $I_{PQ}$       | $V_{BATT} = 2.5V$ , $V_{PQ} = 3.0V$ , expressed as a percentage of $I_{FAST-CHG}$ , $I_{PQ} = 0$                                                        |                        | 10   |      | %            |
|                                               |                | $V_{BATT} = 2.5V$ , $V_{PQ} = 3.0V$ , expressed as a percentage of $I_{FAST-CHG}$ , $I_{PQ} = 1$                                                        |                        | 20   |      |              |
| Prequalification Safety Timer                 | $t_{PQ}$       | $V_{BATT} < V_{PQ} = 3.0V$                                                                                                                              | 27                     | 30   | 33   | minutes      |
| <b>CHARGER/FAST-CHARGE</b>                    |                |                                                                                                                                                         |                        |      |      |              |
| Fast-Charge Voltage Range                     | $V_{FAST-CHG}$ | $I_{BATT} = 0mA$ , programmable in 25mV steps with $CHG\_CV[5:0]$                                                                                       | 3.6                    | 4.6  |      | V            |
| Fast-Charge Voltage Accuracy                  |                | $I_{BATT} = 0mA$ , $V_{FAST-CHG} = 4.3V$ , $V_{SYS} = 4.5V$ , $T_A = +25^\circ C$                                                                       | -0.5                   |      | +0.5 | %            |
|                                               |                | $I_{BATT} = 0mA$ , $V_{FAST-CHG} = 3.6V$ to $4.6V$ , $V_{SYS} = 4.8V$                                                                                   |                        |      | 1.0  |              |
| Fast-Charge Current Range                     | $I_{FAST-CHG}$ | Programmable in 7.5mA steps with $CHG\_CC[5:0]$                                                                                                         | 7.5                    | 300  |      | mA           |
| Fast-Charge Current Accuracy                  |                | $T_A = +25^\circ C$ , $V_{BATT} = V_{FAST-CHG} - 300mV$                                                                                                 | $I_{FAST-CHG} = 15mA$  | -1.5 | +1.5 | %            |
|                                               |                |                                                                                                                                                         | $I_{FAST-CHG} = 300mA$ | -1.5 | +1.5 |              |
| Fast-Charge Current Accuracy over Temperature |                | Across all current settings, $V_{BATT} = V_{FAST-CHG} - 300mV$ $T_A = 0^\circ C$ to $+85^\circ C$                                                       | -10                    |      | +10  | %            |
| Fast-Charge Safety Timer Range                | $t_{FC}$       | Programmable in 2 hour increments or disabled with $T_{FAST\_CHG}[1:0]$ , from prequal done to timer fault                                              | 3                      | 7    |      | hours        |
| Fast-Charge Safety Timer Accuracy             |                | $t_{FC} = 3$ hours                                                                                                                                      | -10                    |      | +10  | %            |
| Fast-Charge Safety Timer Suspend Threshold    |                | Expressed as a percentage of $I_{FAST-CHG}$ . Refer to the <a href="#">TIME_SUS</a> bit in the <a href="#">Programmer's Guide</a> for more information. |                        | 20   |      | %            |
| Junction Temperature Regulation Setting Range | $T_{J-REG}$    | Programmable in $10^\circ C$ steps with $T_{J\_REG\_SET[2:0]}$                                                                                          | 60                     | 100  |      | $^\circ C$   |
| Junction Temperature Regulation Loop Gain     | $G_{TJ-REG}$   | Rate at which $I_{FAST-CHG}/I_{PQ}$ is reduced to maintain $T_{J-REG}$ , expressed a percentage of $I_{FAST-CHG}/I_{PQ}$ per degree centigrade rise     |                        | -5.4 |      | $%/^\circ C$ |

## Electrical Characteristics—Smart Power Selector Charger (continued)

( $V_{CHGIN} = 5.0V$ ,  $V_{SYS} = 4.5V$ ,  $V_{BATT} = 4.2V$ , limits are 100% production tested at  $T_A = +25^\circ C$ , limits over the operating temperature range ( $T_A = -40^\circ C$  to  $+85^\circ C$ ) are guaranteed by design and characterization, unless otherwise noted.)

| PARAMETER                                       | SYMBOL        | CONDITIONS                                                                                                                                                                                                                              | MIN   | TYP                | MAX   | UNITS     |
|-------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|-------|-----------|
| <b>CHARGER/TERMINATION AND TOP-OFF</b>          |               |                                                                                                                                                                                                                                         |       |                    |       |           |
| End-of-Charge Termination Current               | $I_{TERM}$    | $I_{TERM} = 0b00$ (expressed as a percentage of $I_{FAST-CHG}$ )                                                                                                                                                                        |       | 5                  |       | %         |
|                                                 |               | $I_{TERM} = 0b01$ (expressed as a percentage of $I_{FAST-CHG}$ )                                                                                                                                                                        |       | 7.5                |       |           |
|                                                 |               | $I_{TERM} = 0b10$ (expressed as a percentage of $I_{FAST-CHG}$ )                                                                                                                                                                        |       | 10                 |       |           |
|                                                 |               | $I_{TERM} = 0b11$ (expressed as a percentage of $I_{FAST-CHG}$ )                                                                                                                                                                        |       | 15                 |       |           |
| End-of-Charge Termination Current Accuracy      |               | $I_{FAST-CHG} = 15mA$ , $I_{TERM} = 1.5mA$ (10% of $I_{FAST-CHG}$ ), $T_A = +25^\circ C$                                                                                                                                                | 1.35  | 1.5                | 1.65  | mA        |
|                                                 |               | $I_{FAST-CHG} = 300mA$ , $I_{TERM} = 30mA$ (10% of $I_{FAST-CHG}$ ), $T_A = +25^\circ C$                                                                                                                                                | 27    | 30                 | 33    |           |
| Top-Off Timer Range                             | $t_{TO}$      | $I_{BATT} < I_{TERM}$ , programmable in 5 minute steps with $T_{TOPOFF}[2:0]$                                                                                                                                                           | 0     | 35                 |       | minutes   |
| Top-Off Timer Accuracy                          |               | $t_{TO} = 10$ minutes                                                                                                                                                                                                                   | -10   |                    | +10   | %         |
| <b>CHARGER/DEVICE ON-RESISTANCE AND LEAKAGE</b> |               |                                                                                                                                                                                                                                         |       |                    |       |           |
| BATT to SYS On-Resistance                       |               | $V_{BATT} = 3.7V$ , $I_{BATT} = 300mA$ , $V_{CHGIN} = 0V$ , battery is discharging to SYS                                                                                                                                               | 100   |                    |       | $m\Omega$ |
| Charger FET Leakage Current                     |               | $V_{SYS} = 4.5V$ , $V_{BATT} = 0V$ , $T_A = +25^\circ C$ , charger disabled                                                                                                                                                             | 0.1   | 1.0                |       | $\mu A$   |
|                                                 |               | $V_{SYS} = 4.5V$ , $V_{BATT} = 0V$ , $T_A = +85^\circ C$ , charger disabled                                                                                                                                                             | 1     |                    |       |           |
| CHGIN to SYS On-Resistance                      |               | $V_{CHGIN} = 4.65V$ , $I_{CHGIN} = I_{CHGIN-LIM} = 450mA$                                                                                                                                                                               | 600   |                    |       | $m\Omega$ |
| Input FET Leakage Current                       |               | $V_{CHGIN} = 0V$ , $V_{SYS} = 4.2V$ , $T_A = +25^\circ C$ , body-switched diode is reverse biased                                                                                                                                       | 0.1   | 1.0                |       | $\mu A$   |
|                                                 |               | $V_{CHGIN} = 0V$ , $V_{SYS} = 4.2V$ , $T_A = +85^\circ C$ , body-switched diode is reverse biased                                                                                                                                       | 1     |                    |       |           |
| <b>CHARGER/SYSTEM NODE</b>                      |               |                                                                                                                                                                                                                                         |       |                    |       |           |
| System Voltage Regulation Range                 | $V_{SYS-REG}$ | Programmable in 25mV steps with $V_{SYS\_REG}[4:0]$                                                                                                                                                                                     | 4.1   | 4.8                |       | V         |
| System Voltage Regulation Accuracy              | $V_{SYS}$     | $V_{SYS-REG} = 4.5V$ , $I_{SYS} = 1mA$ , $T_A = +25^\circ C$                                                                                                                                                                            | 4.41  | 4.50               | 4.59  | V         |
|                                                 |               | $V_{SYS-REG} = 4.5V$ , $I_{SYS} = 1mA$ , $T_A = -40^\circ C$ to $+85^\circ C$                                                                                                                                                           | 4.365 | 4.500              | 4.635 |           |
| Minimum System Voltage Regulation Loop Setpoint | $V_{SYS-MIN}$ | $V_{CHGIN} = 5V$ , $V_{SYS-REG} = 4.5V$ , $V_{SYS} < V_{SYS-REG}$ due to $I_{CHGIN} = I_{CHGIN-LIM}$ (input in current limit), battery charging, $I_{BATT}$ reduced to 50% of $I_{FAST-CHG}$ (minimum system voltage regulation active) | 4.34  | 4.40               | 4.45  | V         |
| Supplement Mode System Voltage Regulation       |               | $I_{SYS} = 150mA$                                                                                                                                                                                                                       |       | $V_{BATT} - 0.15V$ |       | V         |

**Electrical Characteristics—Adjustable Thermistor Temperature Monitors**

( $V_{CHGIN} = 5.0V$ ,  $V_{SYS} = 4.5V$ ,  $V_{BATT} = 4.2V$ , limits are 100% production tested at  $T_A = +25^\circ C$ , limits over the operating temperature range ( $T_A = -40^\circ C$  to  $+85^\circ C$ ) are guaranteed by design and characterization, unless otherwise noted.)

| PARAMETER                                | SYMBOL                | CONDITIONS                                                                                                                | MIN   | TYP     | MAX   | UNITS      |
|------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------|-------|---------|-------|------------|
| <b>JEITA TEMPERATURE MONITORS</b>        |                       |                                                                                                                           |       |         |       |            |
| TBIAS Voltage                            | $V_{TBIAS}$           | $THM\_EN = 1$ , $V_{CHGIN} = 5V$                                                                                          |       | 1.25    |       | V          |
| JEITA Cold Threshold Range               | $V_{COLD}$            | Voltage rising threshold, programmable with $THM\_COLD[1:0]$ in $5^\circ C$ increments when using an NTC $\beta = 3380K$  | 0.867 |         | 1.024 | V          |
| JEITA Cool Threshold Range               | $V_{COOL}$            | Voltage rising threshold, programmable with $THM\_COOL[1:0]$ in $5^\circ C$ increments when using an NTC $\beta = 3380K$  | 0.747 |         | 0.923 | V          |
| JEITA Warm Threshold Range               | $V_{WARM}$            | Voltage falling threshold, programmable with $THM\_WARM[1:0]$ in $5^\circ C$ increments when using an NTC $\beta = 3380K$ | 0.367 |         | 0.511 | V          |
| JEITA Hot Threshold Range                | $V_{HOT}$             | Voltage falling threshold, programmable with $THM\_HOT[1:0]$ in $5^\circ C$ increments when using an NTC $\beta = 3380K$  | 0.291 |         | 0.411 | V          |
| Temperature Threshold Accuracy           |                       | Voltage threshold accuracy expressed as temperature for an NTC $\beta = 3380K$                                            |       | $\pm 3$ |       | $^\circ C$ |
| Temperature Threshold Hysteresis         |                       | Temperature hysteresis set on each voltage threshold for an NTC $\beta = 3380K$                                           |       | 3       |       | $^\circ C$ |
| JEITA Modified Fast-Charge Voltage Range | $V_{FAST-CHG\_JEITA}$ | $I_{BATT} = 0mA$ , programmable in 25mV steps, battery is either cool or warm                                             | 3.6   |         | 4.6   | V          |
| JEITA Modified Fast-Charge Current Range | $I_{FAST-CHG\_JEITA}$ | Programmable in 7.5mA steps, battery is either cool or warm                                                               | 7.5   |         | 300   | mA         |

**Electrical Characteristics—Analog Multiplexer and Power Monitor AFEs**

( $V_{CHGIN} = 5.0V$ ,  $V_{SYS} = 4.5V$ ,  $V_{BATT} = 4.2V$ , limits are 100% production tested at  $T_A = +25^\circ C$ , limits over the operating temperature range ( $T_A = -40^\circ C$  to  $+85^\circ C$ ) are guaranteed by design and characterization, unless otherwise noted.)

| PARAMETER                                                    | SYMBOL          | CONDITIONS                                              | MIN | TYP   | MAX | UNITS |
|--------------------------------------------------------------|-----------------|---------------------------------------------------------|-----|-------|-----|-------|
| <b>ANALOG MULTIPLEXER AND POWER MONITOR AFEs</b>             |                 |                                                         |     |       |     |       |
| Full-Scale Voltage                                           | $V_{FS}$        |                                                         |     | 1.25  |     | V     |
| SYS Voltage Monitor Gain                                     | $G_{V_{SYS}}$   | $V_{FS}$ corresponds to maximum $V_{SYS-REG}$ setting   |     | 0.26  |     | V/V   |
| <b>ANALOG MULTIPLEXER AND POWER MONITOR AFEs/CHGIN POWER</b> |                 |                                                         |     |       |     |       |
| CHGIN Current Monitor Gain                                   | $G_{I_{CHGIN}}$ | $V_{FS}$ corresponds to maximum $I_{CHGIN-LIM}$ setting |     | 2.632 |     | V/A   |
| CHGIN Voltage Monitor Gain                                   | $G_{V_{CHGIN}}$ | $V_{FS}$ corresponds to $V_{CHGIN\_OVP}$                |     | 0.167 |     | V/V   |

MAX77278

**Ultra-Low Power PMIC with 3-Output SIMO,  
Power Path Charger Optimized for Small Li+, 425mA  
Current Sink, and 8 GPIOs**

**Electrical Characteristics—Analog Multiplexer and Power Monitor AFEs (continued)**

( $V_{CHGIN} = 5.0V$ ,  $V_{SYS} = 4.5V$ ,  $V_{BATT} = 4.2V$ , limits are 100% production tested at  $T_A = +25^\circ C$ , limits over the operating temperature range ( $T_A = -40^\circ C$  to  $+85^\circ C$ ) are guaranteed by design and characterization, unless otherwise noted.)

| PARAMETER                                                           | SYMBOL             | CONDITIONS                                                                          | MIN                                | TYP   | MAX  | UNITS |
|---------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------|------------------------------------|-------|------|-------|
| <b>ANALOG MULTIPLEXER AND POWER MONITOR AFEs/BATT MONITOR</b>       |                    |                                                                                     |                                    |       |      |       |
| Battery Charge Current Monitor Gain                                 | $G_{IBATT-CHG}$    | $V_{FS}$ corresponds to 100% of $I_{FAST-CHG}$ setting (CHG_CC[5:0])                |                                    | 12.5  |      | mV/%  |
| Charge Current Monitor Accuracy                                     |                    | $I_{FAST-CHG} = 15mA$ , $T_A = +25^\circ C$ ,<br>$V_{BATT} = V_{FAST-CHG} - 300mV$  | -3.5                               |       | +3.5 | %     |
|                                                                     |                    | $I_{FAST-CHG} = 300mA$ , $T_A = +25^\circ C$ ,<br>$V_{BATT} = V_{FAST-CHG} - 300mV$ | -3.5                               |       | +3.5 |       |
| Charge Current Monitor Accuracy over Temperature                    |                    | Across all current settings, $V_{BATT} = V_{FAST-CHG} - 300mV$                      | -10                                |       | +10  | %     |
| Battery Discharge Monitor Full-Scale Current Range                  | $I_{DISCHG-SCALE}$ | Programmable with IMON_DISCHG_SCALE[3:0]                                            | 8.2                                |       | 300  | mA    |
| Battery Discharge Current Monitor Accuracy                          |                    | 15mA to 300mA battery discharge current,<br>$I_{DISCHG-SCALE} = 300mA$              | -15                                |       | +15  | %     |
| Battery Discharge Current Monitor Offset                            |                    | $I_{BATT} = 0mA$                                                                    | $T_A = 0^\circ C$ to $+85^\circ C$ | -0.5  | +0.8 | mA    |
|                                                                     |                    |                                                                                     | $T_A = -40^\circ C$                | -1.1  | +1.4 |       |
| Battery-Voltage Monitor Gain                                        | $G_{VBATT}$        | $V_{FS}$ corresponds to maximum $V_{FAST-CHG}$ setting                              |                                    | 0.272 |      | V/V   |
| <b>ANALOG MULTIPLEXER AND POWER MONITOR AFEs/ANALOG MULTIPLEXER</b> |                    |                                                                                     |                                    |       |      |       |
| Channel Switching Time                                              |                    |                                                                                     |                                    | 0.3   |      | μs    |
| Off Leakage Current                                                 |                    | $V_{AMUX} = 0V$ , AMUX is high impedance                                            | $T_A = +25^\circ C$                | 1     | 500  | nA    |
|                                                                     |                    |                                                                                     | $T_A = +85^\circ C$                | 1     |      | μA    |
| <b>ANALOG MULTIPLEXER AND POWER MONITOR AFEs/THM AND TBIAS</b>      |                    |                                                                                     |                                    |       |      |       |
| THM Voltage Monitor Gain                                            | $G_{VTHM}$         |                                                                                     |                                    | 1     |      | V/V   |
| TBIAS Voltage Monitor Gain                                          | $G_{VTBIAS}$       |                                                                                     |                                    | 1     |      | V/V   |

MAX77278

**Ultra-Low Power PMIC with 3-Output SIMO,  
Power Path Charger Optimized for Small Li+, 425mA  
Current Sink, and 8 GPIOs**

**Electrical Characteristics—SIMO Buck-Boost**

( $V_{SYS} = 3.8V$ ,  $V_{IN\_SBB} = 3.8V$ ,  $C_{SBBx} = 10\mu F$ ,  $L = 1.5\mu H$ , limits are 100% production tested at  $T_A = +25^\circ C$ , limits over the operating temperature range ( $T_A = -40^\circ C$  to  $+85^\circ C$ ) are guaranteed by design and characterization, unless otherwise noted.)

| PARAMETER                                                  | SYMBOL        | CONDITIONS                                                                           | MIN                                | TYP  | MAX     | UNITS      |
|------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------|------------------------------------|------|---------|------------|
| <b>GENERAL CHARACTERISTICS</b>                             |               |                                                                                      |                                    |      |         |            |
| Input Voltage Range                                        | $V_{IN\_SBB}$ |                                                                                      | 2.8                                | 3.8  | 5.5     | V          |
| Shutdown Current<br>(Note 5)                               |               | SBB0, SBB1, SBB2<br>are disabled, $V_{SYS} = V_{IN\_SBB} = 5.5V$ ,<br>$V_{LXA} = 0V$ | $T_A = +25^\circ C$                | 0.05 | 1       | $\mu A$    |
|                                                            |               |                                                                                      | $T_A = 0^\circ C$ to $+85^\circ C$ | 0.25 |         |            |
| SIMO Quiescent Supply<br>Current (Note 5)                  | $I_{Q\_SBB0}$ | No load                                                                              | SBB0 set to 5.3V                   | 5.0  | $\mu A$ |            |
|                                                            | $I_{Q\_SBB1}$ |                                                                                      | SBB1 set to 1.9V                   | 3.0  |         |            |
|                                                            | $I_{Q\_SBB2}$ |                                                                                      | SBB2 set to 3.2V                   | 4.5  |         |            |
| <b>GENERAL CHARACTERISTICS/OUTPUT VOLTAGE RANGE (SBB0)</b> |               |                                                                                      |                                    |      |         |            |
| Minimum Output Voltage                                     |               |                                                                                      | 2.35                               |      |         | V          |
| Maximum Output Voltage                                     |               |                                                                                      |                                    | 5.5  |         | V          |
| Output DAC Bits                                            |               |                                                                                      |                                    | 6    |         | bits       |
| Output DAC LSB Size                                        |               |                                                                                      |                                    | 50   |         | mV         |
| <b>GENERAL CHARACTERISTICS/OUTPUT VOLTAGE RANGE (SBB1)</b> |               |                                                                                      |                                    |      |         |            |
| Minimum Output Voltage                                     |               |                                                                                      | 1.412                              |      |         | V          |
| Maximum Output Voltage                                     |               |                                                                                      |                                    | 2.2  |         | V          |
| Output DAC Bits                                            |               |                                                                                      |                                    | 6    |         | bits       |
| Output DAC LSB Size                                        |               |                                                                                      |                                    | 12.5 |         | mV         |
| <b>GENERAL CHARACTERISTICS/OUTPUT VOLTAGE RANGE (SBB2)</b> |               |                                                                                      |                                    |      |         |            |
| Minimum Output Voltage                                     |               |                                                                                      | 0.85                               |      |         | V          |
| Maximum Output Voltage                                     |               |                                                                                      |                                    | 4    |         | V          |
| Output DAC Bits                                            |               |                                                                                      |                                    | 6    |         | bits       |
| Output DAC LSB Size                                        |               |                                                                                      |                                    | 50   |         | mV         |
| <b>STATIC OUTPUT VOLTAGE ACCURACY</b>                      |               |                                                                                      |                                    |      |         |            |
| Output Voltage Accuracy                                    |               | $T_A = 0^\circ C$ to $+85^\circ C$ (Note 6)                                          | -4                                 | +4   |         | %          |
| <b>TIMING CHARACTERISTICS</b>                              |               |                                                                                      |                                    |      |         |            |
| Soft-Start Ramp Rate                                       | $dV/dt_{SS}$  |                                                                                      | 2                                  | 5.0  | 8       | $mV/\mu s$ |

**Electrical Characteristics—SIMO Buck-Boost (continued)**

( $V_{SYS} = 3.8V$ ,  $V_{IN\_SBB} = 3.8V$ ,  $C_{SBBx} = 10\mu F$ ,  $L = 1.5\mu H$ , limits are 100% production tested at  $T_A = +25^\circ C$ , limits over the operating temperature range ( $T_A = -40^\circ C$  to  $+85^\circ C$ ) are guaranteed by design and characterization, unless otherwise noted.)

| PARAMETER                          | SYMBOL         | CONDITIONS                                                                                                                                                  | MIN                 | TYP   | MAX       | UNITS    |
|------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|-----------|----------|
| <b>POWER STAGE CHARACTERISTICS</b> |                |                                                                                                                                                             |                     |       |           |          |
| LXA Leakage Current                |                | SBB0, SBB1, SBB2 are disabled, $V_{IN\_SBB} = 5.5V$ , $V_{LXA} = 0V$ , or $5.5V$                                                                            | $T_A = +25^\circ C$ | -1.0  | $\pm 0.1$ | +1.0     |
|                                    |                |                                                                                                                                                             | $T_A = +85^\circ C$ |       | $\pm 1.0$ | $\mu A$  |
| LXB Leakage Current                |                | SBB0, SBB1, SBB2 are disabled, $V_{IN\_SBB} = 5.5V$ , $V_{LXA} = 0V$ or $5.5V$ , all $V_{SBBx} = 5.5V$                                                      | $T_A = +25^\circ C$ | -1.0  | $\pm 0.1$ | +1.0     |
|                                    |                |                                                                                                                                                             | $T_A = +85^\circ C$ |       | $\pm 1.0$ | $\mu A$  |
| BST Leakage Current                |                | $V_{IN\_SBB} = 5.5V$ , $V_{LXB} = 5.5V$ , $V_{BST} = 11V$                                                                                                   | $T_A = +25^\circ C$ |       | +0.01     | +1.0     |
|                                    |                |                                                                                                                                                             | $T_A = +85^\circ C$ |       | +0.1      | $\mu A$  |
| Disabled Output Leakage Current    |                | SBB0, SBB1, SBB2 are disabled, active-discharge disabled ( $ADE\_SBBx = 0$ ), $V_{SBBx} = 5.5V$ , $V_{LXB} = 0V$ , $V_{SYS} = V_{IN\_SBB} = V_{BST} = 5.5V$ | $T_A = +25^\circ C$ |       | +0.1      | +1.0     |
|                                    |                |                                                                                                                                                             | $T_A = +85^\circ C$ |       | +0.2      | $\mu A$  |
| Active Discharge Impedance         | $R_{AD\_SBBx}$ | SBB0, SBB1, SBB2 are disabled, active discharge enabled ( $ADE\_SBBx = 1$ )                                                                                 | 80                  | 140   | 260       | $\Omega$ |
| <b>CONTROL SCHEME</b>              |                |                                                                                                                                                             |                     |       |           |          |
| Peak Current Limit<br>(Note 7)     | $I_{P\_SBB}$   | $IP\_SBBx = 0b11$                                                                                                                                           | 0.414               | 0.500 | 0.586     | A        |
|                                    |                | $IP\_SBBx = 0b10$                                                                                                                                           | 0.589               | 0.707 | 0.806     |          |
|                                    |                | $IP\_SBBx = 0b01$                                                                                                                                           | 0.713               | 0.866 | 0.947     |          |
|                                    |                | $IP\_SBBx = 0b00$                                                                                                                                           | 0.892               | 1.000 | 1.108     |          |

**Note 5:** Guaranteed by design and characterization but not directly production tested. Production test coverage is provided by the quiescent supply current specification.

**Note 6:** Measured as the falling threshold of the output voltage where LXA switches high.

**Note 7:** Typical values align with bench observations using the stated conditions. Minimum and maximum values are tested in production with DC currents. See the [Typical Operating Characteristics](#) SIMO switching waveforms for more insight on this specification.

MAX77278

**Ultra-Low Power PMIC with 3-Output SIMO,  
Power Path Charger Optimized for Small Li+, 425mA  
Current Sink, and 8 GPIOs**

**Electrical Characteristics—LDO**

( $V_{SYS} = 3.8V$ ,  $V_{IN\_LDO} = 5.3V$ ,  $V_{LDO} = 5.14V$ ,  $C_{LDO} = 10\mu F$ , limits are 100% production tested at  $T_A = +25^\circ C$ , limits over the operating temperature range ( $T_A = -40^\circ C$  to  $+85^\circ C$ ) are guaranteed by design and characterization, unless otherwise noted.)

| PARAMETER                                           | SYMBOL        | CONDITIONS                                                                                                                                      | MIN                    | TYP    | MAX    | UNITS   |
|-----------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------|--------|---------|
| <b>GENERAL CHARACTERISTICS</b>                      |               |                                                                                                                                                 |                        |        |        |         |
| Input Voltage                                       | $V_{IN\_LDO}$ | Note 8                                                                                                                                          | 3.733                  | 5.5    | 5.5    | V       |
| LDO Shutdown Current                                | $I_{IN\_LDO}$ | Current measured into IN_LDO, LDO output disabled (Note 9)                                                                                      | 0.1                    | 1      | 1      | $\mu A$ |
| LDO Quiescent Supply Current (Note 9)               | $I_{IN\_LDO}$ | Current measured into IN_LDO, $I_{LDO} = 0mA$ , LDO output enabled and in regulation, $V_{IN\_LDO} = 5.5V$ , $V_{LDO} = 5.1375V$                | 1.1                    | 3.1    | 3.1    | $\mu A$ |
| Fixed Headroom Control Quiescent Current            | $I_{Q\_FHC}$  | Additional current into SYS due to fixed headroom controller, $V_{LDO} = 5.1375V$ , $EN_{FHC} = 1$                                              | 1.8                    | 3.0    | 3.0    | $\mu A$ |
| Maximum Output Current                              | $I_{OUT}$     |                                                                                                                                                 | 50                     |        |        | mA      |
| Current Limit                                       |               | $V_{LDO}$ programmed to 5.1375V, $V_{LDO}$ externally forced to 4.6375V                                                                         | 322                    |        |        | mA      |
| Output Capacitance                                  | $C_{OUT}$     | Effective, derated capacitance. ESR must be less than $10m\Omega$ , ESL must be less than 200pH                                                 | 4                      | 10     | 13     | $\mu F$ |
| <b>GENERAL CHARACTERISTICS/OUTPUT VOLTAGE RANGE</b> |               |                                                                                                                                                 |                        |        |        |         |
| Output Voltage Range                                |               | Programmable with $TV_{LDO}[6:0]$ in 12.5mV steps                                                                                               | 3.7125                 | 5.3000 | 5.3000 | V       |
| Output DAC Bits                                     |               |                                                                                                                                                 | 7                      |        |        | bits    |
| Output DAC LSB Size                                 |               |                                                                                                                                                 | 12.5                   |        |        | mV      |
| <b>STATIC CHARACTERISTICS</b>                       |               |                                                                                                                                                 |                        |        |        |         |
| Output Voltage Accuracy                             |               | $V_{LDO}$ programmed from 4V to 5.1375V, $V_{IN\_LDO} = 5.3V$ , LDO not in dropout, $I_{LDO} = 0mA$ to 20mA, $T_A = 0^\circ C$ to $+85^\circ C$ | -2                     | +2     | +2     | %       |
| FHC Headroom Voltage                                | $V_{HDRM}$    | $V_{LDO} = 5.175V$ ,<br>$I_{LDO} = 20mA$ ,<br>$EN_{FHC} = 1$                                                                                    | $V_{HDRM}[1:0] = 0b00$ | 150    | mV     |         |
|                                                     |               |                                                                                                                                                 | $V_{HDRM}[1:0] = 0b01$ | 175    |        |         |
|                                                     |               |                                                                                                                                                 | $V_{HDRM}[1:0] = 0b10$ | 200    |        |         |
|                                                     |               |                                                                                                                                                 | $V_{HDRM}[1:0] = 0b11$ | 225    |        |         |

**Electrical Characteristics—LDO (continued)**

( $V_{SYS} = 3.8V$ ,  $V_{IN\_LDO} = 5.3V$ ,  $V_{LDO} = 5.14V$ ,  $C_{LDO} = 10\mu F$ , limits are 100% production tested at  $T_A = +25^\circ C$ , limits over the operating temperature range ( $T_A = -40^\circ C$  to  $+85^\circ C$ ) are guaranteed by design and characterization, unless otherwise noted.)

| PARAMETER                          | SYMBOL             | CONDITIONS                                                                                                                    | MIN                                | TYP  | MAX  | UNITS    |
|------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------|------|----------|
| <b>TIMING CHARACTERISTICS</b>      |                    |                                                                                                                               |                                    |      |      |          |
| Enable Delay                       |                    | $T_A = +25^\circ C$                                                                                                           |                                    | 0.32 |      | ms       |
| Soft-Start Slew Rate               | $dV_{LDO}/dt_{SS}$ | $V_{LDO}$ from 10% to 90% of final value,<br>$T_A = +25^\circ C$                                                              |                                    | 1.6  |      | V/ms     |
| <b>POWER STAGE CHARACTERISTICS</b> |                    |                                                                                                                               |                                    |      |      |          |
| Dropout Voltage                    | $V_{LDO\_DO}$      | 5.1375V programmed output voltage<br>( $TV_{LDO}[6:0] = 0x72$ ), $V_{IN\_LDO} = 5V$ ,<br>$I_{LDO} = 20mA$ (Note 10)           |                                    | 4.6  | 20   | mV       |
| Active-Discharge Impedance         | $R_{AD\_LDO}$      | Regulator disabled, active discharge enabled ( $ADE\_LDO = 1$ )                                                               | 50                                 | 100  | 200  | $\Omega$ |
| Disabled Output Leakage Current    |                    | Regulator disabled, active discharge disabled ( $ADE\_LDO = 0$ ),<br>$V_{SYS} = V_{IN\_LDO} = 5.5V$ , $V_{LDO} = 5.5V$ and 0V | $T_A = +25^\circ C$                | +0.1 | +1.0 | $\mu A$  |
|                                    |                    |                                                                                                                               | $T_A = 0^\circ C$ to $+85^\circ C$ | +1.0 |      |          |

**Note 8:** When the input voltage is within the specified range, the LDO headroom is being regulated by the fixed-headroom-control loop and the LDO output voltage is regulated by the LDO. However, the regulator can be in dropout. For example, if the output voltage is fixed at 5.14V and a 5V input is provided, the output is 5.14V minus the dropout voltage ( $V_{LDO} = V_{IN\_LDO} - V_{LDO\_DO}$ ). To achieve the specified output voltage, the input voltage must be the output voltage plus the dropout voltage ( $V_{IN\_LDO} \geq V_{LDO} + V_{LDO\_DO\_MAX}$ ).

**Note 9:** Guaranteed by design and characterization but not directly production tested. Production test coverage is provided by the Shutdown Supply Current and Quiescent Supply Current specification in the [Electrical Characteristics—Global Resources](#) table.

**Note 10:** The dropout voltage is the difference between the input voltage and the output voltage when the input voltage is within the valid input voltage range, but below the output voltage setpoint. For example, if the output voltage setpoint is 1.85V, the input voltage is 1.7V, and the actual output voltage is 1.65V, then the dropout voltage is 50mV ( $V_{LDO\_DO} = V_{IN\_LDO} - V_{LDO}$ ).

**Electrical Characteristics—Current Sink**

( $V_{SYS} = 3.7V$ , limits are 100% production tested at  $T_A = +25^\circ C$ , limits over the operating temperature range ( $T_A = -40^\circ C$  to  $+85^\circ C$ ) are guaranteed by design and characterization, unless otherwise noted.)

| PARAMETER                                           | SYMBOL           | CONDITIONS                                                                                                              | MIN                                                              | TYP            | MAX | UNITS   |
|-----------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------|-----|---------|
| <b>GENERAL CHARACTERISTICS</b>                      |                  |                                                                                                                         |                                                                  |                |     |         |
| Input Supply Voltage                                |                  | Supply voltage range for current sink<br>$V_{CS} = 400mV$ , $I_{CS} = 350mA$                                            | 3                                                                | 3.8            | 5   | V       |
| Input Voltage for LED Termination                   |                  |                                                                                                                         | 3                                                                | 3.8            | 5.5 | V       |
| Current Sink Quiescent Current                      | $I_Q$            | Change in supply current at $SYS$ when current sink is enabled                                                          | 400                                                              | 550            |     | $\mu A$ |
| Current Sink Leakage                                |                  | $CS\_PRE\_EN = 0$ , $V_{CS} = 4.2V$                                                                                     | +0.1                                                             | +1.0           |     | $\mu A$ |
| CS_EN Input Voltage Low                             | $V_{CS\_EN\_IL}$ | $V_{SYS} = 3.8V$                                                                                                        | 0.4                                                              |                |     | V       |
| CS_EN Input Voltage High                            | $V_{CS\_EN\_IH}$ | $V_{SYS} = 3.8V$                                                                                                        |                                                                  | $V_{IO} - 0.4$ |     | V       |
| <b>CURRENT SINK RANGE</b>                           |                  |                                                                                                                         |                                                                  |                |     |         |
| Minimum Sink Current                                |                  | $CS\_CURREN[2:0] = 0b000$                                                                                               | 250                                                              |                |     | $mA$    |
| Maximum Sink Current                                |                  | $CS\_CURREN[2:0] = 0b111$                                                                                               | 425                                                              |                |     | $mA$    |
| Current Sink Accuracy                               |                  | $CS\_CURREN[2:0] = 0b100$ , $V_{SYS} = 3.8V$                                                                            | $T_A = +25^\circ C$                                              | -3%            | 350 | +3%     |
|                                                     |                  |                                                                                                                         | $T_A = 0^\circ C$ to $+85^\circ C$                               | -5%            | 350 | +5%     |
| Headroom Voltage                                    | $V_{CS\_HDRM}$   | $CS\_CURREN[2:0] = 0b100$ , $I_{CS} = 350mA$ ;<br>minimum headroom is defined where current drops 3% from nominal value | 400                                                              |                |     | $mV$    |
| <b>TIMING CHARACTERISTICS</b>                       |                  |                                                                                                                         |                                                                  |                |     |         |
| Frequency Range                                     | $F_{EN}$         | $V_{SYS} = 3.8V$ , $CS\_CURREN[2:0] = 0b100$                                                                            | 10                                                               | 500            |     | KHz     |
| Preenable Set-Up Time                               | $t_{SU}$         | Minimum time to operate current sink after current sink preenable ( $CS\_PRE\_EN = 1$ )                                 |                                                                  | 10             |     | $\mu s$ |
| Watchdog Timer                                      | $t_{WD}$         | Time out after last $CS\_EN$ falling edge resulting in an IRQ. Reset after each rising edge of $CS\_EN$                 |                                                                  | 12.8           |     | ms      |
| <b>TIMING CHARACTERISTICS/PULSE PERIOD SETTINGS</b> |                  |                                                                                                                         |                                                                  |                |     |         |
| Duty Cycle                                          |                  |                                                                                                                         |                                                                  | 50             |     | %       |
| Rise Time                                           | $t_{rCS}$        | $V_{SYS} = 3.8V$ ,<br>$CS\_CURREN[2:0] = 0b100$ , $V_{CS\_HDRM} = 600mV$ , $T_A = 0^\circ C$ to $+85^\circ C$           | Time from $CS\_EN$ rising edge to 90% of final DC current value. | 100            | 500 | ns      |
| Overshoot                                           | $I_{CS\_OS}$     | $V_{SYS} = 3.8V$ ,<br>$CS\_CURREN[2:0] = 0b100$ , $V_{CS\_HDRM} = 600mV$ , $T_A = 0^\circ C$ to $+85^\circ C$           | Percent overshoot above final DC current value                   | 25             |     | %       |

MAX77278

Ultra-Low Power PMIC with 3-Output SIMO,  
Power Path Charger Optimized for Small Li+, 425mA  
Current Sink, and 8 GPIOs

## Electrical Characteristics—I<sup>2</sup>C

( $V_{SYS} = 3.7V$ ,  $V_{IO} = 1.8V$ , limits are 100% production tested at  $T_A = +25^\circ C$ , limits over the operating temperature range ( $T_A = -40^\circ C$  to  $+85^\circ C$ ) are guaranteed by design and characterization, unless otherwise noted.)

| PARAMETER                                                                                        | SYMBOL       | CONDITIONS                                                                 | MIN                  | TYP | MAX  | UNITS   |
|--------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------|----------------------|-----|------|---------|
| <b>POWER SUPPLY</b>                                                                              |              |                                                                            |                      |     |      |         |
| $V_{IO}$ Voltage Range                                                                           | $V_{IO}$     |                                                                            | 1.7                  | 1.8 | 3.6  | V       |
| $V_{IO}$ Bias Current                                                                            |              | $V_{IO} = 3.6V$ , $V_{SDA} = V_{SCL} = 0V$ or $3.6V$ , $T_A = +25^\circ C$ | -1                   | 0   | +1   | $\mu A$ |
|                                                                                                  |              | $V_{IO} = 1.7V$ , $V_{SDA} = V_{SCL} = 0V$ or $1.7V$                       | -1                   | 0   | +1   |         |
| <b>SDA and SCL I/O Stage</b>                                                                     |              |                                                                            |                      |     |      |         |
| SCL, SDA Input High Voltage                                                                      | $V_{IH}$     | $V_{IO} = 1.7V$ to $3.6V$                                                  | $0.7 \times V_{IO}$  |     |      | V       |
| SCL, SDA Input Low Voltage                                                                       | $V_{IL}$     | $V_{IO} = 1.7V$ to $3.6V$                                                  | $0.3 \times V_{IO}$  |     |      | V       |
| SCL, SDA Input Hysteresis                                                                        | $V_{HYS}$    |                                                                            | $0.05 \times V_{IO}$ |     |      | V       |
| SCL, SDA Input Leakage Current                                                                   | $I_I$        | $V_{IO} = 3.6V$ , $V_{SCL} = V_{SDA} = 0V$ and $3.6V$                      | -10                  |     | +10  | $\mu A$ |
| SDA Output Low Voltage                                                                           | $V_{OL}$     | Sinking 20mA                                                               |                      |     | 0.4  | V       |
| SCL, SDA Pin Capacitance                                                                         | $C_I$        |                                                                            |                      | 10  |      | pF      |
| Output Fall Time from $V_{IH}$ to $V_{IL}$ (Note 11)                                             | $t_{OF}$     |                                                                            |                      |     | 120  | ns      |
| <b>I<sup>2</sup>C-COMPATIBLE INTERFACE TIMING (STANDARD, FAST, AND FAST MODE PLUS) (Note 11)</b> |              |                                                                            |                      |     |      |         |
| Clock Frequency                                                                                  | $f_{SCL}$    |                                                                            | 0                    |     | 1000 | kHz     |
| Hold Time (REPEATED) START Condition                                                             | $t_{HD;STA}$ |                                                                            | 0.26                 |     |      | $\mu s$ |
| SCL Low Period                                                                                   | $t_{LOW}$    |                                                                            | 0.5                  |     |      | $\mu s$ |
| SCL High Period                                                                                  | $t_{HIGH}$   |                                                                            | 0.26                 |     |      | $\mu s$ |
| Setup Time REPEATED START Condition                                                              | $t_{SU;STA}$ |                                                                            | 0.26                 |     |      | $\mu s$ |
| Data Hold Time                                                                                   | $t_{HD;DAT}$ |                                                                            | 0                    |     |      | $\mu s$ |
| Data Setup Time                                                                                  | $t_{SU;DAT}$ |                                                                            | 50                   |     |      | ns      |
| Setup Time for STOP Condition                                                                    | $t_{SU;STO}$ |                                                                            | 0.26                 |     |      | $\mu s$ |
| Bus Free Time between STOP and START Condition                                                   | $t_{BUF}$    |                                                                            | 0.5                  |     |      | $\mu s$ |
| Pulse Width of Suppressed Spikes                                                                 | $t_{SP}$     | Maximum pulse width of spikes that must be suppressed by the input filter  |                      | 50  |      | ns      |
| <b>I<sup>2</sup>C-COMPATIBLE INTERFACE TIMING (HIGH-SPEED MODE, CB = 100pF) (Note 11)</b>        |              |                                                                            |                      |     |      |         |
| Clock Frequency                                                                                  | $f_{SCL}$    |                                                                            |                      | 3.4 |      | MHz     |
| Setup Time REPEATED START Condition                                                              | $t_{SU;STA}$ |                                                                            | 160                  |     |      | ns      |
| Hold Time (REPEATED) START Condition                                                             | $t_{HD;STA}$ |                                                                            | 160                  |     |      | ns      |

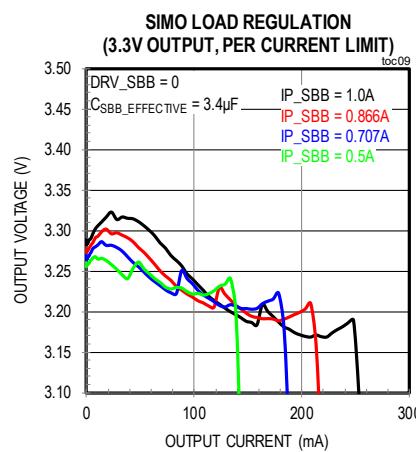
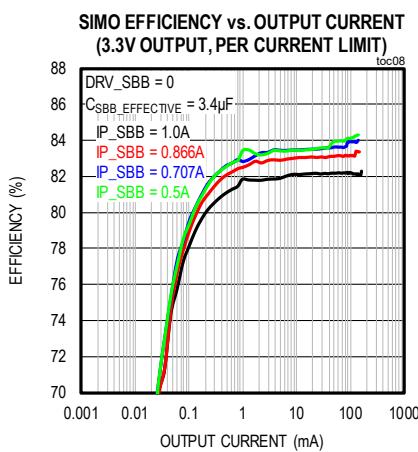
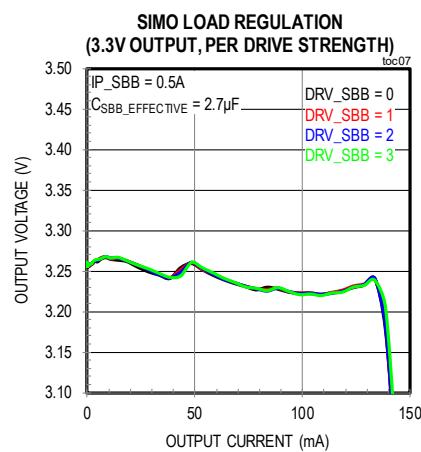
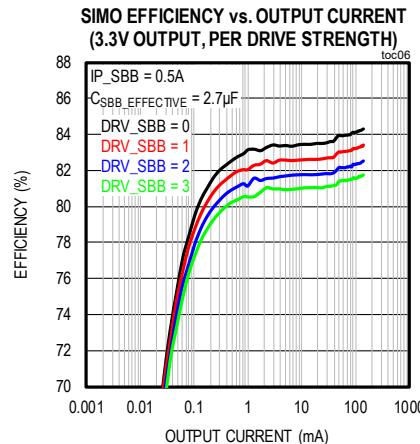
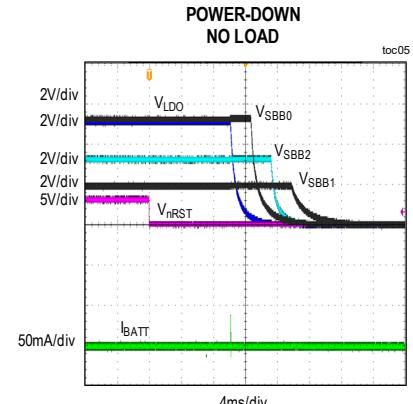
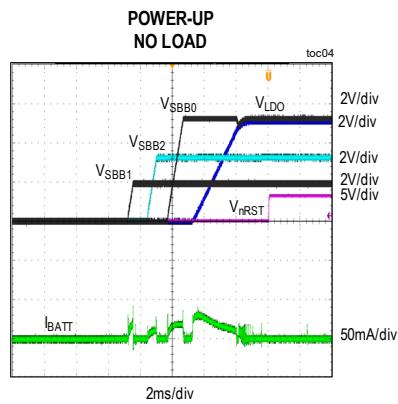
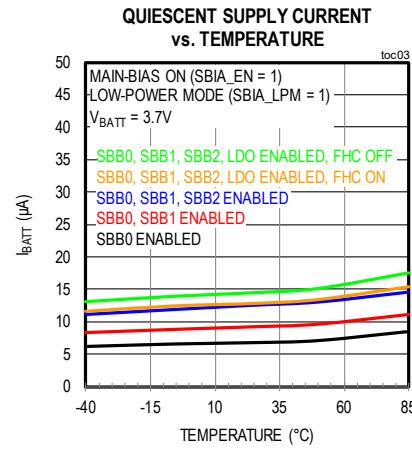
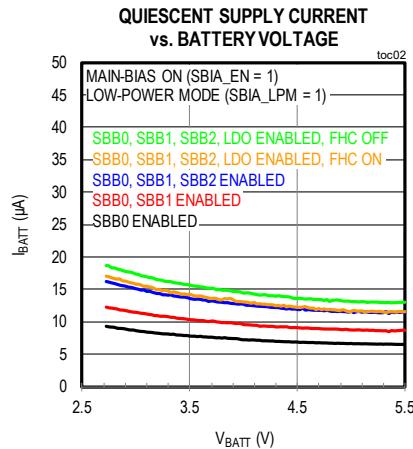
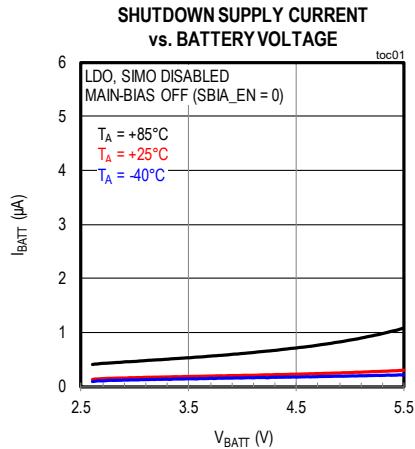
MAX77278

**Ultra-Low Power PMIC with 3-Output SIMO,  
Power Path Charger Optimized for Small Li+, 425mA  
Current Sink, and 8 GPIOs**

**Electrical Characteristics—I<sup>2</sup>C (continued)**

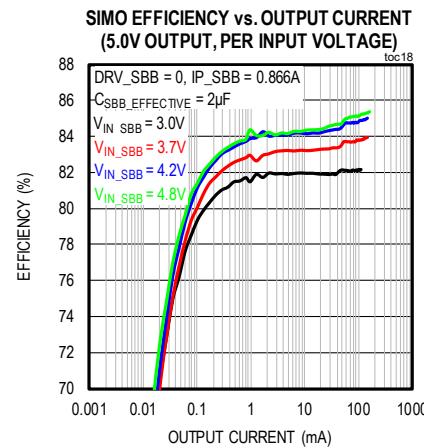
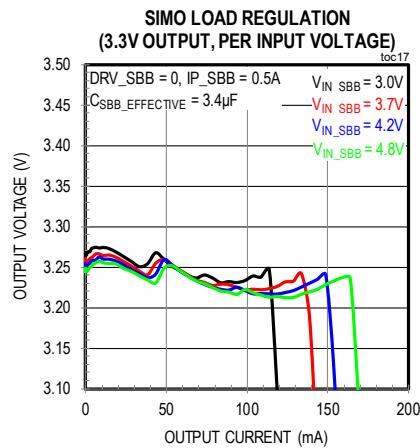
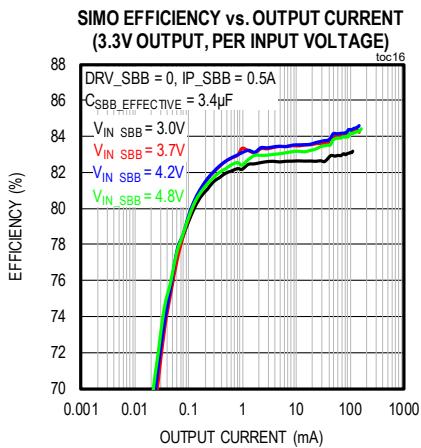
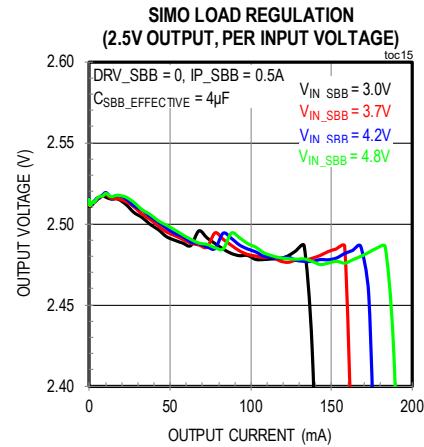
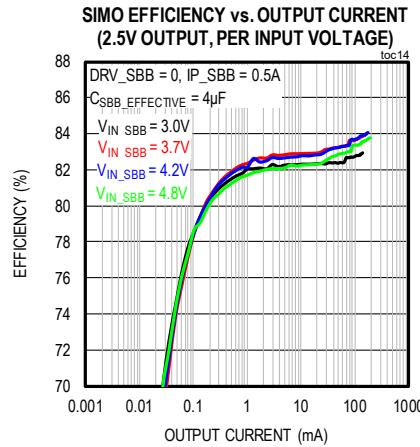
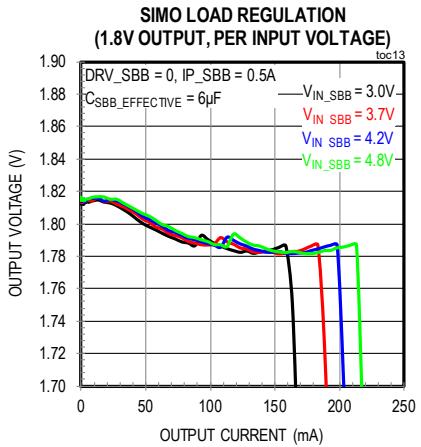
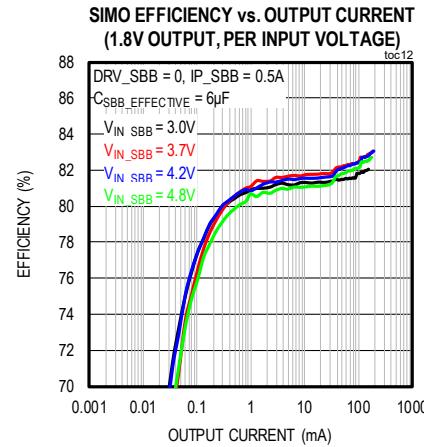
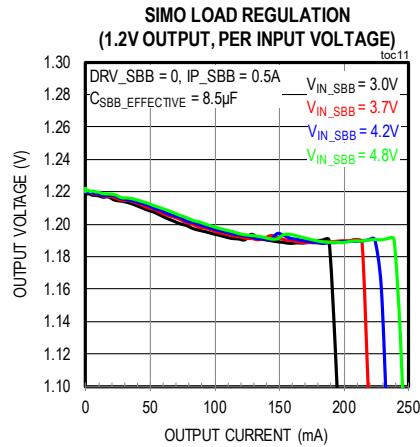
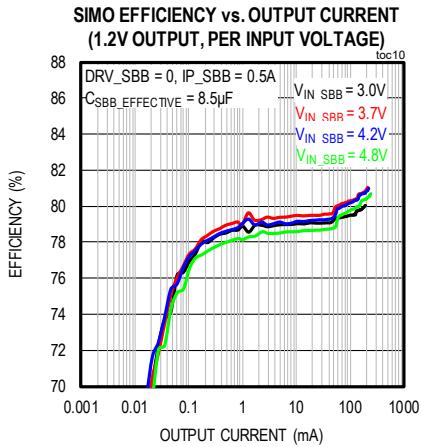
( $V_{SYS} = 3.7V$ ,  $V_{IO} = 1.8V$ , limits are 100% production tested at  $T_A = +25^\circ C$ , limits over the operating temperature range ( $T_A = -40^\circ C$  to  $+85^\circ C$ ) are guaranteed by design and characterization, unless otherwise noted.)

| PARAMETER                                                                        | SYMBOL       | CONDITIONS                                                                | MIN | TYP | MAX | UNITS |
|----------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------|-----|-----|-----|-------|
| SCL Low Period                                                                   | $t_{LOW}$    |                                                                           | 160 |     |     | ns    |
| SCL High Period                                                                  | $t_{HIGH}$   |                                                                           | 60  |     |     | ns    |
| Data Setup Time                                                                  | $t_{SU;DAT}$ |                                                                           | 10  |     |     | ns    |
| Data Hold Time                                                                   | $t_{HD;DAT}$ |                                                                           | 0   | 70  |     | ns    |
| SCL Rise Time                                                                    | $t_{rCL}$    | $T_A = +25^\circ C$                                                       | 10  | 40  |     | ns    |
| Rise Time of SCL Signal after REPEATED START Condition and after Acknowledge Bit | $t_{rCL1}$   | $T_A = +25^\circ C$                                                       | 10  | 80  |     | ns    |
| SCL Fall Time                                                                    | $t_{fCL}$    | $T_A = +25^\circ C$                                                       | 10  | 40  |     | ns    |
| SDA Rise Time                                                                    | $t_{rDA}$    | $T_A = +25^\circ C$                                                       | 10  | 80  |     | ns    |
| SDA Fall Time                                                                    | $t_{fDA}$    | $T_A = +25^\circ C$                                                       | 10  | 80  |     | ns    |
| Setup Time for STOP Condition                                                    | $t_{SU;STO}$ |                                                                           | 160 |     |     | ns    |
| Bus Capacitance                                                                  | $C_B$        |                                                                           |     |     | 100 | pF    |
| Pulse Width of Suppressed Spikes                                                 | $t_{SP}$     | Maximum pulse width of spikes that must be suppressed by the input filter |     | 10  |     | ns    |










**I<sup>2</sup>C-COMPATIBLE INTERFACE TIMING (HIGH-SPEED MODE, CB = 400pF) (Note 11)**

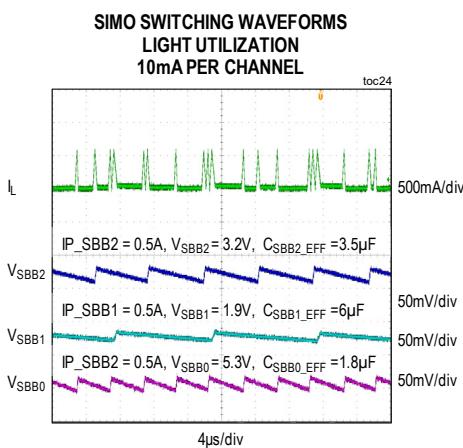
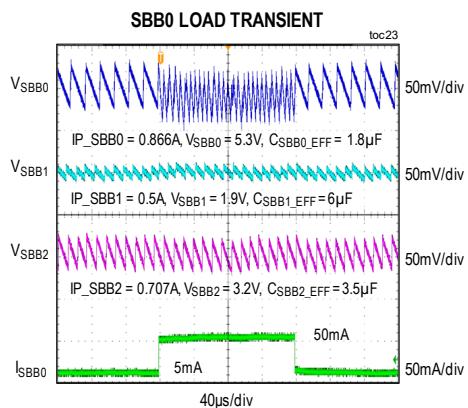
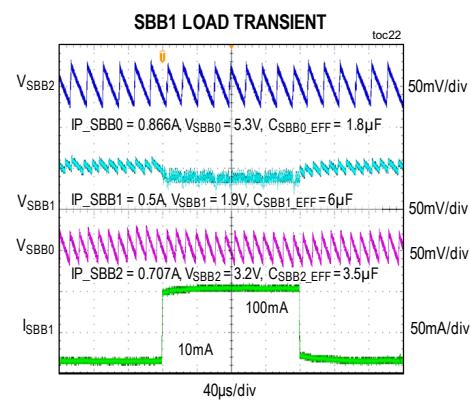
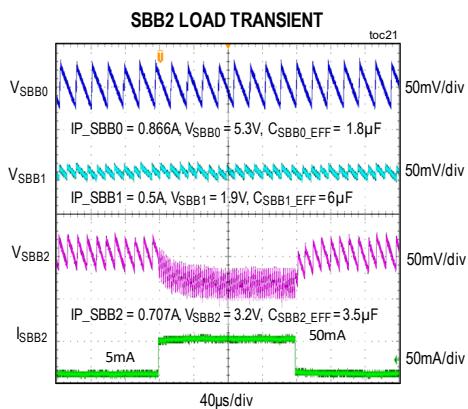
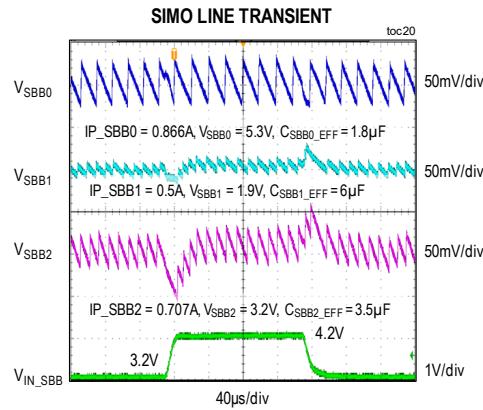
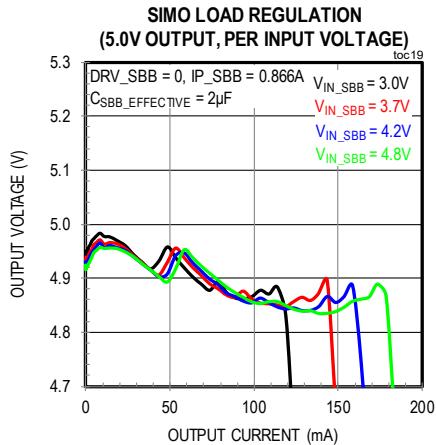
|                                                                                  |              |                                                                           |     |     |    |
|----------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------|-----|-----|----|
| Clock Frequency                                                                  | $f_{SCL}$    |                                                                           | 1.7 | MHz |    |
| Setup Time REPEATED START Condition                                              | $t_{SU;STA}$ |                                                                           | 160 | ns  |    |
| Hold Time (REPEATED) START Condition                                             | $t_{HD;STA}$ |                                                                           | 160 | ns  |    |
| SCL Low Period                                                                   | $t_{LOW}$    |                                                                           | 320 | ns  |    |
| SCL High Period                                                                  | $t_{HIGH}$   |                                                                           | 120 | ns  |    |
| Data Setup Time                                                                  | $t_{SU;DAT}$ |                                                                           | 10  | ns  |    |
| Data Hold Time                                                                   | $t_{HD;DAT}$ |                                                                           | 0   | 150 | ns |
| SCL Rise Time                                                                    | $t_{rCL}$    | $T_A = +25^\circ C$                                                       | 20  | 80  | ns |
| Rise Time of SCL Signal after REPEATED START Condition and after Acknowledge Bit | $t_{rCL1}$   | $T_A = +25^\circ C$                                                       | 20  | 80  | ns |
| SCL Fall Time                                                                    | $t_{fCL}$    | $T_A = +25^\circ C$                                                       | 20  | 80  | ns |
| SDA Rise Time                                                                    | $t_{rDA}$    | $T_A = +25^\circ C$                                                       | 20  | 160 | ns |
| SDA Fall Time                                                                    | $t_{fDA}$    | $T_A = +25^\circ C$                                                       | 20  | 160 | ns |
| Setup Time for STOP Condition                                                    | $t_{SU;STO}$ |                                                                           | 160 | ns  |    |
| Bus Capacitance                                                                  | $C_B$        |                                                                           |     | 400 | pF |
| Pulse Width of Suppressed Spikes                                                 | $t_{SP}$     | Maximum pulse width of spikes that must be suppressed by the input filter | 10  |     | ns |

**Note 11:** Design guidance only. Not production tested.










## Typical Operating Characteristics

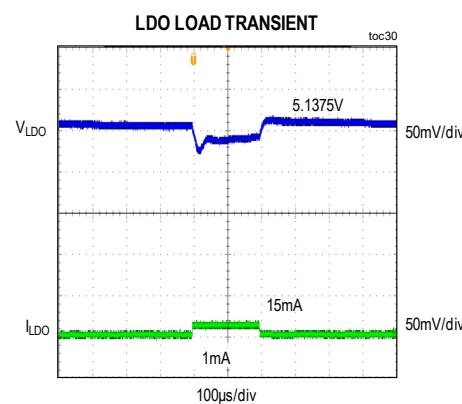
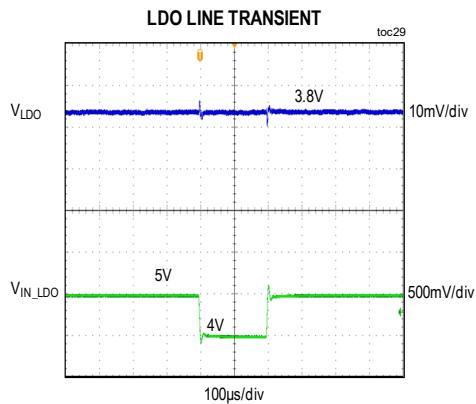
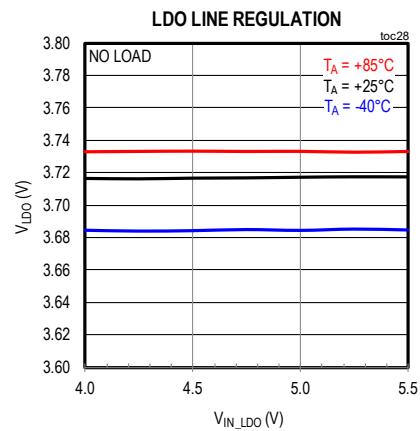
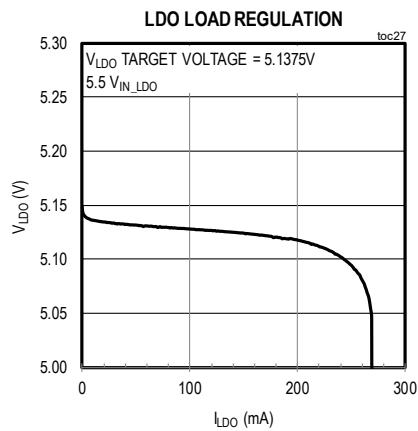
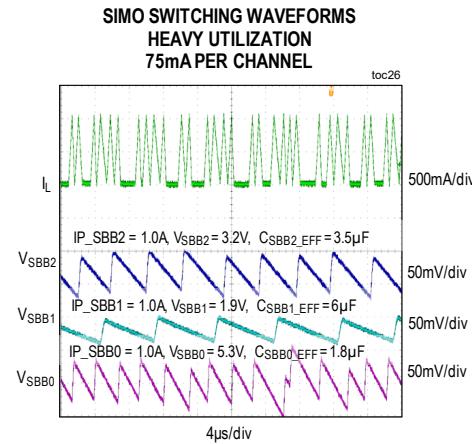
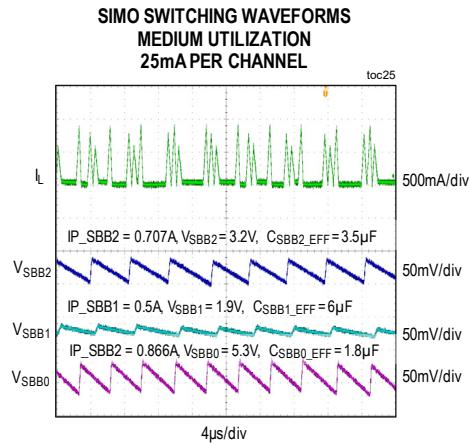
(*Typical Application Circuit*,  $V_{CHGIN} = 0V$ ,  $V_{SYS} = V_{IN\_SBB} = 3.7V$ ,  $V_{BATT} = 3.7V$ ,  $V_{IO} = 1.8V$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)  
 $(T_A = +25^\circ C$ , unless otherwise noted.)









## Typical Operating Characteristics (continued)

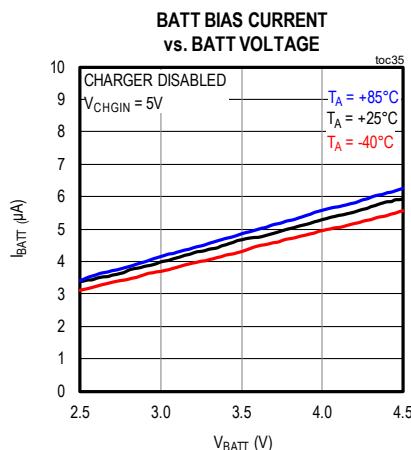
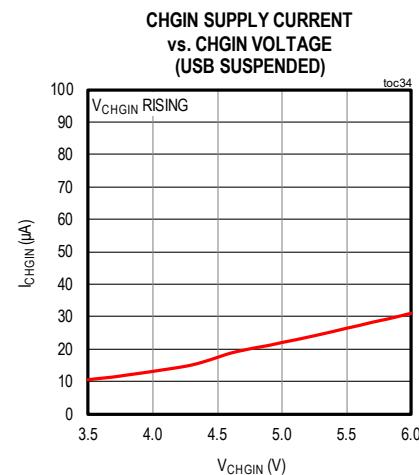
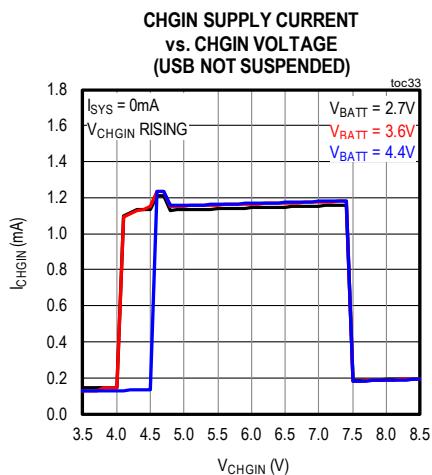
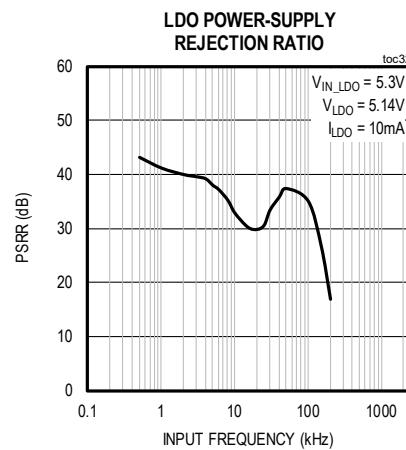
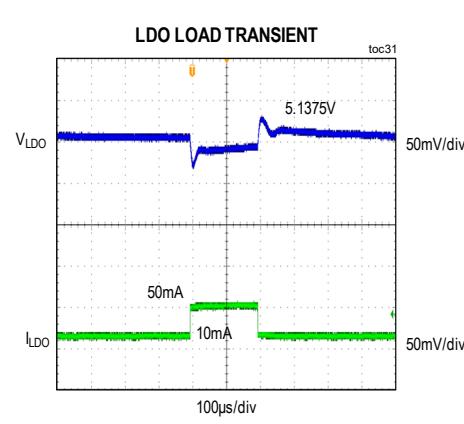
(*Typical Application Circuit*,  $V_{CHGIN} = 0V$ ,  $V_{SYS} = V_{IN\_SBB} = 3.7V$ ,  $V_{BATT} = 3.7V$ ,  $V_{IO} = 1.8V$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)  
 $(T_A = +25^\circ C$ , unless otherwise noted.)









## Typical Operating Characteristics (continued)

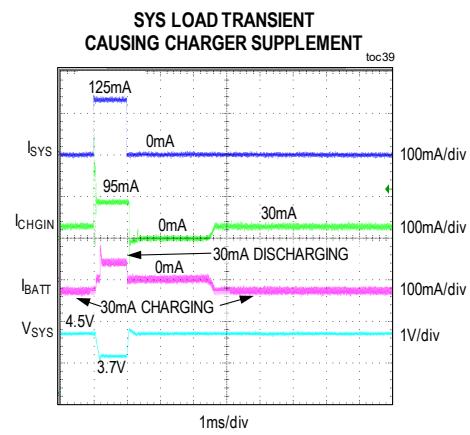
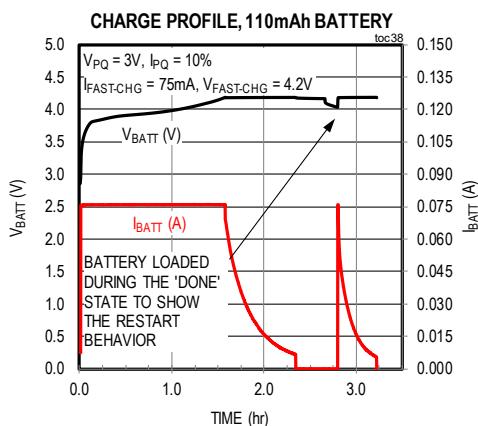
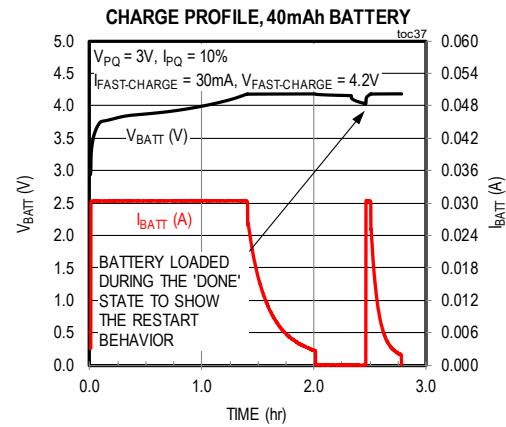
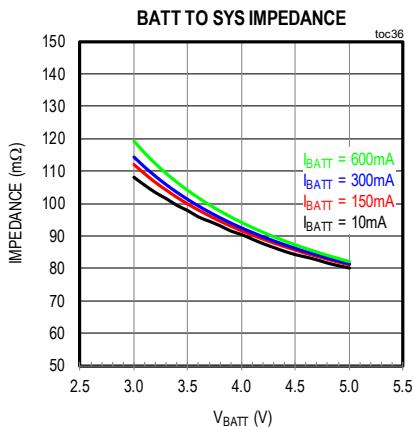
(*Typical Application Circuit*,  $V_{CHGIN} = 0V$ ,  $V_{SYS} = V_{IN\_SBB} = 3.7V$ ,  $V_{BATT} = 3.7V$ ,  $V_{IO} = 1.8V$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)  
( $T_A = +25^\circ C$ , unless otherwise noted.)



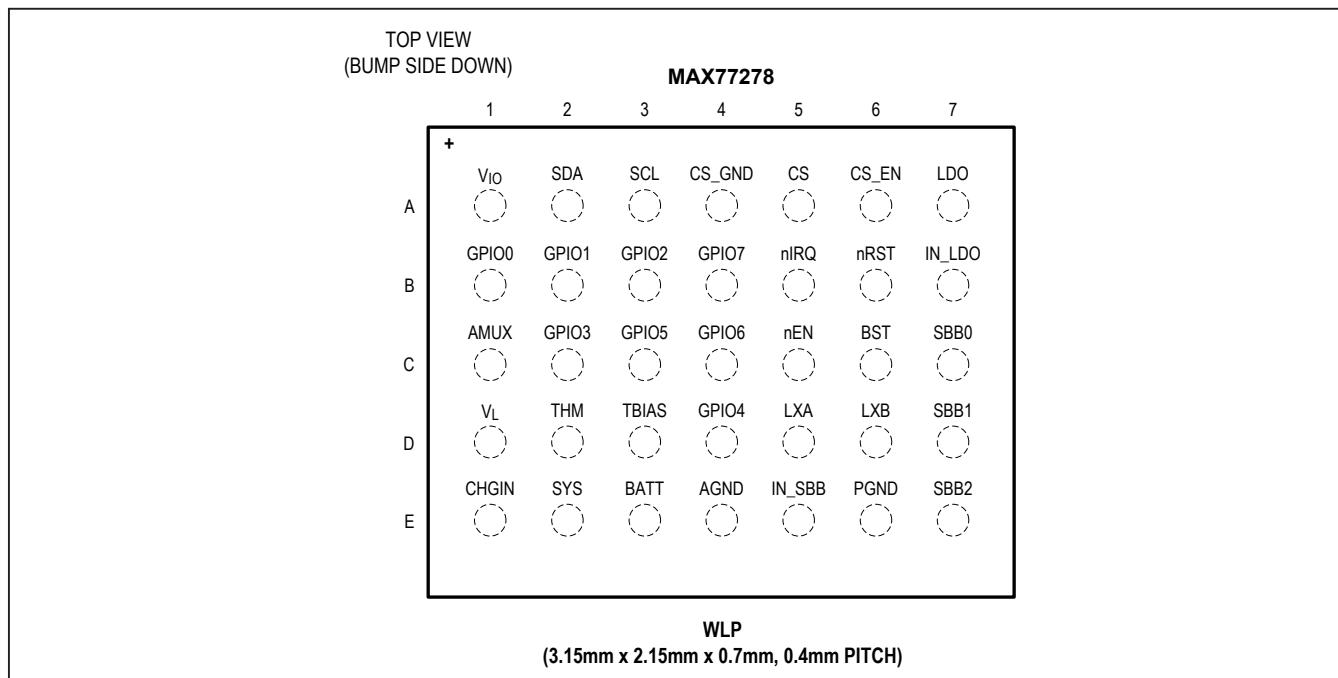





## Typical Operating Characteristics (continued)

(*Typical Application Circuit*,  $V_{CHGIN} = 0V$ ,  $V_{SYS} = V_{IN\_SBB} = 3.7V$ ,  $V_{BATT} = 3.7V$ ,  $V_{IO} = 1.8V$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)  
( $T_A = +25^\circ C$ , unless otherwise noted.)







## Typical Operating Characteristics (continued)

(*Typical Application Circuit*,  $V_{CHGIN} = 0V$ ,  $V_{SYS} = V_{IN\_SBB} = 3.7V$ ,  $V_{BATT} = 3.7V$ ,  $V_{IO} = 1.8V$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)  
( $T_A = +25^\circ C$ , unless otherwise noted.)




## Typical Operating Characteristics (continued)

(*Typical Application Circuit*,  $V_{CHGIN} = 0V$ ,  $V_{SYS} = V_{IN\_SBB} = 3.7V$ ,  $V_{BATT} = 3.7V$ ,  $V_{IO} = 1.8V$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)  
( $T_A = +25^\circ C$ , unless otherwise noted.)



## Bump Configuration



## Bump Description

| PIN              | NAME            | FUNCTION                                                                                                                                                                             | TYPE           |
|------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <b>TOP LEVEL</b> |                 |                                                                                                                                                                                      |                |
| A1               | V <sub>IO</sub> | I <sup>2</sup> C Interface Power                                                                                                                                                     | power input    |
| A2               | SDA             | I <sup>2</sup> C Data                                                                                                                                                                | digital I/O    |
| A3               | SCL             | I <sup>2</sup> C Clock                                                                                                                                                               | digital input  |
| B1               | GPIO0           | General-Purpose Input/Output. The GPIO I/O stage is internally biased with V <sub>SYS</sub> .                                                                                        | digital I/O    |
| B2               | GPIO1           | General-Purpose Input/Output. The GPIO I/O stage is internally biased with V <sub>SYS</sub> .                                                                                        | digital I/O    |
| B3               | GPIO2           | General-Purpose Input/Output. The GPIO I/O stage is internally biased with V <sub>SYS</sub> .                                                                                        | digital I/O    |
| B4               | GPIO7           | General-Purpose Input/Output. The GPIO I/O stage is internally biased with V <sub>SYS</sub> .                                                                                        | digital I/O    |
| B5               | nIRQ            | Active-Low, Open-Drain Interrupt Output. Connect a 100kΩ pullup resistor between nIRQ and a voltage equal to or less than V <sub>SYS</sub> .                                         | digital output |
| B6               | nRST            | Active-Low, Open-Drain Reset Output. Connect a 100kΩ pullup resistor between nRST and a voltage equal to or less than V <sub>SYS</sub> .                                             | digital output |
| C2               | GPIO3           | General-Purpose Input/Output. The GPIO I/O stage is internally biased with V <sub>SYS</sub> .                                                                                        | digital I/O    |
| C3               | GPIO5           | General-Purpose Input/Output. The GPIO I/O stage is internally biased with V <sub>SYS</sub> .                                                                                        | digital I/O    |
| C4               | GPIO6           | General-Purpose Input/Output. The GPIO I/O stage is internally biased with V <sub>SYS</sub> .                                                                                        | digital I/O    |
| C5               | nEN             | Active-Low Enable Input. nEN supports push-button or slide-switch configurations. Connect a 100kΩ pullup resistor between nEN and a voltage equal to or less than V <sub>SYS</sub> . | digital input  |
| D4               | GPIO4           | General-Purpose Input/Output. The GPIO I/O stage is internally biased with V <sub>SYS</sub> .                                                                                        | digital I/O    |
| E4               | AGND            | Quiet Ground. Connect AGND, PGND, and CS_GND to the low-impedance ground plane of the PCB and negative battery terminal.                                                             | ground         |

**Bump Description (continued)**

| PIN                    | NAME           | FUNCTION                                                                                                                                                                                                 | TYPE          |
|------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| <b>CHARGER</b>         |                |                                                                                                                                                                                                          |               |
| C1                     | AMUX           | Analog Multiplexer Output. Connect to system ADC to perform conversions on charger power signals.                                                                                                        | analog output |
| D1                     | V <sub>L</sub> | Internal Charger 3V Logic Supply Powered from CHGIN. Bypass to AGND with a 1 $\mu$ F ceramic capacitor. Do not load V <sub>L</sub> externally.                                                           | power         |
| D2                     | THM            | Thermistor Monitor. Thermally couple an NTC to the battery and connect between THM and AGND.                                                                                                             | analog input  |
| D3                     | TBIAS          | Thermistor Bias Supply. Connect a resistor equal to the NTC's room temperature resistance between TBIAS and THM. Do not load TBIAS with other external circuitry.                                        | analog        |
| E1                     | CHGIN          | Charger Input. Connect to a DC charging source. Bypass to AGND with a 4.7 $\mu$ F ceramic capacitor.                                                                                                     | power input   |
| E2                     | SYS            | System Power Output. SYS provides power to the system resources as well as the control logic of the device. Bypass to AGND with a 22 $\mu$ F ceramic capacitor.                                          | power output  |
| E3                     | BATT           | Li+ Battery Connection. Connect to positive battery terminal. Bypass to AGND with a 4.7 $\mu$ F ceramic capacitor.                                                                                       | power I/O     |
| <b>LDO</b>             |                |                                                                                                                                                                                                          |               |
| A7                     | LDO            | Linear Regulator Output. Bypass to AGND with a 10 $\mu$ F ceramic capacitor.                                                                                                                             | power output  |
| B7                     | IN_LDO         | Linear Regulator Input. Bypass to AGND with a 10 $\mu$ F ceramic capacitor. Maintain minimum stability requirements. See the <a href="#">Output Capacitor Selection</a> section for details.             | power input   |
| <b>IR-LED CS</b>       |                |                                                                                                                                                                                                          |               |
| A4                     | CS_GND         | Power Ground for the Current Sink. Connect CS_GND, PGND, and AGND to the low-impedance ground plane of the PCB and negative battery terminal.                                                            | ground        |
| A5                     | CS             | Current Sink Port. CS is typically connected to the cathode of an LED and is capable of sinking up to 425mA of pulsed current.                                                                           | power         |
| A6                     | CS_EN          | Current Sink Enable Input. Internally biased with V <sub>IO</sub> . Connect to ground if unused.                                                                                                         | digital input |
| <b>SIMO BUCK BOOST</b> |                |                                                                                                                                                                                                          |               |
| C6                     | BST            | SIMO Power Input for the High-Side Output NMOS Drivers. Connect a 3300pF ceramic capacitor between BST and LXB.                                                                                          | power input   |
| C7                     | SBB0           | SIMO Buck-Boost Output 0. SBB0 is the power output for channel 0 of the SIMO buck-boost. Bypass SBB0 to PGND with a 10 $\mu$ F ceramic capacitor.                                                        | power output  |
| D5                     | LXA            | Switching Node A. LXA is driven between PGND and IN_SBB when any SIMO channel is enabled. LXA is driven to PGND when all SIMO channels are disabled. Connect a 1.5 $\mu$ H inductor between LXA and LXB. | power I/O     |
| D6                     | LXB            | Switching Node B. LXB is driven between PGND and SBBx when SBBx is enabled. LXB is driven to PGND when all SIMO channels are disabled. Connect a 1.5 $\mu$ H inductor between LXA and LXB.               | power I/O     |
| D7                     | SBB1           | SIMO Buck-Boost Output 1. SBB1 is the power output for channel 1 of the SIMO buck-boost. Bypass SBB1 to PGND with a 10 $\mu$ F ceramic capacitor.                                                        | power output  |
| E5                     | IN_SBB         | SIMO Power Input. Connect to SYS and bypass to PGND with a 22 $\mu$ F ceramic capacitor as close as possible to the IN_SBB pin.                                                                          | power input   |
| E6                     | PGND           | Power Ground for the SIMO Low-Side FETs. Connect PGND, AGND, and CS_GND to the low-impedance ground plane of the PCB and negative battery terminal.                                                      | ground        |
| E7                     | SBB2           | SIMO Buck-Boost Output 2. SBB2 is the power output for channel 2 of the SIMO buck boost. Bypass SBB2 to PGND with a 10 $\mu$ F ceramic capacitor.                                                        | power output  |

## Detailed Description

The MAX77278 provides a highly-integrated battery charging and power-management solution for low-power applications. The linear charger provides a wide range of charge current and charger termination voltage options to charge various Li+ batteries. Temperature monitoring and JEITA compliance settings add additional functionality and safety to the charger.

This device integrates four regulators. See [Table 1](#). A single-inductor, multiple output (SIMO) buck-boost regulator efficiently provides three independently programmable power rails. A 50mA LDO provides ripple rejection for audio and other low-noise applications.

The device includes other features such as a programmable current sink that can be used to drive an IR-LED, 8 GPIO control pins, and an analog multiplex (AMUX) output that provides access to useful battery charging signals. A bidirectional I<sup>2</sup>C interface allows for configuring and checking the status of the devices. An internal on/off controller provides a controlled startup sequence for the regulators and provides supervisory functionality when the devices are on. Numerous factory programmable options allow the device to be tailored for many applications, enabling faster time to market.

## Support Materials

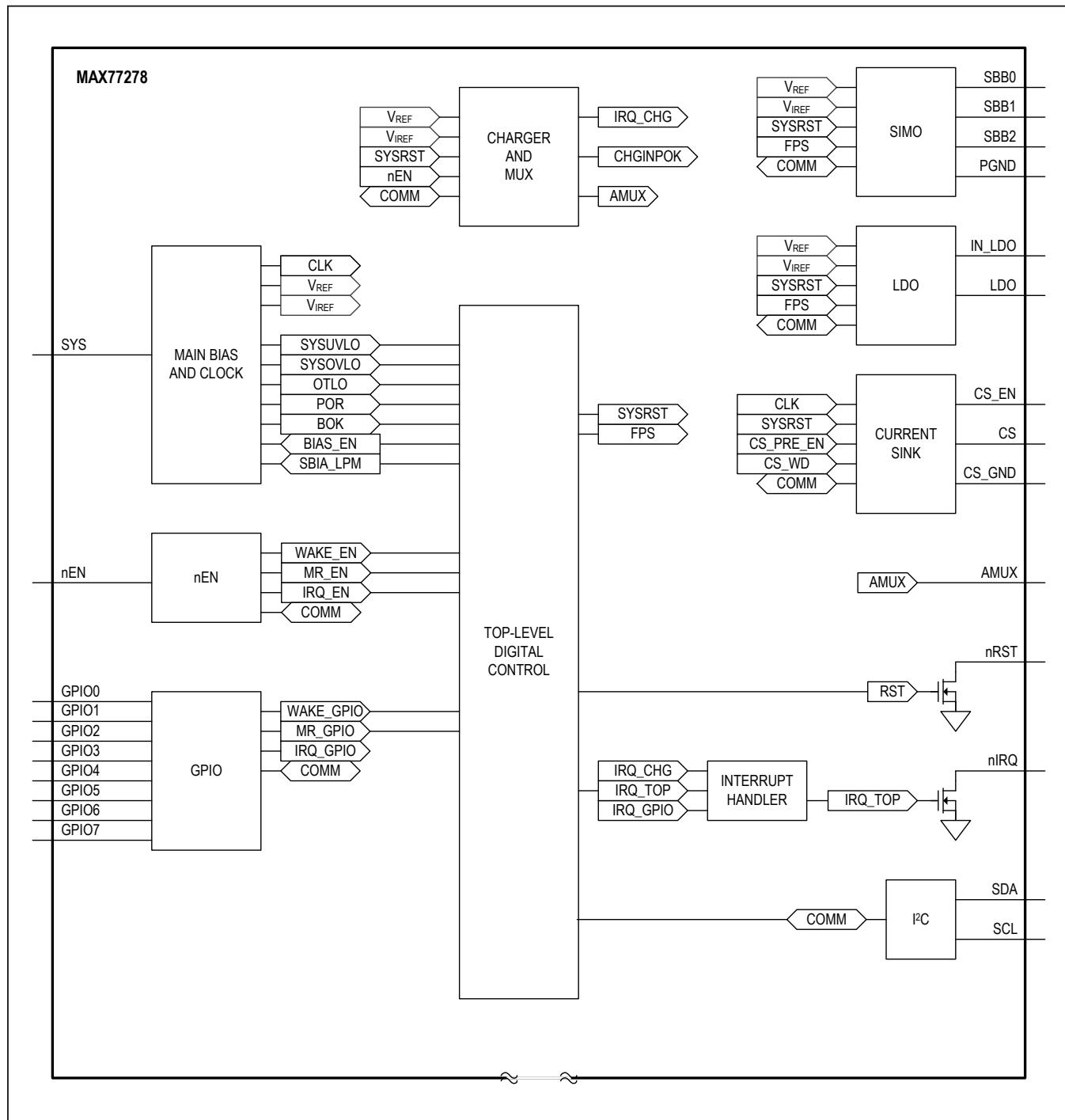
The following support materials are available for this device:

- [AN6490: MAX77278 Programmer's Guide](#) provides a description of all device registers, as well as software implementation advice.
- [AN6474: MAX77278 I<sup>2</sup>C-Compatible Serial Interface Implementation Guide](#) provides a detailed look at the I<sup>2</sup>C-compatible serial interface and standard read/write patterns.
- [MAX77278 SIMO Calculator](#) details the SIMO design procedure. See the [SIMO Available Output Current](#) section of the data sheet for more information.

Visit the product page at [www.maximintegrated.com/MAX77278](http://www.maximintegrated.com/MAX77278) and/or contact Maxim for more information.

## Top-Level Interconnect Simplified Diagram

[Figure 1](#) shows the same major blocks as the [Typical Application Circuit](#) with an increased emphasis on the routing between each block. This diagram is intended to familiarize the user with the landscape of the device. Many of the details associated with these signals are discussed throughout the data sheet. At this stage of the data sheet, note the addition of the main bias and clock block that are not shown in the [Typical Application Circuit](#). The main bias and clock block provides voltage, current, and clock references for other blocks as well as many resources for the top-level digital control.


**Table 1. Regulator Summary**

| REGULATOR NAME | REGULATOR TOPOLOGY | MAXIMUM I <sub>OUT</sub> (mA) | V <sub>IN</sub> RANGE | MAX77278 V <sub>OUT</sub> RANGE/RESOLUTION |
|----------------|--------------------|-------------------------------|-----------------------|--------------------------------------------|
| <b>SBB0</b>    | SIMO               | up to 300*                    | 2.8 to 5.5V           | 2.35V to 5.5V in 50mV steps                |
| <b>SBB1</b>    | SIMO               | up to 300*                    | 2.8 to 5.5V           | 1.412V to 2.2V in 12.5mV steps             |
| <b>SBB2</b>    | SIMO               | up to 300*                    | 2.8 to 5.5V           | 0.85 to 4V in 50mV steps                   |
| <b>LDO</b>     | PMOS LDO           | up to 50*                     | 3.733 to 5.5V         | 3.713 to 5.3V in 12.5mV steps              |

\*Shared capacity with other SBBx channels. See the [SIMO Available Output Current](#) section for more information.

MAX77278

# Ultra-Low Power PMIC with 3-Output SIMO, Power Path Charger Optimized for Small Li+, 425mA Current Sink, and 8 GPIOs



*Figure 1. Top-Level Interconnect Simplified Diagram*

## Detailed Description—Global Resources

The global resources encompass a set of circuits that serve the entire device and ensure safe, consistent, and reliable operation.

## Features and Benefits

- Voltage Monitors
  - SYS POR (power-on-reset) comparator generates a reset signal upon power-up.
  - SYS undervoltage ensures repeatable behavior when power is applied to and removed from the device.
  - SYS overvoltage monitor inhibits operation with overvoltage power sources to ensure reliability in faulty environments.
- Thermal Monitors
  - 165°C junction temperature shutdown
- Manual Reset
  - 8s/16s period (OTP programmable)
- Wake-Up Events
  - Charger insertion (with 120ms debounce)
  - nEN input assertion
  - GPIO input assertion
- Interrupt Handler
  - Interrupt output (nIRQ)
  - All interrupts are maskable
- Push-Button/Slide-Switch On-Key (nEN)
  - Configurable push-button/slide-switch functionality
  - 100µs or 30ms debounce timer interfaces directly with mechanical switches
- On/Off Controller
  - Startup/shutdown sequencing
  - Programmable sequencing delay
- nRST Digital Output

## Voltage Monitors

The device monitors the system voltage ( $V_{SYS}$ ) to ensure proper operation using three comparators (POR, UVLO, and OVLO). These comparators include hysteresis to prevent their outputs from toggling between states during noisy system transitions.

### SYS POR Comparator

The SYS POR comparator monitors  $V_{SYS}$  and generates a power-on reset signal (POR). When  $V_{SYS}$  is below  $V_{POR}$ , the device is held in reset ( $SYSRST = 1$ ). When  $V_{SYS}$  rises above  $V_{POR}$ , internal signals and on-chip memory stabilize and the device is released from reset ( $SYSRST = 0$ ).

### SYS Undervoltage Lockout Comparator

The SYS undervoltage lockout (UVLO) comparator monitors  $V_{SYS}$  and generates a  $SYSUVLO$  signal when the  $V_{SYS}$  falls below UVLO threshold. The  $SYSUVLO$  signal is provided to the top-level digital controller. See [Figure 4](#) and [Table 2](#) for additional information regarding the UVLO comparator:

- When the device is in the STANDBY state, the UVLO comparator is disabled.
- When transitioning out of the STANDBY state, the UVLO comparator is enabled allowing the device to check for sufficient input voltage. If the device has sufficient input voltage, it can transition to the on state; if there is insufficient input voltage, the device transitions back to the STANDBY state.

### SYS Overvoltage Lockout Comparator

The device is rated for 5.5V maximum operating voltage ( $V_{SYS}$ ) with an absolute maximum input voltage of 6.0V. An overvoltage lockout monitor increases the robustness of the device by inhibiting operation when the supply voltage is greater than  $V_{SYSOVLO}$ . See [Figure 4](#) and [Table 2](#) for additional information regarding the OVLO comparator:

- When the device is in the STANDBY state, the OVLO comparator is disabled.

### nEN Enable Input

nEN is an active-low internally debounced digital input that typically comes from the system's on-key. The debounce time is programmable with  $DBEN_{nEN}$ . The primary purpose of this input is to generate a wake-up signal for the PMIC that turns on the regulators. Maskable rising/falling interrupts are available for nEN ( $nEN_R$  and  $nEN_F$ ) for alternate functionality.

The nEN input can be configured to work either with a momentary push-button (nEN\_MODE = 0) or a persistent slide-switch (nEN\_MODE = 1). See [Figure 2](#) for more information. In both push-button mode and slide-switch mode, the on/off controller looks for a falling edge on the nEN input to initiate a power-up sequence.

### nEN Manual Reset

nEN works as a manual reset input when the on/off controller is in the on via on/off controller state. The manual reset function is useful for forcing a power-down in case the communication with the processor fails. When nEN is configured for a push-button mode and the input is asserted (nEN = low) for an extended period (tMRST), the on/off controller initiates a power-down sequence and goes to standby mode. When nEN is configured for a slide-switch mode and the input is deasserted (nEN = high) for an extended period (tMRST), the on/off controller initiates a power-down sequence and goes to standby mode.

A dedicated internal oscillator is used to create the 30ms ( $t_{DBNC\_nEN}$ ) and 16s ( $t_{MRST}$ ) timers for nEN. Whenever the device is actively counting either of these times, the supply current increases by the oscillator's supply current (65 $\mu$ A when the battery voltage is at 3.7V). As soon as the event driving the timer goes away or is fulfilled, the oscillator automatically turns off and its supply current goes away.

### nEN Dual-Functionality: Push-Button vs. Slide-Switch

The nEN digital input can be configured to work with a push-button switch or a slide-switch. [Figure 2](#) shows nEN's dual functionality for power-on sequencing and manual reset. The default configuration of the device is push-button mode (nEN\_MODE = 0) and no additional programming is necessary. Applications that use a slide-switch on-key configuration must set nEN\_MODE = 1 within tMRST.

### Interrupts (nIRQ)

nIRQ is an active-low, open-drain output that is typically routed to the host processor's interrupt input to signal an important change in the device's status. Refer to the [Programmer's Guide](#) for a comprehensive list of all interrupt bits and status registers.

A pullup resistor to a voltage less than or equal to V<sub>SYS</sub> is required for this node. nIRQ is the logical NOR of all unmasked interrupt bits in the register map.

All interrupts are masked by default. Masked interrupt bits do not cause the nIRQ pin to change. Unmask the interrupt bits to allow nIRQ to assert.

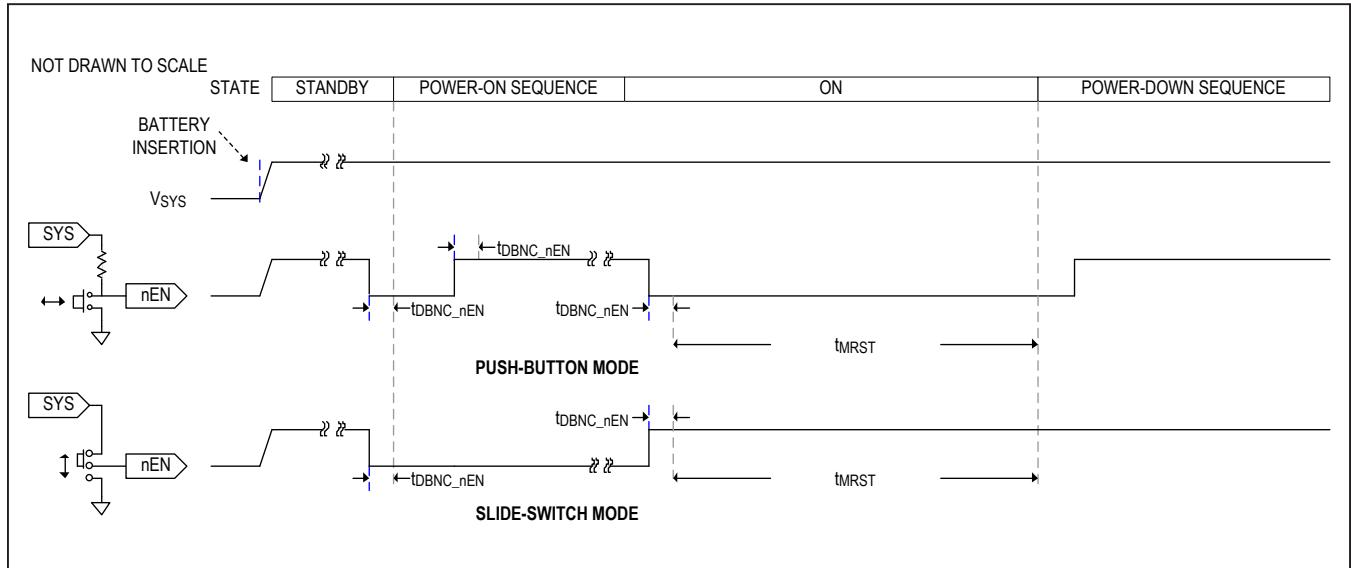



Figure 2. nEN Usage Timing Diagram

### Reset Output (nRST)

nRST is an open-drain, active-low output that typically holds the processor in a reset state when the device is powered down. During a power-up sequence, the nRST deasserts after the last regulator in the power-up chain is enabled ( $t_{RSTOIDD}$ ). During a power-down sequence, the nRST output asserts before any regulator is powered down ( $t_{RSTOAD}$ ). See [Figure 5](#) for nRST timing.

A pullup resistor to a voltage less than or equal to  $V_{SYS}$  is required for this node.

### General-Purpose Input/Output (GPIO)

Eight general-purpose input/outputs (GPIOs) are provided to increase system flexibility. See the GPIO Controller Block Diagram ([Figure 3](#)) for schematic details.

Clear DIRx to configure GPIOx as a general-purpose output (GPO). The GPO can either be in push-pull mode ( $DRVx = 1$ ) or open-drain mode ( $DRVx = 0$ ).

- The push-pull output mode is ideal for applications that need fast (~2ns) edges and low-power consumption.
- The open-drain mode requires an external pullup resistor (typically  $10\text{k}\Omega$ – $100\text{k}\Omega$ ). Connect the external pullup resistor to a bias voltage that is less than or equal to  $V_{SYS}$ .
  - The open-drain mode can be used to communicate to different logic domains. For example, to send a signal from the GPO on a 4.2V logic domain ( $V_{SYS} = 4.2\text{V}$ ) to a device on a 1.2V logic domain, connect the external pullup resistor to 1.2V.
  - The open-drain mode can be used to connect several open-drain (or open-collector) devices together on the same bus to create wired logic (wired AND logic is positive-true; wired OR logic is negative-true).
- The general-purpose input (GPI) functions are still available while the pin is configured as a GPO. In other words, the Dlx (input status) bit still functions properly and does not collide with the state of the DIRx bit.

Set DIRx to disable the output drivers associated with the GPO and have the device function as a GPI. The GPI features a 10ms max debounce timer ( $t_{DBNC\_GPI}$ ) that can be enabled or disabled with DBEN\_GPIx, and programmed to 1.25ms, 2.5ms, 5ms, or 10ms.

- Enable the debounce timer ( $DBEN\_GPIx = 1$ ) if the GPI is connected to a device that can bounce or chatter (like a mechanical switch).
- If the GPI is connected to a circuit with clean logic transitions and no risk of bounce, disable the debounce timer ( $DBEN\_GPIx = 0$ ) to eliminate unnecessary logic delays. With no debounce timer, the GPI input logic propagates to nIRQ in 10ns.

A dedicated internal oscillator is used to create the 1.25ms to 10ms ( $t_{DBNC\_GPI}$ ) debounce timer. Whenever the device is actively counting this time, the supply current increases by the oscillator's supply current (65 $\mu\text{A}$  when the battery voltage is at 3.7V). As soon as the event driving the timer goes away or is fulfilled, the oscillator automatically turns off and its supply current goes away. If GPI is connected to a signal that toggles infrequently, the oscillator supply current is inconsequential. However, if the GPI signal is periodic and greater than 1Hz, this supply current can be detrimental.

Maskable rising and falling interrupts ( $R\_GPIOx$  and  $F\_GPIOx$ ) are available to signal a change in any GPIs status.

- To interrupt on a rising edge only: unmask the rising edge interrupt and mask the falling edge interrupt ( $RM\_GPIOx = 0$ ,  $FM\_GPIOx = 1$ ).
- To interrupt on a falling edge only: unmask the falling edge interrupt and mask the rising edge interrupt ( $RM\_GPIOx = 1$ ,  $FM\_GPIOx = 0$ ).
- To interrupt on either rising or falling edge: unmask both rising and falling edge interrupts ( $RM\_GPIOx = 0$ ,  $FM\_GPIOx = 0$ ). Refer to the [Programmer's Guide](#) for more details.

### GPIO Wake-Up

The GPIOs can be used as active-low wake-up sources for the IC (WAKE\_GPIO).

Configure any GPIO as a general-purpose input (set DIRx = 1) and set the corresponding WK\_ENx bit to configure the GPIO as an active-low wake-up source.

Clear the WK\_ENx bit to prevent the corresponding GPIO from waking up the device.

The reset (default) value of all WK\_ENx and DIRx bits is 1. Therefore, all GPIOs are configured as active-low wake-up sources by default. See the [On/Off Controller](#) section ([Figure 4](#), transition 3) for more information.

### GPIO Shutdown

The GPIOs can be used to cause the device to shutdown (manual reset, MR\_GPIO).

Program any GPIO as a general-purpose input (set DIRx = 1) and set the corresponding MR\_INC\_GPIOx bit to configure the GPIO as an active-low shutdown source. The device shuts down if any two GPIOs (configured as shutdown sources) are held low concurrently for  $t_{MRST\_GPIO}$ .

Clear the MR\_INC\_GPIOx bit to prevent the corresponding GPIO from shutting down the device.

GPIO0 and GPIO2 are configured as shutdown sources by default (MR\_INC\_GPIO0 and MR\_INC\_GPIO2 = 1). See the [On/Off Controller](#) section ([Figure 4](#), transition 5B) for more information.

### On/Off Controller

The on/off controller monitors multiple power-up (wake-up) and power-down (shutdown) conditions to enable or disable resources that are necessary for the system and its processor to move between its operating modes.

Many systems have one power-management controller and one processor and rely on the on/off controller to be the master controller. In this case, the on/off controller receives the wake-up events and enables some or all of the regulators in order to power up a processor. That processor then manages the system. To conceptualize this master operation, see [Figure 4](#) and [Table 2](#). A typical path through the on/off controller in master mode is:

- 1) Start in the no power state.
- 2) Apply a battery to the system and transition through path 1 and 2 to the standby state.
- 3) Press the system's on-key (nEN = low) or pull one of the GPIO pins low.
- 4) The processor boots up and drives the transition state through path 4C to the ON state (deasserting nRST).
- 5) The device performs its desired functions in the on through on/off controller state.
- 6) To enter the standby state, pull the manual reset GPIOs (GPIO0 and GPIO2 by default) low for longer than  $t_{MRST\_GPIO}$ , pull nEN low for longer than  $t_{MRST}$ , or use the SFT\_RST bits to enter the software off state.

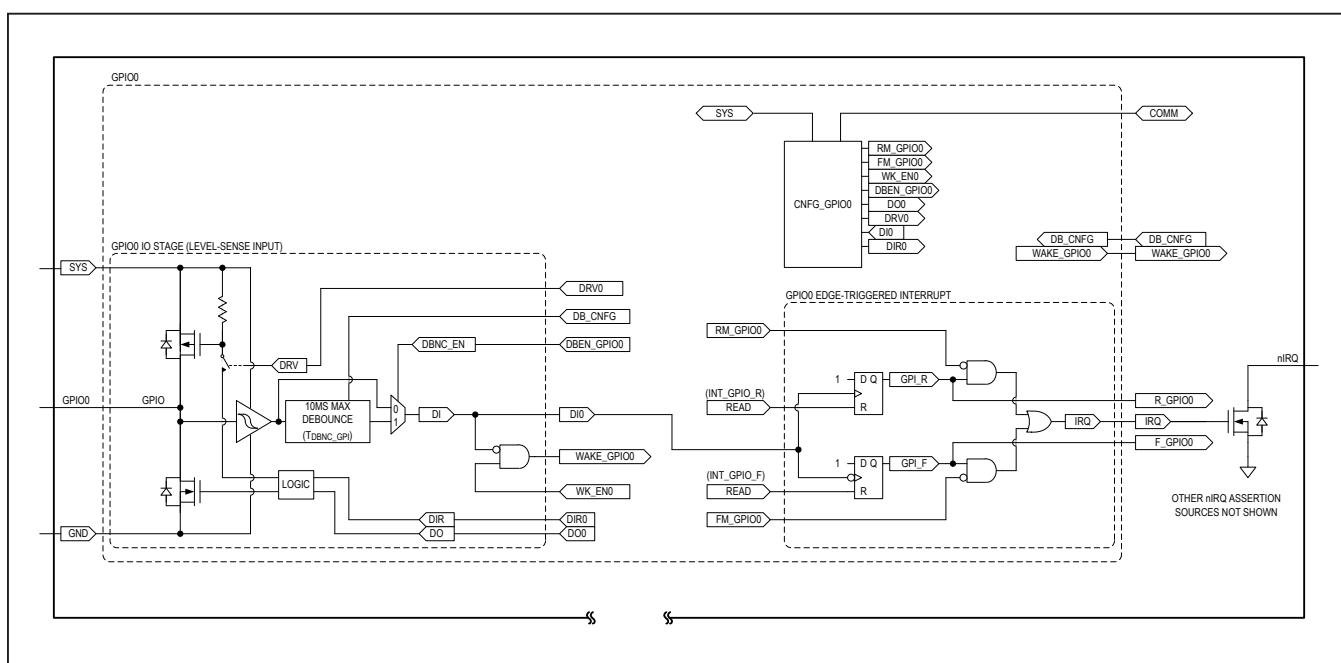



Figure 3. GPIO Controller Block Diagram

Some systems have several power-management blocks, a main processor, and sub processors. These systems can use this device as a subpower-management block for a peripheral portion of circuitry as long as there is an I<sup>2</sup>C port available from a higher level processor. To conceptualize this slave operation, see [Figure 4](#) and [Table 2](#). A typical path through the on/off controller in slave mode is:

- 1) Start in the no power state.
- 2) Apply a battery to the system and transition through path 1 and 2 to the standby state.
- 3) When the higher level processor wants to turn on this device's resources, it enables the main bias circuits through I<sup>2</sup>C (SBIA\_EN = 1) to transition along path 2A to the on through software state.

- 4) The higher level processor can now control this device's resources with I<sup>2</sup>C commands (i.e., turn on/off regulators).
- 5) When the higher level processor is ready to turn this device off, it turns off everything through I<sup>2</sup>C and then disables the main bias circuits through I<sup>2</sup>C (SBIA\_EN = 0) to transition along path 2B to the standby state

Note that in this slave style of operation, the SFT\_RST bits should not be used to turn the device off. The SFT\_RST bits establish directives to the on/off controller itself that does not make sense in slave mode. In slave mode, since the I<sup>2</sup>C commands enable the device's resources, they should also disable them.



Figure 4. Top-Level On/Off Controller

**Table 2. On/Off Controller Transition/State**

| TRANSITION/STATE                | CONDITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>0</b>                        | System voltage is below the POR threshold ( $V_{SYS} < V_{POR}$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>1</b>                        | System voltage is above the POR threshold ( $V_{SYS} > V_{POR}$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>2</b>                        | Internal signals and on-chip memory stabilize and the device is released from reset.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>STANDBY</b>                  | The device is waiting for a wake-up signal or an I <sup>2</sup> C command to enable the main bias circuits.<br>* This is the lowest current state of the device ( $I_Q \sim 0.3\mu A$ ).<br>* Main bias circuits are off, POR comparator is on.<br>* I <sup>2</sup> C is on when $V_{IO}$ is valid.<br>* Peripheral functions (LDO, SIMO, CS, AMUX) do not operate in this state because the main bias circuits are off. To utilize a function, enter the on through software or on through on/off controller states. |
| <b>2A</b>                       | Main bias circuits enabled through I <sup>2</sup> C (SBIA_EN = 1).                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>2B</b>                       | Main bias circuits disabled through I <sup>2</sup> C (SBIA_EN = 0).                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>ON VIA SOFTWARE</b>          | The main bias circuits are enabled through software and all peripheral functions (LDO, SIMO, CS, AMUX) can be manually enabled or disabled through I <sup>2</sup> C.                                                                                                                                                                                                                                                                                                                                                  |
| <b>3</b>                        | A wake-up signal has been received.<br>* A debounced on-key (nEN) falling edge has been detected (WAKE_EN = 1) or<br>* A charge source has been applied and a rising edge on CHGIN has been detected and debounced ( $t_{CHGIN-DB} \sim 120ms$ ) or<br>* Internal wake-up flag has been set due to SFT_CRST = 1 (WKUP = 1) or<br>* A debounced GPIO wake-up event occurred (WAKE_GPIO = 1)                                                                                                                            |
| <b>3A</b>                       | Main bias circuits are OK (BOK = 1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>4</b>                        | Power-up sequence complete.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>ON VIA ON/OFF CONTROLLER</b> | On state.<br>* All flexible power sequencers (FPS) are on.<br>* The main bias circuits are enabled.<br>* NPM is enabled ( $I_Q \sim 48\mu A$ ) with all regulators enabled (no load) and the main bias circuits in normal-power mode.                                                                                                                                                                                                                                                                                 |
| <b>5B</b>                       | Software cold reset (SFT_RST[1:0] = 0b01) or<br>Software power off (SFT_RST[1:0] = 0b10) or<br>Manual reset occurred (MR_EN = 1 or MR_GPIO = 1). See the <a href="#">nEN Manual Reset</a> section for more information.                                                                                                                                                                                                                                                                                               |
| <b>6</b>                        | System overtemperature lockout ( $T_J > T_{OTLO}$ ) or<br>System undervoltage lockout ( $V_{SYS} < V_{SYSUVLO} + V_{SYSUVLO\_HYS}$ ) or<br>System overvoltage lockout ( $V_{SYS} > V_{SYSOVLO}$ )                                                                                                                                                                                                                                                                                                                     |
| <b>7</b>                        | System undervoltage lockout ( $V_{SYS} < V_{SYSUVLO}$ ) or<br>System overvoltage lockout ( $V_{SYS} > V_{SYSOVLO}$ )<br><b>Note:</b> The overvoltage lockout transition does not apply to the ON VIA SOFTWARE state.                                                                                                                                                                                                                                                                                                  |
| <b>8</b>                        | Finished with the power-down sequence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>9</b>                        | Finished with immediate shutdown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>10</b>                       | System overtemperature lockout ( $T_J > T_{OTLO}$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>11</b>                       | Done disabling main bias.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>12</b>                       | Done enabling main bias.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

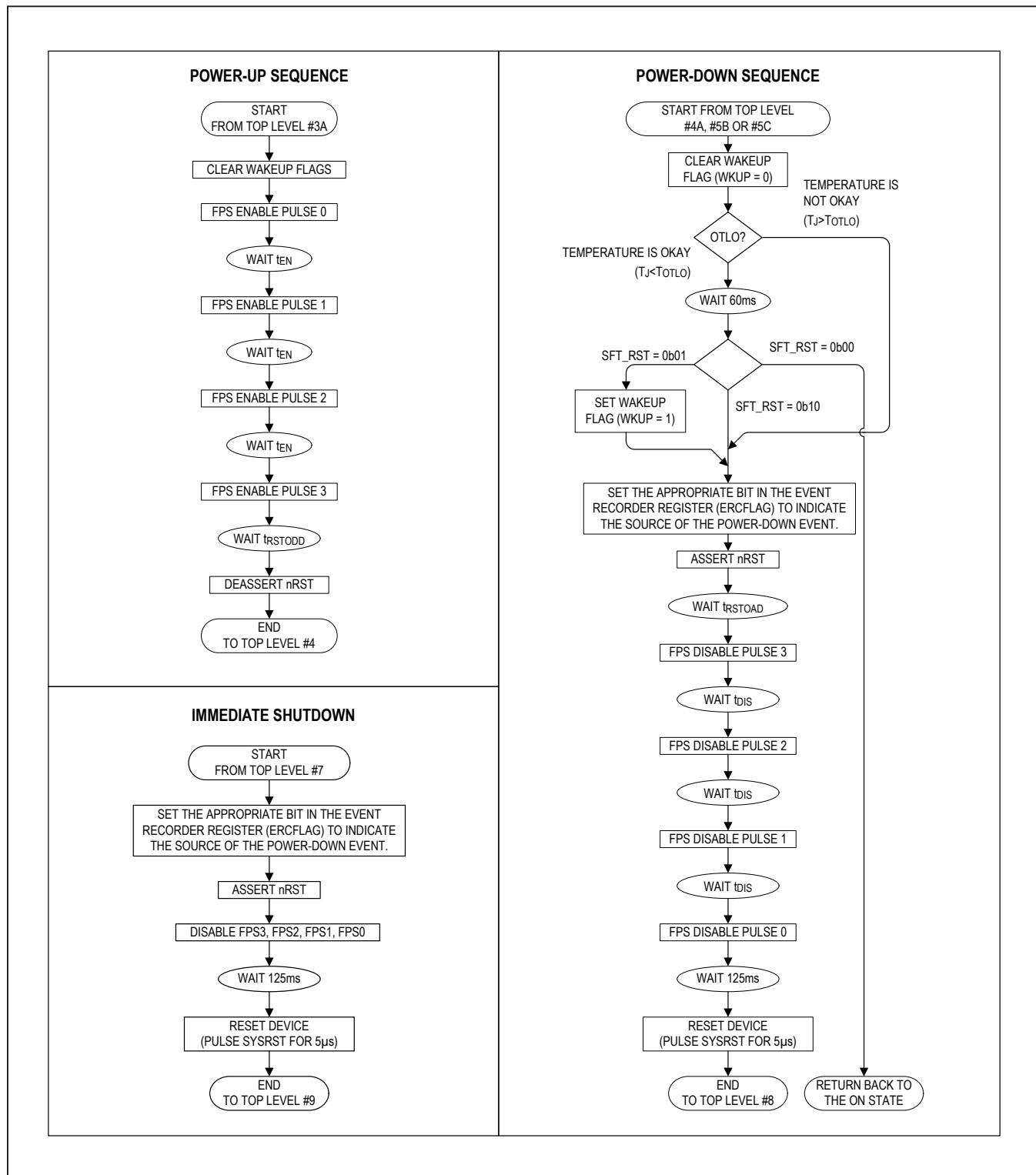



Figure 5. Power-Up/Power-Down Sequence

**Flexible Power Sequencer (FPS)**

The FPS allows resources to power up under hardware or software control. Additionally, each resource can power up independently or among a group of other regulators with adjustable power-up and power-down delays (sequencing). [Figure 6](#) shows four resources powering up under the control of FPS.

The flexible sequencing structure consists of 1 master sequencing timer and 4 slave resources (SBB0, SBB1, SBB2, and LDO). When the FPS is enabled, a master timer generates four sequencing events for device power-up and power-down.

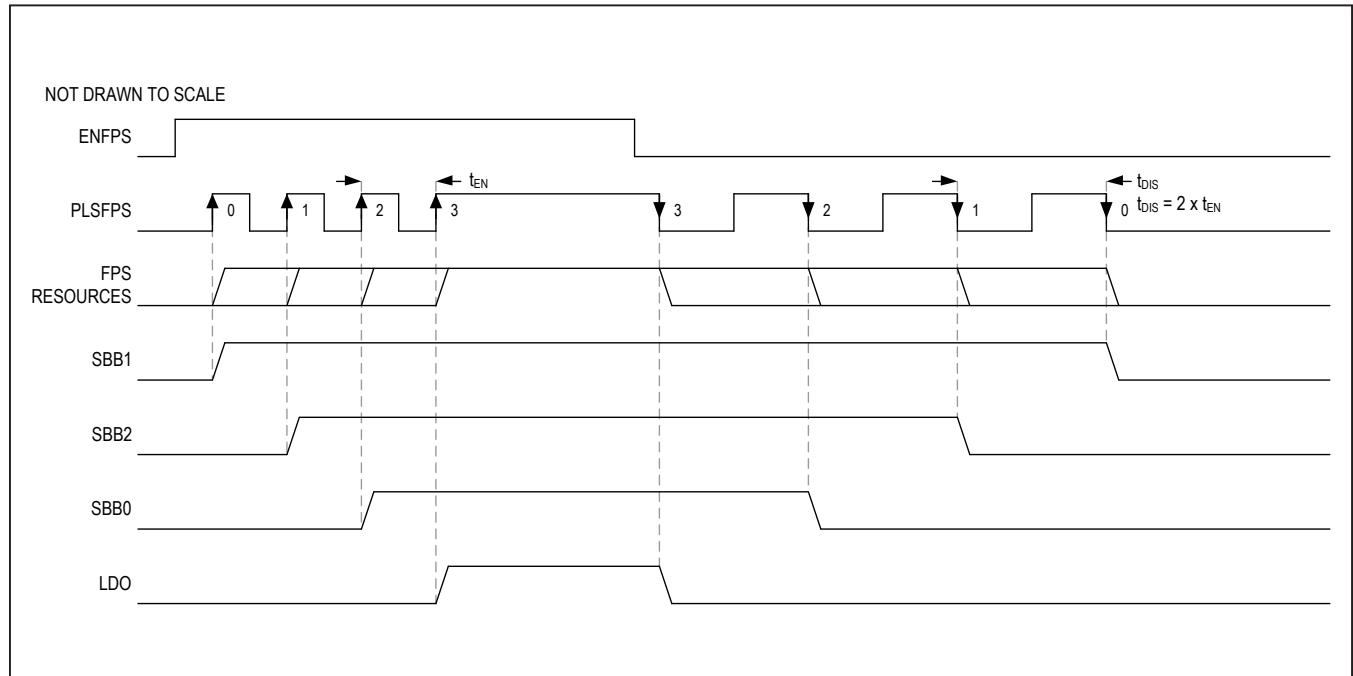



Figure 6. FPS Basic Timing Diagram

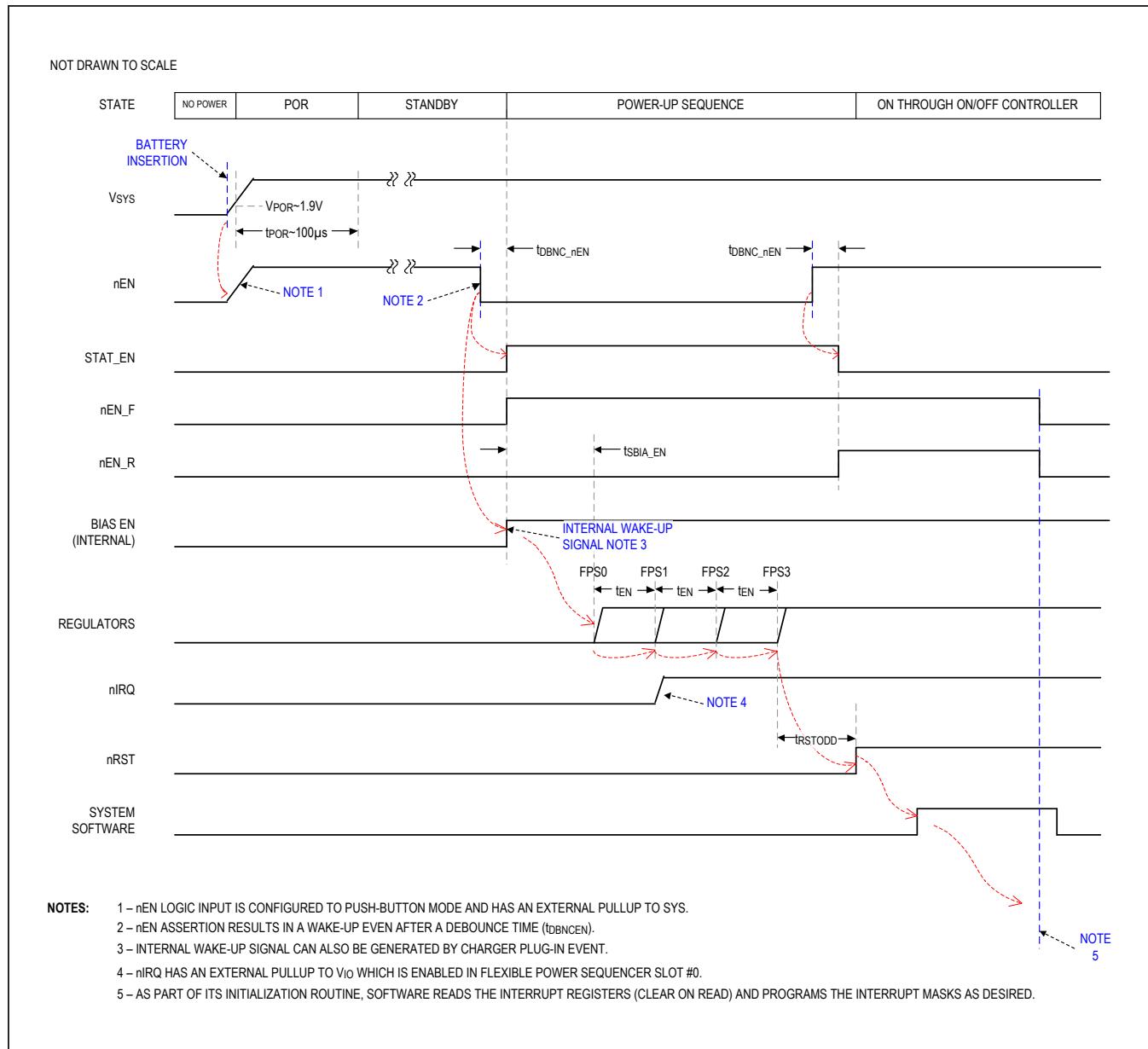



Figure 7. Startup Timing Diagram Due to nEN

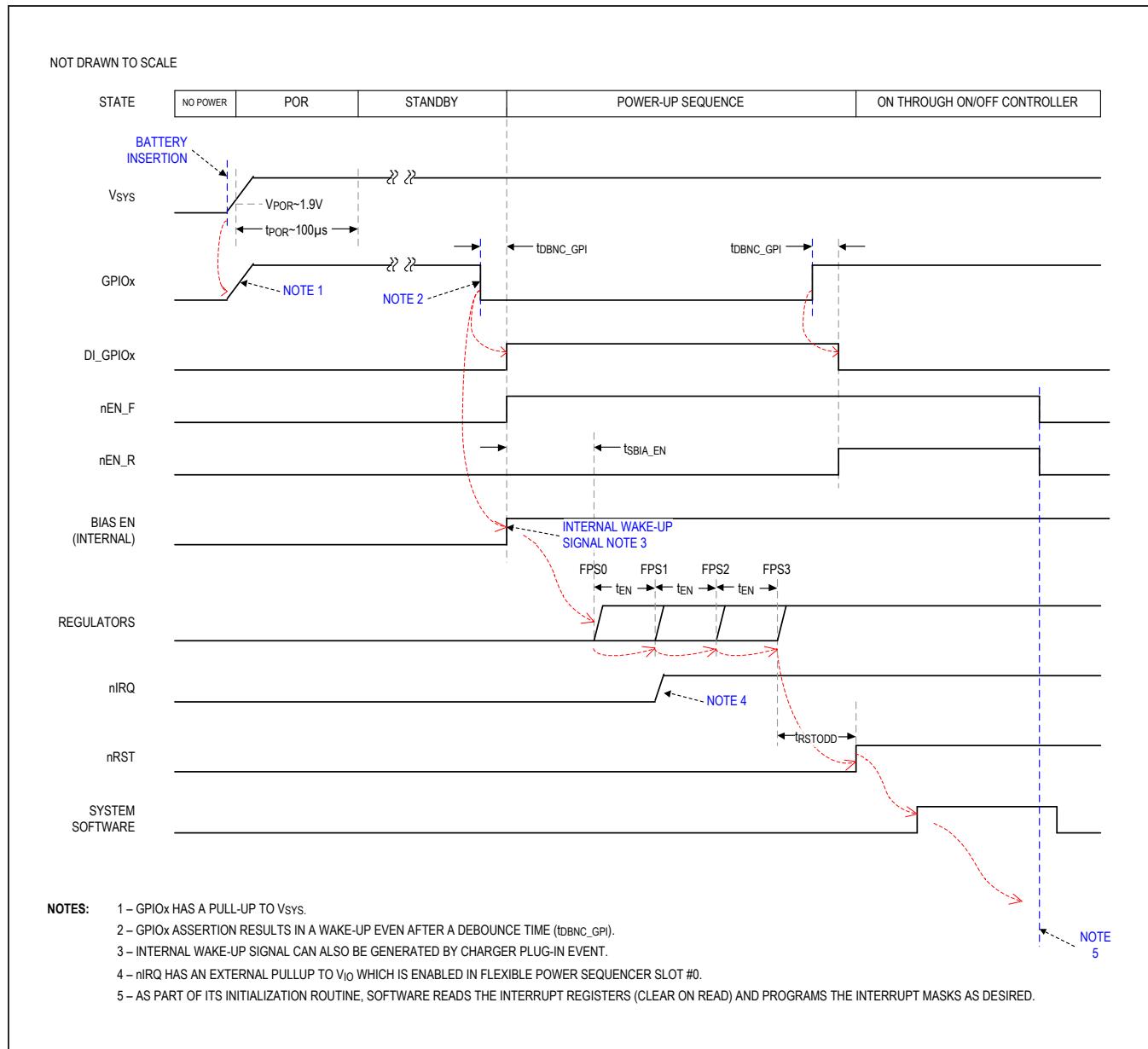



Figure 8. Startup Timing Diagram Due to GPIO

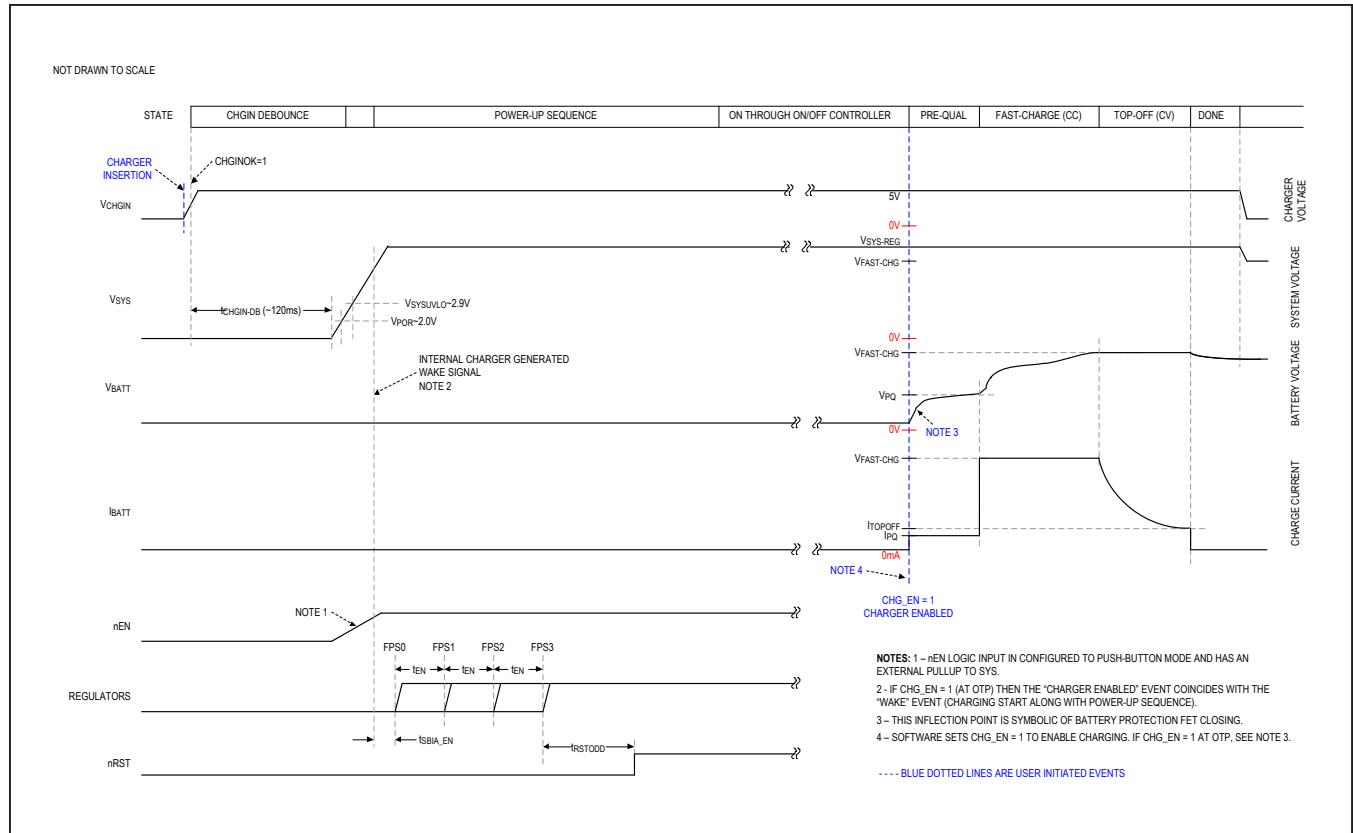



Figure 9. Startup Timing Diagram Due to Charge Source Insertion

**Debounced Inputs (nEN, GPI, CHGIN)**

nEN, CHGIN, and the GPIOs (when operating as inputs) are debounced on both rising and falling edges to reject undesired transitions. The input must be at a stable logic level for the entire debounce period for the output to change its logic state. [Figure 10](#) shows an example timing diagram for the nEN debounce.

**Thermal Alarms and Protection**

The device has thermal alarms to monitor if the junction temperature rises above 80°C (TJAL1) and 100°C (TJAL2).

Overtemperature lockout (OTLO) is entered if the junction temperature exceeds TOTLO (approximately 165°C, typ). OTLO causes transition 10 in [Figure 4](#) which causes resources to immediately shutdown from the on via on/off controller state. Resources may not enable until the temperature falls below TOTLO by approximately 15°C.

The TJAL1\_S and TJAL2\_S status bits continuously indicate the junction temperature alarm status. Maskable interrupts are available to signal a change in either of these bits. Refer to the [Programmer's Guide](#) for details.

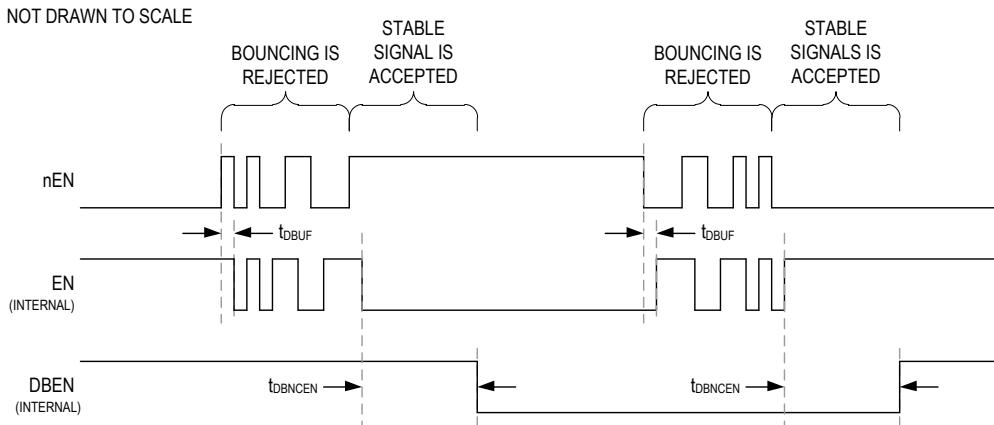



Figure 10. Debounced Inputs

## Detailed Description—Smart Power Selector Charger

The linear Li+ charger features Maxim's Smart Power Selector. This allows separate input current limit and battery charge current settings. Batteries charge faster under the supervision of the Smart Power Selector because charge current is independently regulated and not shared with variable system loads. See the [Smart Power Selector](#) section for more information.

The programmable constant-current charge rate (7.5mA to 300mA) supports a wide range of battery capacities. The programmable input current limit (0mA to 475mA) supports a range of charge sources, including USB. The charger's programmable battery regulation voltage range (3.6V–4.6V) supports a wide variety of cell chemistries. Small battery capacities are supported; the charger accurately terminates charging by detecting battery currents as low as 0.375mA.

Additionally, the robust charger input withstands overvoltages up to 28V. To enhance charger safety, an NTC thermistor provides temperature monitoring in accordance with the JEITA recommendations. See the [Detailed Description—Adjustable Thermistor Temperature Monitors](#) section for more information.

## Features

- 7.25V Maximum Operating Input Voltage with 28V Input Standoff
- 7.5mA to 300mA Programmable Fast-Charge Current
- Programmable Termination Current from 0.375mA to 45mA
- Programmable Battery Regulation Voltage from 3.6V to 4.6V
- $< 1\mu\text{A}$  Battery-Only Supply Current
- Instant-On Functionality
- Analog Multiplexer Enables Power Monitoring
- JEITA Battery Temperature Monitor Adjusts Current and Battery Regulation Voltage for Safe Charging
- Programmable Die Temperature Regulation

## Charger Symbol Reference Guide

[Table 3](#) lists the names and functions of charger-specific signals and if they can be programmed through I<sup>2</sup>C. Consult the [Electrical Characteristics—Smart Power Selector Charger](#) table and the [Programmer's Guide](#) for more information.

[Figure 12](#) indicates the high-level functions of each control circuit within the linear charger.

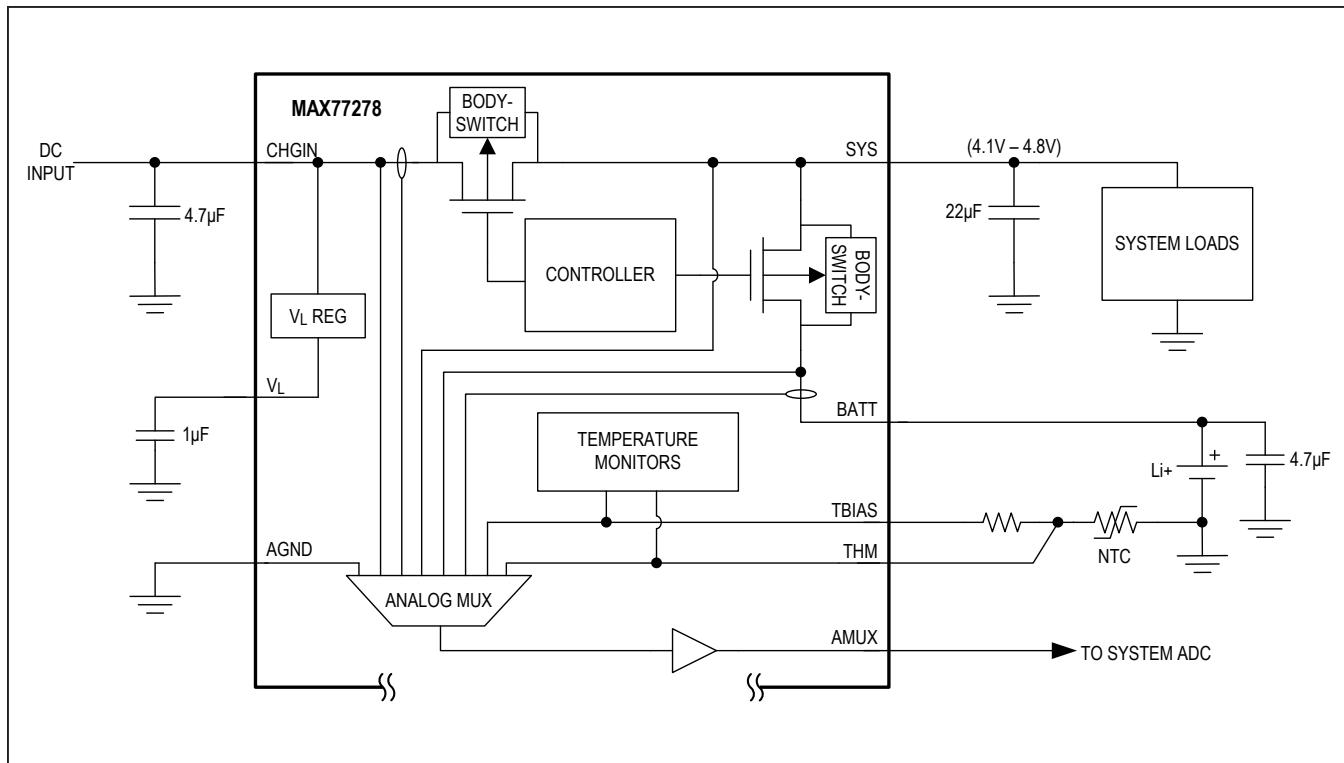



Figure 11. Linear Charger Simplified Block Diagram

Table 3. Charger Quick Symbol Reference Guide

| SYMBOL                  | NAME                                      | I <sup>2</sup> C PROGRAMMABLE?       |
|-------------------------|-------------------------------------------|--------------------------------------|
| V <sub>CHGIN_OVP</sub>  | CHGIN overvoltage threshold               | No                                   |
| V <sub>CHGIN_UVLO</sub> | CHGIN undervoltage lockout threshold      | No                                   |
| V <sub>CHGIN-MIN</sub>  | Minimum CHGIN voltage regulation setpoint | Yes, through VCHGIN_MIN[2:0]         |
| I <sub>CHGIN-LIM</sub>  | CHGIN input current limit                 | Yes, through ICHGIN_LIM[2:0]         |
| V <sub>SYS-REG</sub>    | SYS voltage regulation target             | Yes, through VSYS_REG[4:0]           |
| V <sub>SYS-MIN</sub>    | Minimum SYS voltage regulation setpoint   | No, tracks V <sub>SYS-REG</sub>      |
| V <sub>FAST-CHG</sub>   | Fast-charge constant-voltage level        | Yes, through CHG_CV[5:0]             |
| I <sub>FAST-CHG</sub>   | Fast-charge constant-current level        | Yes, through CHG_CC[5:0]             |
| I <sub>PQ</sub>         | Prequalification current level            | Yes, through I <sub>PQ</sub>         |
| V <sub>PQ</sub>         | Prequalification voltage threshold        | Yes, through CHG_PQ[2:0]             |
| I <sub>TERM</sub>       | Termination current level                 | Yes, through I <sub>TERM</sub> [1:0] |
| T <sub>J-REG</sub>      | Die temperature regulation setpoint       | Yes, through TJ_REG[2:0]             |
| t <sub>PQ</sub>         | Prequalification safety timer             | No                                   |
| t <sub>FC</sub>         | Fast-charge safety timer                  | Yes, through T_FAST_CHG[1:0]         |
| t <sub>TO</sub>         | Top-off timer                             | Yes, through T_TOPOFF[2:0]           |

**Smart Power Selector**

The Smart Power Selector seamlessly distributes power from the input (CHGIN) to the battery (BATT) and the system (SYS). The Smart Power Selector basic functions are:

- When the system load current is less than the input current limit, the battery is charged with residual power from the input.
- When a valid input source is connected, the system regulates to  $V_{SYS-REG}$  to power system loads regardless of the battery's voltage (instant on).
- When the system load current exceeds the input current limit, the battery provides additional current to the system (supplement mode).
- When the battery is finished charging and an input source is present to power the system, the battery remains disconnected from the system.
- When the battery is connected and there is no input power, the system is powered from the battery.

**Input Current Limiter**

The input current limiter limits CHGIN current so as not to exceed  $I_{CHGIN-LIM}$  (programmed by  $I_{CHGIN\_LIM}[2:0]$ ). A maskable interrupt (CHGIN\_CTRL\_I) is available to signal when the input current limit engages. The state of this loop is reflected by the  $I_{CHGIN\_LIM\_STAT}$  bit.

The input circuit is capable of standing off 28V from ground. CHGIN suspends power delivery to the system and battery when  $V_{CHGIN}$  exceeds  $V_{CHGIN\_OVP}$  (7.5V, typ). The input circuit also suspends when  $V_{CHGIN}$  falls below  $V_{CHGIN\_UVLO}$  minus 500mV of hysteresis (3.5V, typ). While in OVP or UVLO, the charger remains off, and the battery provides power to the system.

When a valid charge source is connected to CHGIN, SYS begins delivering power to the system after a 120ms debounce timer ( $t_{CHGIN-DB}$ ).

A maskable interrupt (CHGIN\_I) signals changes in the state of CHGIN's voltage quality. The state of CHGIN is reflected by CHGIN\_DLTS[1:0].

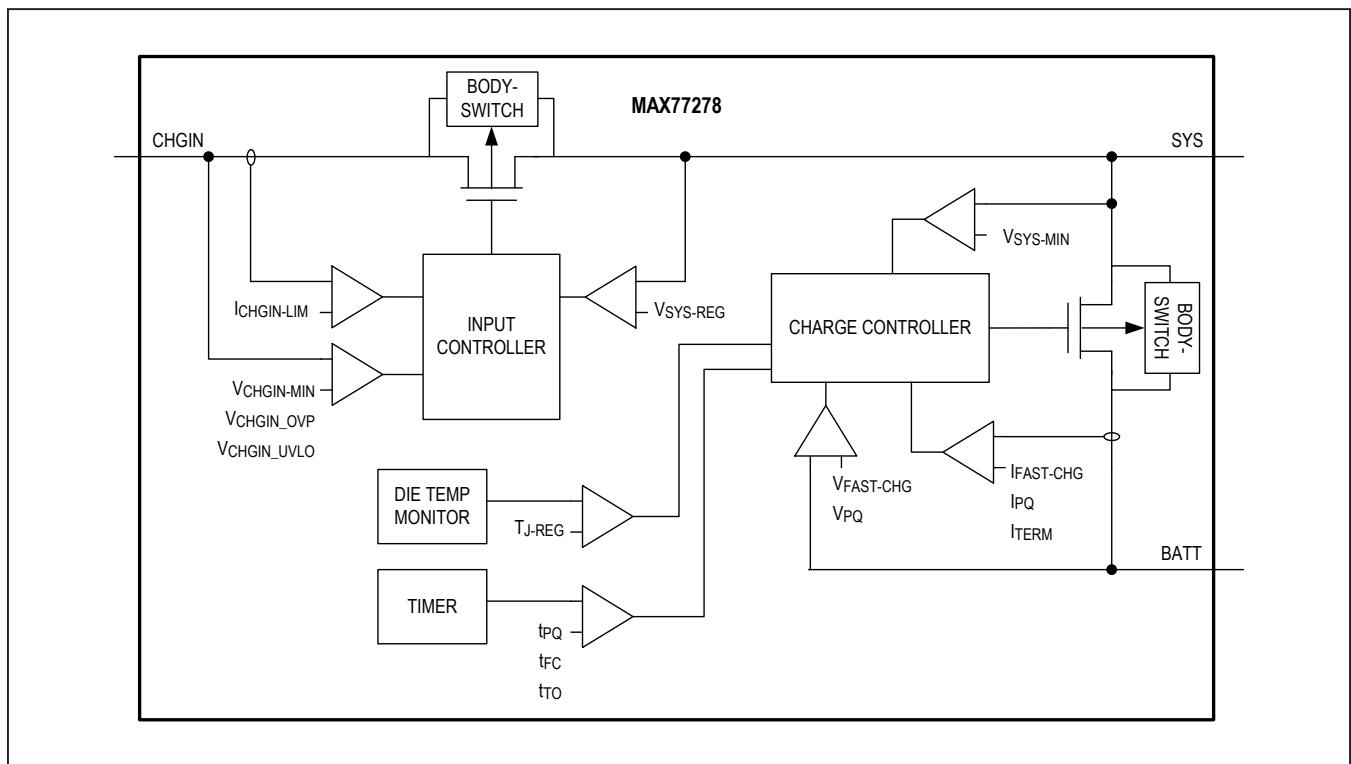



Figure 12. Charger Simplified Control Loops

### Minimum Input Voltage Regulation

In the event of a poor-quality charge source, the minimum input voltage regulation loop works to reduce input current if  $V_{CHGIN}$  falls below  $V_{CHGIN-MIN}$  (programmed by  $V_{CHGIN\_MIN}[2:0]$ ). This is important because many commonly used charge adapters feature foldback protection mechanisms where the adapter completely shuts off if its output drops too low. The minimum input voltage regulation loop also prevents  $V_{CHGIN}$  from dropping below  $V_{CHGIN\_UVLO}$  if the cable between the charge source and the charger's input is long or highly resistive.

The input voltage regulation loop improves performance with current limited adapters. If the charger's input current limit is programmed above the current limit of the given adapter, the input voltage loop allows the input to regulate at the current limit of the adapter. The input voltage regulation loop also allows the charger to perform well with adapters that have poor transient load response times.

A maskable interrupt ( $CHGIN\_CTRL\_I$ ) signals when the minimum input voltage regulation loop engages. The state of this loop is reflected by  $V_{CHGIN\_MIN\_STAT}$ .

### Minimum System Voltage Regulation

The minimum system voltage regulation loop ensures that the system rail remains close to the programmed SYS regulation voltage ( $V_{SYS-REG}$ ) regardless of system loading. The loop engages when the combined battery charge current and system load current causes the CHGIN input to current limit at  $I_{CHGIN-LIM}$ . When this happens, the minimum system voltage loop reduces charge current in an attempt to keep the input out of current limit, thereby keeping the system voltage above  $V_{SYS-MIN}$  ( $V_{SYS-REG} - 100mV$ , typ). If this loop reduces battery current to 0 and the system is in need of more current than the input can provide, then the Smart Power Selector overrides the minimum system voltage regulation loop and allows SYS to collapse to BATT for the battery to provide supplement current to the system. The Smart Power Selector automatically reenables the minimum system voltage loop when the supplement event has ended.

A maskable interrupt ( $SYS\_CTRL\_I$ ) asserts to signal a change in  $V_{SYS\_MIN\_STAT}$ . This status bit asserts when the minimum system voltage regulation loop is active.

### Die Temperature Regulation

In case the die temperature exceeds  $T_{J-REG}$  (programmed by  $TJ\_REG[2:0]$ ) the charger attempts to limit the temperature increase by reducing battery charge current. The  $TJ\_REG\_STAT$  bit asserts whenever charge current is reduced due to this loop. The charger's current sourcing capability to SYS remains unaffected when  $TJ\_REG\_STAT$  is high. A maskable interrupt ( $TJ\_REG\_I$ ) asserts to signal a change in  $TJ\_REG\_STAT$ . It is advisable that the  $TJ\_REG\_I$  interrupt be used to signal the system processor to reduce loads on SYS to reduce total system temperature.

### USB Suspend Mode

The USB Suspend Mode bit,  $USBS$ , controls the MOSFET between CHGIN and SYS.  $USBS$  is set to 0 by default. When  $USBS$  is 0, the system is powered from CHGIN any time a charger is present on the input. Set  $USBS$  to 1 to open the MOSFET between CHGIN and SYS. This prevents the system from drawing current from CHGIN if a charger is present and powers the system from the battery instead.  $USBS$  is reset when voltage on CHGIN is removed.

### Charger State Machine

The battery charger follows a strict state-to-state progression to ensure that a battery is charged safely. The status bitfield,  $CHG\_DTLS[3:0]$ , reflects the charger's current operational state. A maskable interrupt ( $CHG\_I$ ) is available to signal a change in  $CHG\_DTLS[3:0]$ .

### Charger Off State

The charger is off when CHGIN is invalid or the charger is disabled.

CHGIN is invalid when the CHGIN input is invalid ( $V_{CHGIN} < V_{CHGIN\_UVLO}$  or  $V_{CHGIN} > V_{CHGIN\_OVP}$ ). While CHGIN is invalid, the battery is connected to the system. CHGIN voltage quality can be separately monitored by the  $CHGIN\_DTLS[1:0]$  status bitfield. Refer to the [Programmer's Guide](#) for details.

The charger is disabled when the charger enable bit is 0 ( $CHG\_EN = 0$ ). The battery is connected or disconnected to the system depending on the validity of  $V_{CHGIN}$  while  $CHG\_EN = 0$ . See the [Smart Power Selector](#) section.

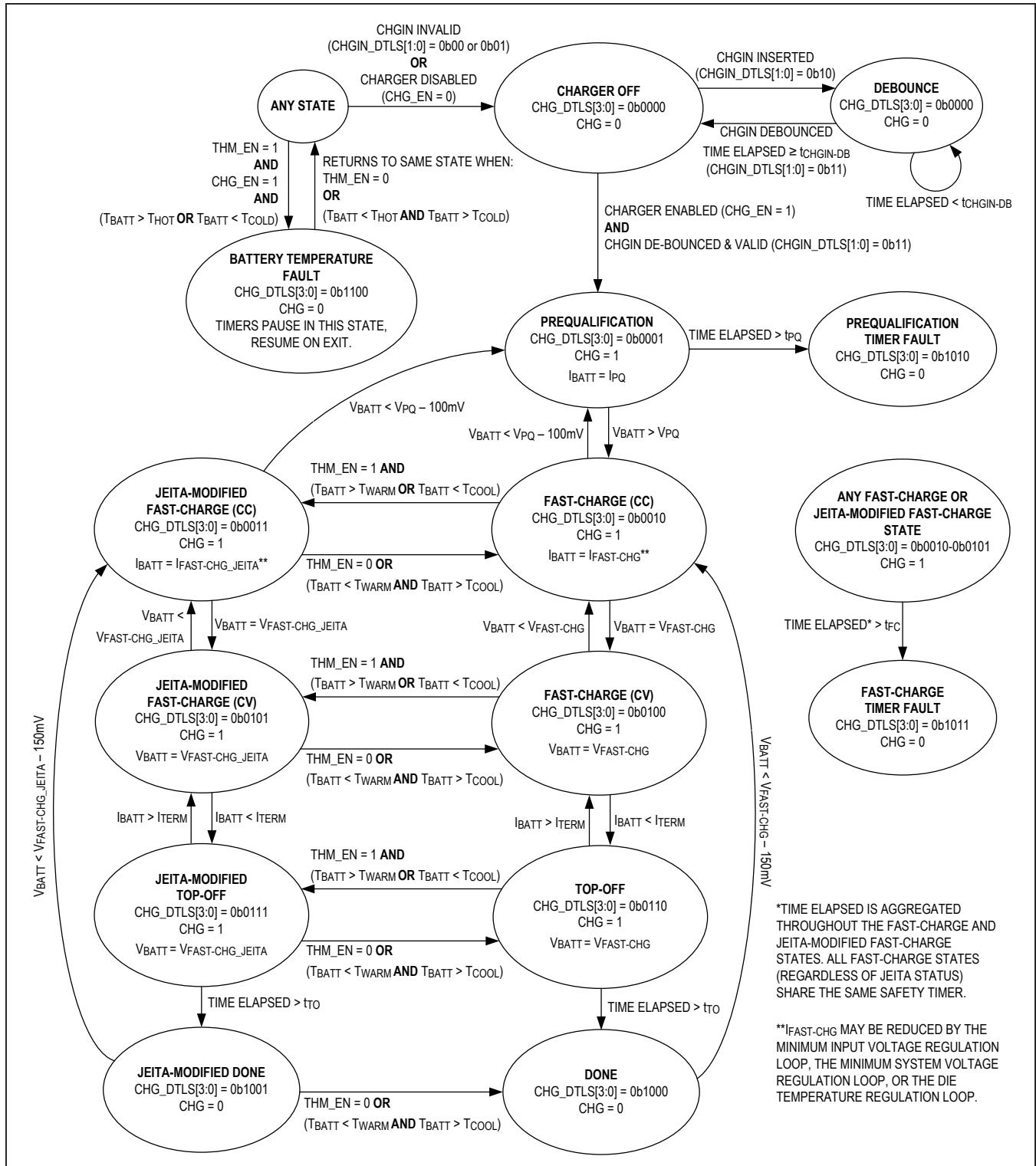



Figure 13. Charger State Diagram

### Prequalification State

The prequalification state is intended to assess a low-voltage battery's health by charging at a reduced rate. If the battery voltage is less than the  $V_{PQ}$  threshold, the charger is automatically in prequalification. If the cell voltage does not exceed  $V_{PQ}$  in 30 minutes ( $t_{PQ}$ ), the charger faults. The prequalification charge rate is a percentage of  $I_{FAST-CHG}$  and is programmable with  $I_{PQ}$ . The prequalification voltage threshold ( $V_{PQ}$ ) is programmable through  $CHG\_PQ[2:0]$ .

### Fast-Charge States

When the battery voltage is above  $V_{PQ}$ , the charger transitions to the fast-charge (CC) state. In this state, the charger delivers a constant current ( $I_{FAST-CHG}$ ) to the cell. The constant-current level is programmable from 7.5mA to 300mA by  $CHG\_CC[5:0]$ .

When the cell voltage reaches  $V_{FAST-CHG}$ , the charger state machine transitions to fast-charge (CV).  $V_{FAST-CHG}$  is programmable with  $CHG\_CV[5:0]$  from 3.6V to 4.6V. The charger holds the battery's voltage constant at  $V_{FAST-CHG}$  while in the fast-charge (CV) state. As the battery approaches full, the current accepted by the battery reduces. When the charger detects that battery charge current has fallen below  $I_{TERM}$ , the charger state machine enters the top-off state.

A fast-charge safety timer starts when the state machine enters fast-charge (CC) or JEITA-modified fast-charge (CC) from a non-fast-charge state. The timer continues to run through all fast-charge states regardless of JEITA status. The timer length ( $t_{FC}$ ) is programmable from 3 hours to 7 hours in 2 hour increments with  $T\_FAST\_CHG[1:0]$ . If it is desired to charge without a safety timer, program  $T\_FAST\_CHG[1:0]$  with 0b00 to disable the feature. If the timer expires before the fast-charge states are exited, the charger faults. See the [Fast-Charge Timer Fault State](#) section for more information.

If the charge current falls below 20% of the programmed value during fast-charge (CC), the safety timer pauses. The timer also pauses for the duration of supplement mode events. The  $TIME\_SUS$  bit indicates the status of the fast-charge safety timer. Refer to the [Programmer's Guide](#) for more details.

### Top-Off State

Top-off state is entered when the battery charge current falls below  $I_{TERM}$  during the fast-charge (CV) state.  $I_{TERM}$  is a percentage of  $I_{FAST-CHG}$  and is programmable through  $I_{TERM}[1:0]$ . While in the top-off state, the battery charger continues to hold the battery's voltage

at  $V_{FAST-CHG}$ . A programmable top-off timer starts when the charger state machine enters the top-off state. When the timer expires, the charger enters the done state. The top-off timer value ( $t_{TO}$ ) is programmable from 0 minutes to 35 minutes with  $T\_TOPOFF[2:0]$ . If it is desired to stop charging as soon as battery current falls below  $I_{TERM}$ , program  $t_{TO}$  to 0 minutes.

### Done State

The charger enters the done state when the top-off timer expires. The battery remains disconnected from the system during done. The charger restarts if the battery voltage falls more than  $V_{RESTART}$  (150mV, typ) below the programmed  $V_{FAST-CHG}$  value. Toggle the  $CHG\_EN$  bit to force the charger to restart regardless of the battery voltage.

### Prequalification Timer Fault State

The prequalification timer fault state is entered when the battery's voltage fails to rise above  $V_{PQ}$  in  $t_{TO}$  (30 minutes, typ) from when the prequalification state was first entered. If a battery is too deeply discharged, damaged, or internally shorted, the prequalification timer fault state can occur. During the timer fault state, the charger stops delivering current to the battery and the battery remains disconnected from the system. To exit the prequalification timer fault state, toggle the charger enable ( $CHG\_EN$ ) bit or unplug and replug the external voltage source connected to  $CHGIN$ .

### Fast-Charge Timer Fault State

The charger enters the fast-charge timer fault state if the fast-charge safety timer expires. While in this state, the charger stops delivering current to the battery and the battery remains disconnected from the system. To exit the fast-charge timer fault state, toggle the charger enable bit ( $CHG\_EN$ ) or unplug and replug the external voltage source connected to  $CHGIN$ .

### Battery Temperature Fault State

If the thermistor monitoring circuit reports that the battery is either too hot or too cold to charge (as programmed by  $THM\_HOT[1:0]$  and  $THM\_COLD[1:0]$ ), the state machine enters the battery temperature fault state. While in this state, the charger stops delivering current to the battery and the battery remains disconnected from the system. This state can only be entered if the thermistor is enabled ( $THM\_EN = 1$ ). Battery temperature fault state has priority over any other fault state, and can be exited when the thermistor is disabled ( $THM\_EN = 0$ ) or when the battery returns to an acceptable temperature. When this fault state is exited, the state machine returns to the last state it was in before battery temperature fault state was entered.

All active charger timers (fast-charge safety timer, prequalification timer, or top-off timer) are paused in this state. Active timers resume when the state is exited.

The THM\_DTLS[2:0] bitfield reports battery temperature status. See the [Detailed Description—Adjustable Thermistor Temperature Monitors](#) section and refer to the [Programmer's Guide](#) for more information.

#### JEITA-Modified States

If the thermistor is enabled ( $\text{THM\_EN} = 1$ ), then the charger state machine is allowed to enter the JEITA-modified states. These states are entered if the charger's temperature monitors indicate that the battery temperature is either warm (greater than  $T_{WARM}$ ) or cool (lesser than  $T_{COOL}$ ). See the [Detailed Description—Adjustable Thermistor Temperature Monitors](#) section for more information about setting the temperature thresholds.

The charger's current and voltage parameters change from  $I_{FAST-CHG}$  and  $V_{FAST-CHG}$  to  $I_{FAST-CHG\_JEITA}$  and  $V_{FAST-CHG\_JEITA}$  while in the JEITA-modified states. The JEITA modified parameters can be independently set to lower voltage and current values so that the battery can charge safely over a wide range of ambient temperatures.

If the battery temperature returns to normal, or the thermistor is disabled ( $\text{THM\_EN} = 0$ ), the charger exits the JEITA-modified states.

#### Typical Charge Profile

A typical battery charge profile (and state progression) is illustrated in [Figure 14](#).

#### Applications Information

##### Configuring a Valid System Voltage

The Smart Power Selector begins to regulate SYS to  $V_{SYS-REG}$  when CHGIN is connected to a valid source. To ensure the charger's accuracy specified in the *Electrical Characteristics* table, the system voltage must always be programmed at least 200mV above the charger's constant-voltage level ( $V_{FAST-CHG}$ ). If this condition is not met, then the charger's internal configuration logic forces  $V_{FAST-CHG}$  to reduce to satisfy the 200mV requirement. If this happens, the charger asserts the  $\text{SYS\_CNFG\_I}$  interrupt to alert the user that a configuration error has been made and that the bits in  $\text{CHG\_CV}[5:0]$  have changed to reduce  $V_{FAST-CHG}$ .

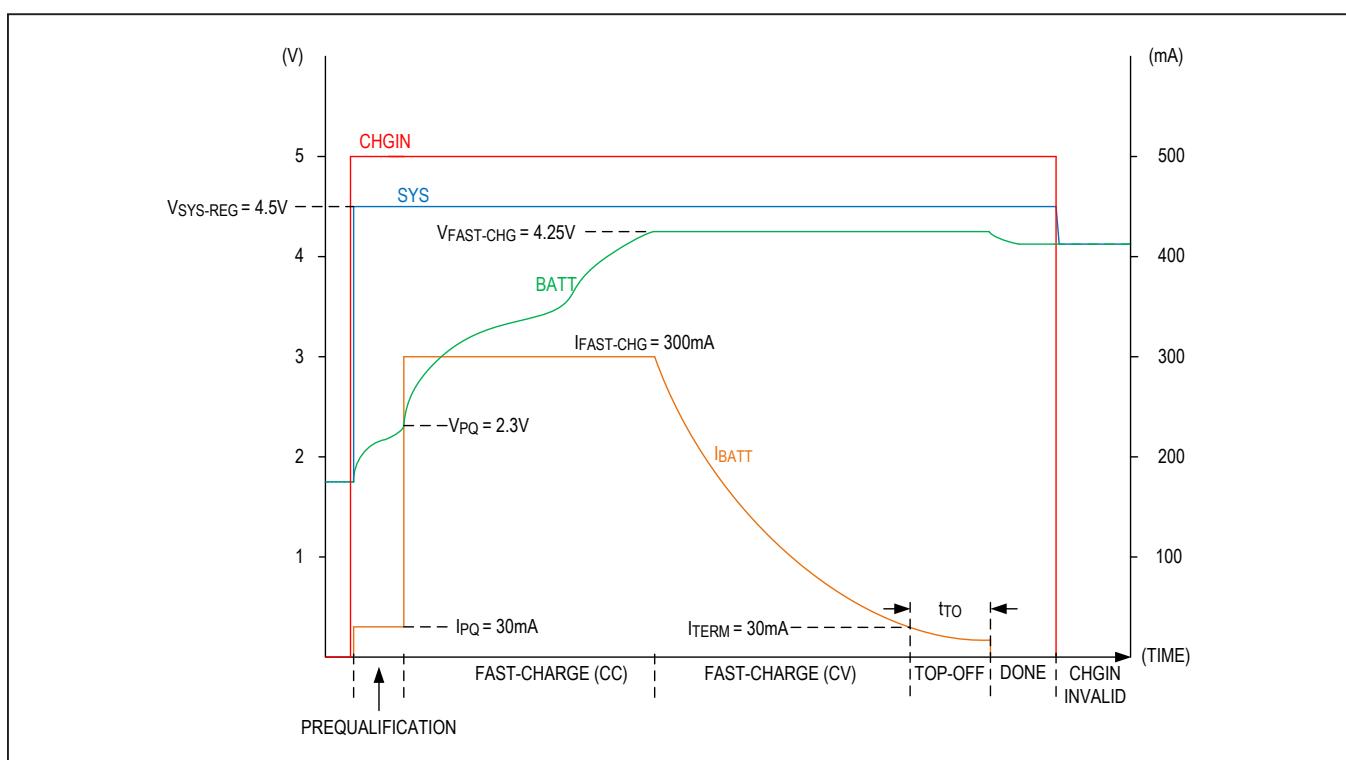



Figure 14. Example Battery Charge Profile

**CHGIN/SYS/BATT Capacitor Selection**

Bypass CHGIN to GND with a 4.7 $\mu$ F ceramic capacitor to minimize inductive kick caused by long cables between the DC charge source and the device. Larger values increase decoupling for the linear charger, but increase inrush current from the DC charge source when the device is first connected to a source through a cable/plug. If the DC charging source is an upstream USB device, limit the maximum CHGIN input capacitance based on the appropriate USB specification (i.e., typically no more than 10 $\mu$ F).

Bypass SYS to GND with a 22 $\mu$ F ceramic capacitor. This capacitor is needed to ensure stability of SYS while it is being regulated from CHGIN. Since SYS must be connected to IN\_SBB, then one capacitor can be used to bypass this node as long as it is physically close to the device. Larger values of SYS capacitance increase decoupling for all SYS loads. The effective value of the SYS capacitor must be greater than 4 $\mu$ F and no more than 100 $\mu$ F.

Bypass BATT to GND with a 4.7 $\mu$ F ceramic capacitor. This capacitor is required to ensure stability of the BATT voltage regulation loop. The effective value of the BATT capacitor must be greater than 1 $\mu$ F.

Ceramic capacitors with X5R or X7R dielectric are highly recommended due to their small size, low ESR, and small temperature coefficients. All ceramic capacitors derate with DC bias voltage (effective capacitance goes down as DC bias goes up). Generally, small case size capacitors derate heavily compared to larger case sizes (0603 case size performs better than 0402). Consider the effective capacitance value carefully by consulting the manufacturer's data sheet.

**Detailed Description—Adjustable Thermistor Temperature Monitors**

The optional use of a negative temperature coefficient (NTC) thermistor (thermally coupled to the battery) enables the charger to operate safely over the JEITA temperature range. When the thermistor is enabled (THM\_EN = 1), the charger continuously monitors the voltage at the THM pin to sense the temperature of the battery being charged.

See [Figure 15](#) for a visual example of the following:

- If the battery temperature is higher than  $T_{COOL}$  and lower than  $T_{WARM}$ , the battery charges normally with the normal values for  $V_{FAST-CHG}$  and  $I_{FAST-CHG}$ . The charger state machine does not enter JEITA-modified states while the battery temperature is normal.
- If the battery temperature is either above  $T_{WARM}$  but below  $T_{HOT}$ , or below  $T_{COOL}$  but above  $T_{COLD}$ , the battery charges with the JEITA-modified voltage and current values. These modified values,  $V_{FAST-CHG\_JEITA}$  and  $I_{FAST-CHG\_JEITA}$ , are programmable through CHG\_CV\_JEITA[5:0] and CHG\_CC\_JEITA[5:0], respectively. These values are independently programmable from the nonmodified  $V_{FAST-CHG}$  and  $I_{FAST-CHG}$  values and can even be programmed to the same values if an automatic response to a warm or cool battery is not desired. The charger state machine enters JEITA-modified states while the battery temperature is outside of normal.
- If the battery temperature is either above  $T_{HOT}$  or below  $T_{COLD}$ , the charger follows the JEITA recommendation and pauses charging. The charger state machine enters battery temperature fault state while charging is paused due to extreme high or low temperatures.

The battery's temperature status is reflected by the THM\_DTLS[2:0] status bitfield. A maskable interrupt (THM\_I) signals a change in THM\_DTLS[2:0]. Refer to the [Programmer's Guide](#) for more information. To completely disable the charger's automatic response to battery temperature, disable the feature by programming THM\_EN = 0.

The voltage thresholds corresponding to the JEITA temperature thresholds are independently programmable through THM\_HOT[1:0], THM\_WARM[1:0], THM\_COOL[1:0], and THM\_COLD[1:0]. Each threshold can be programmed to one of four voltage options spanning 15°C for an NTC beta of 3380K. See the [Configurable Temperature Thresholds](#) section and refer to the [Programmer's Guide](#) for more information.

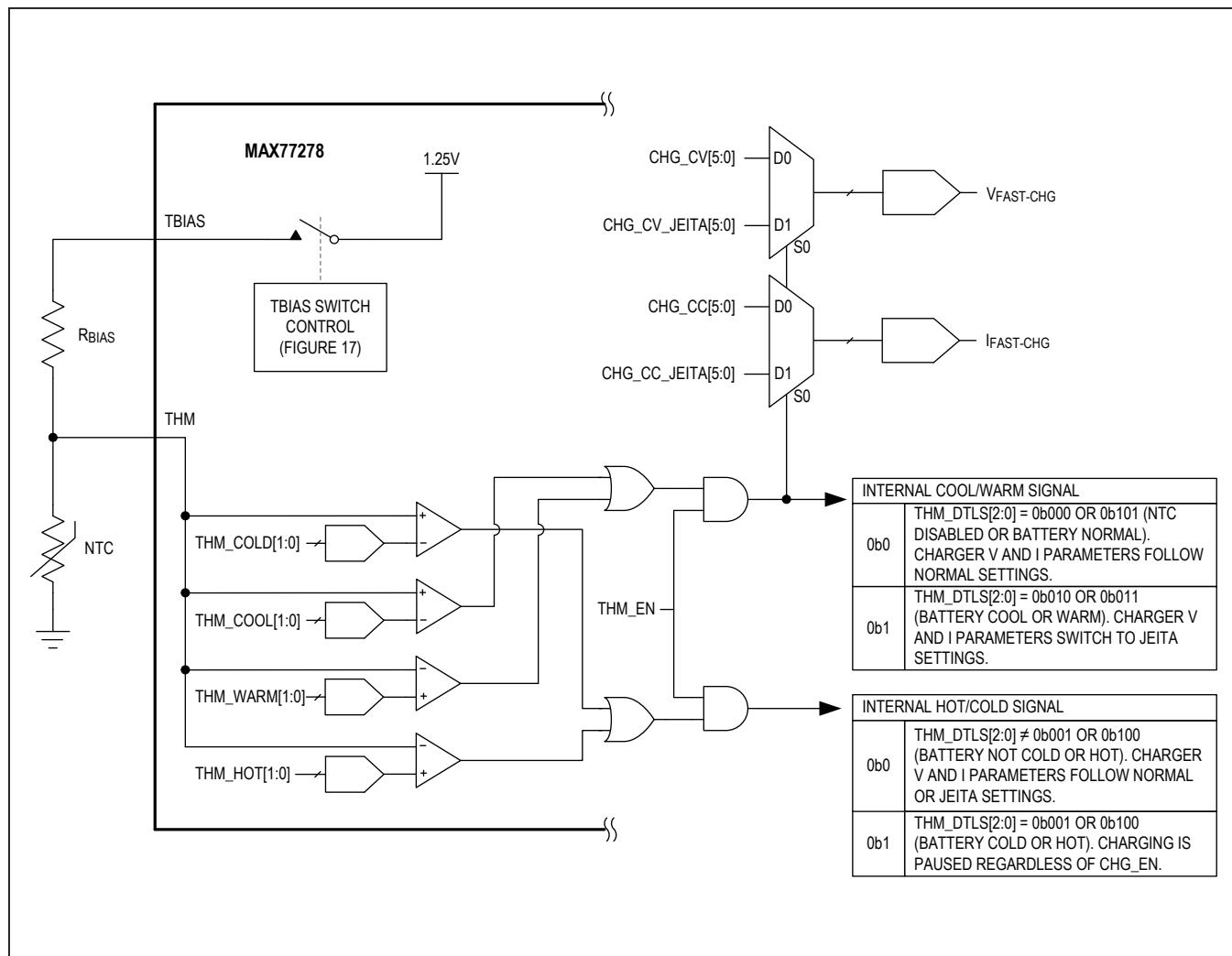



Figure 15. Thermistor Logic Functional Diagram

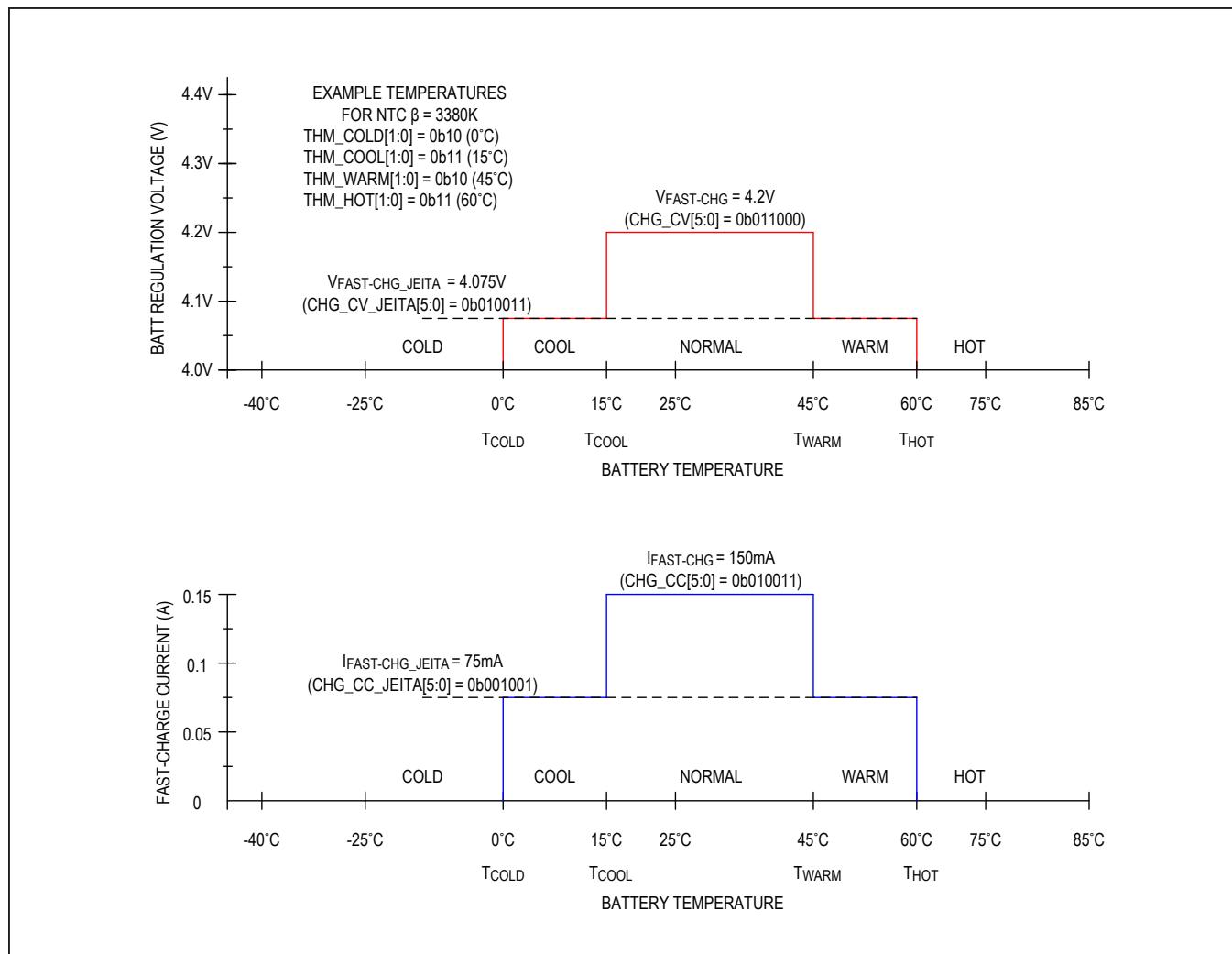



Figure 16. Safe-Charging Profile Example

### Thermistor Bias

An external ADC can optionally perform conversions on the THM and TBIAS pins to measure the battery's temperature. An on-chip analog multiplexer is used to route these nodes to the AMUX pin. The operation of the analog multiplexer does not interfere with the charger's temperature monitoring comparators or the charger's automatic JEITA response. See the [Detailed Description—Analog Multiplexer and Power Monitor AFEs](#) section for more information.

The NTC thermistor's bias source (TBIAS) follows the simple operation outlined as follows:

- If CHGIN is valid and the thermistor is enabled (THM\_EN = 1), then the thermistor is biased so the charger can automatically respond to battery temperature changes.
- If the analog multiplexer is connecting THM or TBIAS to AMUX, then the thermistor is biased so an external ADC can perform a meaningful temperature conversion.

The AMUX pin is a buffered output. The operation of the analog multiplexer and external ADC does not collide with the function of the on-chip temperature monitors. Both functions can be used simultaneously with no ill effect.

### Configurable Temperature Thresholds

Temperature thresholds for different NTC thermistor beta values are listed in [Table 4](#). The largest possible programmable temperature range can be realized by using an NTC with a beta of 3380K. Using a larger beta compresses the temperature range. The trip voltage thresholds are programmable with the THM\_HOT[1:0], THM\_WARM[1:0], THM\_COOL[1:0], and THM\_COLD[1:0] bitfields. All possible programmable trip voltages are listed in [Table 4](#).

These are theoretical values computed by a formula. Refer to the particular NTC's data sheet for more accurate measured data. In all cases, select the value of  $R_{BIAS}$  to be equal to the NTC's effective resistance at +25°C.

### Applications Information

#### Using Different Thermistor $\beta$

If an NTC with a beta larger than 3380K is used and the resulting available programmable temperature range is undesirably small, then two adjusting resistors can be used to expand the temperature range.  $R_S$  and  $R_P$  can be optionally added to the NTC thermistor circuit (shown in [Figure 18](#)) to expand the range of programmable temperature thresholds.

Select values for  $R_S$  and  $R_P$  based on the information shown in [Table 5](#).

#### NTC Thermistor Selection

Popular NTC thermistor options are listed in [Table 6](#).

**Table 4. Trip Temperatures vs. Trip Voltages for Different NTC  $\beta$** 

| TRIP VOLTAGE<br>(V) | TRIP TEMPERATURES (°C) |       |       |       |       |       |
|---------------------|------------------------|-------|-------|-------|-------|-------|
|                     | 3380K                  | 3435K | 3940K | 4050K | 4100K | 4250K |
| 1.024               | -10.0                  | -9.5  | -5.6  | -4.8  | -4.5  | -3.5  |
| 0.976               | -5.0                   | -4.6  | -1.1  | -0.5  | -0.2  | 0.6   |
| 0.923               | 0.0                    | 0.3   | 3.3   | 3.8   | 4.1   | 4.8   |
| 0.867               | 5.0                    | 5.3   | 7.7   | 8.1   | 8.3   | 8.9   |
| 0.807               | 10.0                   | 10.2  | 12.0  | 12.4  | 12.5  | 12.9  |
| 0.747               | 15.0                   | 15.1  | 16.4  | 16.6  | 16.7  | 17.0  |
| 0.511               | 35.0                   | 34.8  | 33.5  | 33.3  | 33.2  | 32.9  |
| 0.459               | 40.0                   | 39.8  | 37.8  | 37.4  | 37.3  | 36.8  |
| 0.411               | 45.0                   | 44.7  | 42.0  | 41.5  | 41.3  | 40.7  |
| 0.367               | 50.0                   | 49.6  | 46.2  | 45.6  | 45.3  | 44.6  |
| 0.327               | 55.0                   | 54.5  | 50.4  | 49.7  | 49.3  | 48.4  |
| 0.291               | 60.0                   | 59.4  | 54.6  | 53.7  | 53.3  | 52.2  |

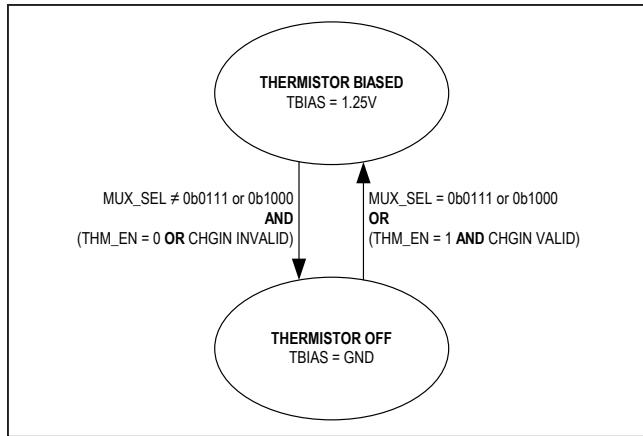



Figure 17. Thermistor Bias State Diagram

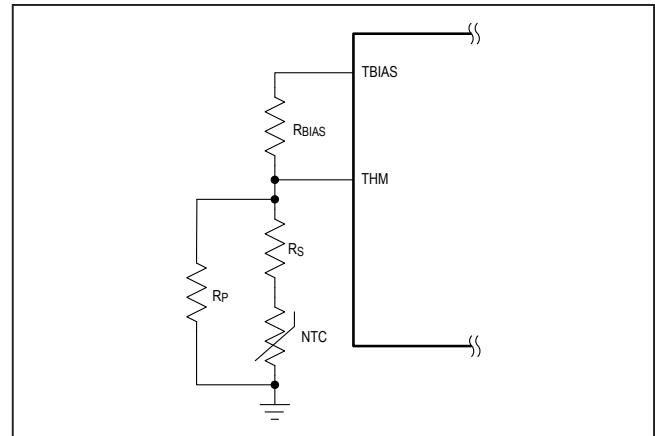



Figure 18. Thermistor Circuit with Adjusting Series and Parallel Resistors

Table 5. Example  $R_s$  and  $R_p$  Correcting Values for NTC  $\beta$  Above 3380K

| PARAMETER                                                 | UNIT | DESIGN TARGET CASE | CASE 1 |       | CASE 2 |        | CASE 3 |        |
|-----------------------------------------------------------|------|--------------------|--------|-------|--------|--------|--------|--------|
| NTC thermistor beta                                       | K    | 3380               | 3940   |       | 4050   |        | 4250   |        |
| 25°C NTC resistance                                       |      | 10                 | 10     |       | 47     |        | 100    |        |
| $R_{BIAS}$                                                |      | 10                 | 10     |       | 47     |        | 100    |        |
| Adjusting parallel resistor, $R_p$                        |      | open               | open   | 200   | open   | 680    | open   | 1300   |
| Adjusting series resistor, $R_s$                          |      | short              | short  | 0.62  | short  | 3.3    | short  | 9.1    |
| $R_{NTC}$ at 1.024V <sub>COLD</sub> threshold             |      | 45.24              | 45.24  | 578.5 | 212.6  | 306.1  | 452.4  | 684.8  |
| $R_{NTC}$ at 0.867V <sub>COOL</sub> threshold             |      | 22.61              | 22.61  | 248.8 | 106.3  | 122.7  | 226.1  | 264.7  |
| $R_{NTC}$ at 0.459V <sub>WARM</sub> threshold             |      | 5.81               | 5.81   | 5.36  | 27.3   | 25.1   | 58.1   | 51.7   |
| $R_{NTC}$ at 0.291V <sub>HOT</sub> threshold              |      | 3.04               | 3.04   | 2.46  | 14.3   | 112.7  | 30.4   | 22.0   |
| T <sub>ACTION</sub> at V <sub>COLD</sub> (-10°C expected) |      | -10.03             | -5.56  | -9.96 | -4.82  | -11.14 | -3.55  | -10.46 |
| T <sub>ACTION</sub> at V <sub>COOL</sub> (5°C expected)   | °C   | 4.98               | 7.66   | 5.76  | 8.10   | 5.33   | 8.86   | 5.94   |
| T <sub>ACTION</sub> at V <sub>WARM</sub> (40°C expected)  |      | 40.02              | 37.79  | 39.76 | 37.43  | 39.40  | 36.82  | 39.48  |
| T <sub>ACTION</sub> at V <sub>HOT</sub> (60°C expected)   |      | 60.04              | 54.56  | 60.37 | 53.68  | 60.02  | 52.21  | 60.4   |

Table 6. NTC Thermistors

| MANUFACTURER | PART                    | $\beta$ -CONSTANT (25°C/50°C) | R (Ω) AT 25°C | CASE SIZE |
|--------------|-------------------------|-------------------------------|---------------|-----------|
| TDK          | NTCG063JF223HTBX        | 3380K                         | 22k           | 0201      |
| Murata       | NCP03XH103F05RL         | 3380K                         | 10k           | 0201      |
| Murata       | NCP15XH103F03RC         | 3380K                         | 10k           | 0402      |
| TDK          | NTCG103JX103DT1         | 3380K                         | 10k           | 0402      |
| Cantherm     | CMFX3435103JNT          | 3435K                         | 10k           | 0402      |
| Murata       | NCP15XV103J03RC         | 3900K                         | 10k           | 0402      |
| Panasonic    | ERT-JZEP473J            | 4050K                         | 47k           | 0201      |
| Panasonic    | ABNTC-0402-473J-4100F-T | 4100K                         | 47k           | 0402      |
| Murata       | NCP15WF104F03RC         | 4250K                         | 100k          | 0402      |

### Detailed Description—Analog Multiplexer and Power Monitor AFEs

An external ADC can be used to measure the chip's various signals for general functionality or on-the-fly power monitoring. The MUX\_SEL[3:0] bitfield controls the internal analog multiplexer responsible for connecting the proper channel to the AMUX pin. Each measurable signal is listed in [Table 7](#) with its appropriate multiplexer channel. The voltage on the AMUX pin is a buffered output that ranges from 0V to  $V_{FS}$  (1.25V, typ). The buffer has

a 50 $\mu$ A quiescent current draw and is only active when the device's main bias is active and a channel is selected (MUX\_SEL[3:0]  $\neq$  0b0000). Disable the buffer by programming to MUX\_SEL[3:0] to 0b0000 when not actively converting the voltage on AMUX.

[Table 7](#) shows how to translate the voltage signal on the AMUX pin to the value of the parameter being measured. See the *Electrical Characteristics* table and refer to the [Programmer's Guide](#) for more details.

**Table 7. AMUX Signal Transfer Functions**

| SIGNAL                          | MUX_SEL[3:0] | TRANSFER FUNCTION                                                                              | FULL-SCALE SIGNAL MEANING ( $V_{AMUX} = 1.25V$ )    | ZERO-SCALE SIGNAL MEANING ( $V_{AMUX} = 0V$ ) |
|---------------------------------|--------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|
| CHGIN pin voltage               | 0b0001       | $V_{CHGIN} = \frac{V_{AMUX}}{G_{VCHGIN}}$                                                      | 7.5V                                                | 0V                                            |
| CHGIN pin current               | 0b0010       | $I_{CHGIN} = \frac{V_{AMUX}}{G_{ICHGIN}}$                                                      | 0.475A                                              | 0A                                            |
| BATT pin voltage                | 0b0011       | $V_{BATT} = \frac{V_{AMUX}}{G_{VBATT}}$                                                        | 4.6V                                                | 0V                                            |
| BATT pin charging current       | 0b0100       | $I_{BATT(CHG)} = \frac{V_{AMUX}}{V_{FS}} \times I_{FAST-CHG}$                                  | 100% of $I_{FAST-CHG}$ (CHG_CC[5:0])                | 0% of $I_{FAST-CHG}$                          |
| BATT pin discharge current      | 0b0101       | $I_{BATT(DISCHG)} = \frac{(V_{AMUX} - V_{NULL})}{(V_{FS} - V_{NULL})} \times I_{DISCHG-SCALE}$ | 100% of $I_{DISCHG-SCALE}$ (IMON_DISCHG_SCALE[3:0]) | 0% of $I_{DISCHG-SCALE}$                      |
| BATT pin discharge current NULL | 0b0110       | $V_{NULL} = V_{AMUX}$                                                                          | 1.25V                                               | 0V                                            |
| THM pin voltage                 | 0b0111       | $V_{THM} = V_{AMUX}$                                                                           | 1.25V                                               | 0V                                            |
| TBIAS pin voltage               | 0b1000       | $V_{TBIAS} = V_{AMUX}$                                                                         | 1.25V                                               | 0V                                            |
| AGND pin voltage*               | 0b1001       | $V_{AGND} = V_{AMUX}$                                                                          | 1.25V                                               | 0V                                            |
| SYS pin voltage                 | 0b1010       | $V_{SYS} = \frac{V_{AMUX}}{G_{VSYS}}$                                                          | 4.8V                                                | 0V                                            |

\*AGND pin voltage is accessed through a 100 $\Omega$  (typ) pulldown resistor.

Setting MUX\_SEL[3:0] to 0b0000 disables the multiplexer and changes the AMUX pin to a high-impedance state.

**Measuring Battery Current**

It is possible to sample the current in the BATT pin at any time or in any mode with an external ADC. For improved accuracy, the analog circuitry used for monitoring battery discharge current is different from the circuitry monitoring battery charge current. [Table 8](#) outlines how to determine the direction of battery current.

**Method for Measuring Discharging Current**

- 1) Program the multiplexer to switch to the discharge NULL measurement by changing MUX\_SEL[3:0] to 0b0110. A NULL conversion must always be performed first to cancel offsets.
- 2) Wait the appropriate channel switching time (0.3μs, typ).
- 3) Convert the voltage on the AMUX pin and store as VNULL.
- 4) Program the multiplexer to switch to the battery discharge current measurement by changing MUX\_SEL[3:0] to 0b0101. A nonnulling conversion should be done immediately after a NULL conversion.
- 5) Wait the appropriate channel switching time (0.3μs, typ).
- 6) Convert the voltage on AMUX pin and use the following transfer function to determine the discharge current:

$$I_{BATT(DISCHG)} = \frac{(V_{AMUX} - V_{NULL})}{(V_{FS} - V_{NULL})} \times I_{DISCHG-SCALE}$$

V<sub>FS</sub> is 1.25V typical. I<sub>DISCHG-SCALE</sub> is programmable through IMON\_DISCHG\_SCALE[3:0]. The default value is 300mA. If smaller currents are anticipated, then

I<sub>DISCHG-SCALE</sub> can be reduced for improved measurement accuracy.

**Method for Measuring Charging Current**

- 1) Program the multiplexer to switch to the charge current measurement by changing MUX\_SEL[3:0] to 0b0100.
- 2) Wait the appropriate channel switching time (0.3μs, typ).
- 3) Convert the voltage on the AMUX pin and use the following transfer function to determine charging current:

$$I_{BATT(CHG)} = \frac{V_{AMUX}}{V_{FS}} \times I_{FAST-CHG}$$

V<sub>FS</sub> is 1.25V typical. I<sub>FAST-CHG</sub> the charger's fast-charge constant-current setting and is programmable through CHG\_CC[5:0].

**Detailed Description—SIMO Buck-Boost**

The device has a micropower single-inductor, multiple-output (SIMO) buck-boost DC-to-DC converter designed for applications that emphasize low supply current and small solution size. See [Figure 19](#). A single inductor is used to regulate three separate outputs, saving board space while delivering better total system efficiency than equivalent power solutions using one buck and linear regulators.

The SIMO configuration utilizes the entire battery voltage range due to its ability to create output voltages that are above, below, or equal to the input voltage. Peak inductor current for each output is programmable to optimize the balance between efficiency, output ripple, EMI, PCB design, and load capability.

**Table 8. Battery Current Direction Decode**

| MEASUREMENT                                                              | CHARGING OR DISCHARGING INDICATORS |                   |                      |
|--------------------------------------------------------------------------|------------------------------------|-------------------|----------------------|
|                                                                          | CHG BIT                            | CHG_DTLS[3:0]     | CHGIN_DTLS[1:0]      |
| Discharging Battery Current (Positive Battery Terminal Sourcing Current) | <i>Don't care</i>                  | <i>Don't care</i> | 0b00<br>0b01<br>0b10 |
| Charging Battery Current (Positive Battery Terminal Sinking Current)     | 1                                  | 0b0001 - 0b0111   | 0b11                 |

**SIMO Features and Benefits**

- Three Output Channels
- Ideal for Low-Power Designs
  - Delivers > 300mA at 1.8V from a 3.7V Input
  - $\pm 4\%$  Accurate Output Voltage
- Small Solution Size
  - Multiple Outputs from a Single 1.5 $\mu$ H (0603) Inductor
  - Small 10 $\mu$ F (0402) Output Capacitors
- Flexible and Easy to Use
  - Single Mode of Operation
  - Glitchless Transitions Between Buck, Buck-Boost, and Boost Scenarios
  - Programmable Peak Inductor Current
  - Programmable On-Chip Active Discharge

## • Long Battery Life

- High Efficiency, > 87% at 3.3V Output
- Better Total System Efficient than Buck + LDOs
- Low Quiescent Current, 1 $\mu$ A per Output
- Low Input Operating Voltage, 2.7V (min)

**SIMO Control Scheme**

The SIMO buck-boost is designed to service multiple outputs simultaneously. A proprietary controller ensures that all outputs get serviced in a timely manner, even while multiple outputs are contending for the energy stored in the inductor. When no regulator needs service, the state machine rests in a low-power rest state.

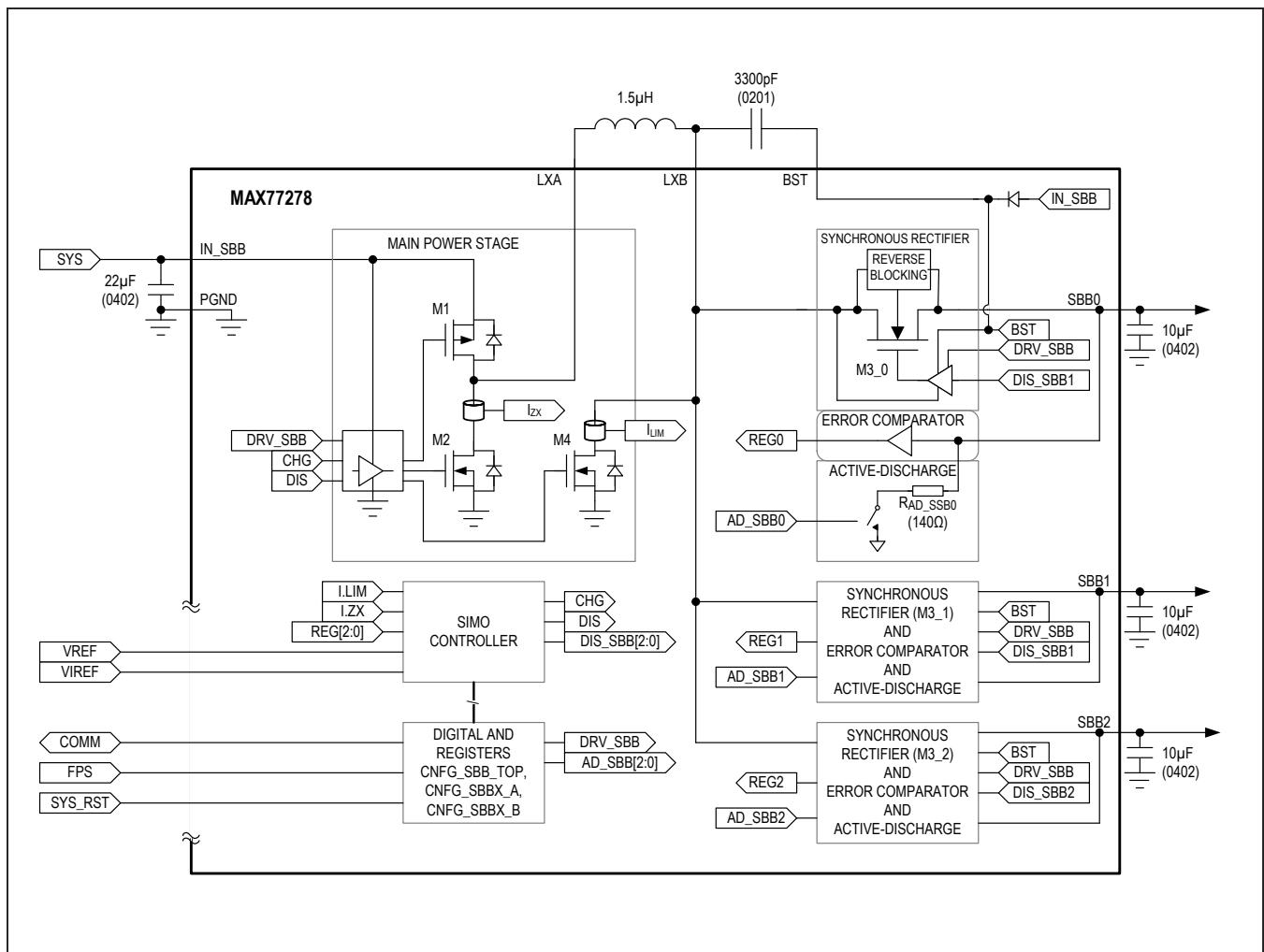



Figure 19. SIMO Detailed Block Diagram

When the controller determines that a regulator requires service, it charges the inductor ( $M1 + M4$ ) until the peak current limit is reached ( $I_{LIM} = IP_{SBB}$ ). The inductor energy then discharges ( $M2 + M3\_x$ ) into the output until the current reaches zero ( $I_{ZX}$ ). In the event that multiple output channels need servicing at the same time, the controller ensures that no output utilizes all of the switching cycles. Instead, cycles interleave between all the outputs that are demanding service, while outputs that do not need service are skipped.

### SIMO Soft-Start

The soft-start feature of the SIMO limits inrush current during startup. The soft-start feature is achieved by limiting the slew rate of the output voltage during startup to  $dV/dt_{SS}$  (5mV/μs typ).

More output capacitance results in higher input current surges during startup. The following set of equations and example describes the input current surge phenomenon during startup.

The current into the output capacitor ( $I_{CSBB}$ ) during soft-start is:

$$I_{CSBB} = C_{SBB} \frac{dV}{dt_{SS}} \quad (\text{Equation 1})$$

where:

- $C_{SBB}$  is the capacitance on the output of the regulator
- $dV/dt_{SS}$  is the voltage change rate of the output

The input current ( $I_{IN}$ ) during soft-start is:

$$I_{IN} = \frac{(I_{CSBB} + I_{LOAD}) \frac{V_{SBBx}}{V_{IN}}}{\xi} \quad (\text{Equation 2})$$

where:

- $I_{CSBB}$  is from the calculation above
- $I_{LOAD}$  is current consumed from the external load
- $V_{SBBx}$  is the output voltage
- $V_{IN}$  is the input voltage
- $\xi$  is the efficiency of the regulator

For example, given the following conditions, the peak input current ( $I_{IN}$ ) during soft-start is ~71mA:

Given:

- $V_{IN}$  is 3.5V
- $V_{SBB2}$  is 3.3V
- $C_{SBB2} = 10\mu\text{F}$

- $dV/dt_{SS} = 5\text{mV}/\mu\text{s}$
- $R_{LOAD2} = 330\Omega$  ( $I_{LOAD2} = 3.3\text{V}/330\Omega = 10\text{mA}$ )
- $\xi$  is 80%

Calculation:

- $I_{CSBB} = 10\mu\text{F} \times 5\text{mV}/\mu\text{s}$  (from Equation 1)
- $I_{CSBB} = 50\text{mA}$
- $I_{IN} = \frac{(50\text{mA} + 10\text{mA}) \frac{3.3\text{V}}{3.5\text{V}}}{0.85}$  (from Equation 1)
- $I_{IN} \sim 71\text{mA}$

### SIMO Configuration

Each SIMO buck-boost channel has a dedicated register to program its target output voltage ( $TV_{SBBx}$ ) and its peak current limit ( $IP_{SBBx}$ ). Additional controls are available for enabling/disabling the active discharge resistors ( $ADE_{SBBx}$ ), as well as enabling/disabling the SIMO buck-boost channels ( $EN_{SBBx}$ ). For a full description of bits, registers, default values, and reset conditions, refer to the [Programmer's Guide](#).

### SIMO Active Discharge Resistance

Each SIMO buck-boost channel has an active-discharge resistor ( $R_{AD_{SBBx}}$ ) that is automatically enabled/disabled based on a  $ADE_{SBBx}$  and the status of the SIMO regulator. The active discharge feature can be enabled ( $ADE_{SBBx} = 1$ ) or disabled ( $ADE_{SBBx} = 0$ ) independently for each SIMO channel. Enabling the active discharge feature helps ensure a complete and timely power down of all system peripherals. If the active-discharge resistor is enabled by default, then the active-discharge resistor is on whenever  $V_{SYS}$  is below  $V_{SYSUVLO}$  and above  $V_{POR}$ .

These resistors discharge the output when  $ADE_{SBBx} = 1$ , and their respective SIMO channel is off. Note if the regulator is forced on through  $EN_{SBBx} = 0b110$  or  $0b111$ , then the resistors do not discharge the output even if the regulator is disabled by the main-bias.

Note that when  $V_{SYS}$  is less than 1.0V, the NMOS transistors that control the active discharge resistors lose their gate drive and become open.

When the active discharge resistor is engaged, limit its power dissipation to an average of 10mW. For example, consider the case where the active discharge resistance is discharging the output capacitor each time the regulator turns off; the 10mW limit allows discharge of  $80\mu\text{F}$  of capacitance charged to 5V every 100ms ( $P = [0.5 \times C \times V^2]/t = [0.5 \times 80\mu\text{F} \times 5\text{V}^2]/100\text{ms} = 10\text{mW}$ ).

**Applications Information****SIMO Available Output Current**

The available output current on a given SIMO channel is a function of the input voltage, output voltage, the peak current-limit setting, and the output current of the other SIMO channels. Maxim offers a [SIMO Calculator](#) that outlines the available capacity for specific conditions. [Table 9](#) is an extraction from the calculator.

**Inductor Selection**

Choose an inductance from 1.0 $\mu$ H to 2.2 $\mu$ H; 1.5 $\mu$ H inductors work best for most designs. Larger inductance transfers more energy to the output for each cycle and typically results in larger output voltage ripple and better efficiency. See the [Output Capacitor Selection](#) section for more information on how to size your output capacitor in order to control ripple.

Choose the inductor saturation current to be greater than or equal to the maximum peak current-limit setting that is used for all of the SIMO buck-boost channels ( $IP_{SBB}$ ). For example, if  $SBB0$  is set for 0.5A,  $SBB1$  is set for 0.866A, and  $SBB2$  is set for 1.0A, then choose the saturation current to be greater than or equal to 1A.

Choose the RMS current rating of the inductor (typically the current at which the temperature rises appreciably) based on the expected load currents for the system.

Consider the DC-resistance (DCR), AC-resistance (ACR), and physical size of the inductor. Smaller size inductors tend to have larger DCR and ACR that reduce SIMO efficiency and available output current. For this SIMO regulator, inductors with the lowest ACR in the 1.0MHz to 2.0MHz region tend to provide the best efficiency.

**Table 9. SIMO Available Output Current for Common Applications**

| PARAMETERS        | EXAMPLE 1     | EXAMPLE 2     | EXAMPLE 3    |
|-------------------|---------------|---------------|--------------|
| V.IN.MIN          | 3V            | 3.2V          | 3.4V         |
| R.L.DCR           | 0.1 $\Omega$  | 0.1 $\Omega$  | 0.1 $\Omega$ |
| SBB0              | 5.3V at 40mA  | 5.0V at 25mA  | 3.3V at 10mA |
| SBB1              | 1.9V at 100mA | 1.8V at 150mA | 1.5V at 40mA |
| SBB2              | 3.2V at 50mA  | 3.3V at 25mA  | 1.2V at 80mA |
| IP_SBB0           | 1A            | 0.866A        | 0.5A         |
| IP_SBB1           | 1A            | 1A            | 0.5A         |
| IP_SBB2           | 1A            | 0.866A        | 0.5A         |
| Utilized Capacity | 82%           | 81%           | 78%          |

\* $R.C.IN = R.C.OUT = 5m\Omega$ ,  $L = 1.5\mu H$

See [Table 10](#) for examples of inductors that work well with this device. This table was created in 2016. Inductor technology advances rapidly. Always consider the most current inductor technology for new designs to achieve the best possible performance.

#### Input Capacitor Selection

Bypass IN\_SBB to GND with a minimum 10 $\mu$ F ceramic capacitor ( $C_{IN\_SBB}$ ). Larger values of  $C_{IN\_SBB}$  improve the decoupling for the SIMO regulator.

$C_{IN\_SBB}$  reduces the current peaks drawn from the battery or input power source during SIMO regulator operation and reduces switching noise in the system. The ESR/ESL of the input capacitor should be very low (i.e.,  $ESR \leq 5m\Omega$  and  $ESL \leq 500pH$ ) for frequencies up to 2MHz. Ceramic capacitors with X5R or X7R dielectric are highly recommended due to their small size, low ESR, and small temperature coefficients.

A 6.3V capacitor voltage rating is recommended for the SIMO input voltage range of up to 5.5V.

In the PCB layout, place  $C_{IN\_SBB}$  as close as possible to the power pins (IN\_SBB and PGND) to minimize parasitic inductance. If making connections to the input capacitor through vias, ensure that the vias are rated for the expected input current so they do not contribute excess inductance and resistance between the bypass capacitor and the power pins.

#### Boost Capacitor Selection

Choose the boost capacitance ( $C_{BST}$ ) to be 3.3nF. Smaller values of  $C_{BST}$  ( $<1nF$ ) result in insufficient gate drive for M3. Larger values of  $C_{BST}$  ( $>10nF$ ) have the potential to degrade the startup performance. Ceramic capacitors with 0201 or 0402 case size are recommended.

#### Output Capacitor Selection

Choose each output bypass capacitance ( $C_{SBBx}$ ) based on the desired output voltage ripple (10 $\mu$ F, typ). Larger values of  $C_{SBBx}$  improve the output voltage ripple but increase the input surge currents during soft-start and output voltage changes. The output voltage ripple is a function of the inductance, the output voltage, and the peak current-limit setting. Refer to the [SIMO calculator](#) to aid in the selection of the output capacitance.

The impedance of the output capacitor (ESR, ESL) should be very low (i.e.,  $ESR \leq 5m\Omega$  and  $ESL \leq 500pH$ ) for frequencies up to 2MHz. Ceramic capacitors with X5R or X7R dielectric are highly recommended due to their small size, low ESR, and small temperature coefficients. Generally, small case size capacitors derate heavily compared to larger case sizes (0603 case size performs better than 0402). Consider the effective capacitance value carefully by consulting the manufacturer's data sheet.

**Table 10. Example Inductors**

| MANUFACTURER | PART            | L ( $\mu$ H) | I <sub>SAT</sub> (A) | I <sub>RMS</sub> (A) | DCR ( $\Omega$ ) | X (mm) | Y (mm) | Z (mm) |
|--------------|-----------------|--------------|----------------------|----------------------|------------------|--------|--------|--------|
| Toko         | DFE201610E-2R2M | 2.2          | 2.6                  | 1.9                  | 0.117            | 2.0    | 1.6    | 1.0    |
| Toko         | DFE201610E-1R5M | 1.5          | 2.4                  | 3.2                  | 0.076            | 2.0    | 1.6    | 1.0    |
| Toko         | DFE201210S-2R2M | 2.2          | 2.3                  | 1.80                 | 0.127            | 2.0    | 1.2    | 1.0    |
| Toko         | DFE201210S-1R5M | 1.5          | 2.2                  | 2.6                  | 0.086            | 2.0    | 1.2    | 1.0    |
| Toko         | DFE201208S-1R5M | 1.5          | 2.4                  | 2.0                  | 0.110            | 2.0    | 1.2    | 0.8    |
| Toko         | DFE201208S-2R2M | 2.2          | 2.0                  | 1.6                  | 0.170            | 2.0    | 1.2    | 0.8    |
| TDK          | MLP2012V1R5T    | 1.5          | 0.5                  | 0.55                 | 0.4              | 1.0    | 1.2    | 0.55   |

In the PCB layout, place  $C_{SBBx}$  as close as possible to  $SBBx$  and  $PGND$  to minimize parasitic inductance. If making connections to the output capacitor through vias, ensure that the vias are rated for the expected output current so they do not contribute excess inductance and resistance.

### Unused Outputs

Do not leave unused outputs unconnected. If an output left unconnected is accidentally enabled, inductor current dumps into an open pin, and the output voltage soars above the absolute maximum rating, potentially causing damage to the device. If the unused output is always disabled ( $EN_{SBBx} = 0x4$  or  $0x5$ ), connect that output to ground. If an unused output can be enabled at any point during operation (such as startup or accidental software access), then implement one of the following:

- 1) Bypass the unused output with a  $1\mu F$  ceramic capacitor to ground.
- 2) Connect the unused output to the power input ( $IN_{SBB}$ ). This connection is beneficial because it does not require an external component for the unused output. The power input and its capacitance receives the energy packets when the regulator is enabled and  $V_{IN_{SBB}}$  is below the target output voltage of the unused output. Circulating the energy back to the power input ensures that the unused output voltage does not fly high.

Note that some OTP options of the device have the active-discharge resistors enabled by default ( $ADE_{SBBx}$ ) such that connecting an unused output  $SBBx$  to  $IN_{SBB}$  creates a  $140\Omega$  ( $R_{AD_{SBBx}}$ ) to ground until software can be ran to disable the active-discharge resistor. Connecting an unused  $SBBx$  to  $IN_{SBB}$  is not recommended if the regulator's active-discharge resistor is enabled by default.

- 3) Connect the unused output to another power output that is above the target voltage of the unused output. In the same way as the option listed above, this con-

nnection is beneficial because it does not require an external component for the unused output. Unlike the option above, this connection is preferred in cases where the unused output voltage bias level is always above the unused output voltage target because no energy packages are provided to the unused output.

Note that some OTP options of the device have the active-discharge resistors enabled by default ( $ADE_{SBBx}$ ). If the other power output used to bias the unused output is normally off, then the active-discharge resistor of the unused output does not create a continuous current draw.

Once the system is enabled, it should turn off the unused output's active-discharge resistor ( $ADE_{SBBx} = 0$ ).

### Detailed Description—LDO

The device includes one on-chip low-dropout linear regulator (LDO). This LDO is optimized to have low-quiescent current and low-dropout voltage. The input voltage range of this LDO ( $V_{IN_{LDO}}$ ) allows it to be powered directly from the main energy source such as a Li+/Li-Poly battery or from an intermediate regulator. The linear regulator delivers up to 50mA.

### Features and Benefits

- 50mA LDO
- Class A/B Output Stage
- Maximum of 2.75mVpp Output Ripple
- 1.7V to 5.5V Input Voltage Range
- Adjustable Output Voltage
- 150mV Maximum Dropout Voltage (over PVT) at 50mA
- Short Circuit Current Limited to 320mA (Provides Soft-Start Function)

### LDO Simplified Block Diagram

The LDO has one input (IN\_LDO) and one output (LDO) and several ports that exchange information with the rest of the device (VREF, EN\_LDO, ADE\_LDO). See [Figure 20](#). VREF comes from the main bias circuits. EN\_LDO and ADE\_LDO are register bits for controlling the enable and active-discharge feature of the LDO. Refer to the [Programmer's Guide](#) for more information.

### LDO Active Discharge Resistor and Typical Use

The LDO has an active-discharge resistor ( $R_{AD\_LDO}$ ) that automatically enables/disables based on a configuration bit (ADE\_LDO) and the status of the LDO regulator. Enabling the active discharge feature helps ensure a complete and timely power down of all system peripherals. The default condition of the active-discharge resistor feature is enabled such that whenever  $V_{SYS}$  is above  $V_{POR}$  and  $V_{IN\_LDO}$  is above 1.0V, the LDO active discharge resistor is turned on. Note that when  $V_{IN\_LDO}$  is less than 1.0V, the NMOS transistor that controls the LDO active discharge resistor loses its gate drive and becomes open.

### LDO Soft-Start

The soft-start feature of the LDO limits inrush current during startup. The soft-start feature is achieved by limiting the slew rate of the output voltage during startup to  $dV_{LDO}/dt_{SS}$  (1.6V/ms typ).

More output capacitance results in higher input current surges during startup. The equation and example describes the input current surge phenomenon during startup.

The input current ( $I_{IN}$ ) during soft-start is:

$$I_{IN} = C_{LDO} \frac{dV_{LDO}}{dt_{SS}} + I_{LDO}$$

where:

- $C_{LDO}$  is the capacitance on the output of the regulator
- $dV_{LDO}/dt_{SS}$  is the voltage change rate of the output

For example, given the following conditions, the input current ( $I_{IN}$ ) during soft-start is 22.5mA:

Given:

- $C_{LDO} = 10\mu F$
- $dV_{LDO}/dt_{SS} = 1.6V/ms$
- $R_{LDO} = 185\Omega$  ( $I_{LDO} = 1.85V/185\Omega = 10mA$ )

Calculation:

- $I_{IN} = 10\mu F \times 1.6V/ms + 10mA$
- $I_{IN} = 26mA$

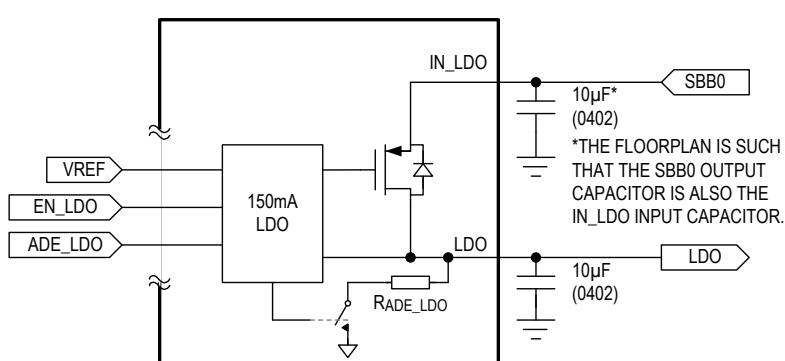



Figure 20. LDO Simplified Block Diagram

### Fixed Headroom Controller (FHC)

The LDO features a FHC intended for use when the input of the LDO (IN\_LDO) is powered from SBB0. The FHC regulates the output voltage of SBB0 to be  $V_{HDRV}$  (150mV to 225mV) above  $V_{LDO}$ . This feature allows the LDO to operate close to its minimum headroom voltage to reduce power dissipation in the LDO. This system maximizes the benefit of the SIMO's efficiency to create a low noise output from the LDO.

Connect SBB0 to IN\_LDO to make use of the FHC. The output capacitors of SBB0 double as the input capacitors of the LDO. SBB0 regulates to the voltage defined by TV\_SBB0[5:0] if the FHC is disabled, or if the LDO output is disabled. When the FHC is enabled, the SBB0 output voltage remains at its own regulation target until the output voltage of the LDO rises above the LDO POK threshold. Once the LDO output rises above the LDO POK threshold, SBB0 regulates to the voltage defined by TV\_LDO[6:0] plus the headroom voltage define by  $V_{HDRV}$ [1:0]. TV\_SBB0[5:0] is ignored while the FHC is active.

The SBB0 and LDO outputs are tightly coupled together when the FHC is enabled. The LDO\_POK\_R interrupt asserts if the LDO output drops below the LDO POK threshold to alert the system that the LDO is being pulled low. The outputs of the SBB0 and LDO both collapse to ground if the LDO is heavily overloaded. The SBB0 and LDO output remains latched at ground until the FHC is disabled. Monitor the LDO\_POK\_R interrupt to detect when the LDO output collapses to ground. Once the LDO\_POK\_R interrupt asserts, toggle the FHC off and back on to restart the SBB0 and LDO outputs and recover from the overcurrent situation.

The FHC is enabled by default, but is disabled by setting EN\_FHC to 0. Systems that don't use SBB0 to power the LDO must disable the FHC after startup.

### Applications Information

#### Input Capacitor Selection

Choose the input bypass capacitance ( $C_{IN\_LDO}$ ) to be 10 $\mu$ F. Larger values of  $C_{IN\_LDO}$  improve the decoupling for the LDO regulator. The floorplan of the device is such that SBB0 is adjacent to IN\_LDO and if the SIMO channel 0 output powers the input of the LDO, then its output capacitor ( $C_{SBB0}$ ) can also serve as  $C_{IN\_LDO}$  such that only one capacitor is required.

$C_{IN\_LDO}$  reduces the current peaks drawn from the battery or input power source during LDO regulator operation. The impedance of the input capacitor (ESR, ESL) should be very low (i.e.,  $ESR \leq 50m\Omega$  and  $ESL \leq 5nH$ ) for frequencies up to 0.5MHz. Ceramic capacitors with X5R or X7R dielectric are highly recommended due to their small size, low ESR, and small temperature coefficients.

#### Output Capacitor Selection

Choose the output bypass capacitance ( $C_{LDO}$ ) to be 10 $\mu$ F. Larger values of  $C_{LDO}$  improve output PSRR, but increases the input surge currents during soft-start and output voltage changes. The effective output capacitance should not exceed 100 $\mu$ F to maintain LDO stability.

$C_{LDO}$  is required to keep the LDO stable. The impedance of the output capacitor should be very low (i.e.,  $ESR \leq 50m\Omega$  and  $ESL \leq 5nH$ ) for frequencies up to 0.5MHz. Ceramic capacitors with X5R or X7R dielectric are highly recommended due to their small size, low ESR, and small temperature coefficients.

A capacitor's effective capacitance decreases with increased DC bias voltage. This effect is more pronounced as capacitor case sizes decrease. Due to this characteristic, it is possible for 0603 case size capacitors to perform well while 0402 case size capacitors of the same value perform poorly. The LDO is stable with 4 $\mu$ F of effective output capacitance; consider the input capacitance value after initial tolerance, bias voltage, aging, and temperature derating.

## Detailed Description—Current Sink

The device has a current sink driver (CS) designed to drive infrared LEDs in portable devices. See [Figure 21](#). CS can also be used as a general-purpose current sink for other applications. The driver's on-time and frequency are set by directly driving the CS\_EN pin high or low. The regulated current value is I<sup>2</sup>C programmable from 250mA to 425mA in 25mA increments.

## Features and Benefits

- High Level, Programmable Current Sink
- Programmable from 250mA to 425mA in 25mA Steps
- High-Speed Current Pulse Rate (up to 500KHz)
- Fast Rise Time Pulse Response (75ns, typ)
- Ideal for IR LED Applications
- Watchdog Timer
- Wide Operating Voltage Range
  - 2.7V to 5.5V Operation
  - Low-Dropout Voltage (400mV min)

## Current Sink Control

Use the CS\_PRE\_EN bit and the CS\_EN pin to control the current sink. The circuit is disabled by default (CS\_PRE\_EN = 0). Pulses on CS\_EN are ignored while CS\_PRE\_EN is 0. Set CS\_PRE\_EN to 1 using I<sup>2</sup>C to pre-enable the current sink's bias circuitry. The bias circuitry requires a setup time ( $t_{SU}$ , 10 $\mu$ s typ) before the current sink is controllable with CS\_EN.

After writing CS\_PRE\_EN = 1, drive CS\_EN logic high to enable the current sink. Drive CS\_EN logic low to disable. Modulate the CS\_EN pin with the desired control signal to modulate the current in the load attached to the current sink.

Use the CS\_CURR[2:0] bitfield to set the regulated current value into the CS pin between 250mA and 425mA in 25mA steps.

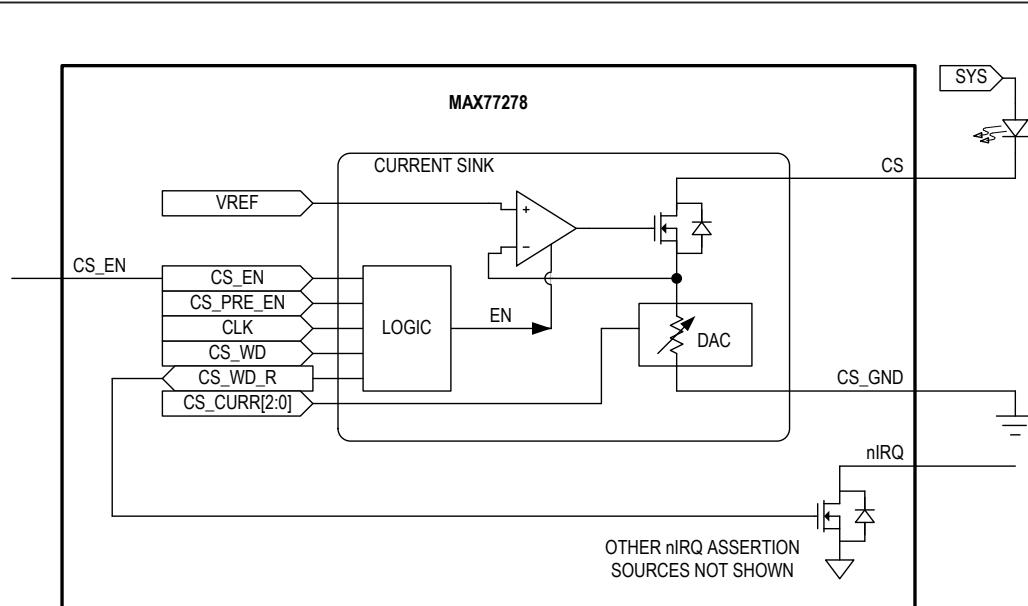



Figure 21. Current Sink Simplified Block Diagram

**Current Sink Watchdog Timer**

The current sink employs a watchdog timer intended to protect the device from fault conditions that leave CS\_EN high indefinitely. The watchdog timer starts on the rising edge of a pulse on CS\_EN. The watchdog timer expires if CS\_EN is held high for longer than 12.8ms. Upon watchdog timer expiration, the CS\_WD\_R interrupt asserts to warn the host that CS\_EN has been held high for too long.

The CS\_WD bit controls what happens when the watchdog timer expires. If CS\_WD = 1 (default value) and the watchdog timer expires, then internal logic forces the current sink off. (See [Figure 22](#), note 4.) Toggle the CS\_EN pin to reactivate the current sink. The watchdog timer restarts on every CS\_EN rising edge. Write CS\_WD = 0 to prevent internal logic from forcing the current sink off if the watchdog timer expires. The CS\_WD\_R interrupt asserts when the watchdog timer expires regardless of the state of CS\_WD.

**Unused Current Sink**

If the current sink is not utilized in a given application, connect CS and CS\_EN to ground. Additionally, software should ensure that the unused current sink is not enabled (CS\_PRE\_EN = 0).

**Detailed Description—I<sup>2</sup>C**

The device features a revision 3.0 I<sup>2</sup>C-compatible, 2-wire serial interface consisting of a bidirectional serial data line (SDA) and a serial clock line (SCL). The IC is a slave-only device that relies on an external bus master to generate SCL. SCL clock rates from 0Hz to 3.4MHz are supported. I<sup>2</sup>C is an open-drain bus and therefore SDA and SCL require pullups.

The device's I<sup>2</sup>C communication controller implements 7-bit slave addressing. An I<sup>2</sup>C bus master initiates communication with the slave by issuing a START condition followed by the slave address. The slave address is factory programmable for one of two options (see [Table 11](#)). All slave addresses not mentioned in [Table 11](#) are not acknowledged.

The device uses 8-bit registers with 8-bit register addressing. They support standard communication protocols: (1) Writing to a single register (2) Writing to multiple sequential registers with an automatically incrementing data pointer (3) Reading from a single register (4) Reading from multiple sequential registers with an automatically incrementing data pointer. For additional information on the I<sup>2</sup>C protocols, refer to the [I<sup>2</sup>C-Compatible Serial Interface Implementation Guide](#), or the I<sup>2</sup>C specification that is freely available on the Internet.

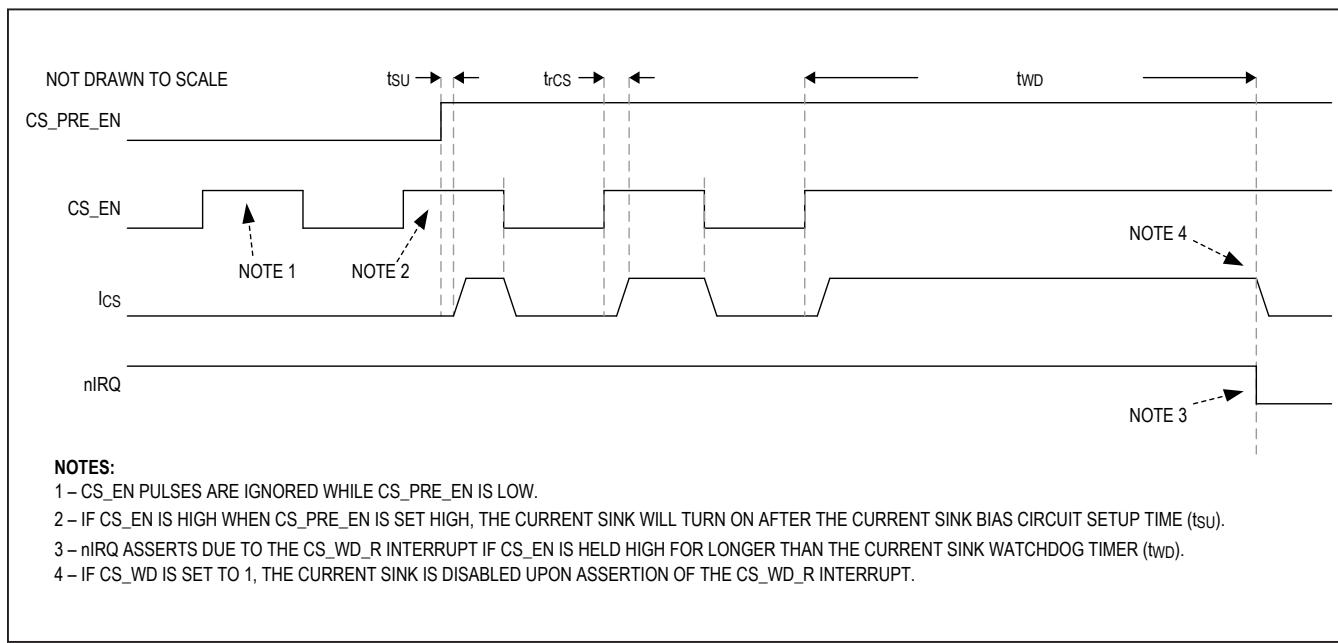
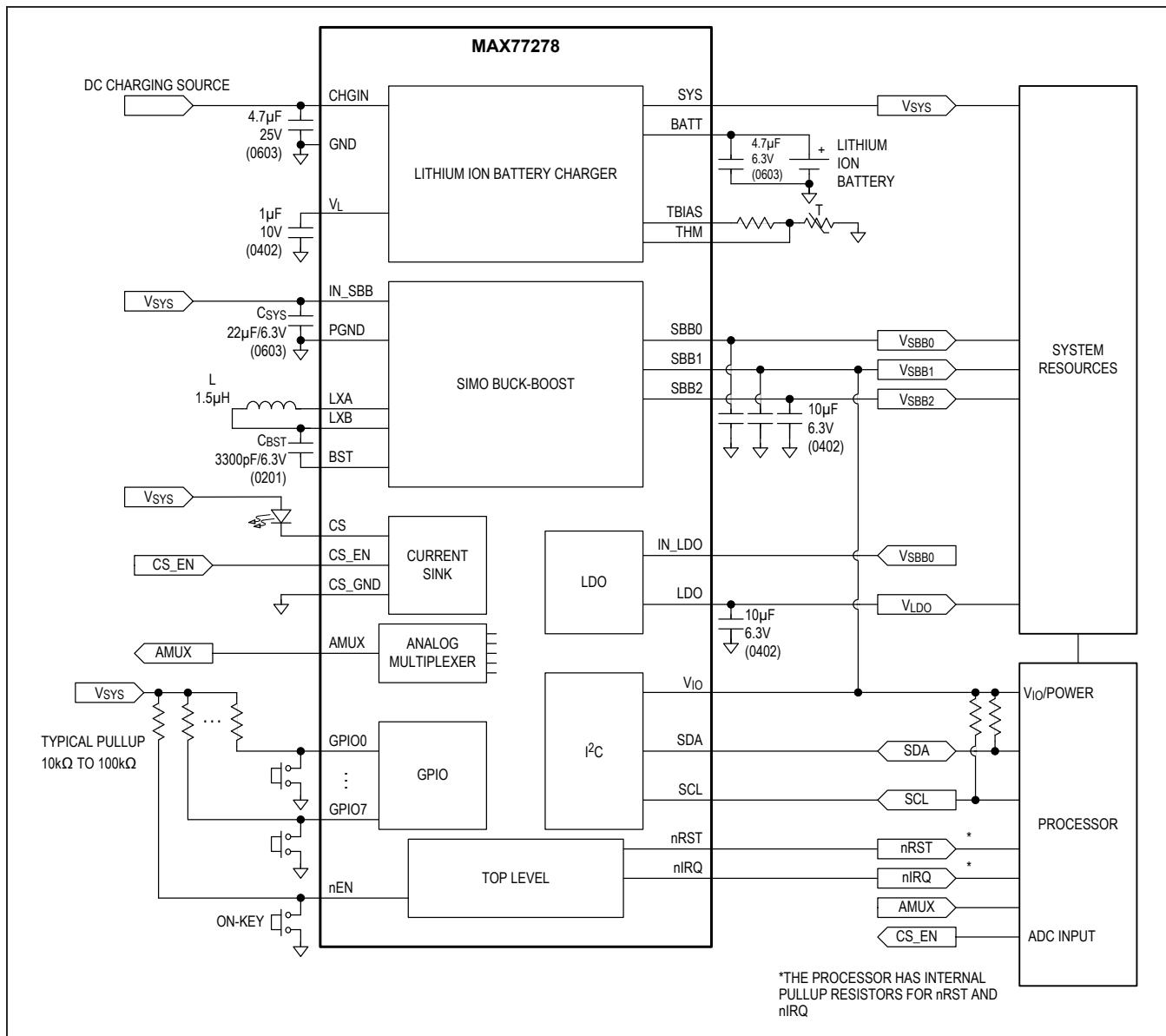



Figure 22. Current Sink Timing Diagram


**Table 11. I<sup>2</sup>C Slave Address Options**

| ADDRESS                     | 7-BIT SLAVE ADDRESS                                         | 8-BIT WRITE ADDRESS                                            | 8-BIT READ ADDRESS                                             |
|-----------------------------|-------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| Main Address<br>(ADDR = 1)* | 0x48, 0b 100 1000                                           | 0x90, 0b 1001 0000                                             | 0x91, 0b 1001 0001                                             |
| Main Address<br>(ADDR = 0)* | 0x40, 0b 100 0000                                           | 0x80, 0b 1000 0000                                             | 0x81, 0b 1000 0001                                             |
| Test Mode**                 | 0x49, 0b 100 1001<br>0x5A, 0b 101 1001<br>0x68, 0b 110 1000 | 0x92, 0b 1001 0010<br>0xB2, 0b 1011 0010<br>0xD0, 0b 1101 0000 | 0x93, 0b 1001 0011<br>0xB3, 0b 1011 0011<br>0xD1, 0b 1101 0001 |

\*Perform all reads and writes on the main address. ADDR is a factory one-time programmable (OTP) option, allowing for address changes in the event of a bus conflict. Contact Maxim for more information.

\*\*When test mode is unlocked, the additional address is acknowledged. Test mode details are confidential. If possible, leave the test mode address unallocated to allow for the rare event that debugging needs to be performed in cooperation with Maxim.

## Typical Application Circuit



## Ordering Information

| PART          | TEMP RANGE     | PIN-PACKAGE |
|---------------|----------------|-------------|
| MAX77278EWB+T | -40°C to +85°C | 35 WLP      |

+Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

**Note:** Refer to the [Programmer's Guide](#) for the options associated with a specified DIDM and CID.

## Revision History

| REVISION NUMBER | REVISION DATE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                   | PAGES CHANGED                                                |
|-----------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 0               | 9/17          | Initial release                                                                                                                                                                                                                                                                                                                               | —                                                            |
| 1               | 11/17         | Updated title, <i>Applications</i> section, and <i>Benefits and Features</i> section, added <i>Support Materials</i> section, updated <i>Detailed Description—SiMo Buck-Boost</i> section, updated <i>Ordering Information</i> table                                                                                                          | 1, 6, 18, 30, 33, 57, 59, 60, 67                             |
| 2               | 7/18          | Updated <i>Ordering Information</i> table                                                                                                                                                                                                                                                                                                     | 67                                                           |
| 3               | 11/18         | Updated <i>General Description</i> , <i>Benefits and Features</i> , <i>Applications</i> , <i>Electrical Characteristics</i> tables, <i>Bump Configuration</i> , <i>Bump Description</i> , and various sections in the <i>Detailed Description</i> , replaced the Simplified Application Circuit, Table 5, and the Typical Application Circuit | 1, 2, 9-13, 18-21, 28-30, 32-35, 42-44, 46-48, 50, 54, 56-67 |

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at <https://www.maximintegrated.com/en/storefront/storefront.html>.

*Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.*

# Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Maxim Integrated:](#)

[MAX77278EWB+](#) [MAX77278EWB+T](#)