

swissbit®

Product Data Sheet

Industrial M.2 PCIe SSD

POWERSAFE™

N3202 Series PCIe 4.0, 3D TLC

Commercial Temperature Grade

Date: October 24, 2024
Revision: 1.03

Contents

1. PRODUCT SUMMARY	3
2. PRODUCT FEATURES	4
3. ORDERING INFORMATION	5
4. PRODUCT DESCRIPTION	6
4.1 PERFORMANCE SPECIFICATIONS	7
4.2 CURRENT CONSUMPTION	7
4.3 ENVIRONMENTAL SPECIFICATIONS	7
4.4 REGULATORY COMPLIANCE	8
4.5 MECHANICAL SPECIFICATIONS	8
4.6 RELIABILITY AND ENDURANCE	8
4.7 DRIVE GEOMETRY SPECIFICATION	9
5. ELECTRICAL INTERFACE	10
6. PACKAGE MECHANICAL	12
7. NVME COMMANDS	13
8. IDENTIFY DEVICE INFORMATION	16
9. HEALTH MONITORING FUNCTIONALITY	20
10. PART NUMBER DECODER	23
11. MARKING SPECIFICATION	24
11.1 TOP VIEW	24
11.2 PRINT ON THE LABEL	24
12. REVISION HISTORY	25

N3202 Series – Industrial M.2 PCIe SSD

240 GBytes up to 1920 GBytes

1. Product Summary

- **Capacities:** 240 GBytes, 480 GBytes, 960 GBytes, 1920 GBytes
- **Form Factor:** PCI Express M.2 2280 (80 mm x 22 mm x 3.8 mm)
- **Compliance¹:** PCI Express (PCIe) Base Specification Revision 4.0
- **Interface:** Gen4 x 4 Lanes
 - Drive operates in x1 mode in x1 M.2 PCIe slots
 - Drive operates in x2 mode in x2 M.2 PCIe slots
 - Drive operates in x4 mode in x4 M.2 PCIe slots
- **Command Sets:** Supports NVMe 1.4
- **Target Performance:**
 - Read Performance: Sequential Read up to 3,850 MBytes/s, Random Read 4K up to 461,300 IOPS
 - Write Performance: Sequential Write up to 3,360 MBytes/s, Random Write 4K up to 380,000 IOPS
- **Operating Temperature Range²:**
 - Commercial: 0 °C to 70 °C
- **Storage Temperature Range:** -40 °C to 85 °C
- **Power:**
 - Power States PS0, PS1, PS2, PS3 and PS4
 - Thermal Throttling supported
- **Data Retention³:** 3 Years @ Life Begin; 4 Months @ Life End, @40 °C
- **Shock/Vibration:** 1,500 g / 50 g
- **High-Performance Processor with Integrated, Parallel Flash Interface Engines:**
 - Triple-Level Cell (TLC) 3D NAND Flash
 - DDR4 DRAM based Controller architecture
 - 240 bit LDPC correction per 2 KByte
- **High Reliability:**
 - Mean Time Between Failure (MTBF): > 3,000,000 hours
 - Data Reliability: < 1 non-recoverable error per 10¹⁶ bits read

¹ To check the compatibility of the customer system and the storage device is part of the customer's responsibility. Swissbit can provide guidance and support on request.

² Adequate airflow is required to ensure the temperature, as reported in the S.M.A.R.T. data, does not exceed 90°C (commercial temperature drive).

³ NAND Flash suppliers refer to JEDEC JESD47 and JESD22 for Data Retention testing. Based on the information provided by the NAND Flash suppliers, Data Retention is targeted as shown

2. Product Features

- Diagnostic features
- Life end read only mode
- RAID engine
- Drive self-test
- Data Care Management
 - Active: Adaptive Read Refresh
 - Passive: Background Media Scan
- Active State Power Management (ASPM) Support
- In-Field Firmware Update⁴
- Adaptive Thermal control
- DRAM-Buffer
- Self-Monitoring, Analysis, and Reporting Technology (S.M.A.R.T., Telemetry)
- SMBus⁵ (NVMe Management Interface Basic Management Command, NVMe-MI v1.2)
- 30 µinch (0.8 µm) Gold-Plated Connector (IPC-6012C Class 2 Compliant)
- End-to-End (E2E) Data Protection
- powersafe™ Functionality (Power Loss Protection Level 3)
- Controlled "Locked" BOM
- RoHS / REACH Compliant
- Swissbit Device Manager Tool (SBDM)

Security features

- AES256 encryption
- TCG OPAL 2.0
- Secure Boot (on request)
- Crypto erase
- IEEE 1667

⁴ The support of In-Field FW update capabilities on host systems is recommended.

⁵ SMBus commands are not supported in PS4 power state.

3. Ordering Information

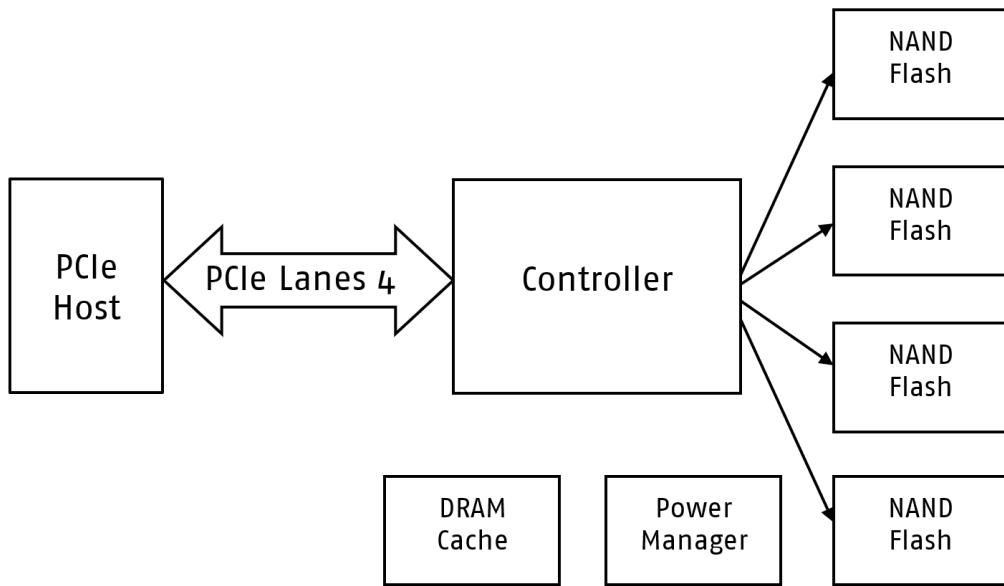
Table 1: Standard Product List

Capacity	Part Number	Numbers of Lanes
240 GBytes	SN3202Mx240GC-yMA4-zDA-STD	4
480 GBytes	SN3202Mx480GC-yMA2-zDA-STD	
960 GBytes	SN3202Mx960GC-yMA4-zDA-STD	
1920 GBytes	SN3202Mx1T92C-yMA4-zDA-STD	

x = Form Factor; y = Product Generation; z= Firmware Revision

Table 2: Standard Product List

Capacity	FW ARR41001
	2280 with PowerSafe
240 GBytes	SN3202MD240GC-1MA4-1DA-STD
480 GBytes	SN3202MD480GC-1MA2-1DA-STD
960 GBytes	SN3202MD960GC-1MA4-1DA-STD
1920 GBytes	SN3202MD1T92C-1MA4-1DA-STD


Table 3: Standard Product List

Capacity	FW ARR51005
	2280 with PowerSafe
240 GBytes	SN3202MD240GC-2MA4-2GA-STD
480 GBytes	SN3202MD480GC-2MA2-2GA-STD
960 GBytes	SN3202MD960GC-2MA4-2GA-STD
1920 GBytes	SN3202MD1T92C-2MA4-2GA-STD

4. Product Description

The Swissbit® N3202 Solid State Drive (SSD) leverages the M.2 standard and NVMe standard to support a PCIe electrical interface as well as AES encryption, E2E data protection and TCG Opal standards. The NVMe controller and the newest 3D NAND flash technology provides robust, non-volatile storage solution for today's embedded computing applications. A functional block diagram of the N3202 SSD is provided below in Figure 1.

Figure 1: N3202 Functional Block Diagram

The N3202 SSD incorporates a 75-position edge connector with M key to support host read/write, control, and power activity per the applicable JEDEC specification.

The on-board NVMe controller manages the interface between the host and the non-volatile NAND flash memory array. The controller is designed to support PCIe interface speeds and utilizes a dual processing core, providing an optimum balance between read/write performance, Data Care Management, and power fail protection.

Swissbit's N3202 SSDs deliver an impressive IOPS rate and highest endurance by combining 3D NAND flash technology with a high-end controller architecture, firmware, and an optimized configuration. The SSDs are designed for applications requiring high data transfer rates (see Table 4: Read/Write Performance). This performance is achieved through a 4-channel flash controller and 4-lane PCIe interface.

An on-controller LDPC Error Correction Code (ECC) engine provides the N3202 hardware ECC, which is capable of correcting up to 240 bits per 2 KByte page. This engine, combined with Swissbit's Data Care Management firmware, provides both passive and active data management strategies to ensure data integrity and extract the maximum possible endurance and reliability from the NAND flash array. These strategies include, but are not limited to, Global Wear Leveling, Adaptive Read Refresh, and Dynamic Block Remapping.

The risk of data loss as a result of an unexpected power fail event is mitigated using a robust sequence of voltage regulators, capacitors and detectors designed to ensure a graceful shutdown of the controller and NAND flash array. The combination of hardware and firmware power fail features prevents the possibility of resident data being corrupted during an unexpected power failure.

Related Documentation

- NVM Express – Revision 1.4, (<https://nvmeexpress.org/>)
- PCI Express M.2 standard – PCI Express M.2 Specification, Revision 4.0 (<https://pcisig.com>)

4.1 Performance Specifications

The N3202 read/write sequential and random CDM performance benchmarks are detailed in Table 4.

Table 4: Read/Write Performance⁶

Capacity	Sequential Read (MBPS)	Sequential Write (MBPS)	Random Read 4k (IOPS)	Random Write 4k (IOPS)
240 GBytes	3,670	1,240	132,900	166,300
480 GBytes	3,790	2,420	254,900	300,300
960 GBytes	3,850	3,360	398,600	380,000
1920 GBytes	3,790	3,340	461,300	376,500

4.2 Current Consumption

The drive-level current consumption as a function of operating mode is shown in Table 5.

Table 5: Current Consumption⁷

Capacity	Sequential Read	Sequential Write	Random Read 4k	Random Write 4k	Idle ⁸	PS3 ⁸	PS4 ⁸	Unit
240 GBytes	1,100	900	750	900	51	12	2	mA
480 GBytes	1,150	1,250	850	1,100				
960 GBytes	1,150	1,450	1,100	1,200				
1920 GBytes	1,200	1,550	1,150	1,250				

4.3 Environmental Specifications

4.3.1 Recommended Operating Conditions

The recommended operating conditions for the N3202 SSD are provided in Table 6.

Table 6: Recommended Operating Conditions⁹

Parameter	Value
Commercial Operating Temperature	0 °C to 70 °C
Power Supply V_{CC} Voltage	3.3 V ± 5%

4.3.2 Recommended Storage Conditions

The recommended storage conditions are listed in Table 7.

Table 7: Recommended Storage Conditions

Parameter	Value
Storage Temperature	-40 °C to 85 °C

⁶ The values are measured using Crystal Disk Mark 8 with a file size of 1GiB. Performance depends on flash type and number, file/cluster size, and burst speed.

⁷ All values are typical total values recorded at 25 °C and 3.3V power supply

⁸ Measured with enabled ASPM L1.2

⁹ Adequate airflow is required to ensure the temperature, as reported in the S.M.A.R.T. data, does not exceed 90 °C (commercial temperature drive).

4.3.3 Shock, Vibration and Humidity

The maximum shock, vibration and humidity conditions are listed in Table 8.

Table 8: Shock, Vibration and Humidity

Parameter	Value
Non-Operating Shock	1,500 g, 0.5 ms pulse duration, half-sine wave (IEC 60068-2-27 and JESD22-B110 cond. B)
Non-Operating Vibration	50 g, 80-2,000 Hz, 3 axes, 12 cycles (IEC 60068-2-6, MIL-STD-883 H Method 2007.3)
Humidity (Non-Condensing)	85% RH 85 °C, 1000 hrs, max. supply voltage (JESD22-A101B)

4.4 Regulatory Compliance

The N3202 devices comply with the regulations / standards listed in Table 9.

Table 9: Regulatory Compliance

Abbreviation	Regulation/ Standard
EMC	CE – 2014/30/EU FCC – 47 CFR Part 15 UKCA – S.I. 2016 No. 1091 and S.I. 2012 No. 3032
RoHS	2011/65/EU with 2015/863/EU and 2017/2102/EU
REACH	1907/2006/EU and 207/2011/EU
WEEE	2012/19/EU

4.5 Mechanical Specifications

Physical dimensions are detailed in Table 10. Figure 3 on page 12 illustrates the N3202 dimensions.

Table 10: Physical Dimensions

Physical Dimensions		Unit
Length	80.00±0.15	mm
Width	22.00±0.15	
Thickness (nominal)	3.8	
Weight (Max Capacity)	≤ 9.0	g

4.6 Reliability and Endurance

The Mean Time Between Failure (MTBF) is specified to exceed the value listed in Table 11. Data reliability with effective error tolerance and data retention at the beginning and end of life is also provided.

Table 11: Reliability

Parameter	Value
MTBF (at 25 °C)	> 3,000,000 hours
Data Reliability	< 1 Non-Recoverable Error per 10^{16} Bits Read
Data Retention	3 Years at Start (JESD47), 4 Months at EOL at 40 °C

Endurance represented as both TeraBytes Written (TBW) and full Drive Writes Per Day (DWPD) for different application scenarios is provided in Table 12.

Table 12: Endurance^{10, 11}

Capacity	FW ARR41001					
	Sequential		Client		Enterprise	
	TBW	DWPD ¹²	TBW	DWPD ¹²	TBW	DWPD ¹²
240 GBytes	2,832	6.5	145	0.33	658	1.50
480 GBytes	5,596	6.4	276	0.31	1,197	1.37
960 GBytes	11,066	6.3	461	0.26	2,192	1.25
1920 GBytes	22,559	6.4	598	0.17	5,184	1.48

Table 13: Endurance^{10, 11}

Capacity	FW ARR51005					
	Sequential		Client		Enterprise	
	TBW	DWPD ¹²	TBW	DWPD ¹²	TBW	DWPD ¹²
240 GBytes	2,832	6.5	361	0.82	658	1.50
480 GBytes	5,596	6.4	669	0.76	1,197	1.37
960 GBytes	11,066	6.3	1218	0.70	2,192	1.25
1920 GBytes	22,559	6.4	1864	0.53	5,184	1.48

4.7 Drive Geometry Specification

The N3202 drive geometry is set to report industry standard LBA settings per the IDEMA standard (LBA1-03). The values for each capacity are shown in Table 14.

Table 14: Drive Geometry

Raw Capacity	User Capacity ¹³	Total LBA		User Addressable Bytes
		Decimal	(Unformatted)	(Unformatted)
256 GBytes	240 GBytes	468,862,128		240,057,409,536
512 GBytes	480 GBytes	937,703,088		480,103,981,056
1024 GBytes	960 GBytes	1,875,385,008		960,197,124,096
2048 GBytes	1920 GBytes	3,750,748,848		1,920,383,410,176

¹⁰ Client and Enterprise workloads follow the JEDEC JESD219 standard. Enterprise workload values are measured based on 168 hours of runtime. 1 TByte = 10^{12} bytes

¹¹ According to JEDEC (JESD471), the time to write the full TBW is a minimum of 18 months. Higher average daily data volume reduces the specified TBW. The values listed are estimates and are subject to change without notice.

¹² DWPD values are based on a service life of 5 years

¹³ 1 GByte = 10^9 bytes

5. Electrical Interface

This 75-position M.2 connector (Figure 2) incorporates M key for Socket 3 PCIe-based SSDs and follows the applicable PCIe M.2 specification. The signal/pin assignments and descriptions are listed in the following Table 15.

Figure 2: N3202 M.2 Electrical Interface

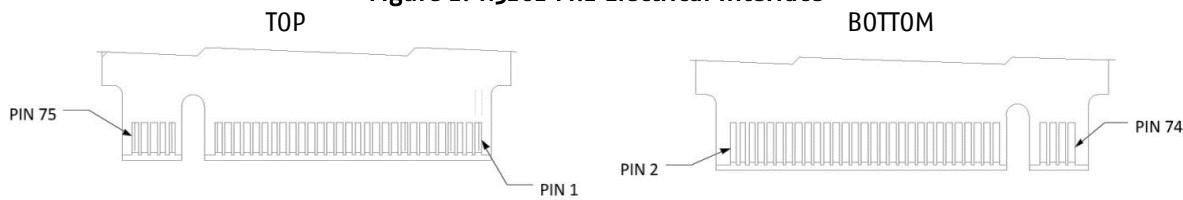


Table 15: Pin Assignment, Name and Description

Description	Assignment	Pin
Config_3	GND	1
Ground	GND	3
PCIe TX Differential Signal	PETn3*	5
PCIe TX Differential Signal	PETp3*	7
Ground	GND	9
PCIe RX Differential Signal	PERn3*	11
PCIe RX Differential Signal	PERp3*	13
Ground	GND	15
PCIe TX Differential Signal	PETn2*	17
PCIe TX Differential Signal	PETp2*	19
Config_0	GND	21
PCIe RX Differential Signal	PERn2*	23
PCIe RX Differential Signal	PERp2*	25
Ground	GND	27
PCIe TX Differential Signal	PETn1*	29
PCIe TX Differential Signal	PETp1*	31
Ground	GND	33
PCIe RX Differential Signal	PERn1*	35
PCIe RX Differential Signal	PERp1*	37
Ground	GND	39
PCIe TX Differential Signal	PETn0*	41
PCIe TX Differential Signal	PETp0*	43
Ground	GND	45
PCIe RX Differential Signal	PERn0*	47
PCIe RX Differential Signal	PERp0*	49
Ground	GND	51
PCIe Reference Clock Signal	REFCLKn	53
PCIe Reference Clock Signal	REFCLKp	55
Ground	GND	57

Pin	Assignment	Description
2	+3.3V	3.3V Source
4	+3.3V	3.3V Source
6	NC	No Connect
8	NC	No Connect
10	DAS/DSS	DEVACT Device Activity Signal
12	+3.3V	3.3V Source
14	+3.3V	3.3V Source
16	+3.3V	3.3V Source
18	+3.3V	3.3V Source
20	NC	No Connect
22	NC	No Connect
24	NC	No Connect
26	NC	No Connect
28	NC	No Connect
30	NC	No Connect
32	NC	No Connect
34	NC	No Connect
36	NC	No Connect
38	NC	No Connect
40	SMB_CLK	SMBus Clock
42	SMB_DATA	SMBus Data
44	ALERT#	SMBus Alert Notification
46	NC	No Connect
48	NC	No Connect
50	PERST#	PE-Reset (Functional Reset)
52	CLKREQ#	Clock Request Signal; L1 PM
54	NC	PCIe PME Wake
56	NC	MFG Data
58	NC	MFG Clock

Mechanical Notch M	-	59-65	60-66	-	Mechanical Notch M
No Connect	NC	67	68	NC	32.768 kHz Clock Supply
Config_1	NC	69	70	3.3V	Supply Pin, 3.3V
Ground	GND	71	72	3.3V	Supply Pin, 3.3V
Ground	GND	73	74	3.3V	Supply Pin, 3.3V
Config_2	GND	75			

*TX (transmit) and RX (receive) pins are labeled from the SSD view and must be connected with the reversed RX and TX signals of the host (i.e., TX to RX and RX to TX).

6. Package Mechanical

Figure 3: N3202 M.2 2280 dimensions in mm

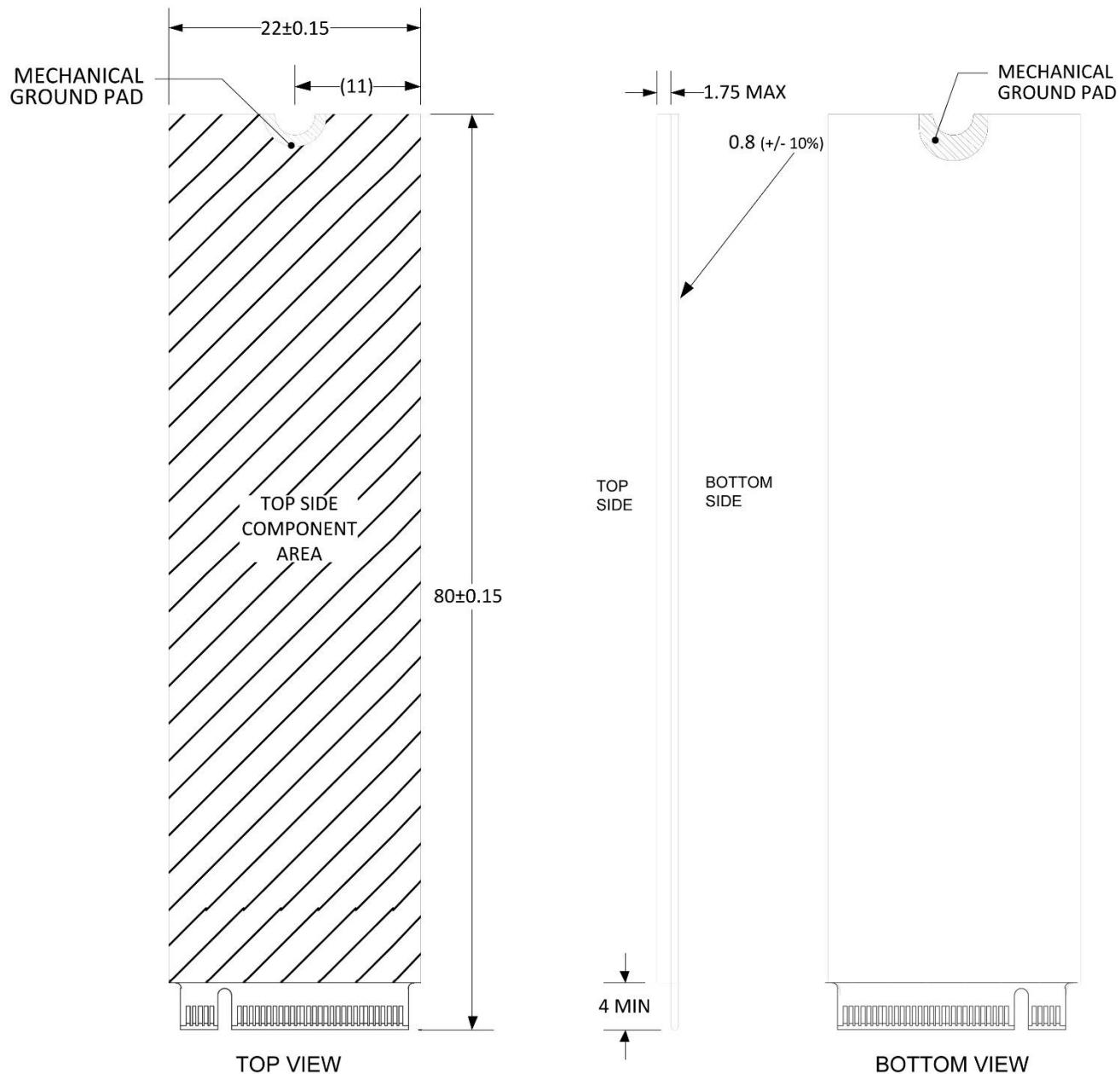
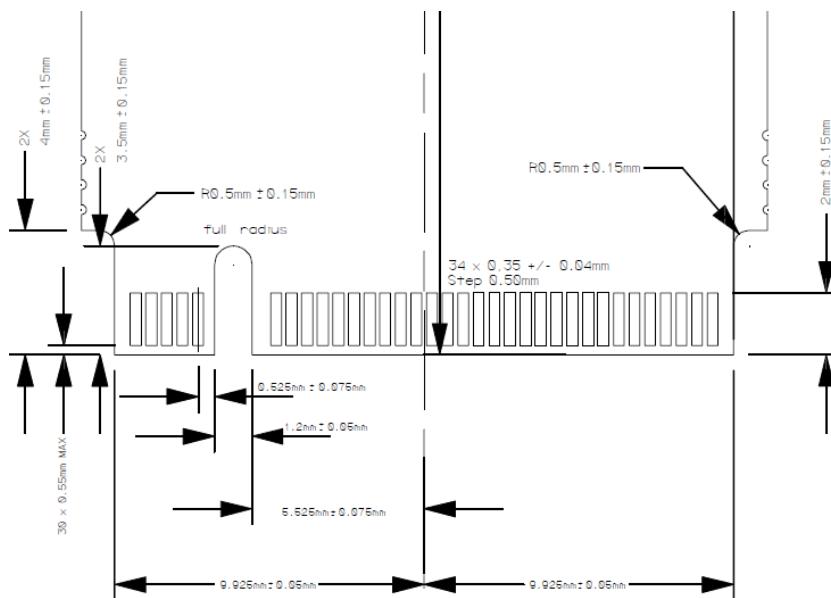



Figure 4: M.2 Connector Dimensions in mm

7. NVMe Commands

This section provides information on the NVMe commands supported by the SSD. The commands are issued by loading the DWords in the command block with the supplied parameter, and then writing the command code to the register. See the following Table 16 for a list of NVMe commands the device supports. For details about setting up the command registers, see the latest NVMe Specification.

Table 16: NVMe Command Set – Supported Commands

Command	Code
Admin Command Set	
Delete I/O Submission Queue	00h
Create I/O Submission Queue	01h
Get Log Page	02h
Delete I/O Completion Queue	04h
Create I/O Completion Queue	05h
Identify	06h
Abort	08h
Set Features	09h
Get Features	0Ah
Asynchronous Event Request	0Ch
Firmware Commit	10h
Firmware Image Download	11h
Device Self-test	14h
Format NVM	80h
Sanitize	84h
NVM Command Set	
Flush	00h
Write	01h
Read	02h

Command	Code
Write Uncorrectable	04h
Compare	05h
Write Zeroes	08h
Dataset Management	09h

Table 17: NVMe Set/Get Features – Supported Features

Feature	FID
Arbitration	01h
Power Management	02h
LBA Range Type	03h
Temperature Threshold	04h
Error Recovery	05h
Volatile Write Cache	06h
Number of Queues	07h
Interrupt Coalescing	08h
Interrupt Vector Configuration	09h
Write Atomicity Normal	0Ah
Asynchronous Event Configuration	0Bh
Autonomous Power State Transition	0Ch
Timestamp	0Eh
Host Controlled Thermal Management	10h
Non-Operational Power State Config	11h
Software Progress Marker	80h

Table 18: Supported Log Pages

Log Page	Log Identifier
Error Information	01h
SMART/Health Information	02h
Firmware Slot Information	03h
Commands Supported and Effects	05h
Device Self-Test Log	06h
Telemetry Host-Initiated	07h
Telemetry Controller-Initiated	08h
Endurance Group Information	09h

8. Identify Device Information

The following table describes the 4096 bytes of data the drive returns for the Identify command (06h).

Table 19: Identify Namespace Data Structure (CNS ooh)

Byte(s)	Default Value	Data Field Type Information
0-7	XXXXh ¹⁴	Namespace Size (NSZE)
8-15	XXXXh ¹⁴	Namespace Capacity (NCAP)
16-23	XXXXh ¹⁴	Namespace Utilization (NUSE)
24	ooh	Namespace Features (NSFEAT)
25	ooh	Number of LBA Formats (NLBAF)
26	ooh	Formatted LBA Size (FLBAS)
27	ooh	Metadata Capabilities (MC)
28	ooh	End-to-end Data Protection Capabilities (DPC)
29	ooh	End-to-end Data Protection Type Settings (DPS)
30	ooh	Namespace Multi-path I/O and Namespace Sharing Capabilities (NMIC)
31	ooh	Reservation Capabilities (RESCAP)
32	80h	Format Progress Indicator (FPI)
33	01h	Deallocate Logical Block Features (DLFEAT)
34-35	0000h	Namespace Atomic Write Unit Normal (NAWUN)
36-37	0000h	Namespace Atomic Write Unit Power Fail (NAWUPF)
38-39	0000h	Namespace Atomic Compare & Write Unit (NACWU)
40-41	0000h	Namespace Atomic Boundary Size Normal (NABSN)
42-43	0000h	Namespace Atomic Boundary Offset (NABO)
44-45	0000h	Namespace Atomic Boundary Size Power Fail (NABSPF)
46-47	0000h	Namespace Optimal IO Boundary (NOIOB)
48-63	All ooh	NVM Capacity (NVMCAP)
64-65	0000h	Namespace Preferred Write Granularity (NPWG)
66-67	0000h	Namespace Preferred Write Alignment (NPWA)
68-69	0000h	Namespace Preferred Deallocate Granularity (NPDG)
70-71	0000h	Namespace Preferred Deallocate Alignment (NPDA)
72-73	0000h	Namespace Optimal Write Size (NOWS)
74-91	All ooh	Reserved
92-95	ooooooooh	ANA Group Identifier (ANAGRIPID)
96-98	oooooooh	Reserved
99	ooh	Namespace Attributes (NSATTR)
100-101	0000h	NVM Set Identifier (NVMSETID)
102-103	0000h	Endurance Group Identifier (ENDGID)
104-119	537769737362 69748C6078X XXXX0001h ¹⁴	Namespace Globally Unique Identifier (NGUID)
120-127	8C6078XXXXXX 0001h ¹⁴	IEEE Extended Unique Identifier (EUI64)
128-131	00090000h	LBA Format 0 Support (LBAFo)
132-191	All ooh	LBA Format 1 to 15 Support (LBAF1 – LBAF15)
192-383	All ooh	Reserved

¹⁴ Values depend on device configuration.

Byte(s)	Default Value	Data Field Type Information
384-4095	All ooh	Vendor Specific (VS)

Table 20: Identify Controller Data Structure (CNS 01h)

Byte(s)	Default Value	Data Field Type Information
0-1	1DD4h	PCI Vendor ID (VID)
2-3	1DD4h	PCI Subsystem Vendor ID (SSVID)
4-23	XXXXh ¹⁴	Serial Number (SN)
24-63	XXXXh ¹⁴	Model Number (MN)
64-71	XXXXh ¹⁴	Firmware Version (FR)
72	06h	Recommended Arbitration Burst (RAB)
73-75	8C6078h	IEEE OUI Identifier (IEEE)
76	ooh	Controller Multi-Path I/O and Namespace Sharing Capabilities (CMIC)
77	06h	Maximum Data Transfer Size (MDTS)
78-79	0000h	Controller ID (CNTLID)
80-83	00010400h	Version (VER)
84-87	000186A0h	Runtime D3 Resume Latency (RTD3R)
88-91	004C4B40h	Runtime D3 Entry Latency (RTD3E)
92-95	00000200h	Optional Asynchronous Events Supported (OAES)
96-99	00000002h	Controller Attributes (CTRATT)
100-101	0000h	Read Recovery Levels Supported (RRLS)
102-110	All ooh	Reserved
112-127	All ooh	FRU Globally Unique Identifier (FGUID)
128-129	0000h	Command Retry Delay Time 1 (CRDT1)
130-131	0000h	Command Retry Delay Time 2 (CRDT2)
132-133	0000h	Command Retry Delay Time 3 (CRDT3)
134-255	All ooh	Reserved
256-257	0017h	Optional Admin Command Support (OACS)
258	04h	Abort Command Limit (ACL)
259	07h	Asynchronous Event Request Limit (AERL)
260	14h	Firmware Updates (FRMW)
261	0Fh	Log Page Attributes (LPA)
262	FFh	Error Log Page Entries (ELPE)
263	04h	Number of Power States Supported (NPSS)
264	00h	Admin Vendor-Specific Command Configuration (AVSCC)
265	01h	Autonomous Power State Transition Attributes (APSTA)
266-267	0157h	Warning Composite Temperature Threshold in Degrees Kelvin (WCTEMP)
268-269	0166h	Critical Composite Temperature Threshold in Degrees Kelvin (CCTEMP)
270-271	0032h	Maximum Time for Firmware Activation (MTFA)
272-275	00000000h	Host Memory Buffer Preferred Size (HMPRE)
276-279	00000000h	Host Memory Buffer Minimum Size (HMMIN)
280-295	All ooh	Total NVM Capacity (TNVMCAP)
296-311	All ooh	Unallocated NVM Capacity (UNVMCAP)
312-315	00000000h	Replay Protected Memory Block Support (RPMBS)

Byte(s)	Default Value	Data Field Type Information
316-317	0005h	Extended Device Self-test Time (EDSTT)
318	01h	Device Self-test Options (DSTO)
319	00h	Firmware Update Granularity (FWUG)
320-321	0000h	Keep Alive Support (KAS)
322-323	0001h	Host Controlled Thermal Management Attributes (HCTMA)
324-325	012Fh	Minimum Thermal Management Temperature (MNTMT)
326-327	015Ch	Maximum Thermal Management Temperature (MXTMT)
328-331	60000003h	Sanitize Capabilities (SANICAP)
332-335	00000000h	Host Memory Buffer Minimum Descriptor Entry Size (HMMINDS)
336-337	0000h	Host Memory Maximum Descriptors Entries (HMMAXD)
338-339	0000h	NVM Set Identifier Maximum (NSETIDMAX)
340-341	0000h	Endurance Group Identifier Maximum (ENDGIDMAX)
342	00h	ANA Transition Time (ANATT)
343	00h	Asymmetric Namespace Access Capabilities (ANACAP)
344-347	00000000h	ANA Group Identifier Maximum (ANAGRPMAX)
348-351	00000000h	Number of ANA Group Identifiers (NANAGRPID)
352-355	00000000h	Persistent Event Log Size (PELS)
356-511	All 00h	Reserved
512	66h	Submission Queue Entry Size (SQES)
513	44h	Completion Queue Entry Size (CQES)
514-515	0000h	Maximum Outstanding Commands (MAXCMD)
516-519	000000001h	Number of Namespaces (NN)
520-521	005Fh	Optional NVM Command Support (ONCS)
522-523	0000h	Fused Operation Support (FUSES)
524	04h	Format NVM Attributes (FNA)
525	07h	Volatile Write Cache (VWC)
526-527	0000h	Atomic Write Unit Normal (AWUN)
528-529	0000h	Atomic Write Unit Power Fail (AWUPF)
530	00h	NVM Vendor-Specific Command Configuration (NVSCC)
531	00h	Namespace Write Protection Capabilities (NWPC)
532-533	0000h	Atomic Compare and Write Unit (ACWU)
534-535	0000h	Reserved
536-539	00000000h	Scatter Gather List Support (SGLS)
540-543	00000000h	Maximum Number of Allowed Namespaces (MNAN)
544-767	All 00h	Reserved
768-1023	XXXXh ¹⁴	NVM Subsystem NVMe Qualified Name (SUBNQN)
1024-2047	All 00h	Reserved
2048-2079	XXXXh ¹⁴	Power State 0 Descriptor
2080-2111	XXXXh ¹⁴	Power State 1 Descriptor
2112-2143	XXXXh ¹⁴	Power State 2 Descriptor
2144-2175	XXXXh ¹⁴	Power State 3 Descriptor
2176-2207	XXXXh ¹⁴	Power State 4 Descriptor
2208-3071	All 00h	Power State 5 - 31 Descriptor (Not Applicable)

Byte(s)	Default Value	Data Field Type Information
3072-4095	-	Vendor Specific (VS)

9. Health Monitoring Functionality

The N3202 SSDs support Self-Monitoring, Analysis, and Reporting Technology. The SSD supports log information as defined in the NVMe specification.

See the following table for the 512-byte data structure of the SMART/Health Information log page:

Table 21: SMART/Health Information (Log Identifier 02h)

Byte(s)	Description
0	Critical warning: for the state of the controller <ul style="list-style-type: none"> Bit 0: If set to '1', then the available spare capacity has fallen below the threshold Bit 1: If set to '1', then a temperature is greater than or equal to an over temperature threshold; or less than or equal to an under temperature threshold Bit 2: If set to '1', then the NVM subsystem reliability has been degraded due to significant media related errors or any internal error that degrades NVM subsystem reliability. This bit can also be set on a failure of the energy management circuit. Please see chapter 9.1 Bit 3: If set to '1', then all of the media has been placed in read only mode
1-2	Composite Temperature: in degrees Kelvin
3	Available Spare: as a percentage of remaining spare capacity
4	Available Spare Threshold
5	Percentage Used: Estimate of the percentage of the NVM subsystem life left based on usage
6-31	Reserved
32-47	Data Units Read: Number of 512-byte sectors read by the host (in 1000 increments)
48-63	Data Units Written: Number of 512-byte sectors written by the host (in 1000 increments)
64-79	Host Read Commands: Number of Read commands completed by the controller
80-95	Host Write Commands: Number of Write commands completed by the controller
96-111	Controller Busy Time: Amount of time, in minutes, the controller was busy with I/O commands
112-127	Power Cycles: Number of power cycles that has occurred over the life of the drive
128-143	Power On Hours: Number of hours the device has been powered over the life of the drive (does not include the time the device is in low power state conditions)
144-159	Unsafe Shutdowns: Number of shutdowns that occurred without a shutdown notification
160-175	Media and Data Integrity Errors: Number of unrecoverable errors, including UECC, CRC checksum failures, and LBA mismatches, that occurred over the life of the drive
176-191	Number of Error Information Log Entries: Number of entries recorded in the Error Information log over the life of the drive
192-195	Warning Composite Temperature Time: Amount of time, in minutes, the controller was operational and the Composite Temperature was equal to or greater than the Warning Composite Temperature Threshold (WCTEMP) but less than the Critical Composite Temperature Threshold (CCTEMP)
196-199	Critical Composite Temperature Time: Amount of time, in minutes, the controller was operational and the Composite Temperature was equal to or greater than the Critical Composite Temperature Threshold (CCTEMP)
200-201	Temperature Sensor 1: Current controller Tjunction temperature, in degrees Kelvin
202-203	Temperature Sensor 2: Current composite temperature, in degrees Kelvin
204-205	Temperature Sensor 3: Current maximum NAND temperature, in degrees Kelvin
206-215	Not used

216-219	Thermal Management Temperature 1 Transition Count: number of times the controller transitioned to lower power active power states or performed vendor specific thermal management actions while minimizing the impact on performance
220-223	Thermal Management Temperature 2 Transition Count: number of times the controller transitioned to lower power active power states or performed vendor specific thermal management actions regardless of the impact on performance
224-227	Total Time For Thermal Management Temperature 1: number of seconds that the controller had transitioned to lower power active power states or performed vendor specific thermal management actions while minimizing the impact on performance
228-231	Total Time For Thermal Management Temperature 2: number of seconds that the controller had transitioned to lower power active power states or performed vendor specific thermal management actions regardless of the impact on performance
232-511	Reserved

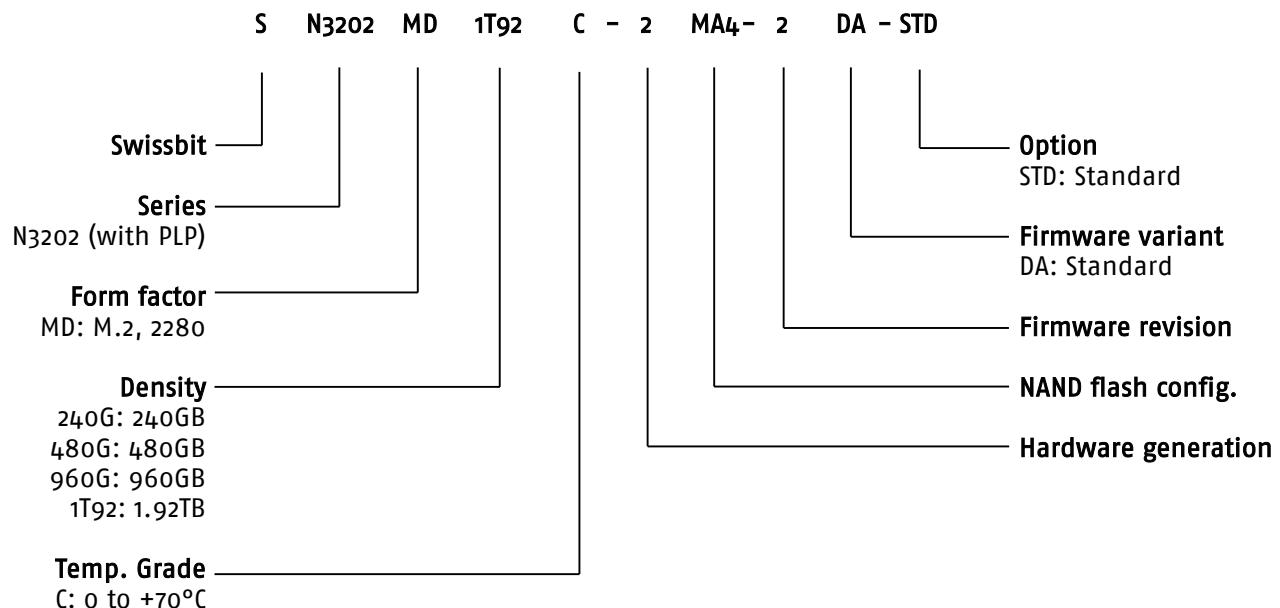
The following data structure is applied to Telemetry Host-Initiated log:

Table 22: Telemetry Log (Log Identifier 07h)

Byte(s)	Description
Telemetry Header	
0	Log Identifier: This field shall be 07h
1-4	Reserved
5-7	IEEE OUI Identifier (IEEE):
4	Telemetry Host-Initiated Data Area 1 Last Block: This field shall be 0001h
10-381	Reserved
382	Telemetry Controller-Initiated Data Available
383	Telemetry Controller-Initiated Data Generation Number
384-511	Reserved
Telemetry Data Block 1	
528-529	Minimum Temperature, in degrees Kelvin
530-531	Current Temperature, in degrees Kelvin
532-533	Maximum Temperature, in degrees Kelvin
560-561	Number of valid spare blocks
562-563	Number of initial spare blocks
564-565	Run Time Bad Block Count
596-599	Maximum Erase Count on system blocks
604-607	Average Erase Count on system blocks
612-615	Maximum Erase Count on data storage blocks
620-623	Average Erase Count on data storage blocks
624-627	Rated Erase Count on system blocks
636-639	Rated Erase Count on data storage blocks
640	Remaining Life Percentage on system blocks based on P/E
641	Remaining Life Percentage based on spare blocks
646	Remaining Life Percentage on data storage blocks based on P/E
647	Cap Health Status (see PowerFail Monitoring)

772-776	NVMe/PCIe Reset Count
804-807	PCIe Gen1 Link Speed Count
808-811	PCIe Gen2 Link Speed Count
812-815	PCIe Gen3 Link Speed Count
816-823	PCIe ECRC Event Count
824-831	PCIe LCRC Event Count
873	PCIe Power On Link Speed
876	PCIe Current Link Speed
877	PCIe Current Link Width
932-935	PCIe x1 Link Width Count
936-939	PCIe x2 Link Width Count
940-943	PCIe x4 Link Width Count
944-951	PCIe L1 Event Count

9.1 PowerFail Monitoring


The Swissbit N3202 series features an energy management circuit that allows the drive to complete ongoing flash commands in case of a sudden power off event.

In case of an energy management circuit failure the drive will report a critical warning in the SMART/Health Information (Log Identifier 02h) log page. The "Critical Warning" field will report a value of 2h, "NVM subsystem reliability has been degraded due to significant media related errors or any internal error that degrades NVM subsystem reliability".

In case of a critical warning please check the "Cap Health Status" field in Table 22: Telemetry Log (Log Identifier 07h):

- Cap Health Status bit0 = 1h: Capacitor health PASS
- Cap Health Status bit0 = 0h: Capacitor health FAIL

10. Part Number Decoder

11. Marking Specification

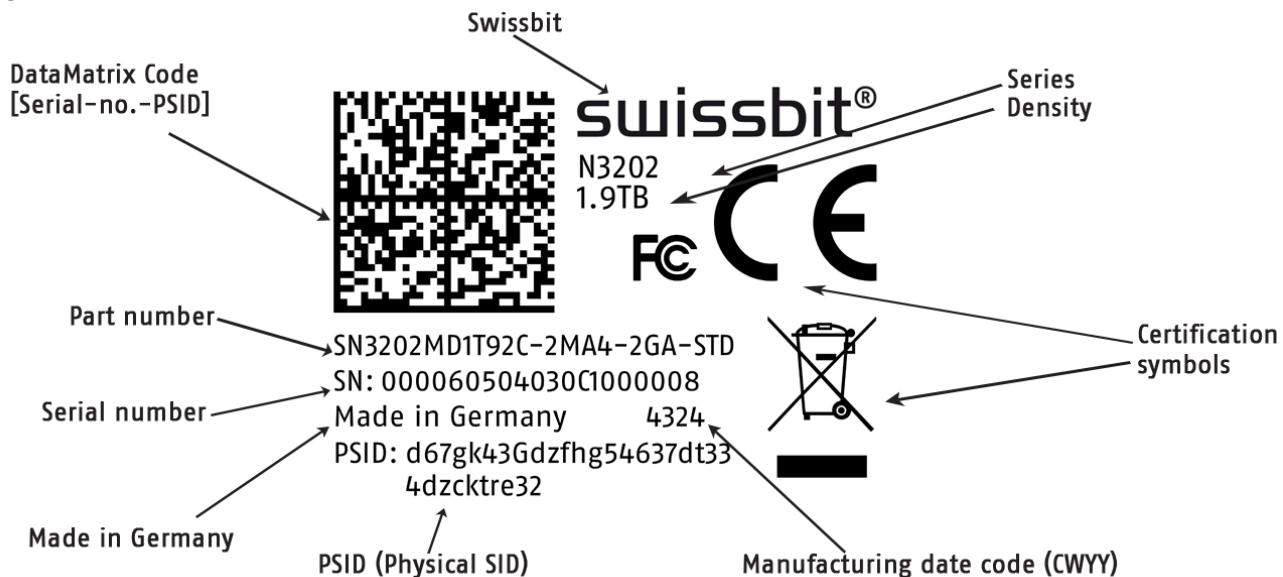

11.1 Top View

Figure 5: N3202 top view

11.2 Print on the label

Figure 6: N3202 label details

12. Revision History

Table 23: Document Revision History

Date	Revision	Description	Revision Details
06-Sep-2023	1.00	Initial release	Doc. req. no. 6533
29-Feb-2024	1.01	SMART/Health Information has been updated	Doc. req. no. 6926
13-May-2024	1.02	Product features, Safety features, Figure 1, Figure 3 and Table 13 have been updated	Doc. req. no. 7080
24-Oct-2024	1.03	Added new variants with hardware generation "2" and firmware "2", updated endurance values for firmware "2" and updated product illustrations.	-

Disclaimer:

No part of this document may be copied or reproduced in any form or by any means, or transferred to any third party, without the prior written consent of an authorized representative of Swissbit AG ("SWISSBIT"). The information in this document is subject to change without notice. SWISSBIT assumes no responsibility for any errors or omissions that may appear in this document and disclaims responsibility for any consequences resulting from the use of the information set forth herein. SWISSBIT makes no commitments to update or to keep current information contained in this document. The products listed in this document are not suitable for use in applications such as, but not limited to, aircraft control systems, aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. Moreover, SWISSBIT does not recommend or approve the use of any of its products in life support devices or systems or in any application where failure could result in injury or death. If a customer wishes to use SWISSBIT products in applications not intended by SWISSBIT, said customer must contact an authorized SWISSBIT representative to determine SWISSBIT willingness to support a given application. The information set forth in this document does not convey any license under the copyrights, patent rights, trademarks or other intellectual property rights claimed and owned by SWISSBIT. The information set forth in this document is considered to be "Proprietary" and "Confidential" property owned by SWISSBIT.

ALL PRODUCTS SOLD BY SWISSBIT ARE COVERED BY THE PROVISIONS APPEARING IN SWISSBIT'S TERMS AND CONDITIONS OF SALE ONLY, INCLUDING THE LIMITATIONS OF LIABILITY, WARRANTY AND INFRINGEMENT PROVISIONS. SWISSBIT MAKES NO WARRANTIES OF ANY KIND, EXPRESS, STATUTORY, IMPLIED OR OTHERWISE, REGARDING INFORMATION SET FORTH HEREIN OR REGARDING THE FREEDOM OF THE DESCRIBED PRODUCTS FROM INTELLECTUAL PROPERTY INFRINGEMENT AND EXPRESSLY DISCLAIMS ANY SUCH WARRANTIES INCLUDING WITHOUT LIMITATION ANY EXPRESS, STATUTORY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

© 2024 SWISSBIT AG All rights reserved.