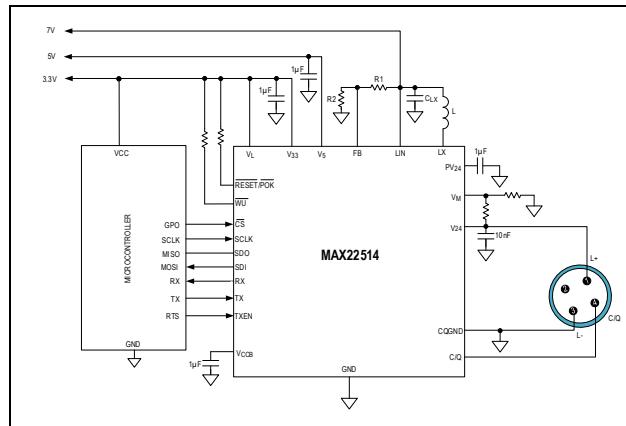


## Surge Protected IO-Link Transceiver with DC-DC

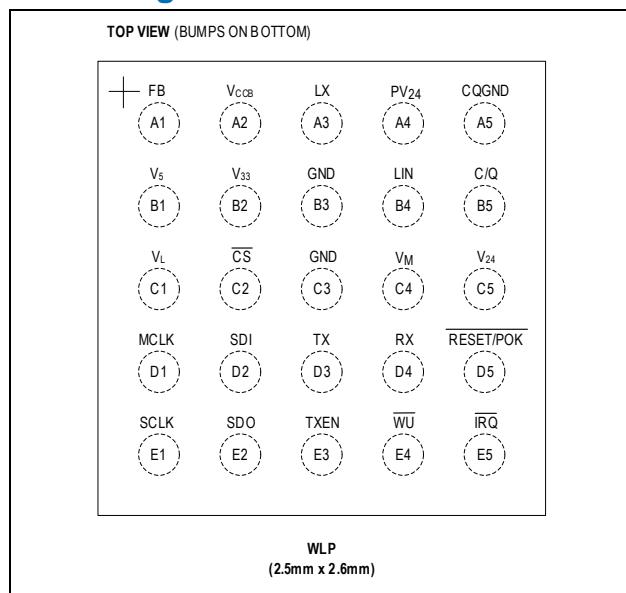
**MAX22514**

### Product Highlights

- High Configurability and Integration
  - IO-Link Device and Master Applications
  - COM1, COM2, and COM3 Data Rates
  - Integrated High-Efficiency 200mA DC-DC Buck Regulator
  - 200 $\mu$ A/2mA/5mA Current Sinks/Sources
  - C/Q Receiver is Configurable for 5V TTL
  - Highly Configurable Driver Overload Handling
  - Four Selectable Driver Slew Rates
  - SPI Configuration and Monitoring
  - Integrated Temperature Sensor
  - Configurable C/Q Driver: PNP, NPN, and PP Modes
- Integrated Protection Enables Robust Systems
  - Integrated  $\pm 1\text{kV}/500\Omega$  Surge Protection
  - Spread Spectrum DC-DC
  - Reverse Polarity Protection
  - Glitch Filter for Improved Burst Resilience
  - Hot-Plug Protection
- Optimized for Small Sensor Designs
  - Accurate Oscillator for IO-Link Communication
  - 2.4 $\Omega$  (typ) Driver On-Resistance for Low Power Dissipation
  - 1.2MHz DC-DC Switching Rate
  - Integrated 3.3V and 5V Linear Regulators
  - Available in Tiny WLP (2.5mm x 2.6mm) and TQFN (4mm x 5mm) Packages


### Key Applications

- IO-Link and Industrial Sensor and Actuator Devices
- The MAX22514 features a SPI interface for configuration and diagnostics. A high level of integration (including two linear regulators, a DC-DC buck regulator, and integrated surge protection, combined with low power dissipation and small packages) optimizes the MAX22514 for use in many different industrial and IO-Link small sensor applications.


- IO-Link Master Transceivers

The MAX22514 is capable of being used in both IO-Link devices and IO-Link master applications. A SPI interface is used for extended configurability and diagnostics, and the transceiver is capable of operating at the COM1, COM2, and COM3 IO-Link data rates. The MAX22514 can be configured to enable the required 5mA pull-down/pull-up current on the C/Q line and generate a wake-up pulse.

### Simplified Application Diagram



### Pin Configuration



See more [Who should use this part.](#)

**Ordering Information** appears at end of data sheet.

## Absolute Maximum Ratings

All voltages referenced to GND, unless otherwise noted.

|                                                                                       |                                  |
|---------------------------------------------------------------------------------------|----------------------------------|
| $V_{24}$ (Continuous).....                                                            | -36V to +36V                     |
| $V_{24}$ (Peak, 100 $\mu$ s).....                                                     | -52V to +65V                     |
| $PV_{24}$ (Continuous).....                                                           | -0.3V to +36V                    |
| $PV_{24}$ (Peak, 100 $\mu$ s) MAX(-0.3V, $V_{24}$ - 52V) to MIN(+52V, $V_{24}$ + 52V) |                                  |
| LX.....                                                                               | -0.3V to ( $PV_{24}$ + 0.3V)     |
| LIN (Continuous).....                                                                 | MAX(-0.3V, $V_5$ - 0.3V) to +36V |
| LIN (Peak, 100 $\mu$ s).....                                                          | MAX(-0.3V, $V_5$ - 0.3V) to +52V |
| C/Q (Continuous) MAX(-36V, $V_{24}$ - 36V) to MIN(+36V, $V_{24}$ + 36V)               |                                  |
| C/Q (Peak, 100 $\mu$ s) MAX(-52V, $V_{24}$ - 60V) to MIN(+52V, $V_{24}$ + 60V)        |                                  |
| $V_M$ , FB, $V_{CCB}$ , RESET/POK.....                                                | -0.3V to +6V                     |
| $V_5$ , $V_L$ .....                                                                   | -0.3V to +6V                     |
| $V_{33}$ .....                                                                        | -0.3V to ( $V_5$ + 0.3V)         |

### LOGIC INPUTS

|                               |                          |
|-------------------------------|--------------------------|
| CS, SCLK, SDI, TX, TXEN ..... | -0.3V to ( $V_L$ + 0.3V) |
|-------------------------------|--------------------------|

### LOGIC OUTPUTS

|                                                                         |                          |
|-------------------------------------------------------------------------|--------------------------|
| SDO, RX, MCLK .....                                                     | -0.3V to ( $V_L$ + 0.3V) |
| IRQ, WU .....                                                           | -0.3V to +6V             |
| CQGND .....                                                             | -0.3V to +0.3V           |
| Continuous Current into $V_{24}$ , LX, GND, or CQGND .....              | $\pm 1A$                 |
| Continuous Current into $PV_{24}$ .....                                 | $\pm 200mA$              |
| Peak Current into $PV_{24}$ (100 $\mu$ s).....                          | $\pm 1A$                 |
| Continuous Current into C/Q .....                                       | $\pm 500mA$              |
| Continuous Current into Any Other Pin .....                             | $\pm 50mA$               |
| Continuous Power Dissipation                                            |                          |
| 24-pin TQFN ( $T_A$ = +70°C, derates at 28.6mW/°C above +70°C) .....    | 2285.7mW                 |
| 25-bump WLP ( $T_A$ = +70°C, derates at 22.74mW/°C above +70°C) .....   | 1819mW                   |
| Operating Temperature Range .....                                       | -40°C to +125°C          |
| Maximum Junction Temperature .....                                      | +150°C                   |
| Storage Temperature Range .....                                         | -40°C to +150°C          |
| Soldering Temperature (Reflow) (TQFN only, soldering, 10 seconds) ..... | +300°C                   |
| Bump Reflow Temperature .....                                           | +260°C                   |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## Package Information

### 24 TQFN

|                     |                         |
|---------------------|-------------------------|
| Package Code        | T2445+2C                |
| Outline Number      | <a href="#">21-0201</a> |
| Land Pattern Number | <a href="#">90-0083</a> |

### Thermal Resistance, Four Layer Board:

|                                                       |         |
|-------------------------------------------------------|---------|
| Junction-to-Ambient ( $\theta_{JA}$ )                 | 35°C/W  |
| Junction-to-Case Thermal Resistance ( $\theta_{JC}$ ) | 1.8°C/W |

### 25 WLP

|                     |                                        |
|---------------------|----------------------------------------|
| Package Code        | W252V2+1                               |
| Outline Number      | <a href="#">21-100546</a>              |
| Land Pattern Number | Refer to <a href="#">App Note 1891</a> |

### Thermal Resistance, Four Layer Board:

|                                                       |           |
|-------------------------------------------------------|-----------|
| Junction-to-Ambient ( $\theta_{JA}$ )                 | 43.98°C/W |
| Junction-to-Case Thermal Resistance ( $\theta_{JC}$ ) | N/A       |

For the latest package outline information and land patterns (footprints), go to [www.maximintegrated.com/packages](#). Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to [www.maximintegrated.com/thermal-tutorial](#).

## Electrical Characteristics

( $V_{24} = 8V$  to  $36V$ ,  $V_5 = 4.5V$  to  $5.5V$ ,  $V_L = 2.5V$  to  $5.5V$ ,  $V_{CQGND} = V_{GND} = 0V$ , All logic inputs at  $V_L$  or GND, Typical values are at  $V_{24} = 24V$ ,  $V_5 = 5V$ ,  $V_L = 3.3V$  and  $T_A = +25^\circ C$ , unless otherwise noted (Note 1))

| PARAMETER                                          | SYMBOL             | CONDITIONS                                                                                                       |                                       | MIN  | TYP   | MAX | UNITS   |  |  |
|----------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|-------|-----|---------|--|--|
| <b>DC CHARACTERISTICS</b>                          |                    |                                                                                                                  |                                       |      |       |     |         |  |  |
| <b>POWER SUPPLY</b>                                |                    |                                                                                                                  |                                       |      |       |     |         |  |  |
| $V_{24}$ Supply Voltage                            | $V_{24}$           |                                                                                                                  |                                       | 8    | 36    |     | V       |  |  |
| $V_{24}$ Undervoltage Lockout Threshold            | $V_{24UVLO}$       | $V_{24}$ rising                                                                                                  |                                       | 7    | 7.5   | 8   | V       |  |  |
|                                                    |                    | $V_{24}$ falling                                                                                                 |                                       | 6.3  | 7     | 7.6 |         |  |  |
| $V_{24}$ Undervoltage Lockout Threshold Hysteresis | $V_{24UVLO\_HYST}$ |                                                                                                                  |                                       | 500  |       |     | mV      |  |  |
| $V_{24}$ Supply Current                            | $I_{24}$           | No load on C/Q, $V_5$ powered externally, DC-DC disabled, MCLK disabled                                          | C/Q disabled, $V_{33}$ enabled        | 0.04 | 0.075 |     | mA      |  |  |
|                                                    |                    |                                                                                                                  | C/Q in push-pull, and is high or low  | 0.32 | 0.45  |     |         |  |  |
|                                                    |                    | $V_5$ powered externally, DC-DC enabled, MCLK enabled                                                            | C/Q in push-pull and is high or low   | 1.95 |       |     |         |  |  |
| $V_5$ Supply Voltage                               | $V_5$              | $V_5$ supplied externally                                                                                        |                                       | 4.5  | 5.5   |     | V       |  |  |
| $V_5$ Undervoltage Lockout Threshold               | $V_{5UVLO}$        | $V_5$ rising                                                                                                     |                                       | 3.98 | 4.26  |     | V       |  |  |
|                                                    |                    | $V_5$ falling                                                                                                    |                                       | 3.92 | 4.19  |     |         |  |  |
| $V_5$ Supply Current                               | $I_5$              | $V_5$ powered externally, DC-DC disabled, MCLK disabled, $V_{33}$ enabled, no load on $V_{33}$                   | C/Q disabled                          | 0.85 | 1.1   |     | mA      |  |  |
|                                                    |                    |                                                                                                                  | C/Q in push-pull mode, no load on C/Q | 1.13 | 1.5   |     |         |  |  |
|                                                    |                    | $V_5$ powered externally, DC-DC disabled, MCLK disabled and set to 29.48MHz, C/Q in push-pull and is high or low |                                       | 3.0  |       |     |         |  |  |
| $V_L$ Logic Level Supply Voltage                   | $V_L$              |                                                                                                                  |                                       | 2.5  | 5.5   |     | V       |  |  |
| $V_L$ Undervoltage Threshold                       | $V_{LUVLO}$        |                                                                                                                  |                                       | 0.45 | 1.35  |     | V       |  |  |
| $V_L$ Logic Level Supply Current                   | $I_L$              | All logic inputs at GND or $V_L$ , no load on any logic outputs, MCLK disabled                                   |                                       | 3    | 10    |     | $\mu A$ |  |  |

( $V_{24} = 8V$  to  $36V$ ,  $V_5 = 4.5V$  to  $5.5V$ ,  $V_L = 2.5V$  to  $5.5V$ ,  $V_{CQGND} = V_{GND} = 0V$ , All logic inputs at  $V_L$  or GND, Typical values are at  $V_{24} = 24V$ ,  $V_5 = 5V$ ,  $V_L = 3.3V$  and  $T_A = +25^\circ C$ , unless otherwise noted (Note 1))

| PARAMETER                                                           | SYMBOL                | CONDITIONS                                                                                                     | MIN   | TYP      | MAX   | UNITS          |
|---------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|-------|----------|-------|----------------|
| <b>DC-DC SWITCHING REGULATOR</b>                                    |                       |                                                                                                                |       |          |       |                |
| Input Voltage Range                                                 | $V_{24\_DC}$          | $V_{24}$ is the input to the DC-DC                                                                             | 8     | 36       |       | V              |
| DC-DC Turn-on Delay                                                 | $t_{DC\_ON}$          | Delay from $V_{24}$ crossing $V_{24UVLO}$ threshold until the DC-DC regulator finishes soft-start. RESET rises |       | 10.2     |       | ms             |
| Switching Frequency                                                 | $f_{DC\_H}$           | BUCKSS = 0                                                                                                     | 1.198 | 1.229    | 1.260 | MHz            |
|                                                                     | $f_{DC\_HSPRD}$       | BUCKSS = 1                                                                                                     |       | 1.229    |       |                |
| Spread Spectrum                                                     | $\Delta f_{DC\_SPRD}$ | FREQ = high, BUCKSS = 1                                                                                        |       | $\pm 10$ |       | %              |
| Feedback (FB) Regulation Voltage                                    | $V_{DC\_FB}$          |                                                                                                                |       | 0.9      |       | V              |
| Output Voltage Accuracy                                             | $ACC_{DCFB}$          |                                                                                                                | -1.5  | 0        | +1.5  | %              |
| Feedback (FB) OK Threshold                                          | $V_{DC\_FBOK}$        | Voltage rising                                                                                                 | 92    | 95       | 98    | $\%V_{DC\_FB}$ |
| Feedback (FB) Low Threshold                                         | $V_{DC\_FBTHLOW}$     |                                                                                                                | 61    | 65       | 70    | $\%V_{DC\_FB}$ |
| LX On-Resistance (High Side)                                        | $R_{DC\_HS}$          | From $PV_{24}$ to LX, LX is sinking current (Note 2)                                                           |       | 2.2      | 3.9   | $\Omega$       |
| LX On-Resistance (Low Side)                                         | $R_{DC\_LS}$          | From LX to GND (Note 2)                                                                                        |       | 1.3      | 2.8   | $\Omega$       |
| Active Diode On-Resistance                                          | $R_{DC\_ACT}$         | DC current (Note 2)                                                                                            |       | 3        | 5.5   | $\Omega$       |
| Maximum Peak Current into Active Diode                              | $I_{DC\_ACTMAX}$      |                                                                                                                | 300   |          |       | mA             |
| Maximum LX Current Ripple                                           | $\Delta I_{DC\_LX}$   |                                                                                                                |       | 100      |       | %              |
| High-Side Peak Current Limit                                        | $I_{DC\_HSLIM}$       |                                                                                                                | +350  | +400     | +440  | mA             |
| Low-Side Current Limit                                              | $I_{DC\_LSMAX}$       |                                                                                                                | -240  | -200     | -150  | mA             |
| DC-DC Autoretry Period                                              | $T_{DCRETRY}$         |                                                                                                                |       | 30.6     |       | ms             |
| External Capacitance on $PV_{24}$                                   | $C_{DC\_PV24}$        |                                                                                                                | 1     |          |       | $\mu F$        |
| LX leakage                                                          | $I_{LX\_LKG}$         | $0V < V_{LX} < 36V$                                                                                            | -1    | +1       |       | $\mu A$        |
| FB Input Bias                                                       | $I_{FB\_LKG}$         | $0 \leq V_{FB} \leq 1V$ , $T_A = 25^\circ C$                                                                   | -100  |          | +100  | nA             |
| LX Minimum On-Time                                                  | $t_{LX\_MINON}$       | (Note 2)                                                                                                       |       | 64       | 92    | ns             |
| LX Minimum Off-Time                                                 | $t_{LX\_MINOFF}$      | (Note 2)                                                                                                       |       | 32       | 60    | ns             |
| <b><math>V_{CCB}</math> LINEAR REGULATOR (<math>V_{CCB}</math>)</b> |                       |                                                                                                                |       |          |       |                |

( $V_{24} = 8V$  to  $36V$ ,  $V_5 = 4.5V$  to  $5.5V$ ,  $V_L = 2.5V$  to  $5.5V$ ,  $V_{CQGND} = V_{GND} = 0V$ , All logic inputs at  $V_L$  or GND, Typical values are at  $V_{24} = 24V$ ,  $V_5 = 5V$ ,  $V_L = 3.3V$  and  $T_A = +25^\circ C$ , unless otherwise noted (Note 1))

| PARAMETER                                          | SYMBOL              | CONDITIONS                                                                                                              | MIN                                                        | TYP  | MAX  | UNITS    |
|----------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------|------|----------|
| $V_{CCB}$ Output Voltage                           | $V_{CCB}$           | $8V \leq V_{PV24} \leq 36V$ ,<br>$0mA \leq I_{LOAD} \leq 15mA$                                                          | 4.75                                                       | 5    | 5.25 | V        |
| $V_{CCB}$ Current Limit                            | $I_{CCB\_MAX}$      | $V_{PV24} = 8V$                                                                                                         | 30                                                         | 55   | 90   | mA       |
| <b>5V LINEAR REGULATOR (<math>V_5</math>)</b>      |                     |                                                                                                                         |                                                            |      |      |          |
| LIN Input Supply Voltage                           | $V_{LIN}$           |                                                                                                                         | 6                                                          | 36   |      | V        |
| $V_5$ Output Voltage                               | $V_5$               | $6V \leq V_{LIN} \leq 36V$ , no load on $V_5$                                                                           | 4.75                                                       | 5    | 5.25 | V        |
| $V_5$ Load Regulation                              | $\Delta V_{5LDR}$   | $V_{LIN} = 24V$ , $1mA < I_{LOAD} < 50mA$                                                                               |                                                            | 0.85 | 2.4  | %        |
| $V_5$ Line Regulation                              | $\Delta V_{5LNR}$   | $6V \leq V_{LIN} \leq 36V$ , $I_{LOAD} = 1mA$                                                                           |                                                            | 0.02 | 0.2  | mV/V     |
| $V_5$ Load Capacitance                             | $C_{V5}$            | External capacitance on $V_5$                                                                                           | 1                                                          |      |      | $\mu F$  |
| <b>3.3V LINEAR REGULATOR (<math>V_{33}</math>)</b> |                     |                                                                                                                         |                                                            |      |      |          |
| $V_{33}$ Output Voltage                            | $V_{33}$            | No load                                                                                                                 | 3.1                                                        | 3.3  | 3.5  | V        |
| $V_{33}$ Load Regulation                           | $\Delta V_{33\_LR}$ | $1mA < I_{LOAD} < 50mA$                                                                                                 | 0                                                          | 0.18 | 1.2  | %        |
| $V_{33}$ Load Capacitance                          | $C_{V33}$           | External capacitance on $V_{33}$                                                                                        | 1                                                          |      |      | $\mu F$  |
| <b>C/Q DRIVER</b>                                  |                     |                                                                                                                         |                                                            |      |      |          |
| C/Q Driver High-Side On-Resistance                 | $R_{CQOH}$          | (Note 2)                                                                                                                | High-side enabled, $CL[1:0] = 11$ ,<br>$I_{LOAD} = +150mA$ | 2.4  | 4.4  | $\Omega$ |
| C/Q Driver Low-Side On-Resistance                  | $R_{CQOL}$          | (Note 2)                                                                                                                | Low-side enabled, $CL[1:0] = 11$ ,<br>$I_{LOAD} = -150mA$  | 2.0  | 4.0  | $\Omega$ |
| C/Q Driver Current Limit                           | $I_{CQCL}$          | $V_{DROP} = 3V$<br>(Note 3)                                                                                             | $CL[1:0] = 00$                                             | 50   | 57   | 65       |
|                                                    |                     |                                                                                                                         | $CL[1:0] = 01$                                             | 100  | 114  | 130      |
|                                                    |                     |                                                                                                                         | $CL[1:0] = 10$                                             | 200  | 230  | 260      |
|                                                    |                     |                                                                                                                         | $CL[1:0] = 11$                                             | 250  | 290  | 325      |
|                                                    |                     |                                                                                                                         | WUGEN = 1                                                  | 500  |      |          |
| C/Q Output Reverse Current                         | $I_{REV\_CQ}$       | $CQ\_EN = 1$ , $CQ\_PP = 1$ , $CQ\_PD = 0$ , $CQ\_PU = 0$ ,<br>$V_{C/Q} = (V_{24} + 5V)$ or $(V_{GND} - 5V)$            | -90                                                        |      | +375 | $\mu A$  |
| C/Q Leakage Current                                | $I_{LEAK\_CQ}$      | $CQ\_EN = 0$ , $CQ\_PD = 0$ , $CQ\_PU = 0$ , $RX\_DIS = 0$ ,<br>$V_{24} = 24V$ , $(V_{24} - 36V) \leq V_{C/Q} \leq 36V$ | -35                                                        |      | +60  | $\mu A$  |
| <b>C/Q CURRENT SINKS AND SOURCES</b>               |                     |                                                                                                                         |                                                            |      |      |          |
| C/Q Weak Pull-Down Current                         | $I_{CQPD}$          | $V_{C/Q} > 5V$ ,<br>$CQ\_EN = 0$ , $RX\_DIS = 1$ , $CQ\_PD$                                                             | -240                                                       | -200 | -160 | $\mu A$  |

( $V_{24} = 8V$  to  $36V$ ,  $V_5 = 4.5V$  to  $5.5V$ ,  $V_L = 2.5V$  to  $5.5V$ ,  $V_{CQGND} = V_{GND} = 0V$ , All logic inputs at  $V_L$  or GND, Typical values are at  $V_{24} = 24V$ ,  $V_5 = 5V$ ,  $V_L = 3.3V$  and  $T_A = +25^\circ C$ , unless otherwise noted (Note 1))

| PARAMETER                                       | SYMBOL         | CONDITIONS                                                                                                                  |                   | MIN            | TYP  | MAX  | UNITS      |
|-------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|------|------|------------|
|                                                 |                | $= 1$ , $CQ\_PU = 0$ , $CQPUD2MA = 0$ , $CQPUD5MA = 0$                                                                      |                   |                |      |      |            |
| C/Q Weak Pull-Up Current                        | $I_{CQPU}$     | $V_{C/Q} = (V_{24} - 5V)$ ,<br>$CQ\_EN = 0$ , $RX\_DIS = 1$ , $CQ\_PD = 0$ , $CQ\_PU = 1$ , $CQPUD2MA = 0$ , $CQPUD5MA = 0$ |                   | +160           | +200 | +240 | $\mu A$    |
| C/Q 2mA Pull-Down Current                       | $I_{CQPD2}$    | $V_{C/Q} > 5V$ ,<br>$CQ\_EN = 0$ , $RX\_DIS = 1$ , $CQ\_PD = 1$ , $CQ\_PU = 0$ , $CQPUD2MA = 1$ , $CQPUD5MA = 0$            |                   | -2.6           | -2.2 | -2.0 | $mA$       |
| C/Q 2mA Pull-Up Current                         | $I_{CQPU2}$    | $V_{C/Q} = (V_{24} - 5V)$ ,<br>$CQ\_EN = 0$ , $RX\_DIS = 1$ , $CQ\_PD = 0$ , $CQ\_PU = 1$ , $CQPUD2MA = 1$ , $CQPUD5MA = 0$ |                   | +2.0           | +2.2 | +2.6 | $mA$       |
| C/Q 5mA Pull-Down Current                       | $I_{CQPD5}$    | $V_{C/Q} > 5V$ ,<br>$CQ\_EN = 0$ , $RX\_DIS = 1$ , $CQ\_PD = 1$ , $CQ\_PU = 0$ , $CQPUD2MA = 0$ , $CQPUD5MA = 1$            |                   | -6.5           | -5.5 | -5.0 | $mA$       |
| C/Q 5mA Pull-Up Current                         | $I_{CQPU5}$    | $V_{C/Q} = (V_{24} - 5V)$ ,<br>$CQ\_EN = 0$ , $RX\_DIS = 1$ , $CQ\_PD = 0$ , $CQ\_PU = 1$ , $CQPUD2MA = 0$ , $CQPUD5MA = 1$ |                   | +5.0           | +5.5 | +6.5 | $mA$       |
| <b>C/Q RECEIVER</b>                             |                |                                                                                                                             |                   |                |      |      |            |
| C/Q Input Voltage Range                         | $V_{CQIN}$     | For valid RX logic                                                                                                          |                   | $V_{24} - 36V$ | 36   |      | $V$        |
| C/Q Input Threshold High                        | $V_{CQTH}$     | TXEN = low and/or $CQ\_EN = 0$ , $RXDIS = 0$                                                                                | $V_{24} \geq 18V$ | 11             | 12.5 |      | $V$        |
|                                                 |                |                                                                                                                             | $V_{24} < 18V$    | 54.4           | 78.8 |      | $\%V_{24}$ |
| C/Q Input Threshold Low                         | $V_{CQTL}$     | TXEN = low and/or $CQ\_EN = 0$ , $RXDIS = 0$                                                                                | $V_{24} \geq 18V$ | 9              | 10.5 |      | $V$        |
|                                                 |                |                                                                                                                             | $V_{24} < 18V$    | 45             | 66.9 |      | $\%V_{24}$ |
| C/Q Input Hysteresis                            | $V_{CQHYS}$    | TXEN = low and/or $CQ\_EN = 0$ , $RXDIS = 0$                                                                                | $V_{24} \geq 18V$ |                | 2    |      | $V$        |
|                                                 |                |                                                                                                                             | $V_{24} < 18V$    |                | 11   |      | $\%V_{24}$ |
| C/Q Input Threshold High (TTL Mode)             | $V_{CQTHTTL}$  | TXEN = low and/or $CQ\_EN = 0$ , $RXDIS = 0$ , $RXTTL = 1$                                                                  | Rising            | 2.1            | 3.45 |      | $V$        |
|                                                 |                |                                                                                                                             | Falling           | 1.1            | 1.85 |      |            |
| C/Q Input Hysteresis (TTL Mode)                 | $V_{CQHYSTTL}$ | TXEN = low and/or $CQ\_EN = 0$ , $RXDIS = 0$ , $RXTTL = 1$                                                                  |                   |                | 1.3  |      | $V$        |
| C/Q Input Capacitance                           | $C_{IN\_CQ}$   | Driver disabled, $CQ\_PD = 0$ , $CQ\_PU = 0$ , $f = 100kHz$                                                                 |                   |                | 35   |      | $pF$       |
| <b>VOLTAGE MONITOR INPUT (<math>V_M</math>)</b> |                |                                                                                                                             |                   |                |      |      |            |
| $V_M$ Voltage Range                             | $V_M$          |                                                                                                                             |                   | 0              | 5.5  |      | $V$        |

( $V_{24} = 8V$  to  $36V$ ,  $V_5 = 4.5V$  to  $5.5V$ ,  $V_L = 2.5V$  to  $5.5V$ ,  $V_{CQGND} = V_{GND} = 0V$ , All logic inputs at  $V_L$  or GND, Typical values are at  $V_{24} = 24V$ ,  $V_5 = 5V$ ,  $V_L = 3.3V$  and  $T_A = +25^\circ C$ , unless otherwise noted (Note 1))

| PARAMETER                                          | SYMBOL                 | CONDITIONS                                                                    | MIN                   | TYP                   | MAX   | UNITS |
|----------------------------------------------------|------------------------|-------------------------------------------------------------------------------|-----------------------|-----------------------|-------|-------|
| V <sub>M</sub> Threshold Voltage                   | V <sub>TH_M</sub>      | Rising                                                                        | 0.873                 | 0.9                   | 0.927 | V     |
|                                                    |                        | Falling                                                                       | 0.832                 | 0.858                 | 0.883 |       |
| V <sub>M</sub> Input Current                       | I <sub>M</sub>         |                                                                               | -1                    |                       | +1    | µA    |
| <b>RESET AND POWER-OK (RESET/POK)</b>              |                        |                                                                               |                       |                       |       |       |
| RESET/POK Input Voltage Low                        | V <sub>RSTIL</sub>     |                                                                               | 0.4                   |                       |       | V     |
| RESET/POK Input Voltage High                       | V <sub>RSTIH</sub>     |                                                                               |                       | 1.3                   |       | V     |
| RESET/POK Output Voltage Low                       | V <sub>POKLOW</sub>    | I <sub>LOAD</sub> = -5mA                                                      |                       | 0.4                   |       | V     |
| RESET/POK High Impedance Leakage Current           | I <sub>RST_OD</sub>    | RESET/POK not asserted                                                        | -1                    |                       | +1    | µA    |
| <b>LOGIC INPUTS (CS, SCLK, SDI, SDO, TX, TXEN)</b> |                        |                                                                               |                       |                       |       |       |
| Logic Input Voltage Low Threshold                  | V <sub>IL</sub>        |                                                                               |                       | 0.31 x V <sub>L</sub> |       | V     |
| Logic Input Voltage High Threshold                 | V <sub>IH</sub>        |                                                                               | 0.68 x V <sub>L</sub> |                       |       | V     |
| Logic Input Leakage Current                        | I <sub>LEAK</sub>      | Logic input = GND or V <sub>L</sub>                                           | -1                    |                       | +1    | µA    |
| <b>LOGIC OUTPUTS (WU, IRQ, SDO, RX, MCLK)</b>      |                        |                                                                               |                       |                       |       |       |
| Logic Output Voltage Low                           | V <sub>OL</sub>        | IRQ, WU, SDO, RX, MCLK, I <sub>LOAD</sub> = -5mA                              |                       | 0.4                   |       | V     |
| Logic Output Voltage High                          | V <sub>OH</sub>        | SDO, RX, MCLK, I <sub>LOAD</sub> = +5mA                                       | V <sub>L</sub> - 0.4  |                       |       | V     |
| Open-Drain High Impedance Leakage Current          | I <sub>LK_OD</sub>     | IRQ and WU, not asserted                                                      | -1                    |                       | +1    | µA    |
| SDO Leakage Current                                | I <sub>LK_SDO</sub>    | CS = high                                                                     | -1                    |                       | +1    | µA    |
| RX Leakage Current                                 | I <sub>LK_RX</sub>     | RX = GND or V <sub>L</sub>                                                    | -1                    |                       | +1    | µA    |
| <b>THERMAL CHARACTERISTICS</b>                     |                        |                                                                               |                       |                       |       |       |
| C/Q Driver Shutdown Temperature                    | T <sub>SHUT_DRV</sub>  | Driver temperature rising, C/Q driver fault bit is set and driver is disabled |                       | +160                  |       | °C    |
| C/Q Driver Shutdown Hysteresis                     | T <sub>SHUT_DHYS</sub> | Driver temperature falling, driver is automatically reenabled, TSHOFFEN = 0   |                       | 15                    |       | °C    |
| IC Thermal Warning Threshold                       | T <sub>WRN</sub>       | Die temperature rising, THERMW and THERMWINT bits are set                     |                       | +150                  |       | °C    |
| IC Thermal Warning Threshold Hysteresis            | T <sub>WRN_HYS</sub>   | Die temperature falling, THERMW bit is cleared                                |                       | 20                    |       | °C    |

( $V_{24} = 8V$  to  $36V$ ,  $V_5 = 4.5V$  to  $5.5V$ ,  $V_L = 2.5V$  to  $5.5V$ ,  $V_{CQGND} = V_{GND} = 0V$ , All logic inputs at  $V_L$  or GND, Typical values are at  $V_{24} = 24V$ ,  $V_5 = 5V$ ,  $V_L = 3.3V$  and  $T_A = +25^\circ C$ , unless otherwise noted (Note 1))

| PARAMETER                                    | SYMBOL                  | CONDITIONS                                                             | MIN                   | TYP  | MAX  | UNITS |
|----------------------------------------------|-------------------------|------------------------------------------------------------------------|-----------------------|------|------|-------|
| IC Thermal Shutdown Threshold                | $T_{SHUT\_IC}$          | Die temperature rising, THSHUTD bit set                                |                       | +170 |      | °C    |
| IC Thermal Shutdown Hysteresis               | $T_{SHUT\_ICHYS}$       | Die temperature falling, THSHUTD bit is cleared                        |                       | 20   |      | °C    |
| <b>INTERNAL THERMAL SENSOR</b>               |                         |                                                                        |                       |      |      |       |
| Programmable Thermal Warning Threshold Range | $T_{WRN\_RNG}$          | Typical range                                                          | -15                   | +174 |      | °C    |
| Programmable Thermal Warning Threshold Step  | $T_{WRN\_LSB}$          | 1 LSB                                                                  |                       | 3    |      | °C    |
| Thermal ADC Resolution                       | $T_{WRN\_RES}$          |                                                                        |                       | 6    |      | bit   |
| Thermal ADC Accuracy                         | $\Delta T_{PREC\_25C}$  | $T_J = 27^\circ C$ (Note 2)                                            | -8                    | 0    | +8   | °C    |
|                                              | $\Delta T_{PREC\_85C}$  | $T_J = 84^\circ C$                                                     |                       | 2    |      |       |
|                                              | $\Delta T_{PREC\_124C}$ | $T_J = 126^\circ C$ (Note 2)                                           | -7                    | 3    | +12  |       |
| Thermal ADC Conversion Time                  | $t_{ADC\_CONV}$         |                                                                        |                       | 450  |      | μs    |
| <b>AC ELECTRICAL CHARACTERISTICS</b>         |                         |                                                                        |                       |      |      |       |
| <b>C/Q DRIVER</b>                            |                         |                                                                        |                       |      |      |       |
| Driver Low-to-High Propagation Delay         | $t_{PDLH\_PP}$          | $CQLOSLEW[1:0] = 00$ , <a href="#">Figure 1</a>                        | Push-pull or PNP mode | 0.6  | 0.8  | μs    |
|                                              | $t_{PDLH\_OC}$          | $CQLOSLEW[1:0] = 00$ , <a href="#">Figure 1</a>                        | NPN mode              | 1.8  |      |       |
| Driver High-to-Low Propagation Delay         | $t_{PDHL\_PP}$          | $CQLOSLEW[1:0] = 00$ , <a href="#">Figure 1</a>                        | Push-pull or NPN mode | 0.7  | 0.9  | μs    |
|                                              | $t_{PDHL\_OC}$          | $CQLOSLEW[1:0] = 00$ , <a href="#">Figure 1</a>                        | PNP mode              | 2    |      |       |
| Driver Skew                                  | $t_{SKEW}$              | $ t_{PDLH} - t_{PDHL} $ , $CQLOSLEW[1:0] = 00$                         |                       | -0.2 | +0.2 | μs    |
| Driver Rise Time                             | $t_{RISE}$              | Push-pull or PNP mode, $V_{24}(\max) = 30V$ , <a href="#">Figure 1</a> | $CQLOSLEW[1:0] = 00$  | 0.2  | 0.37 | 0.565 |
|                                              |                         |                                                                        | $CQLOSLEW[1:0] = 01$  | 0.4  | 0.67 | 1.035 |
|                                              |                         |                                                                        | $CQLOSLEW[1:0] = 10$  | 0.8  | 1.56 | 2.55  |
|                                              |                         |                                                                        | $CQLOSLEW[1:0] = 11$  | 2.4  | 6.0  | 11.2  |
| Driver Fall Time                             | $t_{FALL}$              | Push-pull or NPN mode, $V_{24}(\max) = 30V$ , <a href="#">Figure 1</a> | $CQLOSLEW[1:0] = 00$  | 0.2  | 0.38 | 0.565 |
|                                              |                         |                                                                        | $CQLOSLEW[1:0] = 01$  | 0.45 | 0.76 | 1.08  |

( $V_{24} = 8V$  to  $36V$ ,  $V_5 = 4.5V$  to  $5.5V$ ,  $V_L = 2.5V$  to  $5.5V$ ,  $V_{CQGND} = V_{GND} = 0V$ , All logic inputs at  $V_L$  or GND, Typical values are at  $V_{24} = 24V$ ,  $V_5 = 5V$ ,  $V_L = 3.3V$  and  $T_A = +25^\circ C$ , unless otherwise noted (Note 1))

| PARAMETER                                              | SYMBOL         | CONDITIONS                                                        | MIN          | TYP   | MAX   | UNITS |    |
|--------------------------------------------------------|----------------|-------------------------------------------------------------------|--------------|-------|-------|-------|----|
|                                                        |                | CQLOSLEW[1:0] = 10                                                | 1.2          | 1.87  | 2.7   |       |    |
|                                                        |                | CQLOSLEW[1:0] = 11                                                | 5            | 9     | 14    |       |    |
| C/Q Driver Enable Time High                            | $t_{ENH}$      | Push-pull or PNP mode, <a href="#">Figure 2</a>                   |              | 0.59  | 0.935 | μs    |    |
| C/Q Driver Enable Time Low                             | $t_{ENL}$      | Push-pull or NPN mode, <a href="#">Figure 3</a>                   |              | 0.45  | 0.7   | μs    |    |
| C/Q Driver Disable Time High                           | $t_{DISH}$     | Push-pull or PNP mode, <a href="#">Figure 2</a><br>(Note 2)       |              | 1.6   | 2.2   | μs    |    |
| C/Q Driver Disable Time Low                            | $t_{DISL}$     | Push-pull or NPN mode, <a href="#">Figure 3</a><br>(Note 2)       |              | 1.3   | 2.4   | μs    |    |
| <b>C/Q RECEIVER</b>                                    |                |                                                                   |              |       |       |       |    |
| C/Q Receiver Low-to-High Propagation Delay             | $t_{PRLH\_CQ}$ | <a href="#">Figure 4</a>                                          | RXFILTER = 1 | 0.825 | 1.22  | 1.6   | μs |
|                                                        |                |                                                                   | RXFILTER = 0 | 0.24  | 0.28  | 0.43  |    |
| C/Q Receiver High-to-Low Propagation Delay             | $t_{PRHL\_CQ}$ | <a href="#">Figure 4</a>                                          | RXFILTER = 1 | 0.75  | 1.11  | 1.5   | μs |
|                                                        |                |                                                                   | RXFILTER = 0 | 0.15  | 0.25  | 0.305 |    |
| <b>WAKE-UP DETECTION</b> ( <a href="#">Figure 5</a> )  |                |                                                                   |              |       |       |       |    |
| Wake-Up Input Minimum Pulse Width                      | $t_{WUMIN}$    |                                                                   | 62.2         | 64    | 65.8  | μs    |    |
| Wake-Up Input Maximum Pulse Width                      | $t_{WUMAX}$    |                                                                   | 106          | 109   | 112   | μs    |    |
| wu Output Low Time                                     | $t_{WUL}$      | Valid wake-up condition on C/Q                                    | 150          | 200   | 250   | μs    |    |
| <b>WAKE-UP GENERATION</b> ( <a href="#">Figure 6</a> ) |                |                                                                   |              |       |       |       |    |
| Setup Time before Wake-Up                              | $t_{SU\_SU}$   |                                                                   | 80           |       |       | μs    |    |
| Wake-up Pulse Duration                                 | $t_{WUGEN}$    | Wake-up pulse has the opposite polarity of the existing C/Q level | 77.8         | 80    | 82.2  | μs    |    |
| On-Time after Wake-Up                                  | $t_{ON\_WU}$   | C/Q driver enabled with original polarity after $t_{WU}$          | 2            |       |       | μs    |    |
| High Impedance Time after Wake-Up                      | $t_{DIS\_WU}$  | C/Q driver is high impedance after $t_{ON\_WU}$                   | 418          |       |       | μs    |    |
| <b>MCLK CLOCK</b>                                      |                |                                                                   |              |       |       |       |    |
| MCLK Frequency                                         | $f_{MCLK}$     | CLKDIV[2:0] = 000                                                 | 3.594        | 3.686 | 3.779 | MHz   |    |
|                                                        |                | CLKDIV[2:0] = 001                                                 | 7.189        | 7.373 | 7.557 |       |    |
|                                                        |                | CLKDIV[2:0] = 010                                                 | 14.38        | 14.74 | 15.11 |       |    |
|                                                        |                | CLKDIV[2:0] = 011                                                 | 28.75        | 29.49 | 30.23 |       |    |
|                                                        |                | CLKDIV[2:0] = 100                                                 | 1.797        | 1.843 | 1.889 |       |    |

( $V_{24} = 8V$  to  $36V$ ,  $V_5 = 4.5V$  to  $5.5V$ ,  $V_L = 2.5V$  to  $5.5V$ ,  $V_{CQGND} = V_{GND} = 0V$ , All logic inputs at  $V_L$  or GND, Typical values are at  $V_{24} = 24V$ ,  $V_5 = 5V$ ,  $V_L = 3.3V$  and  $T_A = +25^\circ C$ , unless otherwise noted (Note 1))

| PARAMETER                                         | SYMBOL         | CONDITIONS                      | MIN | TYP       | MAX | UNITS |
|---------------------------------------------------|----------------|---------------------------------|-----|-----------|-----|-------|
| <b>SPI TIMING (CS, SCLK, SDI, SDO) (Figure 7)</b> |                |                                 |     |           |     |       |
| Maximum SCLK Frequency                            | $f_{SPI\_MAX}$ |                                 |     | 12        |     | MHz   |
| SCLK Clock Period                                 | $t_{CH+CL}$    |                                 | 35  |           |     | ns    |
| SCLK Pulse Width High                             | $t_{CH}$       |                                 | 5   |           |     | ns    |
| SCLK Pulse Width Low                              | $t_{CL}$       |                                 | 30  |           |     | ns    |
| CS Fall to SCLK Rise Time                         | $t_{CSS}$      |                                 | 7   |           |     | ns    |
| SCLK Rise to CS Rise Hold Time                    | $t_{CSH}$      |                                 | 0   |           |     | ns    |
| SDI Hold Time                                     | $t_{DH}$       |                                 | 3   |           |     | ns    |
| SDI Setup Time                                    | $t_{DS}$       |                                 | 3   |           |     | ns    |
| SDO Output Data Propagation Delay                 | $t_{DO}$       |                                 |     | 23        |     | ns    |
| SDO Rise and Fall Times                           | $t_{FT}$       |                                 | 0.7 |           |     | ns    |
| Minimum CS Pulse                                  | $t_{CSW}$      |                                 | 15  |           |     | ns    |
| <b>EMC TOLERANCE</b>                              |                |                                 |     |           |     |       |
| ESD Protection ( $V_{24}$ , C/Q Pins)             |                | IEC 61000-4-2 Contact Discharge |     | $\pm 2.5$ |     | kV    |
| ESD Protection (All Other Pins)                   |                | Human Body Model                |     | $\pm 1.5$ |     | kV    |
| Surge Protection ( $V_{24}$ , C/Q Pins)           | $V_{SRG}$      | 500Ω 8/20μs surge to ground     |     | $\pm 1.2$ |     | kV    |

**Note 1:** All devices are 100% production tested at  $T_A = 25^\circ C$ . Limits over the operating temperature range are guaranteed by design.

**Note 2:** Not production tested. Guaranteed by design.

**Note 3:**  $V_{DROP}$  is measured as the voltage from the driver output to GND ( $V_{DRIVER} - V_{GND}$ ) when measuring the low-side driver current limit and as ( $V_{24} - V_{DRIVER}$ ) when measuring the high-side current limit.

## Timing Diagrams

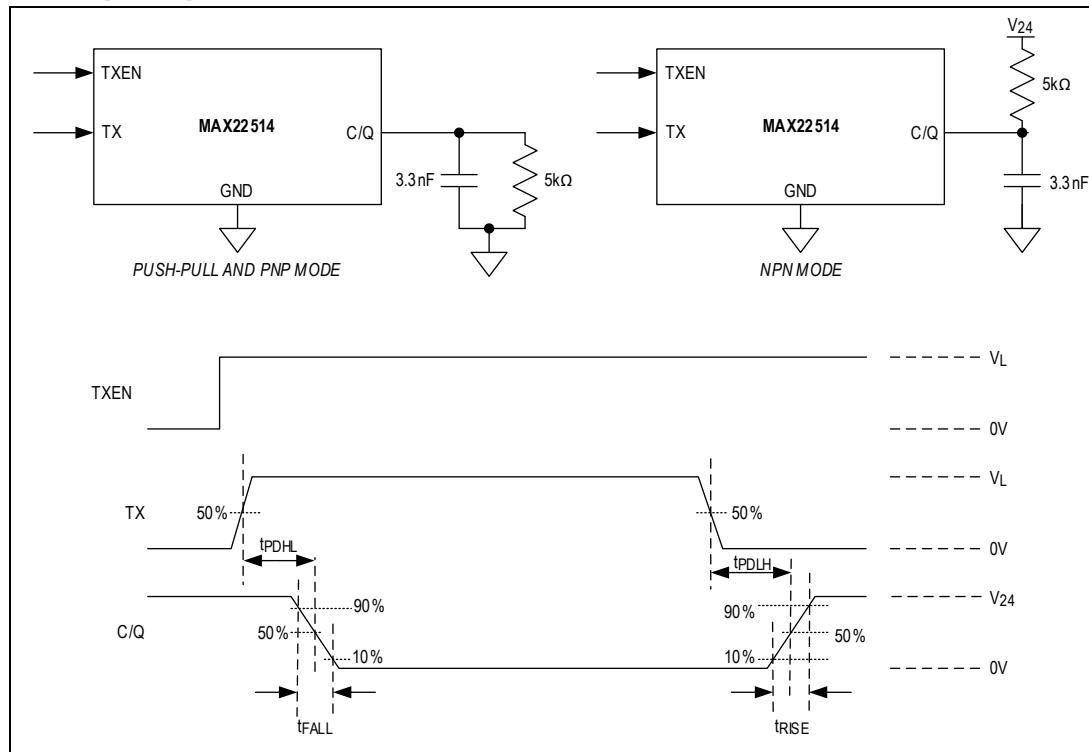



Figure 1. C/Q Driver Propagation Delays

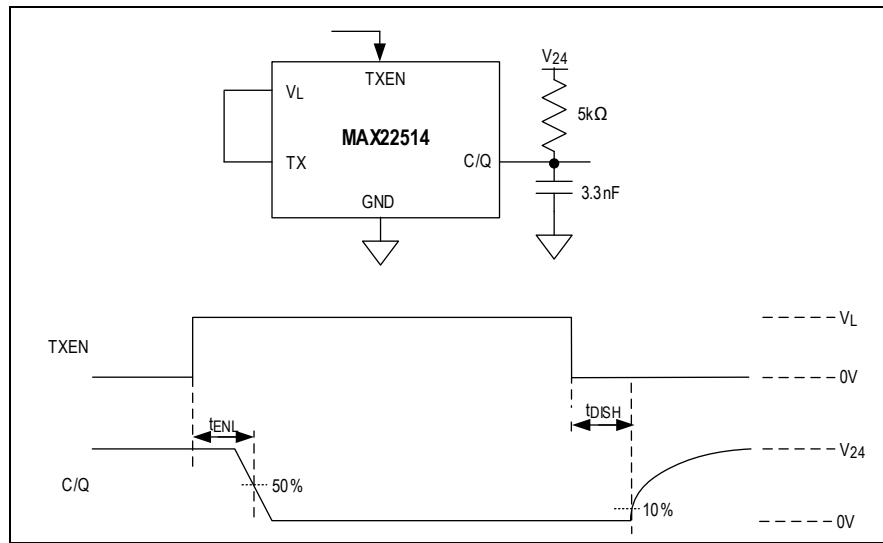



Figure 2. C/Q Driver Enable Low and Disable High Timing

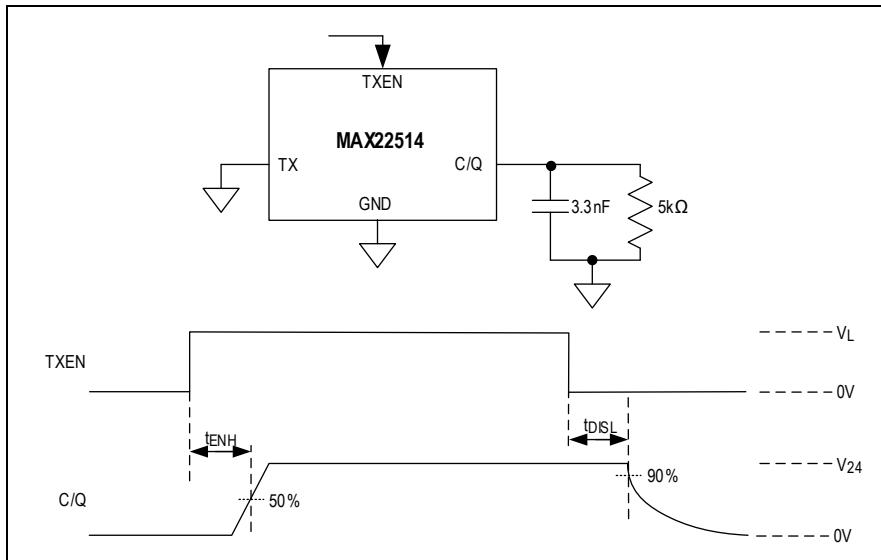



Figure 3. C/Q Driver Enable High and Disable Low Timing

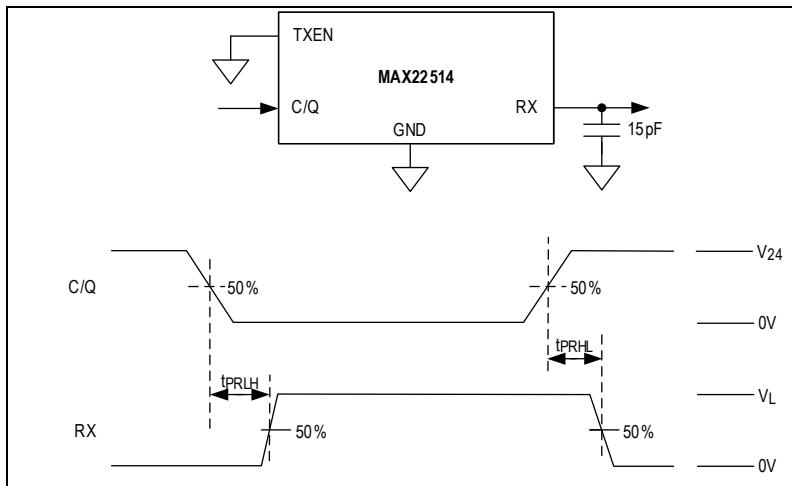



Figure 4. C/Q Receiver Timing

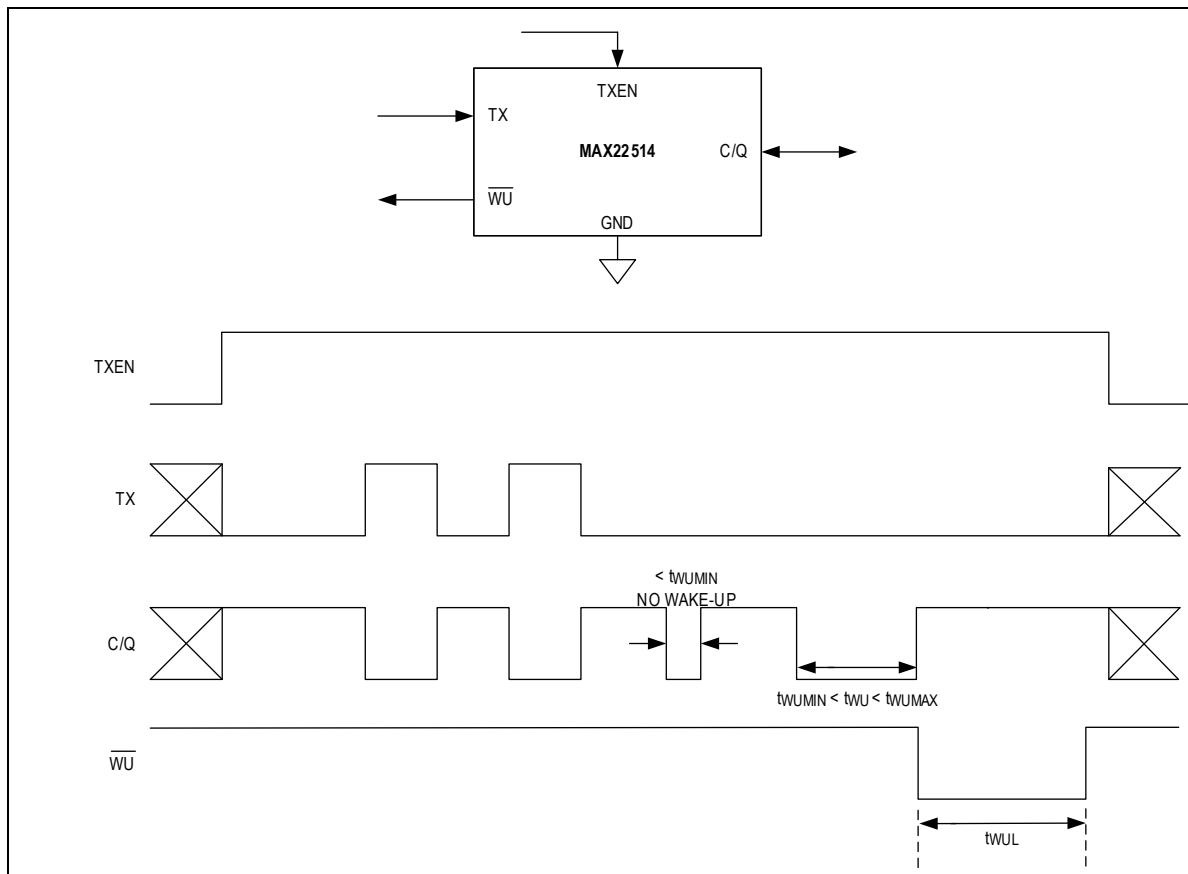



Figure 5. Wake-Up Detection Timing

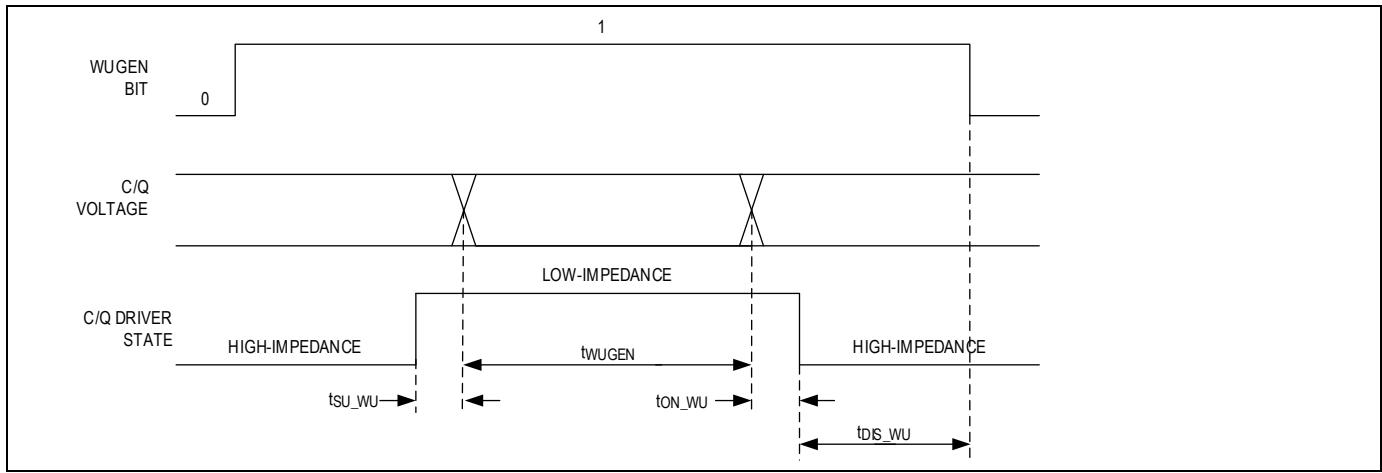
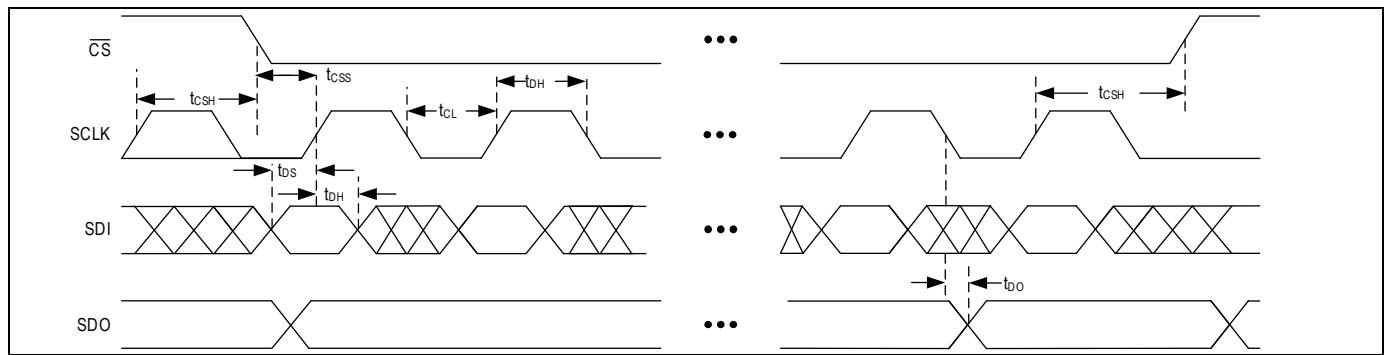
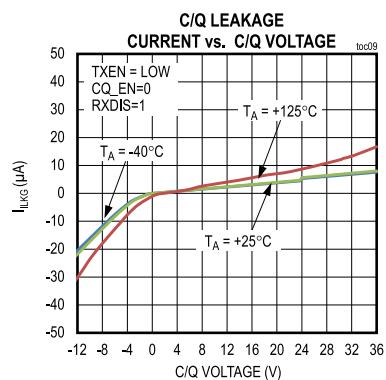
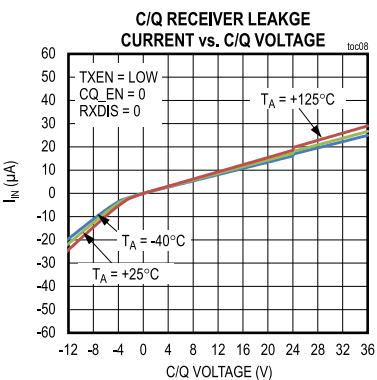
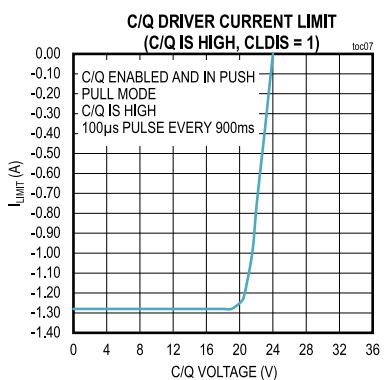
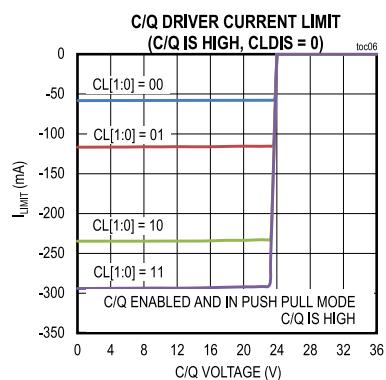
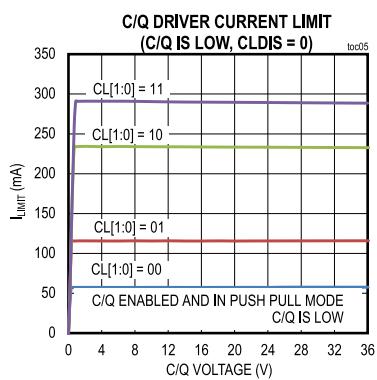
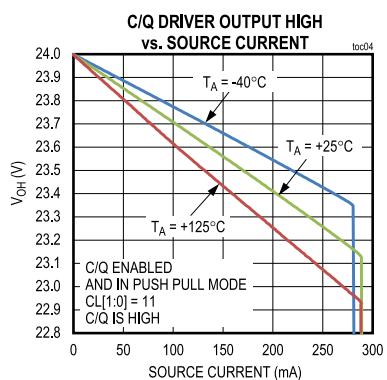
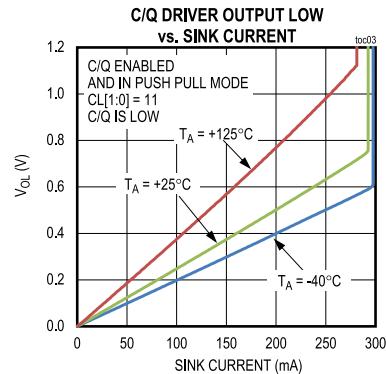
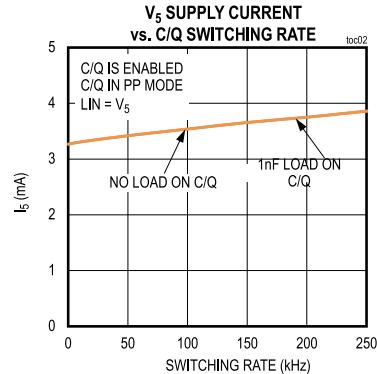
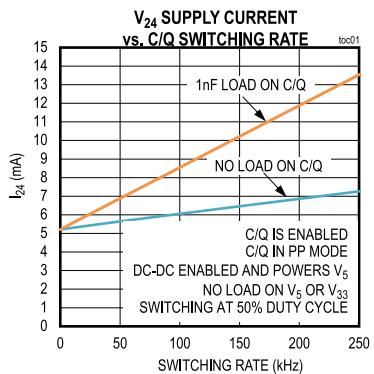
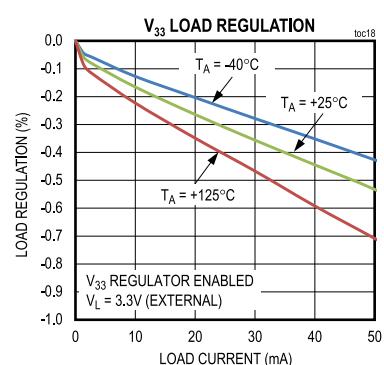
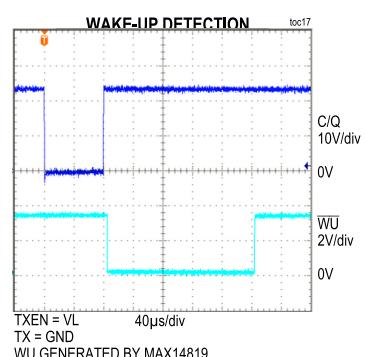
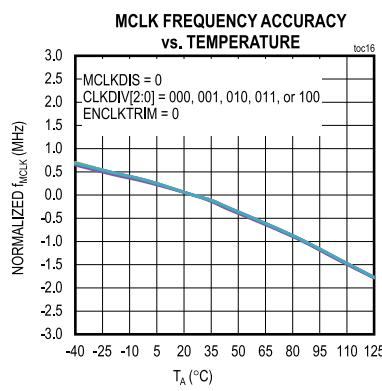
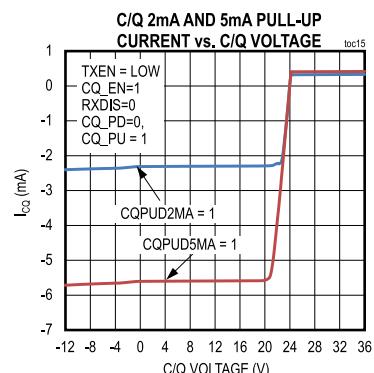
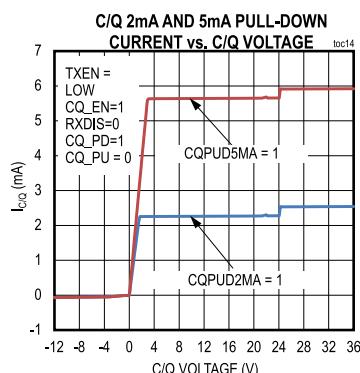
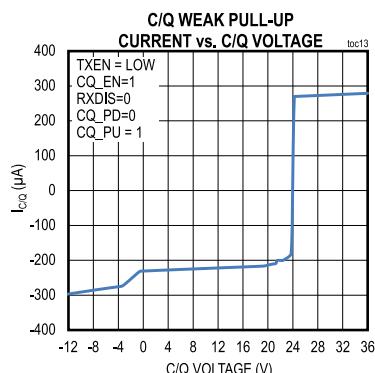
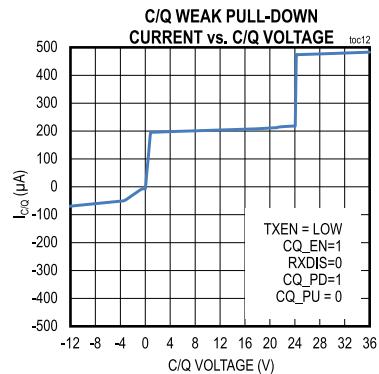
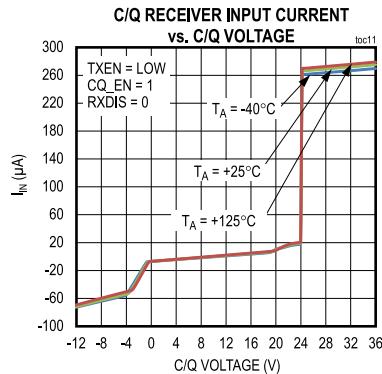
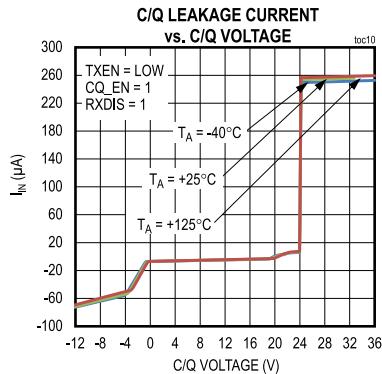
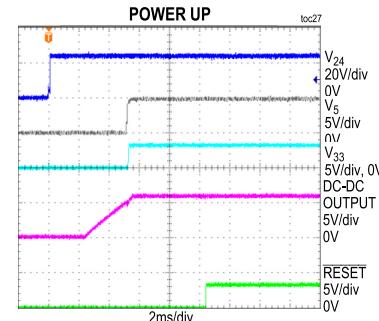
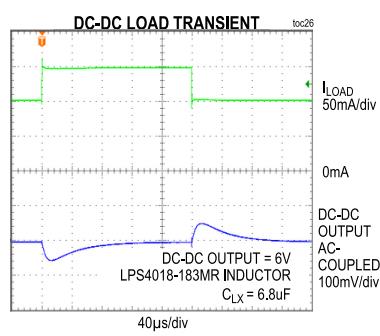
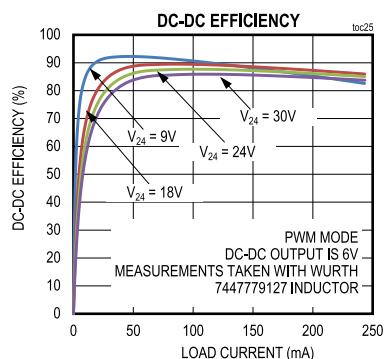
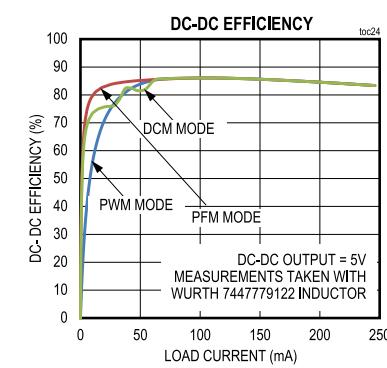
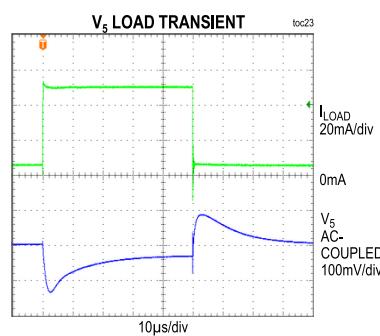
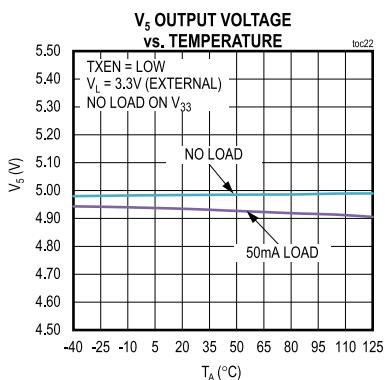
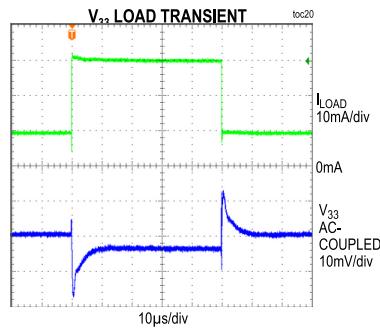
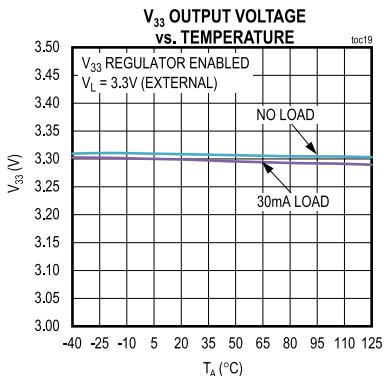



Figure 6. Wake-Up Generation

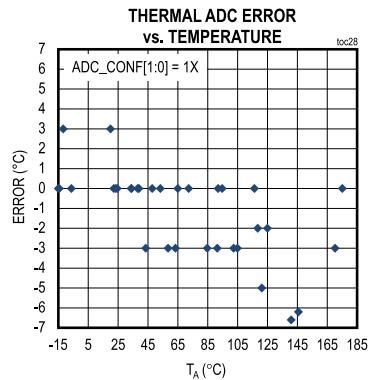





















Figure 7. SPI Timing Diagram

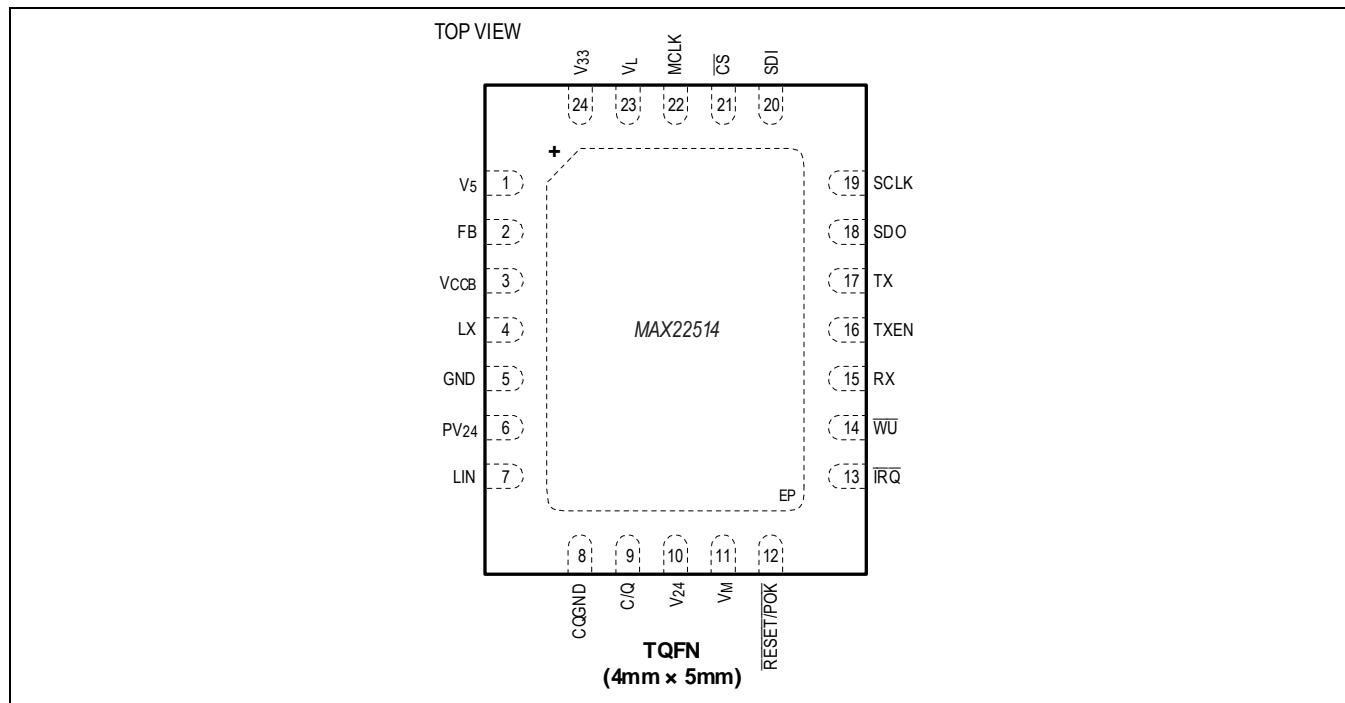
## Typical Operating Characteristics

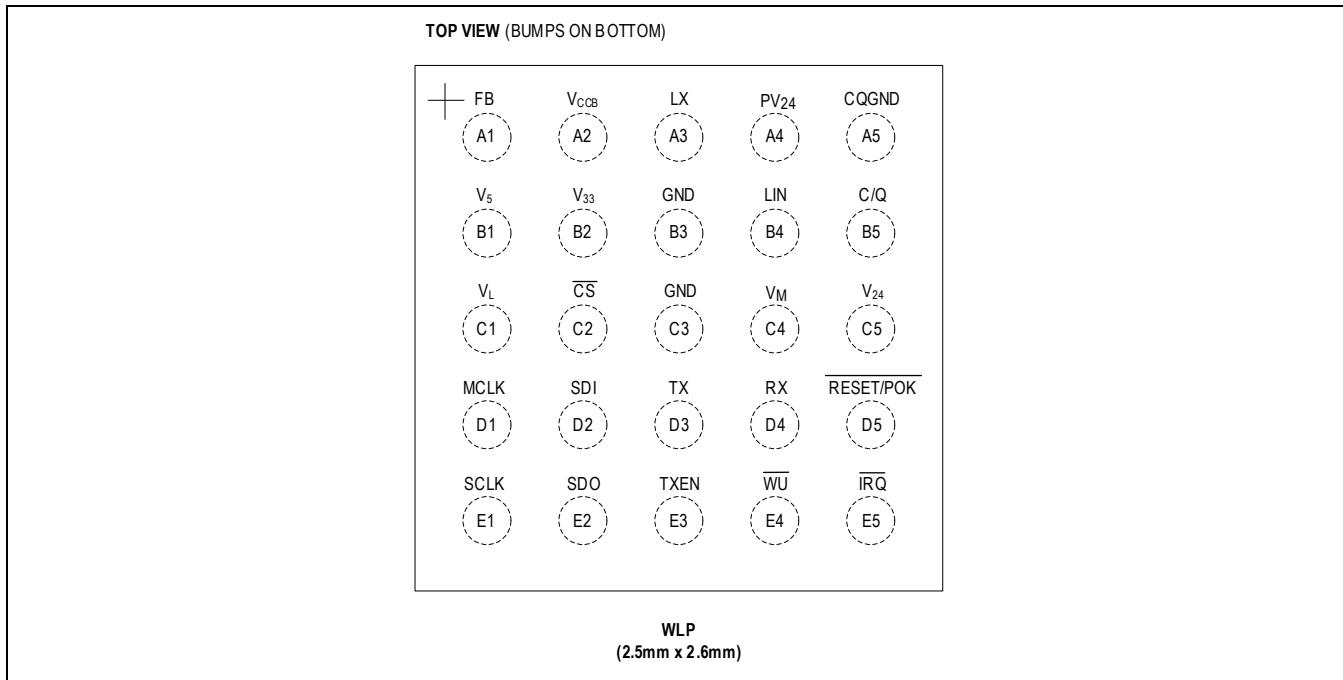








$V_{24} = 24V$ , DC-DC regulator is enabled and connected to LIN,  $V_L = V_{33}$ ,  $T_A = +25^\circ C$ , unless otherwise noted.




$V_{24} = 24V$ , DC-DC regulator is enabled and connected to LIN,  $V_L = V_{33}$ ,  $T_A = +25^\circ C$ , unless otherwise noted.




$V_{24} = 24V$ , DC-DC regulator is enabled and connected to LIN,  $V_L = V_{33}$ ,  $T_A = +25^\circ C$ , unless otherwise noted.

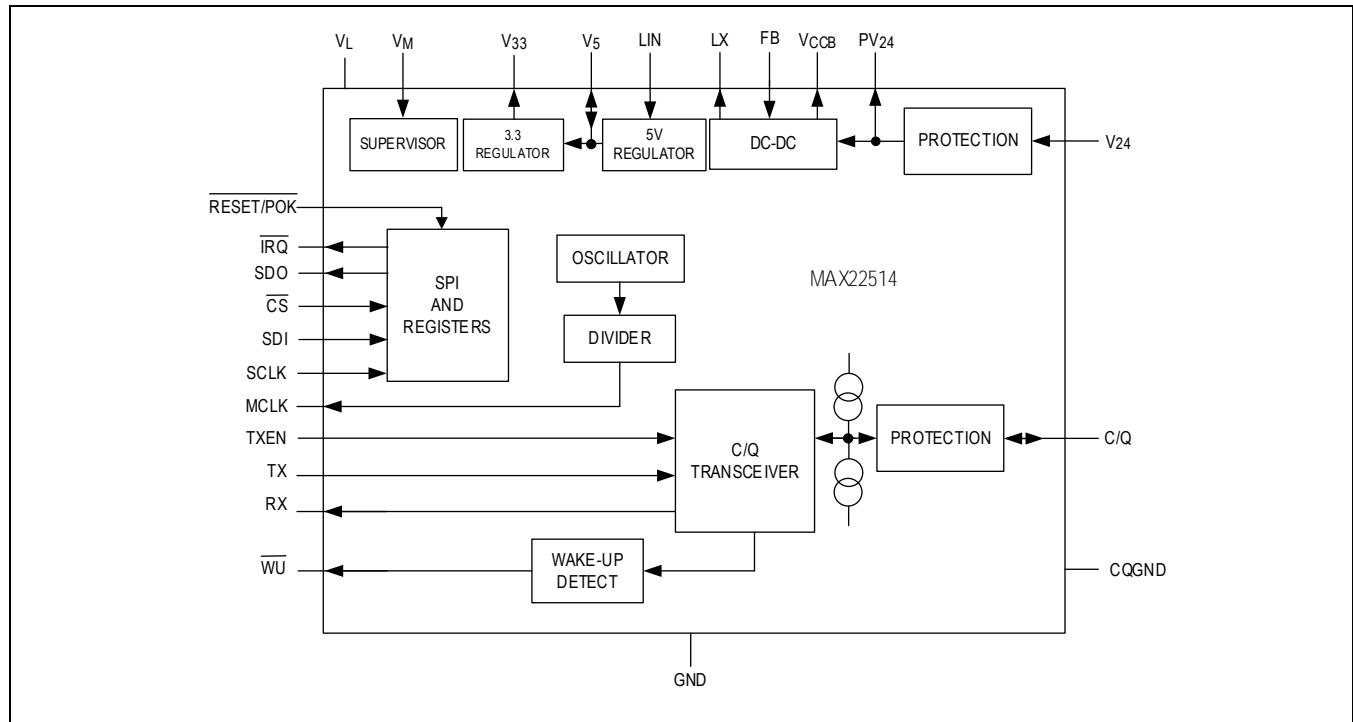



$V_{24} = 24V$ , DC-DC regulator is enabled and connected to LIN,  $V_L = V_{33}$ ,  $T_A = +25^\circ\text{C}$ , unless otherwise noted.



## Pin Configurations






## Pin Descriptions

| PIN                       |        | NAME             | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------|--------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TQFN                      | WLP    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>SUPPLY</b>             |        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3                         | A2     | V <sub>CCB</sub> | Internal 5V Supply Regulator Output. Bypass V <sub>CCB</sub> to GND with a 1 $\mu$ F capacitor as close to the device as possible. V <sub>CCB</sub> can supply an external load up to 5mA.                                                                                                                                                                                                                                   |
| 6                         | A4     | PV <sub>24</sub> | Active Diode Output and DC-DC Input. Bypass PV <sub>24</sub> with an external 1 $\mu$ F capacitor as close to the device as possible.                                                                                                                                                                                                                                                                                        |
| 7                         | B4     | LIN              | 5V Linear Regulator Input. Connect LIN to the output of the DC-DC circuit, the PV <sub>24</sub> supply, or an external supply between 6V and 36V. Bypass LIN to GND with a 1 $\mu$ F capacitor. Connect LIN to V <sub>5</sub> to disable the 5V linear regulator.                                                                                                                                                            |
| 1                         | B1     | V <sub>5</sub>   | 5V Linear Regulator Output/ Supply Input. V <sub>5</sub> is the output of the internal 5V linear regulator. Bypass V <sub>5</sub> to GND with a 1 $\mu$ F capacitor as close to the device as possible. To disable the 5V linear regulator, connect LIN to V <sub>5</sub> .<br>5V is required on V <sub>5</sub> for normal operation. If the 5V regulator is disabled, apply an external 5V power supply to V <sub>5</sub> . |
| 10                        | C5     | V <sub>24</sub>  | Supply Voltage Input. Connect V <sub>24</sub> to the L+ terminal of the IO-Link connector, or to an external supply. Bypass V <sub>24</sub> to GND with a 10nF capacitor as close to the device as possible.                                                                                                                                                                                                                 |
| 8                         | A5     | CQGND            | C/Q Driver IO-Link Ground. Connect CQGND to the L- terminal of the IO-Link connector and to GND. See the <a href="#">Layout and Grounding</a> section for more information.                                                                                                                                                                                                                                                  |
| 23                        | C1     | V <sub>L</sub>   | Logic Supply Input. Bypass V <sub>L</sub> to GND with a 1 $\mu$ F capacitor as close to the device as possible. V <sub>L</sub> sets the logic levels for all logic signals. Connect V <sub>L</sub> to V <sub>33</sub> , V <sub>5</sub> , or to an external voltage between 2.5V and 5.5V.                                                                                                                                    |
| 5                         | B3, C3 | GND              | Ground. Connect GND to CQGND. See the <a href="#">Layout and Grounding</a> section for more information.                                                                                                                                                                                                                                                                                                                     |
| 24                        | B2     | V <sub>33</sub>  | 3.3V Linear Regulator Output. Bypass V <sub>33</sub> to GND with a 1 $\mu$ F capacitor as close to the device as possible.                                                                                                                                                                                                                                                                                                   |
| EP                        | -      | EP               | Exposed Pad. Connect EP to GND. See the <a href="#">Layout and Grounding</a> section for more information.                                                                                                                                                                                                                                                                                                                   |
| <b>DC-DC REGULATOR</b>    |        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4                         | A3     | LX               | Switching Output of the Integrated DC-DC Converter. Connect an inductor between LX and the output capacitor to generate a voltage with the DC-DC circuit. See the <a href="#">DC-DC Component Selection</a> section for more information.                                                                                                                                                                                    |
| 2                         | A1     | FB               | DC-DC Buck Regulator Feedback Input. Connect FB to the tap of a resistor divider between the output of the DC-DC and GND. See <a href="#">Table 4</a> for recommended component values to set the DC-DC output between 2.5V and 12V. Connect FB to V <sub>CCB</sub> if the DC-DC is not used.                                                                                                                                |
| <b>24V LINE INTERFACE</b> |        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9                         | B5     | C/Q              | IO-Link Transceiver Input/ Output. The C/Q driver is disabled at startup. Set CQ_EN = 1 and TXEN = high to enable the C/Q driver.                                                                                                                                                                                                                                                                                            |
| <b>CONTROL INTERFACE</b>  |        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11                        | C4     | V <sub>M</sub>   | Voltage Monitor Input. Connect a resistor divider between the monitored supply voltage (e.g. V <sub>24</sub> or PV <sub>24</sub> ) and GND to define the power-OK threshold voltage for the monitored supply voltage. See the <a href="#">Voltage Monitor Input (VM)</a> section for more information.                                                                                                                       |

|                       |    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------|----|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12                    | D5 | RESET/POK | <p>Dual Function Active-Low Reset Input and Open-Drain Power-OK (POK) Output. Drive RESET/POK low to set the MAX22514 in reset mode. The C/Q output is disabled and all registers are reset to default values when RESET/POK is driven low.</p> <p>The MAX22514 asserts RESET/POK low when any of the <math>V_{24}</math>, <math>V_5</math>, or DC-DC output voltages are below their respective undervoltage lockout (UVLO) thresholds. Only <math>V_5</math> is monitored when the DC-DC regulator is disabled.</p> <p>The MAX22514 deasserts RESET/POK 4ms (typ) after the power supplies rise above their UVLO thresholds.</p> <p>Connect RESET/POK to <math>V_{CCB}</math> or <math>V_L</math> with a 10k<math>\Omega</math> (typ) resistor for normal operation.</p> |
| 14                    | E4 | WU        | Open-Drain IO-Link Wake-Up Request Output. WU asserts low for 200 $\mu$ s (typ) when a valid IO-Link wake-up pulse is detected on the C/Q line.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 13                    | E5 | IRQ       | Active-Low Open-Drain Interrupt Request Output. IRQ asserts low when a bit is set in the INTERRUPT register. See the Register Details section for more information.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 18                    | E2 | SDO       | Serial Data Output. Connect SDO on the MAX22514 to the MISO input on the SPI master. SDO is high impedance when CS is high.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19                    | E1 | SCLK      | Serial Clock Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 20                    | D2 | SDI       | Serial Data Input. Connect SDI on the MAX22514 to the MOSI output on the SPI master.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 21                    | C2 | CS        | SPI Chip-Select Input. Drive CS low to start a read/write cycle. The cycle ends when CS is driven high.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>UART INTERFACE</b> |    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 15                    | D4 | RX        | C/Q Receiver Logic Output. RX is inverted, relative to the logic state of C/Q, by default. Set the INVQ bit in the CQCONFIG register to set RX to the same logic state as C/Q. Connect RX to the RX input of the UART for IO-Link communication.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 16                    | E3 | TXEN      | C/Q Driver Enable Logic Input. Drive TXEN high and set the CQ_EN bit in the CQCONFIG register to enable the C/Q driver. Drive TXEN low to disable the C/Q driver. Connect TXEN to the RTS output of a microcontroller for IO-Link communication.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 17                    | D3 | TX        | C/Q Driver Logic Input. TX is inverted, relative to the logic state of C/Q, by default. Set the INVQ bit in the CQCONFIG register to set TX to the same logic state as C/Q. Connect TX to the TX output of the UART for IO-Link communication.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>CLOCK OUTPUT</b>   |    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 22                    | D1 | MCLK      | Microcontroller Clock Output. Set the MCLK frequency by setting the CLKDIV bits in the CLKCONFIG register. Connect MCLK to an external microcontroller for comparison and trimming. The MCLK frequency is 3.686MHz (typ) by default, but can be disabled or programmed to 3.686MHz, 7.373MHz, 14.74MHz, 29.49MHz, or 1.843MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## Functional Diagrams



## Detailed Description

The MAX22514 IO-Link transceiver integrates high voltage functionality, including one 24V line driver, an integrated DC-DC buck regulator, and 5V and 3.3V linear regulators. The MAX22514 is targeted for IO-Link devices, masters, and industrial switching sensor applications, and can be configured and monitored using a standard SPI interface.

### 24V Interface I/O (C/Q)

The MAX22514 features an IO-Link transceiver interface capable of operating with voltages up to 36V. This is the industrial standard 24V interface and includes the C/Q input/output, the V24 supply, and ground. The C/Q switching driver is programmable for PNP, NPN, or push-pull mode, features a programmable current limit, slew rate, and pull-up/pull-down currents, and operates over all of the COM1, COM2, and COM3 IO-Link data rates.

The C/Q driver is enabled when TXEN is high and the CQ\_EN = 1 in the CQCONFIG register. Toggle the TX input to switch the C/Q output. Alternatively, set the CQ\_Q bit in the CONTROL register to set C/Q high or low. See [Table 1](#) and [Table 2](#). C/Q is the logic inverse of the TX input, by default. Set the INVCQ = 1 in the CQCONFIG register to align the TX, C/Q, and RX logic states.

**Table 1. C/Q Driver Control (CQINV = 0)**

| INPUTS |        |        |      | C/Q OUTPUT          |          |         |  |
|--------|--------|--------|------|---------------------|----------|---------|--|
| CQ_EN  | TXEN   | TX     | CQ_Q | NPN MODE            | PNP MODE | PP MODE |  |
| 0      | X      | X      | X    | C/Q Driver Disabled |          |         |  |
| 1      | L<br>H | X      | X    | HIGH Z              | HIGH Z   | HIGH Z  |  |
|        |        | L<br>H | 0    | HIGH Z              | HIGH     | HIGH    |  |
|        |        |        | 1    | HIGH Z              | HIGH     | HIGH    |  |
|        |        | H      | 0    | LOW                 | HIGH Z   | LOW     |  |
|        |        |        | 1    | HIGH Z              | HIGH     | HIGH    |  |

X = Don't care

**Table 2. C/Q Receiver Logic**

| INPUTS |       |       |     | OUTPUT |
|--------|-------|-------|-----|--------|
| RXDIS  | CQ_EN | CQINV | C/Q | RX     |
| 0      | X     | 0     | L   | H      |
|        |       |       | H   | L      |
|        |       | 1     | L   | L      |
|        |       |       | H   | H      |
| 1      | X     | X     | X   | HIGH Z |

X = Don't care

### Overcurrent Limiting

The C/Q driver features a programmable current limit. Select the current limit by setting the CL[1:0] bits in the CURRLIM register. Current limit thresholds can be set to 50mA (min), 100mA (min), 200mA (min), and 250mA (min). When the load attempts to draw more current than the current limit threshold setting, the C/Q driver actively limits the load current so a higher load current does not flow.

Setting CLDIS = 1 disables active current limiting, resulting in higher load currents. Setting CLDIS = 1 should only be done in PNP mode. Setting CLDIS = 1 in NPN or push-pull modes can damage the device.

## Autoretry

The MAX22514 features an autoretry function to manage and limit heating and power dissipation during driver overload conditions.

Set the AUTORETRYEN bit (AUTORETRYEN = 1) in the CURRLIM register to enable autoretry functionality. When autoretry is enabled, the MAX22514 disables the driver after the current limit threshold has been exceeded for the selected blanking time. The driver is disabled for the programmed fixed off-time and is then automatically reenabled. If the overcurrent condition persists, the driver remains on for the blanking time and is then disabled. This autoretry cycle continues until the overcurrent condition is removed.

Select the blanking time and fixed off-time by setting the CL\_BL[1:0] bits and the TAR[1:0] bits respectively in the CURRLIM register.

When charging large capacitive loads or incandescent lamps, ensure that the selected autoretry blanking time is long enough to charge the required load before the driver is disabled.

## C/Q Driver Thermal Shutdown

The C/Q driver is turned off when the driver junction temperature exceeds the +160°C (typ) driver thermal shutdown temperature. The associated driver fault bits (CQFAULTINT, CQFAULT) in the INTERRUPT and STATUS registers (respectively) are set. If the fault is not masked (CQFAULTM = 0 in the IRQMASK register), IRQ is asserted after the programmed blanking time. Set the CL\_BL[1:0] bits in the CURRLIM register to select the blanking time. The driver is automatically reenabled when the driver junction temperature falls below 145°C (typ).

## C/Q Receiver Threshold

Although the IO-Link standard defines operation for a supply ranging between 18V to 30V, industrial controllers and sensors in the field commonly operate with supply voltages as low as 9V. The MAX22514 operates with a supply voltage between 8V and 36V. When the V24 supply voltage is above 18V, the C/Q receiver on the MAX22514 supports the standard IO-Link receiver thresholds. When V24 is less than 18V, the MAX22514 scales the C/Q receiver thresholds, allowing receiver functionality down to the lowest supply voltage.

The C/Q receiver can also be configured to detect 5V TTL signal levels. Set the RXTTL bit (RXTTL = 1) in the CQMASTER register to enable TTL thresholds on the C/Q receiver. RXTTL is not set by default.

## Current Sink and Source on C/Q

The MAX22514 features six different pull-up/pull-down current sources/sinks that can be enabled on the C/Q line: a 200µA (typ) weak pull-up and/or pull-down current, a 2mA (min) pull-up or pull-down current, and a 5mA (min) pull-up or pull-down current. Configure and enable the current on C/Q by setting the CQ\_PD and CQ\_PU bits in the CQCONFIG register and by setting the CQPUD5MA and CQPUD2MA bits in the CQMASTER register. See [Table 3](#).

**Table 3. Pull-Up/Pull-Down Current Settings on C/Q**

| CQ_PU | CQ_PD | CQPUD5MA | CQPUD2MA | C/Q OUTPUT                              |
|-------|-------|----------|----------|-----------------------------------------|
| 0     | 0     | X        | X        | No pull-up or pull-down current enabled |
| 0     | 1     | 0        | 0        | Weak pull-down current enabled          |
|       |       | 1        | X        | 5mA pull-down current enabled           |
|       |       | 0        | 1        | 2mA pull-down current enabled           |
| 1     | 0     | 0        | 0        | Weak pull-up current enabled            |
|       |       | 1        | X        | 5mA pull-up current enabled             |
|       |       | 0        | 1        | 2mA pull-up current enabled             |

X = Don't care

## Wake-Up Detection

A wake-up event occurs when an IO-Link master forces a level on the C/Q line that is opposite to the set level of the C/Q driver level for 80 $\mu$ s (typ). WU pulses low for 200 $\mu$ s (typ) when the device detects a wake-up pulse on C/Q ([Figure 5](#)).

Wake-up detection on the MAX22514 is enabled by default. When a valid wake-up event is detected and the interrupt is not disabled (WUM = 0 in the IRQMASK register), the MAX22514 generates an interrupt and asserts IRQ.

To disable wake-up detection, set the WUDIS bit in the CONTROL register. When WUDIS = 1, the WUINT bit is not set when a wake-up pulse is detected.

The MAX22514 automatically ignores false wake-up events that can sometimes occur as a consequence of driving large capacitive or lamp loads where the time constant of charging is around 80 $\mu$ s. No wake-up event is detected for the duration of the programmed blanking time after the C/Q driver changes logic state.

## Wake-Up Pulse Generation

The MAX22514 can generate an IO-Link master wake-up pulse. To prepare the transceiver to generate a wake-up pulse, set the C/Q driver in receive mode (TXEN = low) and set the TX input high. Set the WUGEN bit in the CQMASTER register to generate the wake-up pulse.

When WUGEN = 1, the MAX22514 samples the voltage level on the C/Q receiver. The device then enables the C/Q driver and pulls the C/Q line to the opposite polarity of the sampled voltage for 80 $\mu$ s (typ). The driver remains enabled and the line is driven back to the original polarity after the wake-up pulse duration. Following the on-time after wake-up delay (t<sub>ON\_WU</sub>), the driver is set to high impedance. The MAX22514 continues to ignore signals on TX and TXEN and holds the driver in a high impedance state for the high-impedance time after wake-up delay (t<sub>DIS\_WU</sub>), after which the microcontroller can initiate the EstablishCOM IO-Link communication sequence. See [Figure 6](#).

While the MAX22514 is generating the wake-up pulse, the current limit is automatically set above 500mA and the C/Q slew rates are automatically set to the highest rate. Register settings are not changed during wake-up generation, and programmed current limit and slew rate settings operate normally after the wake-up pulse is generated. These settings do not need to be reprogrammed after a wake-up is generated.

## V<sub>CCB</sub> Output

V<sub>CCB</sub> is the output of an internal regulator powered by V<sub>24</sub> or V<sub>5</sub>. V<sub>CCB</sub> is powered by V<sub>24</sub> until the V<sub>5</sub> voltage exceeds 3.92V (min). After which, V<sub>CCB</sub> is powered by V<sub>5</sub>. As V<sub>5</sub> is rising, and V<sub>CCB</sub> can drop below 5V until V<sub>5</sub> reaches its steady state voltage. V<sub>CCB</sub> can be used to drive a small ( $\leq$  10mA) external load.

## Reset Input/ Power OK Output (RESET/POK)

The RESET/POK pin is a dual function open-drain logic input/output, functioning as a reset input and a power-OK (POK) output.

Drive RESET/POK low to put the MAX22514 in reset mode. The C/Q driver is disabled and the registers are reset to their default state when RESET/POK is driven low. Serial bus communication is available while RESET/POK is low. If the DC-DC has been disabled in the registers (BUCKDIS = 1), the device deasserts RESET/POK 4ms (typ) after RESET/POK is released and all power supplies are valid. If the DC-DC has been enabled, RESET/POK deasserts immediately after being released.

The MAX22514 asserts RESET/POK low when V<sub>24</sub> or V<sub>5</sub> voltage falls below their respective UVLO thresholds, or when the DC-DC output voltage falls below 95% of the set voltage (typ). The C/Q driver is disabled and the registers are reset to their default state when RESET/POK is low. Serial bus communication is available while RESET/POK is low. The MAX22514 deasserts RESET/POK 4ms (typ) after all power supplies are valid.

Connect a pull-up resistor between RESET/POK and V<sub>L</sub> or V<sub>CCB</sub> for normal operation. Connect RESET/POK to the reset input of a microcontroller to use it as a reset signal.

## Voltage Monitor Input (VM)

The MAX22514 features a flexible voltage comparator. This comparator monitors the voltage at the  $V_M$  input. When the  $V_M$  input voltage is below the 858mV (typ) threshold, the VMINT bit in INTERRUPT register is set and IRQ is asserted if not masked (VMINTM = 0 in the IRQMASK register). Note that the VMINT interrupt bit is not cleared when the INTERRUPT register is read while the  $V_M$  voltage is below the comparator threshold. This bit is cleared only if the  $V_M$  voltage exceeds the threshold voltage during the INTERRUPT read.

$V_M$  can be used to supervise the voltage on  $V_{24}$ ,  $PV_{24}$ , or any other pin.

For example, to monitor the  $PV_{24}$  use a resistor divider between  $PV_{24}$ ,  $V_M$ , and GND to set the minimum  $PV_{24}$  voltage threshold (*Figure 8*). Calculate the monitored voltage power-OK threshold ( $V_{POK}$ ) as:

$$V_{POK} = V_{TH\_M} \times [(R_1 + R_2) / R_2]$$

Select the resistor values to ensure that  $V_M$  does not exceed the 5.5V maximum voltage.

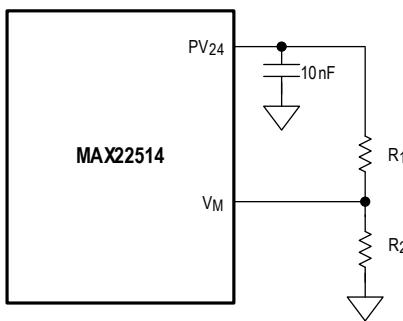



Figure 8. VM input used to monitor the  $PV_{24}$  supply

## Integrated DC-DC Regulator

### Overview

The MAX22514 features an integrated high-efficiency synchronous DC-DC buck regulator with active diode reverse protection, current overload protection, soft start, spread spectrum operation, and an adjustable output voltage. The DC-DC regulator operates with a fixed 1.229MHz (typ) frequency during normal operation. The regulator can be configured to operate in pulse-width modulation (PWM) mode, pulse frequency modulation (PFM) mode, or discontinuous conduction mode (DCM) during normal operation. Select the operating mode by setting the BUCKDCM or BUCKPFM mode bits in the MODE register. The regulator is enabled by default but can be disabled through the serial interface. The DC-DC regulator is supplied from the  $PV_{24}$  voltage to protect against supply inversion. Bypass  $PV_{24}$  to GND with a 1 $\mu$ F capacitor to ensure proper operation for the DC-DC.

### Startup and Soft Start

The MAX22514 DC-DC buck regulator features soft-start to slowly raise the output voltage when the device is powered up. When the  $V_{24}$  voltage exceeds the 7.5V (typ) UVLO threshold, the DC-DC regulator is turned on, operating in DCM mode. DCM mode allows the DC-DC output to soft-start whether the output voltage is unpowered or prebiased. Internal circuitry slowly ramps the output voltage to 95% of the set voltage within 3.3ms (typ) of the  $V_{24}$  voltage exceeding the UVLO threshold, ending the soft-start sequence. Once soft-start has ended, the regulator switches from DCM mode to the selected mode for normal operation. By default, normal operation is PWM mode. Set the BUCKPFM and/or the BUCKDCM bits in the MODE register to select another operating mode of the DC-DC regulator.

## Maximum DC-DC Output Current

The MAX22514 integrated DC-DC buck regulator can supply loads up to 200mA (typ). The internal reverse-protection active diode between  $V_{24}$  and  $PV_{24}$  has a 200mA average current capability to supply the DC-DC input. Under certain conditions, the internal active diode between the  $V_{24}$  supply and  $PV_{24}$  can reduce the efficiency or reduce the maximum load current. If load currents are such that the current through the active diode exceeds 300mA, connect a Schottky diode between  $V_{24}$  and  $PV_{24}$  to bypass the internal active diode. When a Schottky diode is used, a TVS or varistor on  $V_{24}$  might be necessary to survive hot-plug events.

## Selecting the Mode of Operation

### Pulse Width Modulation Mode

A Pulse Width Modulation Mode (PWM) DC-DC regulator switches at a fixed frequency, adjusting the duty cycle of the pulses depending on the output power requirements. The maximum duty cycle on the DC-DC regulator is near 100%. Switching noise is easily filtered in PWM mode. The MAX22514 DC-DC regulator operates in PWM mode by default (BUCKDCM = 0 and BUCKPFM = 0 in the MODE register).

### Pulse Frequency Modulation Mode

In Pulse Frequency Modulation Mode (PFM), the DC-DC converter switches LX with a peak current set to be at least 200mA (typ). LX stops switching when the output voltage exceeds 103% of the set value and starts switching again when the DC-DC output voltage drops to 101% of the set value. Because the switching frequency changes in PFM mode, switching noise is more difficult to filter in PFM mode typically resulting in a higher ripple on the output. PFM mode has the highest efficiency when driving low loads. Set BUCKPFM = 1 and BUCKDCM = 0 in the MODE register to enable PFM mode on the DC-DC regulator.

### Discontinuous Conduction Mode

In Discontinuous Conduction Mode (DCM), the inductor current of the DC-DC regulator can reach zero for a short period during each switching cycle. In this mode, the output voltage is dependent on the input voltage, the inductance in the DC-DC regulator, the switching frequency, and the load. Use DCM mode for low output ripple and high efficiency under light load conditions. The MAX22514 DC-DC regulator operates in DCM mode during soft-start. Set BUCKDCM = 1 in the MODE register (the BUCKPFM bit is ignored, in this case) to enable DCM functionality for normal operation.

## Enabling/Disabling the DC-DC

The integrated DC-DC buck regulator on the MAX22514 is enabled by default but can be disabled through the serial interface. Set the BUCKDIS bit in the MODE register to disable the DC-DC. If the DC-DC regulator is not used, leave the LX unconnected and connect FB to VCCB.

### DC-DC Component Selection

#### Setting the Output Voltage

The output voltage of the DC-DC regulator can be programmed from 2.5V to 12V. Set the output voltage by connecting a resistor divider from the output to FB to GND ([Figure 9](#)).

Calculate the output voltage using the following equation:

$$R_1 = R_2 \times (V_{OUT} / 0.9 - 1)$$

Ensure that  $R_1 \parallel R_2 \leq 46\text{k}\Omega$  and use  $\pm 1\%$  resistors for best accuracy.

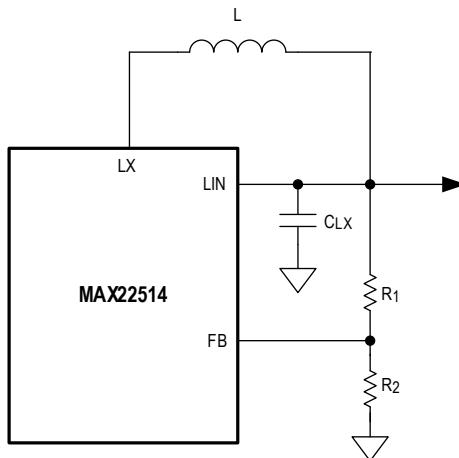



Figure 9. Setting the DC-DC Output Voltage

The R<sub>1</sub> resistor controls the load regulation on the load step and can also affect the value of the output capacitor to ensure stability of the DC-DC regulator. See [Table 4](#) for R<sub>1</sub> and R<sub>2</sub> values for common DC-DC output voltage settings.

### Inductor Selection

A low-loss inductor with the lowest possible DC resistance that fits in the allotted dimensions should be selected. The saturation current (I<sub>SAT</sub>) must be high enough ensure that saturation cannot occur below the 440mA maximum current-limit value. Under lower load conditions, smaller inductors can be used.

### Output Capacitor

Small ceramic X7R-grade capacitors are sufficient and recommended to use with the MAX22514 DC-DC regulator. The output capacitor has two functions: filter the square wave generated by the device along with the output inductor and stabilize the device's internal control loop. Capacitor selection depends on the operating conditions and the value of R<sub>1</sub> and can affect the stability of the DC-DC regulator.

### Typical External Components

[Table 4](#) shows the recommended component values for the DC-DC buck regulator for a wide range of typical operating conditions (see the [Simplified Application Diagram](#)). Recommended values in the table are designed for <±3% load regulation on a 50% load current step and with minimum inductance. A ±30% tolerance on inductance and a ±20% tolerance on capacitance is expected due to C-V dependence.

**Table 4. Typical DC-DC Component Selection**

| V24 (V) |     | OUTPUT VOLTAGE (V) | MAXIMUM OUTPUT CURRENT (mA) | L [μH] | MINIMUM C <sub>LX</sub> OUTPUT CAPACITANCE [μF] | MAXIMUM C <sub>LX</sub> OUTPUT CAPACITANCE [μF] | R1 [kΩ] | R2 [kΩ] |
|---------|-----|--------------------|-----------------------------|--------|-------------------------------------------------|-------------------------------------------------|---------|---------|
| MIN     | MAX |                    |                             |        |                                                 |                                                 |         |         |
| 8       | 36  | 3.3                | 200                         | 15     | 4.7                                             | 27                                              | 226     | 84.5    |
| 8       | 36  | 5                  | 200                         | 22     | 3.3                                             | 17                                              | 348     | 75      |
| 8       | 36  | 6                  | 200                         | 27     | 3.3                                             | 14                                              | 412     | 73.2    |
| 9       | 36  | 7                  | 190                         | 33     | 2.7                                             | 12                                              | 499     | 73.2    |
| 10      | 36  | 8                  | 190                         | 33     | 2.2                                             | 11                                              | 562     | 71.5    |
| 10      | 36  | 9                  | 170                         | 33     | 1.8                                             | 9                                               | 634     | 69.8    |
| 12      | 36  | 10                 | 180                         | 39     | 1.8                                             | 8                                               | 698     | 69.8    |
| 12      | 36  | 11                 | 160                         | 39     | 1.5                                             | 8                                               | 768     | 68.1    |
| 14      | 36  | 12                 | 180                         | 39     | 1.2                                             | 7                                               | 845     | 68.1    |

## DC-DC Spread Spectrum

The DC-DC regulator uses an internal clock synchronized with the main on-board oscillator that is used to generate other signals and timing. To reduce EMC emission peaks and/or reduce interference between the DC-DC switching circuitry and analog circuitry, the MAX22514 features selectable spread-spectrum functionality for the DC-DC clock. When enabled, the DC-DC clock is randomly changed with a maximum frequency deviation of  $\pm 10\%$  (typ).

By default, DC-DC spread spectrum is disabled. Set the BUCKSS bit in the MODE register to enable spread spectrum for the DC-DC.

## DC-DC Protection and Diagnostics

### DC-DC Overcurrent and Runaway Protection

The DC-DC regulator includes integrated circuitry to protect the regulator during a current overload condition to avoid runaway. When the high-side current exceeds the 400mA (typ) high-side peak current limit ( $I_{DC\_HSLIM}$ ), the high-side switch is disabled. Similarly, when the low-side current exceeds the 200mA (typ) low-side current limit threshold ( $I_{DC\_LSMAX}$ ), the low-side switch is turned off and LX is floating until the next clock cycle, when switching begins again.

### Hiccup Mode (Autoretry)

The DC-DC regulator features an autoretry sequence (hiccup mode) to protect against fault conditions on the output. After soft-start, if the output voltage of the DC-DC regulator falls below 70% of the set threshold, the regulator is disabled for 22ms (typ) and the BUCKFAULT bit in the STATUS2 register is set. Following the autoretry period, the DC-DC is restarted with soft-start.

If the fault on the output persists, the DC-DC is disabled and the autoretry sequence begins again. If the output voltage rises to 95% of the expected voltage, the DC-DC exits hiccup mode and operates normally.

### DC-DC Power Diagnostics

The BUCKFAULT and BUCKOK bits in the STATUS2 register indicate the state of the DC-DC output. Use these bits to monitor the regulator during operation.

The BUCKOK bit is set when the output voltage is above 95% of the set voltage and the regulator is operating normally. When the DC-DC output voltage falls below 95% of the set voltage, RESET/POK asserts and the BUCKOK bit is 0.

The BUCKFAULT bit is set when regulator is in a fault condition. Fault conditions include current overload, when the output voltage falls below 70% of the set threshold, and/or when the regulator is operating in hiccup mode. The BUCKFAULT bit is cleared automatically when the regulator returns to normal operation.

### Integrated Temperature Sensing

The MAX22514 monitors the die temperature during normal operation. This temperature can be read through the SPI interface and can be configured to generate a high temperature warning when the temperature rises above a set threshold. This threshold is user programmable.

The MAX22514 uses the same thermal sense circuitry to monitor the die temperature for the default thermal warning and when the programmable thermal warning methods are used. The default thermal warning system features a reduced precision, but faster response times. The programmable thermal ADC features a higher precision but slower functionality.

The high temperature warning can be disabled completely by setting the ADC\_CONF bits in the THADC\_CFG register.

### High Temperature Warning

To protect against thermal damage, the MAX22514 monitors the die temperature during operation. The MAX22514 compares the die temperature to two different thresholds: the warning threshold and the thermal shutdown threshold. By default, the high temperature warning threshold is 150°C.

## Programmable Thermal Warning

Enable the programmable thermal warning threshold by setting the ADC\_CONF[1:0] bits in the THADC\_CFG register to 01. Program the warning threshold by setting the THWRN[5:0] bits in the THADC\_THD register. Bits in the THWRN[5:0] bits are binary-coded, with 1 LSB = 3°C and THWARN = 0 at -15°C (typ). See [Table 5](#).

**Table 5. Thermal ADC Conversion**

| Die temperature (°C) | THWARN[5:0]  |
|----------------------|--------------|
| 0                    | 000101 (5d)  |
| 27                   | 001110 (14d) |
| 84                   | 100001 (33d) |
| 126                  | 101111 (47d) |

The THERMWINT bit in the INTERRUPT register and the TEMPW bit in the STATUS register are set when the die temperature exceeds the thermal warning threshold. If not masked (THERMWM = 0 in the IRQMASK register), IRQ asserts when the THERWINT bit is set. THERMWINT is cleared when the INTERRUPT register is read, but THERMW is not cleared until the temperature is below the thermal warning threshold hysteresis. No hysteresis is available for the programmable warning threshold mode.

## Thermal ADC

Set the ADC\_CONF[1:0] bits in the THAD\_CNG register to 10 or 11 to enable ADC thermal monitoring to allow the die temperature to be read over the SPI interface.

Set the ADC\_START bit in the THADC\_CFG register to start the thermal ADC measurement. The ADC\_START bit is cleared and the ADC\_EOC bit in the THADC\_RES register is set after the manual ADC thermal measurement is completed after 450µs (typ). Measurement results are stored in the THVAL[5:0] bits in the THADC\_RES register. Measurements are binary-coded, 1 LSB = 3°C (typ) and THVAL = 0 at -15°C (typ). Thermal ADC measurements range from -15°C to 174°C. See [Table 5](#).

Thermal warning functionality is disabled when manual ADC thermal monitoring is enabled. Ignore the THERMW bit in the STATUS register and mask the thermal warning interrupt (THERMWINT in the INTERRUPT register) by setting the THERMWM = 1 in the IRQMASK register.

## Protection

### Reverse Polarity Protection

The MAX22514 is internally protected against reverse polarity miswiring on the V<sub>24</sub>, C/Q, and GND pins. Any combination of these pins can be connected to a DC voltage in the range of -36V to +36V. Shorts to these voltages result in a current flow of less than 500µA. Note that the maximum voltage between any pins should not exceed the Absolute Maximum Ratings.

### Thermal Shutdown

The MAX22514 enters thermal shutdown when the average die temperature exceeds the +170°C (typ) thermal shutdown threshold. The C/Q driver, the DC-DC regulator, and the V<sub>5</sub> and V<sub>33</sub> regulators are disabled when the device is in thermal shutdown. The MAX22514 exits thermal shutdown when the average die temperature falls below the 20°C (typ) thermal shutdown hysteresis. Thermal shutdown is present regardless of the method of high temperature warning utilized and cannot be disabled.

## Register Corruption Check

The MAX22514 performs an ongoing check of all register bits. A register is corrupted when the value is changed by an external event (for example, an ESD discharge, etc). When a corrupt register bit is detected, the CORR\_REG bit in the STATUS register is set, the NOTREADY bit in the INTERRUPT register is set, and the MAX22514 asserts the IRQ output. The C/Q driver is disabled when the NOTREADY bit is set.

The microcontroller must rewrite correct values to all of the registers after the CORR\_REG bit has been set. The CORR\_REG bit is automatically cleared when the serial interface control registers have been rewritten to their pre-event cycle values. Once the CORR\_REG bit is cleared, read the INTERRUPT register to clear the NOTREADY bit and deassert IRQ.

## SPI Controller Interface

The MAX22514 supports full-duplex SPI communication at speeds up to 12MHz. The master must generate clock and data signals in SPI MODE0 (clock polarity CPOL = 0 and clock phase CPHA = 0) to communicate with the MAX22514. The SPI interface is not available when  $V_5$  falls below 4.26V or when  $V_L$  is below 2.5V.

[Figure 10](#) shows a single-cycle WPI write command and [Figure 11](#) shows a single-cycle SPI read command.

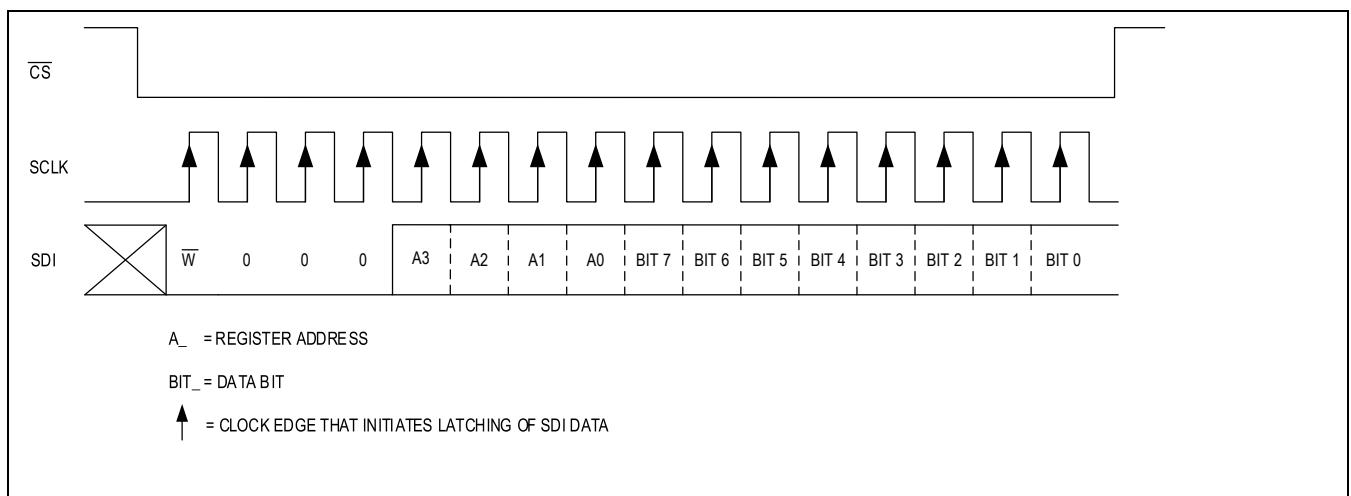



Figure 10. SPI Write Byte

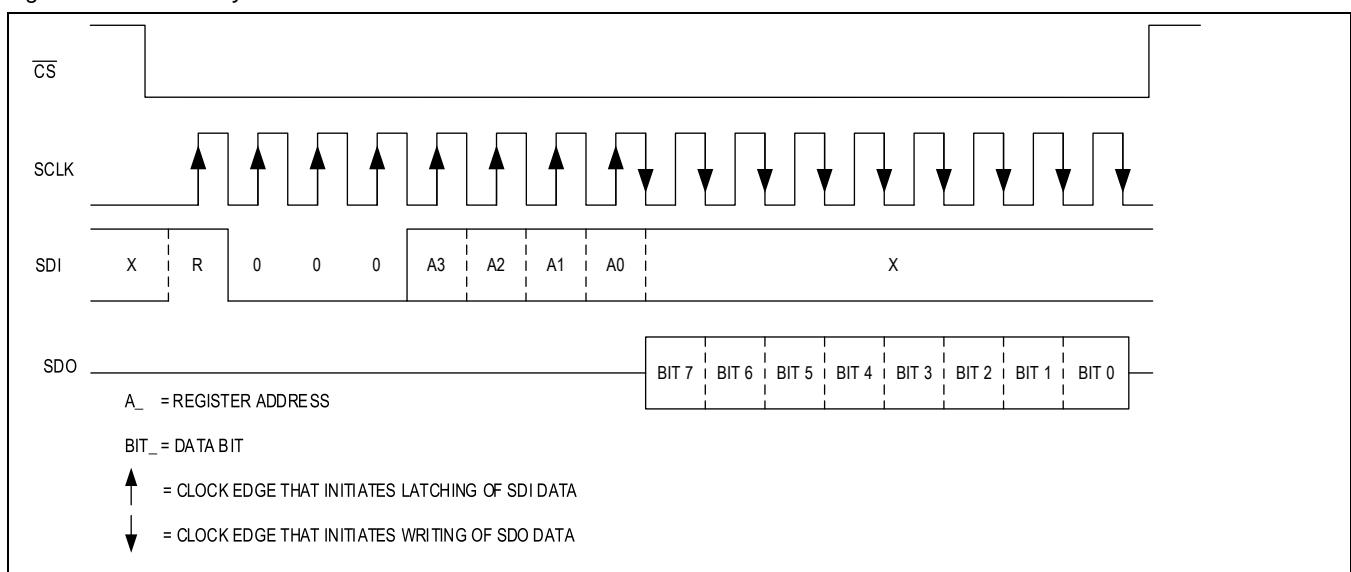



Figure 11. SPI Read Byte

## Register Map

## REGISTER MAP

| ADDRESS         | NAME                  | MSB           |       |             |            |             |          |               | LSB         |  |  |
|-----------------|-----------------------|---------------|-------|-------------|------------|-------------|----------|---------------|-------------|--|--|
| <b>SPI User</b> |                       |               |       |             |            |             |          |               |             |  |  |
| 0x00            | <u>INTERRUPT[7:0]</u> | NOTREADY      | WUINT | THADCINT    | CQFAULTINT | VMINT       | UV24INT  | -             | THERMWINT   |  |  |
| 0x01            | <u>IRQMASK[7:0]</u>   | -             | WUM   | THADCM      | CQFAULTM   | VMINTM      | UV24M    | -             | THERMM      |  |  |
| 0x02            | <u>STATUS[7:0]</u>    | CQLVL         | -     | -           | CQFAULT    | VMWARN      | UV24     | -             | THERMW      |  |  |
| 0x03            | <u>STATUS2[7:0]</u>   | CORR_REG      | -     | -           | -          | -           | -        | BUCKFAULT     | BUCKOK      |  |  |
| 0x04            | <u>MODE[7:0]</u>      | RST           | -     | -           | -          | BUCKDCM     | BUCKPFM  | BUCKSS        | BUCKDIS     |  |  |
| 0x05            | <u>CURRLIM[7:0]</u>   | CL[1:0]       |       | CLDIS       | CL_BL[1:0] |             | TAR[1:0] |               | AUTORETRYEN |  |  |
| 0x06            | <u>CONTROL[7:0]</u>   | LDO33DIS      | WUDIS | -           | -          | RXDIS       | RXFILTER | -             | CQ_Q        |  |  |
| 0x07            | <u>CQCONFIG[7:0]</u>  | CQLOSLEW[1:0] |       | CQ_PD       | CQ_PU      | CQ_NPN      | CQ_PP    | INVCQ         | CQ_EN       |  |  |
| 0x09            | <u>CLKCONFIG[7:0]</u> | ENCKTRIM      | -     | -           | -          | CLKDIV[2:0] |          |               | MCLKDIS     |  |  |
| 0x0A            | <u>CKTRIM[7:0]</u>    | -             | -     | CKTRIM[5:0] |            |             |          |               |             |  |  |
| 0x0B            | <u>CQMASTER[7:0]</u>  | WUGEN         | -     | -           | RXTTL      | -           | -        | CQPUD5MA      | CQPUD2MA    |  |  |
| 0x0C            | <u>CHIPID[7:0]</u>    | CHIPID[7:0]   |       |             |            |             |          |               |             |  |  |
| 0x0D            | <u>THADC_CFG[7:0]</u> | ADC_START     | -     | -           | -          | -           | -        | ADC_CONF[1:0] |             |  |  |
| 0x0E            | <u>THADC_THD[7:0]</u> | -             | -     | THWRN[5:0]  |            |             |          |               |             |  |  |
| 0x0F            | <u>THADC_RES[7:0]</u> | ADC_EOC       | -     | THVAL[5:0]  |            |             |          |               |             |  |  |

## Register Details

### INTERRUPT (0x0)

The IRQ output asserts when any of the bits in the INTERRUPT register are set and the interrupt is not masked. Read the INTERRUPT register to clear the bits and deassert IRQ, once the fault condition has been removed.

| BIT                | 7               | 6               | 5               | 4          | 3         | 2         | 1               | 0         |
|--------------------|-----------------|-----------------|-----------------|------------|-----------|-----------|-----------------|-----------|
| <b>Field</b>       | NOTREADY        | WUINT           | THADCINT        | CQFAULTINT | VMINT     | UV24INT   | -               | THERMWINT |
| <b>Reset</b>       | 0b1             | 0b0             | 0b0             | 0b0        | 0b0       | 0b0       | 0b0             | 0b0       |
| <b>Access Type</b> | Read Clears All | Read Clears All | Read Clears All | Read, Ext  | Read, Ext | Read, Ext | Read Clears All | Read, Ext |

| BITFIELD   | BITS | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOTREADY   | 7    | 0 = The MAX22514 is operating normally<br>1 = Any of the following conditions has occurred since the last INTERRUPT register read: <ul style="list-style-type: none"><li>• The <math>V_5</math> supply voltage dropped below its UVLO and the registers were reset.</li><li>• A power-up occurred and the registers have been reset.</li><li>• At least one register has been corrupted due to an external event (not POR).</li></ul> The NOTREADY interrupt cannot be masked. |
| WUINT      | 6    | 0 = No wake-up condition has been detected.<br>1 = An IO-Link wake-up condition has been detected on the C/Q line since the last INTERRUPT register read.                                                                                                                                                                                                                                                                                                                      |
| THADCINT   | 5    | 0 = No thermal conversion has been completed.<br>1 = A thermal ADC conversion has been completed since the last INTERRUPT register read.                                                                                                                                                                                                                                                                                                                                       |
| CQFAULTINT | 4    | 0 = C/Q driver operating normally.<br>1 = Overcurrent/overload condition on the C/Q driver since the last INTERRUPT register read.<br><br>Note that CQFAULT is only cleared if the overload condition has been removed when INTERRUPT the register is read.                                                                                                                                                                                                                    |
| VMINT      | 3    | 0 = $V_M$ is above 900mV (typ)<br>1 = $V_M$ voltage is below 858mV (typ).<br><br>$V_M$ is level sensitive. VMINT is only cleared when the $V_M$ voltage is higher than the 900mV threshold during the INTERRUPT read.                                                                                                                                                                                                                                                          |
| UV24INT    | 2    | 0 = $V_{24}$ is above the 7.5V (typ) undervoltage threshold (UVLO).<br>1 = The $V_{24}$ voltage is below the the 7V (typ) undervoltage threshold.<br><br>$V_{24}$ is level sensitive. UV24INT is only cleared when the $V_{24}$ voltage is higher than the 7.5V (typ) threshold during the INTERRUPT read.                                                                                                                                                                     |
| -          | 1    | Not used                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| THERMWINT  | 0    | 0 = The die temperature has not risen above the warning temperature threshold.<br>1 = The die temperature has risen above the warning temperature threshold since the                                                                                                                                                                                                                                                                                                          |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                                                                                                    |
|----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |      | <p>last INTERRUPT register read.</p> <p>THWINT is only cleared if the die temperature is below the warning threshold when the INTERRUPT register is read.</p> <p>This bit should be ignored when manual ADC thermal conversion is enabled.</p> |

### IRQMASK (0x1)

Set the bits in the IRQMASK register to ignore selected events or fault notifications. IRQ does not assert when any of the masked bits in the INTERRUPT register are set. Bits in the INTERRUPT register are not affected by the bits in the IRQMASK register, and are set when the associated event or fault notification occurs.

| BIT                | 7 | 6           | 5           | 4           | 3           | 2           | 1           | 0           |
|--------------------|---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| <b>Field</b>       | — | WUM         | THADCM      | CQFAULTM    | VMINTM      | UV24M       | —           | THERMWM     |
| <b>Reset</b>       | — | 0b0         | 0x0         | 0b0         | 0b0         | 0b0         | 0b0         | 0b0         |
| <b>Access Type</b> | — | Write, Read |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                                                                                                                |
|----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WUM      | 6    | 0 = IRQ asserts when the WUINT bit in the INTERRUPT register is set.<br>1 = IRQ does not assert when the WUINT bit in the INTERRUPT register is set.                                                                                                       |
| THADCM   | 5    | 0 = IRQ asserts when the THADCINT bit in the INTERRUPT register is set.<br>1 = IRQ does not assert when the THADCINT bit in the INTERRUPT register is set.                                                                                                 |
| CQFAULTM | 4    | 0 = IRQ asserts when the CQFAULT bit in the INTERRUPT register is set.<br>1 = IRQ does not assert when the CQFAULT bit in the INTERRUPT register is set.                                                                                                   |
| VMINTM   | 3    | 0 = IRQ asserts when the VMINT bit in the INTERRUPT register is set.<br>1 = IRQ does not assert when the VMINT bit in the INTERRUPT register is set.                                                                                                       |
| UV24M    | 2    | 0 = IRQ asserts when the UV24INT bit in the INTERRUPT register is set.<br>1 = IRQ does not assert when the UV24INT bit in the INTERRUPT register is masked.                                                                                                |
| —        | 1    | Not used                                                                                                                                                                                                                                                   |
| THERMWM  | 0    | 0 = IRQ asserts when the THERMWINT bit in the INTERRUPT register is set.<br>1 = IRQ does not assert when the THERMWINT bit in the INTERRUPT register is set.<br><br>Set this bit when manual ADC thermal conversion is enabled (ADC_CONF[1:0] = 10 or 11). |

### STATUS (0x2)

Bits in the STATUS register indicate the current status of the MAX22514. Bits in the STATUS register are set or cleared when an event occurs and are not cleared when the register is read.

| BIT | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-----|---|---|---|---|---|---|---|---|
|     |   |   |   |   |   |   |   |   |

| Field       | CQLVL     | - | - | CQFAULT   | VMWARN    | UV24      | -         | THERMW    |
|-------------|-----------|---|---|-----------|-----------|-----------|-----------|-----------|
| Reset       | 0b0       | - | - | 0b0       | 0b0       | 0b0       | 0b0       | 0b0       |
| Access Type | Read Only | - | - | Read Only |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                                                                                                                                                     |
|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CQLVL    | 7    | 0 = C/Q is high.<br>1 = C/Q is low.                                                                                                                                                                                                                                                             |
| CQFAULT  | 4    | 0 = No fault on C/Q driver.<br>1 = Overcurrent or thermal overload fault on C/Q driver.                                                                                                                                                                                                         |
| VMWARN   | 3    | 0 = $V_M$ is above the 900mV (typ) threshold.<br>1 = $V_M$ is below the 858mV (typ) threshold.                                                                                                                                                                                                  |
| UV24     | 2    | 0 = $V_{24}$ is above the 7.5V (typ) rising undervoltage lockout (UVLO) threshold.<br>1 = $V_{24}$ is below the 7V (typ) falling UVLO threshold.                                                                                                                                                |
| -        | 1    | Not used                                                                                                                                                                                                                                                                                        |
| THERMW   | 0    | 0 = The die temperature is below the 130°C (typ, falling) warning threshold temperature.<br>1 = The die temperature is above the 150°C (typ, rising) warning threshold temperature.<br><br>This bit should be ignored when manual ADC thermal conversion is enabled (ADC_CONF[1:0] = 10 or 11). |

### STATUS2 (0x3)

Bits in the STATUS2 register indicate the current status of the MAX22514 registers and the DC-DC regulator operation. Bits in the STATUS2 register are set or cleared when an event occurs and are not cleared when the register is read.

| BIT         | 7         | 6 | 5 | 4 | 3 | 2 | 1         | 0         |
|-------------|-----------|---|---|---|---|---|-----------|-----------|
| Field       | CORR_REG  | - | - | - | - | - | BUCKFAULT | BUCKOK    |
| Reset       | 0b0       | - | - | - | - | - | 0b0       | 0b1       |
| Access Type | Read Only | - | - | - | - | - | Read Only | Read Only |

| BITFIELD  | BITS | DESCRIPTION                                                                                                                                                                                                                                     |
|-----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CORR_REG  | 7    | 0 = All register values are correct.<br>1 = Register values are corrupted. C/Q is disabled and RX is high impedance when CORR_REG = 1. $V_{33}$ and DC-DC are also forced on and the signal at MCLK is enabled and switching at 3.686MHz (typ). |
| BUCKFAULT | 1    | 0 = The DC-DC is operating normally. No fault conditions are present.<br>1 = A fault condition is present on the DC-DC regulator. Fault conditions include output                                                                               |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                            |
|----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |      | overcurrent/overload, the output voltage falls below 70% of the set voltage, and when the regulator is in hiccup mode.                                                 |
| BUCKOK   | 0    | 0 = The DC-DC regulator is not ready or has a fault condition.<br>1 = The DC-DC regulator is operating normally in the steady state condition and is ready to be used. |

**MODE (0x4)**

| BIT                | 7                        | 6 | 5 | 4 | 3           | 2           | 1           | 0           |
|--------------------|--------------------------|---|---|---|-------------|-------------|-------------|-------------|
| <b>Field</b>       | RST                      | – | – | – | BUCKDCM     | BUCKPFM     | BUCKSS      | BUCKDIS     |
| <b>Reset</b>       | 0b0                      | – | – | – | 0b0         | 0b0         | 0b0         | 0b0         |
| <b>Access Type</b> | Write Only<br>Clears All | – | – | – | Write, Read | Write, Read | Write, Read | Write, Read |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                                                                                   |
|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RST      | 7    | 0 = Registers are not in reset state.<br>1 = Set all registers to their default state. RST clears automatically.                                                                                                              |
| BUCKDCM  | 3    | 0 = The DC-DC regulator operates in PFM mode (BUCKPFM = 1) or PWM mode (BUCKPFM = 0) after soft-start is complete. See the BUCKPFM bit setting.<br>1 = The DC-DC regulator operates in DCM mode after soft-start is complete. |
| BUCKPFM  | 2    | 0 = The DC-DC regulator operates in PWM mode (BUCKDCM = 0) or DCM mode (BUCKDCM = 1).<br>1 = The DC-DC regulator operates in PFM mode.                                                                                        |
| BUCKSS   | 1    | 0 = Spread spectrum operation is not enabled on the DC-DC regulator.<br>1 = Spread spectrum operation is enabled on the DC-DC regulator.                                                                                      |
| BUCKDIS  | 0    | 0 = DC-DC regulator is enabled.<br>1 = DC-DC regulator is disabled.                                                                                                                                                           |

**CURRLIM (0x5)**

| BIT                | 7           | 6 | 5           | 4           | 3 | 2           | 1 | 0            |
|--------------------|-------------|---|-------------|-------------|---|-------------|---|--------------|
| <b>Field</b>       | CL[1:0]     |   | CLDIS       | CL_BL[1:0]  |   | TAR[1:0]    |   | AUTORETRY EN |
| <b>Reset</b>       | 0b00        |   | 0b0         | 0b00        |   | 0b00        |   | 0b0          |
| <b>Access Type</b> | Write, Read |   | Write, Read | Write, Read |   | Write, Read |   | Write, Read  |

| BITFIELD    | BITS | DESCRIPTION                                                                                                                                                                                                                                                                                                                              |
|-------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CL          | 7:6  | <p>CL[1:0] bits set the active current limit levels for the C/Q driver when CLDIS = 0.</p> <p>00 = 50mA (min) current limit<br/> 01 = 100mA (min) current limit<br/> 10 = 200mA (min) current limit<br/> 11 = 250mA (min) current limit</p>                                                                                              |
| CLDIS       | 5    | <p>0 = C/Q driver current limits are enabled. Current limits are set by the CL[1:0] bits. The C/Q rising/falling slew rates are set by the CQLOSSLEW bits.</p> <p>1 = C/Q driver current limits are disabled. The C/Q rising/falling slew rate is set to 380ns (typ).</p>                                                                |
| CL_BL       | 4:3  | <p>Set the CL_BL[1:0] to program the blanking time for the C/Q driver:</p> <p>00 = 175µs (typ)<br/> 01 = 500µs (typ)<br/> 10 = 1ms (typ)<br/> 11 = 5ms (typ)</p>                                                                                                                                                                         |
| TAR         | 2:1  | <p>Set the TAR[1:0] bits to select the fixed off-time for the C/Q driver after a fault has been generated and autoretry functionality is enabled (AUTORETRYEN = 1).</p> <p>00 = 50ms (typ)<br/> 01 = 100ms (typ)<br/> 10 = 200ms (typ)<br/> 11 = 500ms (typ)</p> <p>The driver is automatically reenabled after the fixed off-delay.</p> |
| AUTORETRYEN | 0    | <p>0 = Autoretry is disabled on the C/Q driver.</p> <p>1 = Autoretry is enabled on the C/Q driver. When a fault is signaled on the driver, the driver is disabled for the selected fixed off time and then automatically reenabled.</p>                                                                                                  |

### CONTROL (0x6)

| BIT                | 7           | 6           | 5 | 4 | 3           | 2           | 1 | 0           |
|--------------------|-------------|-------------|---|---|-------------|-------------|---|-------------|
| <b>Field</b>       | LDO33DIS    | WUDIS       | – | – | RXDIS       | RXFILTER    | – | CQ_Q        |
| <b>Reset</b>       | 0b0         | 0b0         | – | – | 0b0         | 0b0         | – | 0b0         |
| <b>Access Type</b> | Write, Read | Write, Read | – | – | Write, Read | Write, Read | – | Write, Read |

| BITFIELD | BITS | DESCRIPTION                                                                                                  |
|----------|------|--------------------------------------------------------------------------------------------------------------|
| LDO33DIS | 7    | <p>0 = V<sub>33</sub> linear regulator is enabled.<br/> 1 = V<sub>33</sub> linear regulator is disabled.</p> |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                     |
|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| WUDIS    | 6    | 0 = IO-Link wake-up detection is enabled.<br>1 = IO-Link wake-up detection is disabled.                                                         |
| RXDIS    | 3    | 0 = RX logic output is enabled.<br>1 = RX logic output is disabled. RX is high impedance. The C/Q input current is reduced when RXDIS = 1.      |
| RXFILTER | 2    | 0 = The 1 $\mu$ s (typ) glitch filter on the C/Q receiver is disabled.<br>1 = The 1 $\mu$ s (typ) glitch filter on the C/Q receiver is enabled. |
| CQ_Q     | 0    | Use the CQ_Q bit to control the C/Q driver output. See Table 1 for more information.                                                            |

**CQCONFIG (0x7)**

| BIT                | 7             | 6 | 5           | 4           | 3           | 2           | 1           | 0           |
|--------------------|---------------|---|-------------|-------------|-------------|-------------|-------------|-------------|
| <b>Field</b>       | CQLOSLEW[1:0] |   | CQ_PD       | CQ_PU       | CQ_NPN      | CQ_PP       | INVCQ       | CQ_EN       |
| <b>Reset</b>       | 0b00          |   | 0b0         | 0b0         | 0b0         | 0b0         | 0b0         | 0b0         |
| <b>Access Type</b> | Write, Read   |   | Write, Read |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                                                                                                              |
|----------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CQLOSLEW | 7:6  | Set the CQLOSLEW[1:0] bits to program the typical rising and falling slew rates on the C/Q driver.<br><br>00 = 380ns (typ)<br>01 = 700ns (typ)<br>10 = 1.7 $\mu$ s (typ)<br>11 = 7.5 $\mu$ s (typ)<br><br>CQLOSLEW is ignored when the CLDIS bit is set. |
| CQ_PD    | 5    | 0 = The pull-down current on the C/Q driver is disabled.<br>1 = Enable the pull-down current on the C/Q driver.<br>See Table 3 for more information.                                                                                                     |
| CQ_PU    | 4    | 0 = The pull-up current on the C/Q driver is disabled.<br>1 = Enable the pull-up current on the C/Q driver.<br>See Table 3 for more information.                                                                                                         |
| CQ_NPN   | 3    | 0 = The C/Q driver is in PNP mode (CQ_PP = 0) or push-pull mode (CQ_PP = 1).<br>1 = The C/Q driver is in NPN mode (CQ_PP = 0) or push-pull mode (CQ_PP = 1).                                                                                             |
| CQ_PP    | 2    | 0 = The C/Q driver is in PNP mode (CQ_NPN = 0) or NPN mode (CQ_NPN = 1).<br>1 = The C/Q driver is in push-pull mode.                                                                                                                                     |

| BITFIELD | BITS | DESCRIPTION                                                                                 |
|----------|------|---------------------------------------------------------------------------------------------|
| INVCQ    | 1    | 0 = C/Q logic is inverted compared to TX and RX.<br>1 = C/Q logic is the same as TX and RX. |
| CQ_EN    | 0    | 0 = C/Q driver is disabled.<br>1 = C/Q driver is enabled.                                   |

**CLKCONFIG (0x9)**

| BIT                | 7           | 6 | 5 | 4 | 3           | 2 | 1           | 0       |
|--------------------|-------------|---|---|---|-------------|---|-------------|---------|
| <b>Field</b>       | ENCKTRIM    | – | – | – | CLKDIV[2:0] |   |             | MCLKDIS |
| <b>Reset</b>       | 0b0         | – | – | – | 0b000       |   |             | 0b0     |
| <b>Access Type</b> | Write, Read | – | – | – | Write, Read |   | Write, Read |         |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                           |
|----------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ENCKTRIM | 7    | 0 = Fine trimming of the MCLK frequency is disabled.<br>1 = Fine trimming of the MCLK frequency is enabled. See the CKTRIM register.                                                                                                                                                                                                                                                  |
| CLKDIV   | 3:1  | Set the CLKDIV[1:0] bits to select the internal clock divider ratio and MCLK switching frequency:<br><br>000 = MCLK frequency is 3.686MHz (typ) (default)<br>001 = MCLK frequency is 7.373MHz (typ)<br>010 = MCLK frequency is 14.74MHz (typ)<br>011 = MCLK frequency is 29.49MHz (typ)<br>100 = MCLK frequency is 1.843MHz (typ)<br><br>MCLK switches at 3.686MHz (typ) at power-up. |
| MCLKDIS  | 0    | 0 = MCLK is enabled.<br>1 = MCLK is disabled. MCLK is high when disabled.                                                                                                                                                                                                                                                                                                             |

**CKTRIM (0xA)**

| BIT                | 7 | 6 | 5           | 4 | 3 | 2 | 1 | 0 |
|--------------------|---|---|-------------|---|---|---|---|---|
| <b>Field</b>       | – | – | CKTRIM[5:0] |   |   |   |   |   |
| <b>Reset</b>       | – | – | 0b000000    |   |   |   |   |   |
| <b>Access Type</b> | – | – | Write, Read |   |   |   |   |   |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                    |
|----------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CKTRIM   | 5:0  | The CKTRIM[5:0] bits are used to trim the internally generated clock frequency.<br>The bits are binary coded, centered to 0 from -5% for -32 to +6.7% for +31. |

**CQMASTER (0xB)**

| BIT                | 7           | 6 | 5 | 4           | 3 | 2 | 1           | 0           |
|--------------------|-------------|---|---|-------------|---|---|-------------|-------------|
| <b>Field</b>       | WUGEN       | – | – | RXTTL       | – | – | CQPUD5MA    | CQPUD2MA    |
| <b>Reset</b>       | 0x0         | – | – | 0x0         | – | – | 0x0         | 0x0         |
| <b>Access Type</b> | Write, Read | – | – | Write, Read | – | – | Write, Read | Write, Read |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                                                                                                                       |
|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WUGEN    | 7    | 0 = No wake-up pulse is generated on C/Q<br>1 = Generate a 80µs (typ) wake-up pulse on C/Q.<br><br>Program C/Q to push-pull mode and set CQ_EN = 0 and TXEN = low before setting WUGEN = 1.<br>WUGEN is automatically reset after the wake-up pulse is generated. |
| RXTTL    | 4    | 0 = IO-Link receiver thresholds enabled for C/Q receiver<br>1 = TTL receiver thresholds enabled for C/Q receiver                                                                                                                                                  |
| CQPUD5MA | 1    | 0 = The 5mA (min) current on C/Q is disabled.<br>1 = Enables the 5mA (min) current on the C/Q driver.                                                                                                                                                             |
| CQPUD2MA | 0    | 0 = The 2mA (min) current on C/Q is disabled.<br>1 = Enables the 2mA (min) current on the C/Q driver.                                                                                                                                                             |

**CHIPID (0xC)**

| BIT                | 7           | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------------------|-------------|---|---|---|---|---|---|---|
| <b>Field</b>       | CHIPID[7:0] |   |   |   |   |   |   |   |
| <b>Reset</b>       | 0x13        |   |   |   |   |   |   |   |
| <b>Access Type</b> | Read Only   |   |   |   |   |   |   |   |

| BITFIELD | BITS | DESCRIPTION                                                  |
|----------|------|--------------------------------------------------------------|
| CHIPID   | 7:0  | The CHIPID register identifies the revision of the MAX22514. |

THADC\_CFG (0xD)

| BIT                | 7           | 6 | 5 | 4 | 3 | 2 | 1 | 0             |
|--------------------|-------------|---|---|---|---|---|---|---------------|
| <b>Field</b>       | ADC_START   | – | – | – | – | – | – | ADC_CONF[1:0] |
| <b>Reset</b>       | 0b0         | – | – | – | – | – | – | 0b00          |
| <b>Access Type</b> | Write, Read | – | – | – | – | – | – | Write, Read   |

| BITFIELD  | BITS | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                               |
|-----------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADC_START | 7    | <p>0 = No manual thermal ADC conversion.<br/>1 = Start a new manual thermal ADC conversion.</p> <p>Set ADC_CONF[1:0] = 10 or 11 to enable manual thermal ADC conversion. Results of the thermal conversion are stored in the THADC_RES register when the conversion is complete.</p> <p>This bit is automatically cleared when the manual ADC conversion is complete.</p> |
| ADC_CONF  | 1:0  | <p>00 = Internal/Default thermal warning threshold and response time is enabled.<br/>01 = Programmable thermal warning threshold is enabled.<br/>1x = Manual thermal ADC is enabled. Thermal warning is disabled in this mode.</p>                                                                                                                                        |

THADC\_THD (0xE)

| BIT                | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0           |
|--------------------|---|---|---|---|---|---|---|-------------|
| <b>Field</b>       | – | – |   |   |   |   |   | THWRN[5:0]  |
| <b>Reset</b>       | – | – |   |   |   |   |   | 0b000000    |
| <b>Access Type</b> | – | – |   |   |   |   |   | Write, Read |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| THWRN    | 5:0  | <p>Set ADC_CONF[1:0] = 01 to enable the programmable thermal warning threshold.</p> <p>Program the THWRN[5:0] bits to set the thermal warning threshold. Scaling is the same as for the THVAL[5:0] bits in the THADC_RES register.</p> <p>The THERMWINT and THERMW bits are set when the die temperature exceeds this threshold. There is no hysteresis when the programmable thermal warning threshold is enabled.</p> |

THADC\_RES (0xF)

| BIT | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-----|---|---|---|---|---|---|---|---|
|     |   |   |   |   |   |   |   |   |

|                    |           |   |             |
|--------------------|-----------|---|-------------|
| <b>Field</b>       | ADC_EOC   | – | THVAL[5:0]  |
| <b>Reset</b>       | 0b0       | – | 0b000000    |
| <b>Access Type</b> | Read Only | – | Write, Read |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                                                                                                                                 |
|----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADC_EOC  | 7    | Set the ADC_CONF[1:0] bits to 10 or 11 to enable manual thermal ADC conversion.<br>0 = Thermal ADC conversion is complete and THVAL[5:0] bits hold the latest thermal ADC conversion value<br>1 = Thermal ADC conversion is running. Value in THVAL[5:0] bits is not valid. |
| THVAL    | 5:0  | This register holds the results of the latest thermal conversion. Bits are binary coded with 1LSB = 3°C and THVAL = 0 at -15°C (typ). See Table 5.                                                                                                                          |

## Applications Information

### MCLK Microcontroller Clocking

The MCLK output produces a clock that can be used for microcontroller/IO-Link UART clocking.

Select the frequency of the MCLK output by setting the CLKDIV[2:0] bits in the CLKCONFIG register. Available MCLK frequencies are 1.843MHz (typ), 3.686MHz (typ), 7.373MHz (typ), 14.74MHz (typ), and 29.49MHz (typ). The MCLK frequency can be finely adjusted by setting the ENCKTRIM bit in the CLKCONFIG register to 1 and writing the CKTRIM bits in the CKTRIM register. The CKTRIM bits are used to trim the internally generated clock frequency. The bits are binary coded and centered to 0 from -5% for -32, and to +6.7% for +31.

MCLK is enabled by default at power up and the switching frequency is 3.686MHz (typ). MCLK voltage output levels are referenced to the  $V_L$  logic supply.

### EMC Protection

The MAX22514 features integrated surge protection of  $\pm 1\text{kV}/500\Omega$  for  $8\mu\text{s}/20\mu\text{s}$  surge on the C/Q and  $V_{24}$  pins. External TVS diodes are required to meet higher levels of surge and ESD protection. Ensure that the TVS diode peak clamping voltage is within the Absolute Maximum voltage ratings.

### Power Dissipation and Thermal Considerations

Ensure that the total power dissipation in the MAX22514 is less than the limit in the Absolute Maximum Ratings. Total power dissipation for the MAX22514 is calculated using the following equation:

$$P_{\text{TOTAL}} = P_Q + PV_5 + PV_{33} + P_{\text{C/Q}}$$

where:

$P_Q$  = Quiescent power generated in MAX22514,

$P_{\text{C/Q}}$  = Power generated in the C/Q driver,

$PV_{33}$  and  $PV_5$  = Power generated by the internal linear regulators

Quiescent power dissipated in the MAX22514 is calculated as:

$$P_Q = [I_{24} \times V_{24}(\text{max})] + [I_5 \times V_5]$$

Power dissipated in the C/Q driver is calculated as:

$$P_{\text{C/Q}} = I_{\text{C/Q}}(\text{max})^2 \times R_{\text{ON}}$$

$I_{\text{C/Q}}$  is the load current driven by the C/Q driver and  $R_{\text{ON}}$  is the driver on-resistance.

Power dissipated in the 5V linear regulator ( $V_5$ ) is calculated as:

$$PV_5 = (V_{\text{LIN}} - V_5) \times I_{5\text{LOAD}}$$

$I_{5\text{LOAD}}$  includes both the load current on the  $V_5$  regulator and the 3.3V regulator.

Power dissipated in the 3.3V linear regulator ( $V_{33}$ ) is calculated as:

$$PV_{33} = 1.7V \times I_{33\text{LOAD}}$$

$I_{33\text{LOAD}}$  is the load on the 3.3V regulator

## Layout and Grounding

Layout for the MAX22514 is important to ensure that all parts operate normally and with minimal interference.

The MAX22514 features two ground pins: GND, CQGND.

Bypass all supply pins ( $V_5$ ,  $V_L$ , and  $PV_{24}$ ) to the GND pin and connect directly to a ground plane. Bypass capacitors should be placed as close to the IC as possible.

The  $V_{24}$ , C/Q, and CQGND pins are connected directly to the IO-Link connector. Connect all bypass capacitors and other components on this line directly to the CQGND. Connect the CQGND to the ground layer at the IC (at the exposed pad for the TQFN or under pad D8 on the WLP package).

Keep the component loop for the DC-DC buck regulator as small as possible. Ensure that the feedback resistor divider is not near the inductor. Connect the ground terminal of the DC-DC output capacitor to the ground plane with multiple vias.

[Figure 12](#) shows an example of layout and grounding connections.

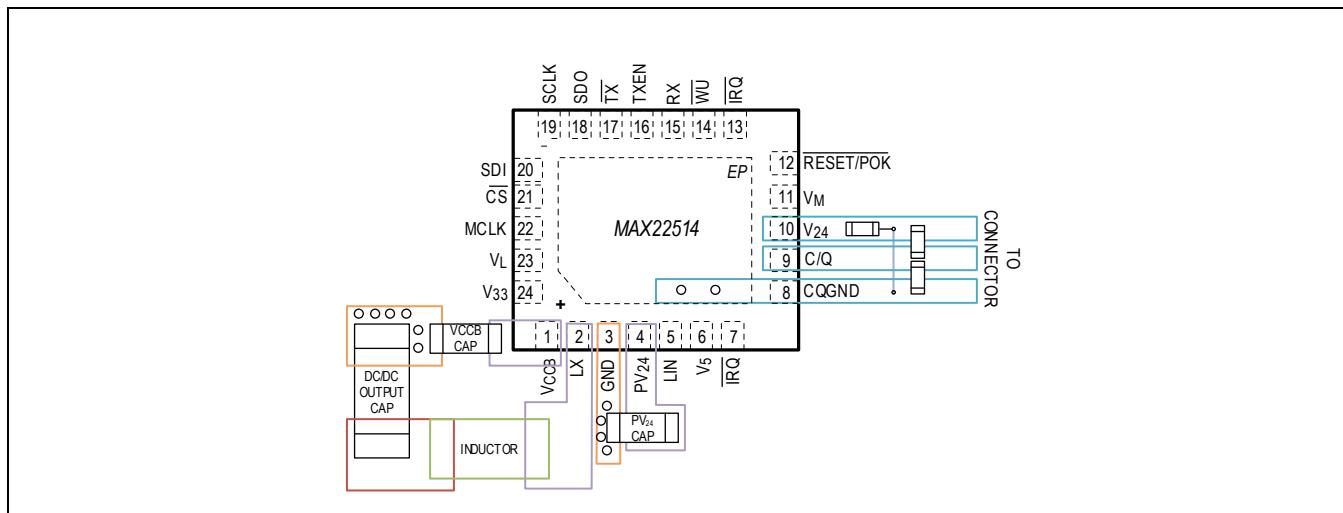



Figure 12. Sample Grounding Scheme (TQFN Package)

## Ordering Information

| PART NUMBER         | TEMP RANGE      | PIN-PACKAGE | BALL PITCH |
|---------------------|-----------------|-------------|------------|
| <b>MAX22514ATG+</b> | -40°C to +125°C | 24 TQFN-EP* | —          |
| MAX22514ATG+T       | -40°C to +125°C | 24 TQFN-EP* | —          |
| <b>MAX22514AWA+</b> | -40°C to +125°C | 25 WLP      | 0.5        |
| MAX22514AWA+T       | -40°C to +125°C | 25 WLP      | 0.5        |

\*Denotes a lead(pb)-free/RoHS-compliant package.

T = Tape and reel.

\*EP = Exposed pad.

## Chip Information

PROCESS: BiCMOS

## Revision History

| REVISION NUMBER | REVISION DATE | DESCRIPTION              | PAGES CHANGED |
|-----------------|---------------|--------------------------|---------------|
| 0               | 12/21         | Release for Market Intro | —             |
| 1               | 2/22          | Updated Table 4          | 27            |



# Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Maxim Integrated:](#)

[MAX22514AWA+](#)