

Pressure sensors

Pressure transmitter with analog output

Series/Type: AFA 11.00 VR Z15E L ST 1.0 B768

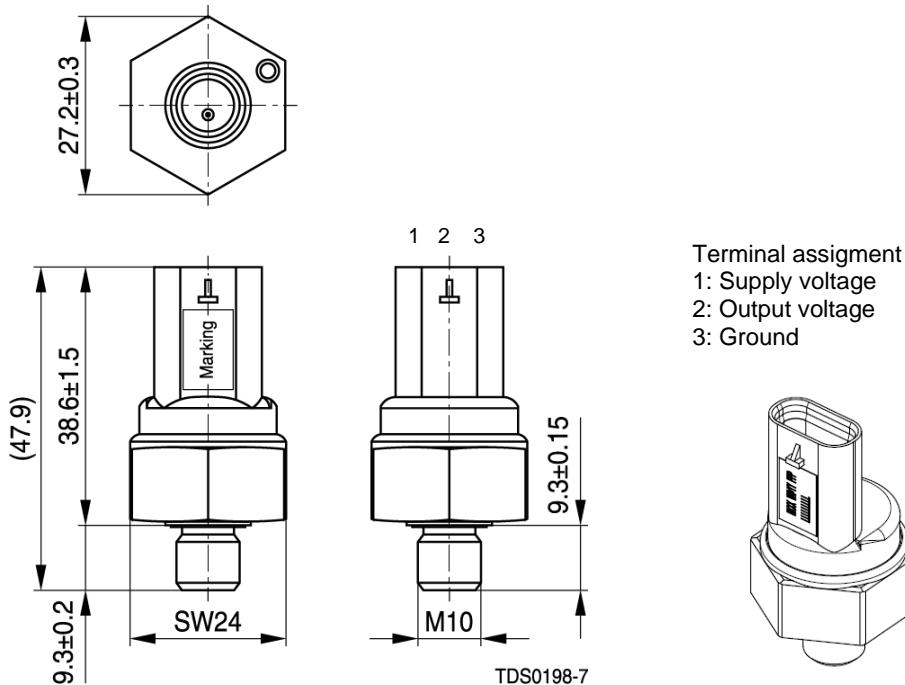
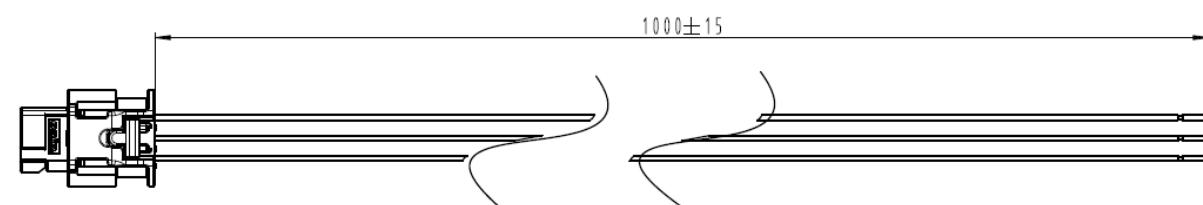
Ordering code: B58620F3800B768

Date: 2022-03-16

Version: 1.4

Applications

- Industrial applications for absolute pressure transmitters such as:
 - Industrial process control
 - Food packaging systems
 - Pumps
 - Pneumatic controls
 - Automation

Features

- Suitable for applications with pressure ranges of 1 to 11 bar in extended temperature range up to 125 °C
- High resistance to non-freezing media like fuel, diluted acids, contaminated air
- Voltage output signal (0.5 V to 4.5 V at 5 V_{supply}) proportional to pressure and supply voltage (ratiometric)
- Pressure sensor based on piezoresistive MEMS technology
- The integrated signal conditioner compensates non-linearity and temperature errors and supplies a precise calibrated, amplified output signal with a high immunity against electromagnetic influences
- High resistance to large variety of media. Only unsuitable against substances which react with silicon, glass, FKM, stainless steel
- Overvoltage and reverse voltage protection
- Short response time (typical 1 ms / max. 2 ms)
- High measuring accuracy (± 0.5 V)
- Wire harness with 1 m long cable included
- RoHS compatible, halogen free according to IEC 61249-2-21 clause 3.1

Options

- Customer specific output characteristics and connectors on request

Dimensional drawings

Wire adapter for industrial application

Technical data
Absolute maximum ratings

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Tightening torque	M			M10x1	6.5	Nm

Temperature ranges

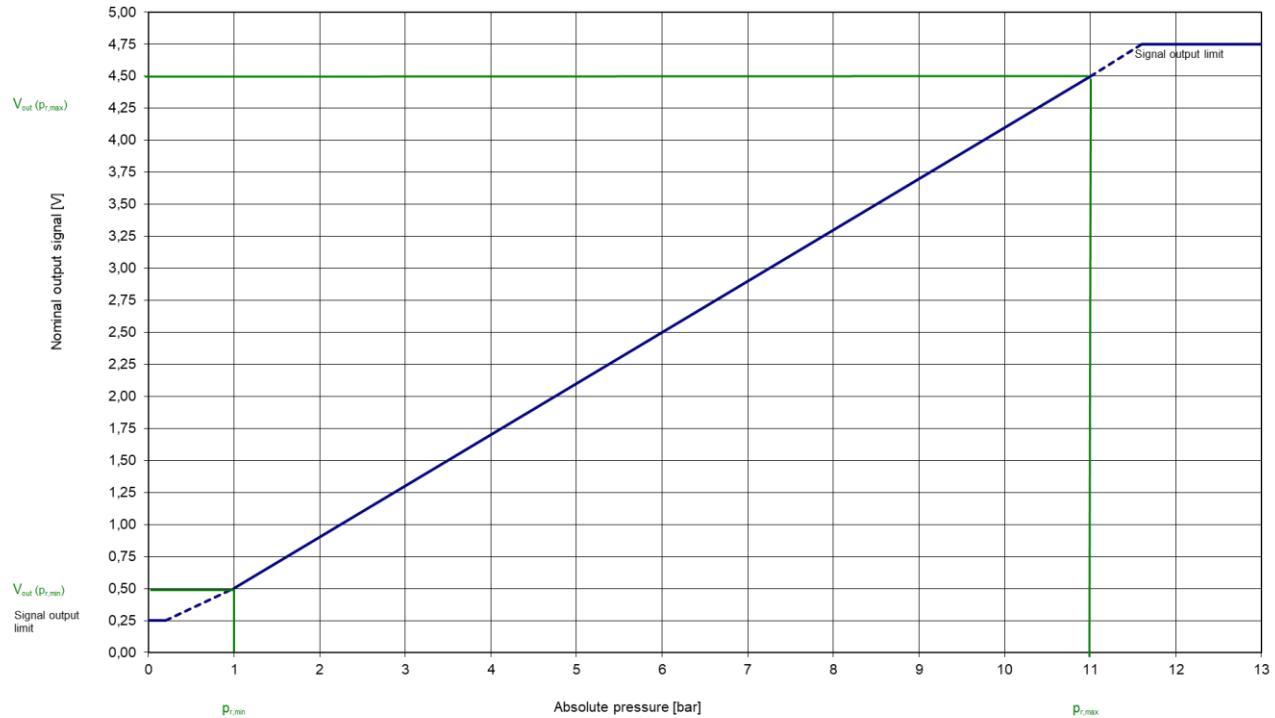
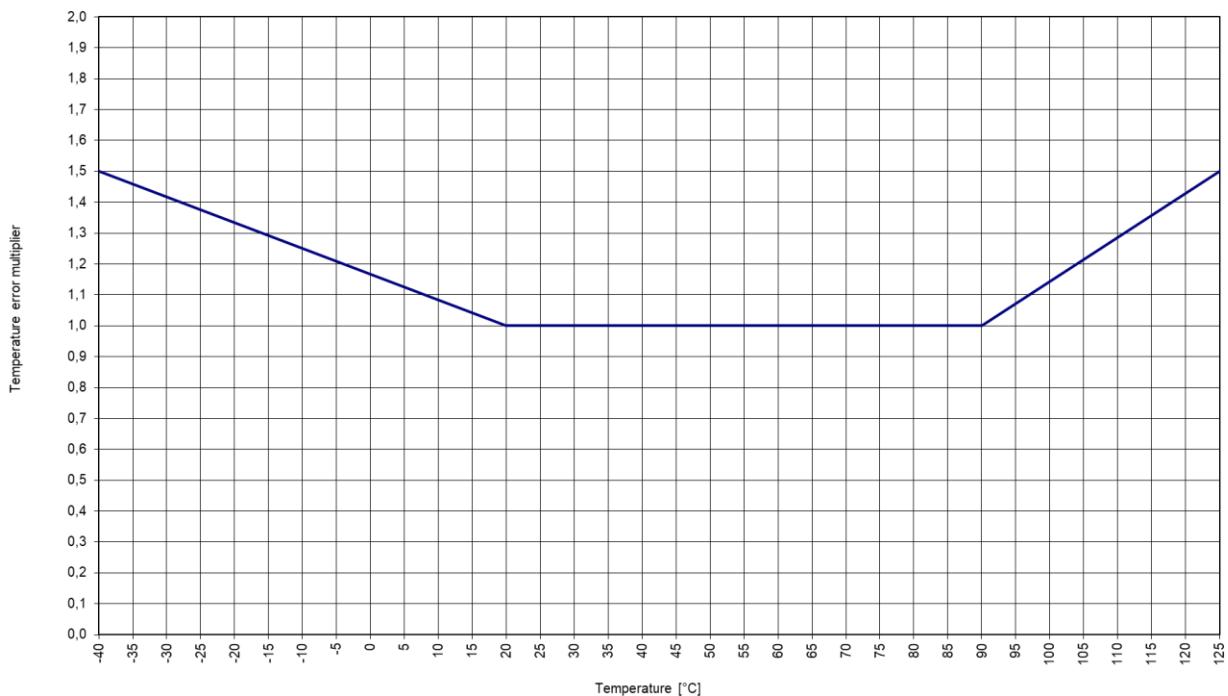
Storage temperature	T _{st}	1)	-40		+125	°C
Operating temperature	T _o	2)	-20		+125	°C

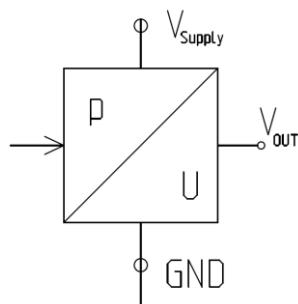
Pressure ranges

Rated absolute pressure	p _r	Absolut pressure ⁴⁾	1.0		11.0	bar
Over pressure	p _{ov}	Absolut pressure ⁵⁾	15.0			bar
Burst pressure	p _{burst}	Absolut pressure ¹¹⁾	30.0			bar
Ambient pressure	p _{amb}	Absolut pressure	100			mbar

Supply voltage /-current

Supply voltage	V _{supply}	06)	4.5	5.0	5.5	V
Reverse voltage, overvoltage	V _{over}	13)	-33		+33	V
Supply current	I _{supply}	Without load current		7.5	9.5	mA
Signal output current	I _{out}	07)			2.5	mA
Short circuit current	I _{out, sc}	08)	-25		25	mA



Load


Load resistor	R _{load}		2.0			kΩ
Load capacity	C _{load}	Including harness capacity			95	nF

Characteristics

Output signal characteristic (at $T_o = 25^\circ\text{C}$, $V_{\text{supply}} = 5\text{ V}$)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Output at $p_{r,\text{min}}$	$V_{\text{out}} (p_{r,\text{min}})$	Ratiometric ⁹⁾		0.5		V
Signal span (full scale)	V_{FS}	Ratiometric ¹⁰⁾		4.0		V
Compensated temperature	$V_{\text{out}} (p_{r,\text{max}})$	Ratiometric ⁹⁾		4.5		V
Output signal limits		Ratiometric ⁹⁾	0.25		4.75	V
Startup time	t_{startup}	Can be reduced on request			150	ms
Response time	T_{10-90}	¹²⁾		1	2	ms
Initial accuracy	$E_{\text{ini.}}$ 20/80	at $T_o = 20 \dots 80^\circ\text{C}$	-63		+63	mbar
			-0.5		+0.5	% V_{supply}
	$E_{\text{ini.}}$ -40/125	at $T_o = -40 \dots 20^\circ\text{C}$, 80 ... 125 °C	-188		+188	mbar
			-1.5		+1.5	% V_{supply}
Accuracy after exposure to typical automotive validation program	$E_{\text{total.}}$ 20/80	at $T_o = 20 \dots 80^\circ\text{C}$	-250		+250	mbar
			-2.0		+2.0	% V_{supply}
	$E_{\text{total.}}$ -40/125	at $T_o = -40 \dots 20^\circ\text{C}$, 80 ... 125 °C	See temperature error multiplier on page 6			

Output signal @ $T_o = 25^\circ\text{C}$, $V_{\text{supply}} = 5 \text{ V}$

Temperature error multiplier

Connection diagram

Terminal assignment

Pin	Symbol	Signal	Wire color
1	V_{supply}	Supply voltage	red
2	V_{out}	Output signal ANALOG	blue
3	GND	Ground	black

Media compatibility

The pressure sensors high resistance is approved with the following media:

- Fuel
- Diesel
- Methanol
- Ethanol

Application with following media needs to be specifically evaluated. Please consult TDK Electronics for application with the following media:

- Engine oil
- Hydraulic fluid
- Coolant media
- Water
- Water vapor

The pressure sensor is not compatible with:

- Media that is freezing in application temperature range
- The diameter of the media path to the pressure sensing element is 0.4 mm
Usage of appropriate filters has to be considered in order to avoid clogging of the media path when used with contaminated fluids.

Symbols and terms

1) Storage temperature range T_{st}

A storage of the pressure sensor within the temperature range $T_{st,min}$ up to $T_{st,max}$ and without applied pressure and supply voltage will not affect the performance of the pressure sensor.

2) Operating temperature range T_o

An operation of the pressure sensor within the temperature range $T_{o,min}$ up to $T_{o,max}$ will not affect the performance of the pressure sensor.

3) Compensated temperature range T_c

While operating the pressure sensor within the temperature range $T_{c,min}$ up to $T_{c,max}$ the temperature error multiplier is 1. Out of the compensated temperature range, the deviations may increase.

4) Rated pressure p_r

Within the rated pressure range $p_{r,min}$ up to $p_{r,max}$ the signal output characteristic corresponds to this specification.

5) Overpressure p_{ov}

The sensor does not work correctly in the pressure range $p_{r,max}$ up to $p_{ov,min}$ but will return to normal operation after having been subjected to up to 1000 cycles of overpressure within the pressure range $p_{r,min}$ up to $p_{ov,min}$. The sensor cannot be expected to return to normal operation after having been subjected to a pressure above the overpressure $p_{ov,min}$.

6) Supply voltage V_{supply}

$V_{supply,max}$ is the maximum permissible supply voltage, which can be applied without damages.

$V_{supply,min}$ is the minimum required supply voltage, which has to be applied for normal operation.

7) Signal output current I_{out}

Maximum output current with $R_{load} = 2.0 \text{ k}\Omega$ and supply voltage in the range of $V_{supply,min}$ up to $V_{supply,max}$.

8) Short circuit current $I_{out,sc}$

Maximum short circuit current at following conditions: minimum output voltage to V_{supply} or maximum output voltage to Ground

9) Ratiometric output

The output voltage V_{out} is ratiometric to the supply voltage ($V_{out} \sim V_{supply}$).

Example: $V_{out} (pr,min) = 0.04 \text{ V/V}$

with $V_{supply} = 5 \text{ V}$, $V_{out} (pr,min) = 0.04 \text{ V/V} * 5 \text{ V} = 0.2 \text{ V}$

with $V_{supply} = 5.1 \text{ V}$, $V_{out} (pr,min) = 0.04 \text{ V/V} * 5.1 \text{ V} = 0.204 \text{ V}$

10) Signal span (Full Scale)

$VFS = FS = V_{out(pr,max)} - V_{out(pr,min)}$

11) Burst pressure p_{burst}

The sensor cannot be expected to return to normal operation after having been subjected to a pressure in the range of p_{ov} and p_{burst} .

The sensor will not cause leakage of the pressure medium when exposed to pressures up to the burst pressure.

12) Response time t_{10-90}

Delay between a pressure change (10 ... 90% pr) and the corresponding signal output change (10 ... 90% FS).

Response time cannot be measured and is evaluated theoretically (it is not possible to generate an adequate pressure jump function).

13) Reverse voltage, Overvoltage

If supplied with a supply voltage of $V_{ov,min}$ up to $V_{supply,min}$ the sensor does not work correctly (reverse voltage). If supplied with a supply voltage of $V_{supply,max}$ up to $V_{ov,max}$ the sensor does not work correctly (overvoltage). The sensor will return to normal operation after having been subjected to reverse voltage and overvoltage in the range of $V_{ov,min}$ up to $V_{ov,max}$ for 1 hour maximum.

Storage

All pressure sensors should be stored in their original packaging. They should not be placed in harmful environments such as corrosive gases nor exposed to heat or direct sunlight, which may cause deformations. Similar effects may result from extreme storage temperatures and climatic conditions. Avoid storing the sensor dies in an environment where condensation may form or in a location exposed to corrosive gases, which will adversely affect their performance. Plastic materials should not be used for wrapping/packing when storing or transporting these sensors, as they may become charged.

Mounting

The correct application of the sensor and the connector on the sensor must be checked prior to use with pressure media. Thread of the pressure sensor has to fully screwed in to pressure interface. Test leak tightness of mounted pressure interface before usage! Be assure, that pressure interfaces fulfil temperature, media and pressure requirements.

Release all mounting processes carefully. Ensure to apply appropriate mounting torque.

Warning: Always use metal hexagon to screw in the sensor. Never apply torque to connector or plastic housing as it may damage the sensor and lead to malfunction!

Operation

Media compatibility with the pressure sensors must be ensured to prevent their failure. The use of other media can cause damage and malfunction. Never use pressure sensors in atmospheres containing explosive liquids or gases. Do not use the pressure sensor with media containing impermissible particle sizes (See media compatibility). Usage of filters is recommended in order to avoid infiltration with impermissible particle sizes.

Ensure pressure equalization to the environment, if gauge pressure sensors are used. Avoid operating the pressure sensors in an environment where condensation may form or in a location exposed to corrosive gases. These environments adversely affect their performance.

If the operating pressure is not within the rated pressure range, it may change the output characteristics. This may also happen with pressure sensor if an incorrect mounting method is used. Be sure that the applicable pressure does not exceed the over pressure, as it may damage the pressure sensor.

Do not exceed the maximum rated supply voltage nor the rated storage temperature range, as it may damage the pressure sensor.

Temperature variations in both the ambient conditions and the media (liquid or gas) can affect the accuracy of the output signal from the pressure sensors. Be sure to check the operating temperature range and thermal error specification of the pressure sensors to determine their suitability for the application.

Connections must be wired in accordance with the terminal assignment specified in the data sheets. Care should be taken as reversed pin connections can damage the pressure transmitters or degrade their performance. Contact between the pressure sensor terminals and metals or other materials may cause errors in the output characteristics. This listing does not claim to be complete, but merely reflects the experience of TDK Electronics AG.

Display of ordering codes for TDK Electronics products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications, on the company website, or in order-related documents such as shipping notes, order confirmations and product labels. **The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products.** Detailed information can be found on the Internet under www.tdk-electronics.tdk.com/orderingcodes.

Important notes

The following applies to all products named in this publication:

1. Some parts of this publication contain **statements about the suitability of our products for certain areas of application**. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out **that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application**. As a rule we are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether a product with the properties described in the product specification is suitable for use in a particular customer application.
2. We also point out that **in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified**. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
3. **The warnings, cautions and product-specific notes must be observed.**
4. In order to satisfy certain technical requirements, **some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous)**. Useful information on this will be found in our Material Data Sheets on the Internet (www.tdk-electronics.tdk.com/material). Should you have any more detailed questions, please contact our sales offices.
5. We constantly strive to improve our products. Consequently, **the products described in this publication may change from time to time**. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order.

We also **reserve the right to discontinue production and delivery of products**. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

6. Unless otherwise agreed in individual contracts, **all orders are subject to our General Terms and Conditions of Supply**.
7. **Our manufacturing sites serving the automotive business apply the IATF 16949 standard.** The IATF certifications confirm our compliance with requirements regarding the quality management system in the automotive industry. Referring to customer requirements and customer specific requirements ("CSR") TDK always has and will continue to have the policy of respecting individual agreements. Even if IATF 16949 may appear to support the acceptance of unilateral requirements, we hereby like to emphasize that **only requirements mutually agreed upon can and will be implemented in our Quality Management System**. For clarification purposes we like to point out that obligations from IATF 16949 shall only become legally binding if individually agreed upon.

Important notes

8. The trade names EPCOS, CarXield, CeraCharge, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CTVS, DeltaCap, DigiSiMic, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, ModCap, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PowerHap, PQSine, PQvar, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, ThermoFuse, WindCap, XieldCap are **trademarks registered or pending** in Europe and in other countries. Further information will be found on the Internet at www.tdk-electronics.tdk.com/trademarks.

Release 2020-06